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1 Introduction

Rheology is the study of a material that have both a liquid and solid characteristics. It is
at the frontier of solid and fluid mechanics enabling us to study a wide variety of materials.
This report will be about the study of viscoelastic material flows. The study of viscoelastic
fluids has started since the second half of the 20th century with the industrial production of
molten and dilute polymers and the growth of engineering that generated many new product
[7]. A material is said to be viscoelastic if it has both a viscous (liquid) and elastics (solid)
behaviours, for instance polymers. The difficulty is to describe the macroscopic behaviour of
a material that is composed microscopically of long and flexible polymers molecules suspended
in a solvent. This special property set those materials in the non Newtonian fluids category
leading to the modification of the constitutive equations from the Navier-Stoke problem.

To describe the macroscopic behaviour of a viscoelastic fluid, during the internship, we
used the Oldroyd model. One of the main concerns about viscoelatic simulation was the
Weissenberg number limitation, that has been treated in 2004 by Fattal and Kupferman [4].
By introducing a change of unknown, the authors allow the scientific community to rethink
the existing algorithms and propose new methods to push further the simulation of viscoelastic
flow at high Weissenberg number. In 2014, Pierre Saramito published an article [6] where a
numerical method relying on Newton method allowed a direct steady numerical resolution of
the problem.

In this report, we propose to do a direct application of the change of unknown to simulate
a flow in abrupt contraction for a various number of Weissenberg using a Newton algorithm
implemented in the open source library Rheolef [8]
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2 The viscoelastic fluids equation

2.1 Equations of conservation

Let us introduce some useful notations and equations that will be used all along this report.
The domain where the fluid flows will be denoted Ω ⊂ R3, it will be an open set of the space.
The density of a fluid will be denoted ρ(t, x), it is a function of the space variable x ∈ Ω and
of the time t ≥ 0. The velocity of the fluid will be denoted u(t, x) = (ui(t, x))1≤i≤3, it is a real
valued function of the time variable t ≥ 0 and of the space variable x ∈ Ω. The velocity field
will be denoted u.

2.1.1 The mass conservation:

The first equation describing any fluid, Newtonian and non-Newtonian, is the conservation of
mass. The mass conservation principle comes from the postulate that the mass of the fluid
transported by the velocity field in the domain is conserved along the time. It can be written,
for any subset ν(t) ⊂ Ω for any t ≥ 0:

d

dt

(∫
ν(t)

ρ(t,x)dx

)
= 0

This equation describe the mass conservation in non local form, but can be expressed locally
instead of the arbitrary subdomain ν(t). Using some formula, that can be found in the book
Complex Fluid [7], we can obtain the standard mass conservation in local form:

∂ρ

∂t
+ div(ρu) = 0 (1)

In the rest of the report, we will use the hypothesis that the fluid is incompressible leading to
the elimination of the ∂ρ

∂t
because the density is constant.

2.1.2 The momentum conservation:

The momentum conservation is an equation that is verified by every fluid:

ρ

(
∂u

∂t
+ (u.∇)u

)
− divσtot = ρg (2)

where σtot is the Cauchy stress tensor, and (u.∇)u =
(∑3

j=1 uj
∂ui
∂xj

)
1≤i≤3

.

2.1.3 Constitutive equation:

To describe the fluid, we now have a system of two equations, the mass and momentum conser-
vation, with three unknown: the pressure p, the velocity field u and the Cauchy stress tensor
σtot. Indeed, the system is not closed and we need to add relations between u and σtot to
close it. The difference between Newtonians and non-Newtonians fluids is in the relationship
between u and σtot: for a Newtonian fluid, a linear relation between σtot and u is enough to
describe the behaviour of the fluid. For instance, writting:

σtot = 2ηD(u)− 2η

3
div(u)I
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where D(u) is the rate of deformation tensor, D(u) = 1
2

(
∇u+∇uT

)
. Adding this equation

to the mass and momentum conservation equations closes the system and we obtain the well
known Navier-Stokes equations for a Newtonian fluid.

2.1.4 Constitutive equation for a viscoelastic fluid, the Oldroyd model:

The viscoelastic fluids do not have a unique model. Through my internship, we used the
Oldroyd model.

A viscoelastic fluid has a viscous and elastic behaviour. Microscopically, polymer molecules
are long flexible chains that can be approximated by a spring model. The main problem
encountered in viscoelastic modelization is to describe at the macroscopic scale the behaviour
of those microscopic polymer chains. To this end, we introduce the elastic stress tensor that
will be denoted τ . This tensor verifies the following equation:

τ̇

µ
+
τ

ηm
= 2D (u) (3)

where µ is the elastic modulus of the material at the macroscopic scale and ηm is the viscosity
coefficient representing at the macroscopic scale the friction between polymer chains and the
solvent molecules. τ̇ is the lagrangian derivative

τ̇ =
∂τ

∂t
+ (u.∇) τ (4)

Let λ = ηm/µ be the relaxation time, last equation is rewritten as:

λτ̇ + τ = 2ηm(u) (5)

We can now introduce the cauchy stress tensor

σtot = τ + 2ηsD (u)− p.I (6)

where ηs is the solvent viscosity, it represents the friction between solvent molecules. The
problem of the lagrangian derivative of τ 4 is that it depends on the frame of reference. To
compensate that, Oldoryd introduced in 1950, the concept of the objective derivative of a tensor.
In the complex fluid book [7], a whole section is dedicated to the building and computation of
that derivative. We recall here the final result, to ensure the independence with respect to the
frame of reference, we introduce the objective tensor derivative Daτ

Dt :

Daτ
Dt

=
∂τ

∂t
+ (u.∇)τ + τW (u)−W (u)τ − a(τD(u) +D(u)τ ) (7)

where W (u) is the vorticity, given by W (u) = 1
2

(
∇u−∇uT

)
and a is a parameter belonging

to [−1; 1].
Finally, we can write the constitutive equation for any viscoelastic fluid under the Oldroyd
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model: 

divu = 0 in ]0, T [×Ω

ρ

(
∂u

∂t
+ (u.∇)u

)
− div(τ + ηsD(u)− pI) = ρg in ]0, T [×Ω

λ
Daτ
Dt

+ τ = 2ηmD(u) in ]0, T [×Ω

τ (t = 0) = τ 0 in Ω

u(t = 0) = u0 in Ω

τ = τ Γ on ]0, T [×∂Ω−

u = uΓ on ]0, T [×∂Ω

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

where ∂Ω− = {x ∈ ∂Ω; uΓ.n(x) < 0} it is the upstream boundary, the inlet flow. We can
see that boundary condition imposes u on the whole boundary ∂Ω whereas only the upstream
boundary ∂Ω− is imposed for the tensor τ .
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3 Simulation in Abrupt Contraction:

In this section, we simulate the flow of a viscoelastic fluid in abrupt contraction. This section
is split in three subsections. First the reformulation of the viscoelastic problem 8 in term of the
logarithm of the conformation tensor, the change of unknown proposed by Fattal and Kupfer-
mann in [4]. The second part is the description of the configuration of the abrupt configuration
and the last part is the comparison between the obtained result during the internship with the
results obtained from the [5] article.

3.1 The new formulation

3.1.1 Conformation tensor formulation

The speed flow u, the pressure field p and the elastic stress tensor τ verify the system 8. The
system is closed, we have 10 unknowns (6 in the elastic tensor, 3 in the velocity field and 1 in the
pressure) and 1 scalar equation ( 1 in the mass conservation, 3 in the momentum conservation
and 6 in the elastic transport equation).

To compute numerically the solution τ , the equation (3) has to be reworked by a change of
variable. For a high Weissenberg number, the numerical computation of the viscoelastic fluids
equations systemically fail. It seems that, at highly non linear singularities (at a corner or
a border of an obstacle) of the domain, the norm become so high that it leads to numerical
errors. In 2004, R.Fattal and R.Kupferman in [4] introduced a new formulation that involved
logarithmic change of variable of the conformation tensor. In [6], in 2014, a new variant of the
conformation tensor c is introduced:

Let c be the conformation tensor

c = τ +
ηm
aλ
I.

The problem is now expressed as follow.
Find (u, p, c) defined in [0, T ]× Ω such that:

divu = 0 in ]0, T [×Ω

ρ

(
∂u

∂t
+ (u.∇)u

)
− div(c+ 2ηsD(u))−∇p = ρg in ]0, T [×Ω

λ
Dac
Dt

+ c− ηm
aλ
I = 0 in ]0, T [×Ω

c(t = 0) = c0 in Ω

u(t = 0) = u0 in Ω

c = cΓ on ]0, T [×∂Ω−

u = uΓ on ]0, T [×∂Ω

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

One can verify that c has the same derivative as τ , leading to the new elastic transport
equation

λ
Daτ
Dt

+ τ − 2ηmD(u) = λ
Dac
Dt

+ c− ηm
aλ
I
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3.2 Logarithm of the conformation tensor formulation

3.2.1 The change of variable

We now introduce the logarithm χ of the conformation tensor c from [6] :

χ =
ηm
aλ

log

(
aλ

ηm
c

)
⇔ c =

ηm
aλ

exp

(
aλ

ηm
χ

)
. (10)

To perform such change of unknown, we have to write the constitutive equation on the eigenba-
sis, where c is diagonal. Then perform the change of unknown and finally perform the change
of basis from the eigenbasis to the usual one. All those steps can be found in the book [7] from
P.Saramito. We will now introduce the log derivative of a tensor.

3.2.2 The log derivative of a tensor

Before the introduction of the log derivative of a tensor, we define some tools that will be used
later. Let us consider a tensor β ∈ RN×N

s , then {βi}, i = 1, 2, ..., N(β) ≤ N denotes the set of
the distinct eigenvalues of β, m(βi) is the multiplicity of the eigenvalue βi and {uij}1≤j≤m(λi)

are the eigenvectors associated to the eigenvalue βi of β.

Definition 3.1. A eigenprojector P i associated to the eigenvalue λi of a tensor β is defined
by

P i(β) =

m(λi)∑
j=1

uij ⊗ uij.

Definition 3.2. Let β be a symmetric real tensor, then the spectral decomposition of β can
be written :

β =

N(β)∑
i=1

βiP i (11)

where βi, i = 1, 2, ..., d are the distinct eigenvalues of β and P i are as in definition 3.1.

We can now introduce the log derivative of a tensor:

Definition 3.3. The log derivative of a tensor χ and γ is defined as

Dlogχ

Dt
(χ,γ) = χ̇+ χW (γ)−W (γ)χ+ a

(
χW̃ (

aλ

ηm
χ, 2D(γ))− W̃ (

aλ

ηm
χ, 2D(γ))χ

)
(12)

where χ̇ is the lagrangian derivative, W (γ) is the skew symmetric part of γ, D(γ) is the
symmetric part of γ and W̃ is defined as

W̃ (β,γ) =

N(β)∑
i=1

N(β)∑
j=1

g

(
βi − βj

2

)
P i(β)γP j(β)

with g defined as follow

g(x) =

{
1

2x
− 1

2 tanhx
if x 6= 0

0 otherwise.
(13)
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The problem with the conformation tensor 9 becomes with the change of unknown 10:
Find χ, u and p such that

divu = 0 in ]0, T [×Ω

ρ

(
∂u

∂t
+ (u.∇)u

)
− div

(
χ+ f

(
aλ

ηm
,χ

)
+ 2ηsD(u)− pI

)
= 0 in ]0, T [×Ω

λ
Dlogχ

Dt
+ χ− f

(
aλ

ηm
,χ

)
− 2ηmD(u) = 0 in ]0, T [×Ω

χ(t = 0) = χ0 in Ω

u(t = 0) = u0 in Ω

χ = χΓ = 0 on ]0, T [×∂Ω−

u = uΓ on ]0, T [×∂Ω

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

Theorem 3.1. The change of unknown 10 transforms the problem 9 into 14.

To begin the proof, we need to perform the change of unknown in the equation 9c:

λ
Dac
Dt

+ c− ηm
aλ
I = 0

The computations are detailed in [7] and lead to:

λ
D0χ

Dt
+ χ− f(

aλ

ηm
,χ) + ηmκ(

aλ

ηm
χ, 2D(u)) = 2ηmD(u) (15)

where

f(µ,χ) 7−→

{
exp (µχ)−I

µ
− χ if µ 6= 0

0 otherwise

and κ(β,γ) is a function defined such that for all second order tensor β ∈ R3×3
s and γ ∈ R3×3

we have:

κ(β,γ) = qT κ̃q, (16)

κ̃ij = κ̂

(
βi − βj

2

)
γ̃ij, 1 ≤ i, j ≤ d (17)

diag(βi)1≤i≤3 = qTβq (18)

(γ̃ij)1≤i,j≤d = qTγq (19)

κ̂(x) =

{
1− x

tanhx
if µ 6= 0

0 otherwise
(20)

The function κ is non linear with respect to its first argument making the derivatives hard to
compute. We need an other expression.

Theorem 3.2. The function κ can be rewritten in term of the spectral decomposition of its first
argument β:

κ(β,γ) = qT κ̃q =

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
P iγP j (21)

where Pi and Pj are eigenprojectors of β as defined in definition 3.1, κ̃ is as in equation (17),
βi are eigenvalues of β and q is the 3×3 matrix whose i-th column is the eigenvector associated
to βi.

page 8



3.2 Logarithm of the conformation tensor formulation M2 MSIAM

Proof. We start to develop from the third term in the equation (21) and decompose P i in the
basis Eik of the spaceMn(R) where Eij denotes the matrix equal to zero everywhere except at
ij coordinate. The Eij have the property that for all i, j, k, l:

EijEkl = δjkEil

where δij is equal to 0 if i 6= j. Let T be a matrix of M3(R), then it admits a decomposition:
T =

∑3
i=1

∑3
j=1 TijEij where Tij is the number at the i-th row and j-th column.

This matrix decomposition leads to:

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
P iγP j =

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)( N∑
m,m′

pimm′Emm′

)(
N∑
n,n′

γnn′Enn′

)(
N∑
l,l′

pjll′Ell′

)

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,m′,n,n′

pimm′Emm′γnn′Enn′

(
N∑
l,l′

pjll′Ell′

)

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,n,n′

pimnγnn′Emn′

(
N∑
l,l′

pjll′Ell′

)

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,n,n′,l,l′

pimnγnn′Emn′pjll′Ell′

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,n,n′,l′

pimnγnn′pjn′l′Eml′

We now pose l = n′, l′ = m′, n = k′ and n′ = k and rewrite pikj in term of q. We have

Pi =
∑m(λi)

k=1 uik⊗uik, then pijk = (ei⊗ ei)jk = eije
i
k. As q i-th column contains the eigenvector qi

associated to the eigenvalue βi we have pijk = qjiqki. We insert this new expression and obtain:

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
P iγP j =

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,m′,k,k′

pimk′γk′kp
j
km′Emm′

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

) N∑
m,m′,k,k′

qmiqk′iγk′kqkjqm′jEmm′

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)( N∑
k,k′

qk′iγk′kqkj

)(
N∑

m,m′

qmiEmm′qm′j

)

page 9



3.2 Logarithm of the conformation tensor formulation M2 MSIAM

At this point the proof is done if we remark that:

γ̃ij = (qTγq)ij

=
N∑
k=1

(qTγ)ikqkj

=
N∑
k=1

N∑
k′=1

qTik′γk′kqkj

=
N∑

k,k′=1

qk′iγk′kqkj

and that :

qEijq
T = (

N∑
m,m′=1

qmm′Emm′)Eij(
N∑

k,k′=1

qTkk′Ekk′)

= (
N∑
m=1

qmiEmj)(
N∑

k,k′=1

qTkk′Ekk′)

=
N∑

m,k,k′

qmiqk′kEmjEkk′

=
N∑
m,k′

qmiqk′jEmk′

By changing the index of the last sum: k′ = m′, we can write

qEijq
T =

∑
m,m′

qmiqm′jEmm′

which leads to:

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
P iγP j =

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)( N∑
k,k′

qk′iγk′kqkj

)(
N∑

m,m′

qmiEmm′qm′j

)

=

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
γ̃ijqEijq

T

= q

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
γ̃ijEij

 qT
= q

N(β)∑
i=1

N(β)∑
j=1

κ̃ijEij

 qT
= qT κ̃q

= κ(β,γ)
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We can now show the theorem 3.1, using the just shown theorem we can compute:

N(β)∑
i=1

N(β)∑
j=1

κ̂

(
βi − βj

2

)
P iγP j =

N(β)∑
i=1

N(β)∑
j=1

(βi − βj)g
(
βi − βj

2

)
P iγP j

=

N(β)∑
i=1

N(β)∑
j=1

βig

(
βi − βj

2

)
P iγP j −

N(β)∑
i=1

N(β)∑
j=1

βjg

(
βi − βj

2

)
P iγP j

=

N(β)∑
l=1

βlPl

N(β)∑
i=1

N(β)∑
j=1

g

(
βi − βj

2

)
P iγP j−

N(β)∑
i=1

N(β)∑
j=1

g

(
βi − βj

2

)
P iγP j

N(β)∑
l=1

βlPl


= β

N(β)∑
i=1

N(β)∑
j=1

g

(
βi − βj

2

)
P iγP j−

N(β)∑
i=1

N(β)∑
j=1

g

(
βi − βj

2

)
P iγP jβ

= βW̃ (β,γ)− W̃ (β,γ)β

And finally, substituting the newly found expression of kappa in the equation 15, we finish
the proof of the theorem 3.1

λ
D0χ

Dt
+ χ− f(

aλ

ηm
,χ) + ηmκ(

aλ

ηm
χ, 2D(u)) =

λ(χ̇+ χW −Wχ+
ηm
λ

(
aλ

ηm
χW̃ (

aλ

ηm
χ, 2D(u))− W̃ (

aλ

ηm
χ, 2D(u))

aλ

ηm
) + χ− f(

aλ

ηm
,χ) =

λ

(
χ̇+ χW −Wχ+ a

(
χW̃ (

aλ

ηm
χ, 2D(u))− W̃ (

aλ

ηm
χ, 2D(u))χ

))
+ χ− f(

aλ

ηm
,χ) =

λ
Dlogχ

Dt
(χ, 2D(u)) + χ− f(

aλ

ηm
,χ)
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3.3 Abrupt contraction

In this section, we present a simulation of the flow of a viscoelastic fluid in planar abrupt
contraction. The study of a viscoelastic flow in abrupt contraction has a direct industrial
application in the making of wires. One of the main way to create a wire is to extrude a
polymer solution, solidify the solution and wrap the obtained wire:

Figure 1: Scheme of a Industrial process to extrude a polymer material, figure taken from [3]

The main problem encountered in this process using polymers is that depending on the inflow
speed and the Weissenberg number of the material a vortex is created around the corners of the
extruder. This vortex will accumulate a lot of impurities during the process and at a certain
time the vortex can move, we will use the term recirculate, from the corner to the output of the
extruder and leak some impurities in the created wire. We will see later that the Weissenberg

Figure 2: The creation of a vortex at different Weissenberg numbers, for an axis symmetric
abrupt contraction, from [7]

number depends on three parameters: the relaxation time parameter λ that is characteristic to
the material and the size of the extruder and the downstream speed of the flow that depend
on the setup and the configuration of the extruder. In a pure industrial point of view, the
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goal is to maximize the downstream speed to obtain a better productivity. By doing that, the
Weissenberg number rise up and lead to a recirculation of the vortex inside the extruder and
lead to the leak of impurities in the wire which is not acceptable. The goal of the presented
simulation is to show the vortex behaviour at the corner for different Weissenberg numbersn the
intensity of the vortex and to compare the obtained results with those obtained by R.Comminal
et al in [5]. All the simulations were done using the open source C++ library Rheolef .

3.3.1 Configuration

We choose the same configuration as the article [5]:

Figure 3: Abrupt contraction configuration

We define the contraction ratio c as the ratio between the upstream height Hu and of the
downstream height Hd. The boundary conditions on u = (u0, u1) and χ are:

u0 = uupstream(y) and u1 = 0 on Γupstream

u = 0 on Γwall

σxx = 0 and u1 = 0 on Γdownstream

σxx = 0 and u1 = 0 on Γaxis

χ = χupstream on Γupstream

where uupstream(y) = Uu,max(1− (2y/Hu)
2) with Uu,max the maximal value of the inlet velocity.

To reduce the parameter set, let us perform a dimensional analysis, we denote by a tilde
the dimensionless variables:

x̃ = x/Hd and ũ(x) =
u(x)

Ud
and τ̃ =

τ

Σ

where Ud and Σ are respectively characteristic speed and characteristic deformation of the flow.
The channels are chosen to be long enough such that the flow at the inlet and outlet behave as
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in a poiseuil flow. In that condition, the tensor τ verify:

τxy(y) = τyx(y) = −α y

Hu

Σu (22)

τxx(y) = (1 + a)Weα

(
y

Hu

)2

(23)

τyy(y) = −(1− a)Weα

(
y

Hu

)2

(24)

where We = λ Ud

Hd
is the Weissenberg number and α = ηm

ηm+ηs
are dimensionless numbers. We

choose for the abrupt contraction simulation the coefficient a equals to 1. χ and τ are linked by
the logarithm of the conformation tensor formulation. We will normalize τ first then explain
all the step to obtain the normalization of χ.

The space variable x will be normalized with respect to the half-width Hd of the downstream
channel. The variable Ud represents the average velocity of the flow at the downstream channel.
We have:

ũ(ỹ) =
u(Hdỹ)

Ud

=
Uu,max
Ud

[
1−

(
Hd

Hu

ỹ

)2
]

=
Uu,max
Ud

[
1−

(
ỹ

c

)2
]

Let q be the flow rate of the fluid, it is equal to UdHd at the downstream channel and UuHu at
the upstream channel. Mass conservation imposes q to be the same at the upstream channel
and at the downstream channel which leads to the relation:

q = UdHd = UuHu =⇒ Uu =
Ud
c
.

We need to establish the link between Ud and Uu,max:

q =

∫ Hu

0

Udũ(ỹ)dy

=

∫ Hu

0

Uu,max

[
1−

(
ỹ

c

)2
]
dy

= Uu,max

[
Hu −

1

c2

∫ Hu

0

(
y

Hd

)2

dy

]

= Uu,max

[
Hu −

1

c2H2
d

H3
u

3

]
= Uu,max

[
Hu −

Hu

3

]
= Uu,max

2Hu

3
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Hence the relation between Ud and Uu,max :

Uu =
2

3
Uu,max =⇒ Ud =

2c

3
Uu,max

And finally the dimensionless velocity of the fluid is given by:

ũ(ỹ) =
3

2c

[
1−

(
ỹ

c

)2
]

(25)

We now normalize the stress tensor χ with respect to the downstream value Σd. Let Σd and
Σu be:

Σd = (ηm + ηs)
Ud
Hd

and:

Σu = (ηm + ηs)
Uu
Hu

which leads to Σu = 1
c2

Σd. The elastic stress tensor τ is symmetric:

τxy(y) = τyx(y) = −αyΣu

Hu

= −α y

Hu

Σd

c2

= − α
c3

Σd
y

Hd

Hence

τ̃xy(ỹ) = τ̃yx(ỹ) =
τxy(ỹ)

Σd

= − α
c3
ỹ

The xx component is given by:

τxx(y) = Σu2αWe(
y

Hu

)2

=
1

c2
Σd2We(

y

cHd

)2

˜τxx(ỹ) =
2αWeỹ2

c4

where We and α are defined above. To finish, we apply the change of variable. We introduce

the conformation tensor c = τ +
ηm
aλ
I.

c̃ =
c

Σd

= τ̃ +
ηm

λ(ηm + ηs)
Ud

Hd

I = τ̃ +
α

We
I
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And finally the logarithm of the conformation tensor χ = ηm
aλ

log
(
aλ
ηm
c
)

will be normalized

as χ̃:

χ̃ =
χ

Σd

(26)

=
ηm

λ(ηm + ηs)
Ud

Hd

log

(
aλ

ηm
c̃Σd

)
(27)

=
ηm

λ(ηm + ηs)
Ud

Hd

log

(
aλ

ηm
cΣd

)
(28)

=
α

We
log

(
We

α
c̃

)
(29)

3.3.2 Simulations

The simulation of a viscoelastic flow us a Newton algorithm implemented in Rheolef [8]. The
simulations use a Euler-Newton continuation algorithm. It is a Newton method that allows
to increase the Weissenberg number from the lowest value of the characteristic number, here
equals to zero. At the lowest value of the Weissenberg number, the problem reduces to the
Navier-Stoke problem. To fit the the R.Comminal et al results, we choose the value α = 8/9,
c = 4, Lu = 24 and Ld = 20. The result of the computation is the stationary solution of the
problem 14. The continuation algorithm allowed us to push the simulation up to a Weissenberg
number of 2.35 for the finest mesh and up to 2.7 for the coarsest mesh.

We used three differents meshes for the simulation:

Mesh Number of triangles
m1 5634
m2 22584
m3 34941

Table 1: Meshes information

Figure 4: Illustration of the abrupt contraction mesh

The mesh is refined at the corner and at the entrance of the downstream channel, at this
zone, the gradient of the velocity field has a skyrocketing norm and leads to inaccuracies in the
computation.
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Let us observe the different results between the meshes, here for Weissenberg equal to one

(a) mesh m1

(b) mesh m2

(c) mesh m3

Figure 5: Velocity field for the abrupt contraction at Weissenberg equal to 1

At this Weissenberg, the velocity computation is not accurate for the mesh m1, the low
number of elements in the mesh leads to inaccurate velocity field computation. Let us go to
Weissenberg equals to two:
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(a) mesh m1

(b) mesh m2

(c) mesh m3

Figure 6: Velocity field for the abrupt contraction at Weissenberg equal to 2

At this point, we can not really interpret how the algorithm works and how the flow behaves
at the corner. hence, we were interesting in computing the stream function ψ, a scalar valued
field, see appendix B for the formula. This field is interesting in the study of a stationnary flow.

We present below the streamlines for some Weissenberg numbers obtained on the finest
mesh m3.
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(a) We = 0 (b) We = 0.5

(c) We = 1 (d) We = 1.5

(e) We = 2 (f) We = 2.3

Figure 7: Streamlines for different Weissenberg number on the mesh m3

Those simulations gives us some information on the behaviour of the fluid. We can see that
the corner vortex is loosing intensity while a new vortex is getting intensity at the edge of the
entrance of the downstream channel, it is called the lip vortex. This behaviour is highlighted
in R.Comminal et al. [5] and we can see it on the figure 7.f

Figure 8: Illustration of the vortices at We =2.5 on m3
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We can see that by increasing the Weissenberg number the corner vortex recirculate to
create a lip vortex. To compare with the article [5], we computed the intensity of the corner
vortex in function of the Weissenberg number, for values before We = 1:

Figure 9: Intensity of the streamfunction at the corner in function of the Weissenberg number

Unfortunately, we did not achieve to the same intensity of the corner vortex as R.Comminal
et al [5]. It seems that at Weissenberg equal to zero we have the same intensity but in their
simulation the vortex intensity strictly decrease with the Weissenberg number. This can be
linked with the computation of the psi stream function that may be inaccurate.

At this point, we concluded that in term of recirculation our simulationsagreed with the
recirculations from R.Cominal et al [5]. They obtained a lip vortex at We = 2 too. Our main
point of difference with the paper simulations is the evolution of the corner vortex intensity.
Further investigations on the stream function may change that result.
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4 Conclusion

This internship allowed me to put at work my skills in modelisation of complex physics phe-
nomenon and to successfully illustrate some recent results on viscoelastic fluids.

I learned how to write the constitutive equations of a viscoelastic fluid and how to change
the viscoelastic problem in term of the logarithm of the conformation tensor. In a second time,
I rewrited the functions that appear in the logarithm of conformation change of unknown in
term of them spectral decomposition. It allowed me to see the importance of some classic
mathematics results such as the exponential of matrices, tensor equations or the derivative of
a tensor. Then, I coded in Rheolef those functions from Appendix A for latter use during the
internship. Those newly coded functions are supposed to replace the exisiting functions that
are generated by a Computer Algebra System, Maxima.

This new approach developped during the internship of the viscoelastic problem allowed us
to write a Newton algorithm in C++ with the library Rheolef to obtain the stationary solution
of a viscoelastic flow in abrupt contraction. Although the results differed from the R.Cominal
et al [5] for the intensity of the corner vortex, the simulation part was interesting for me to
understand how it is to compare results from a personal work to a scientific publication. Even if
my personnal computer has a good processor allowing me to use mpi with six cores, simulations
at high Weissenberg number can not be achieve after We = 2.7 without inaccuracies. An
interesting continuation to the internship is the development of a Keller method that is an
algorithm that allows to exceed the limit Weissenberg number, her We = 2.7.
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A Computation of special functions

In that section, we define the functions we will use to solve the viscoelastic problem 14. To
solve the viscoelastic problem 14 we use a Newton algorithm that relies on the computation of
derivatives of the function f and of the log derivative.

A.1 Exponential of a tensor

Let T be a real symmetric tensor, in [1], the exponential of T can be computed by the explicit
formula:

eT =
d∑
i=1

eλiP i(T ),

where Pi is the eigenprojector of T as defined in definition 3.1 and λi are eigenvalues of T .

A.2 Derivatives of the exponential of a tensor

Definition A.1. Let A, B be two tensors, we define the following square product of A and
B by:

(A�B)ijkl = AikBjl.

Let T be a real symmetric tensor, in [1], the derivative of the exponential of the tensor T
can be computed by the explicit formula:

∂eT

∂T
=

d∑
i=1

eλiP i � P i +
d∑
i=1

d∑
j=1

eλi − eλj
λi − λj

Pi � Pj

where Pi and Pj are the eigenprojectors of T as defined in definition 3.1 and λi, λj are
eigenvalues of T .

A.3 Derivative of the function kappa

In [2], an explicit formula of the derivative of kappa function with respect to the first argument
is given:

∂κ

∂χ
(χ, γ) =

d∑
i,j,k=1

κ̂(χi−χk

2
)− κ̂(

χj−χk

2
)

χi − χj
Pi � PkγPj + PkγPj � Pi

where κ̂ is defined in 20. If i and j coincide, then replace the scalar term of the sum by
κ̂′(χi − χk).

B Computation of the stream function

We used the stream function definition from Rheolef [8]. Let u be the velocity field of the
problem 14, the stream function ψ is a scalar valued field that verifies the following system of
equations

∆ψ = curlu in Ω,

ψ = 0, in Ω.
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