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1 Introduction

In this report, we have worked in Collective cell migration. The biological concept of our
work in based on Refs. [2], [1]. According to the authors, cells connected by cell-cell adhesion
can migrate collectively across several time scales and length scales in several biological pro-
cesses like tissue formation during embryonic development, wound healing and some types of
cancer invasion, all require the coordinated movement of cells in certain directions to specific
positions (See Ref. [5]), where each single cell can grow, divide, die and migrate. We have
considered cell-cell and cell-substrate interactions which conduct the cell migration. The po-
larized movements of collective cells depend on mechanical factors and external geometrical
constraints (see Refs. [15], [16]). In case of collectively spreading and acquiring a free space,
highly motile leader cells can appear ([!7]) and locally guide small organized group of cells
([13]), albeit, it is not completely clear how the migration is sensitive to distance from the
migrating front and how cells at far from the migrating front can maintain their polarity. It
is known that cells move as collectives but the mechanisms remained controversial. There
are several proposed theories describing the mechanisms ([30], [31]). Here, we have used the
established fact that all cells within the tissue can move by an active force (say f,s) which
drives cells to go forward ([0]) and the active force is inversely proportional to the depth of
collective cells (fas o ). By performed experiments on embryonic tissues ([23]), multicel-
lular spheroids ([24], [25]), or cell monolayers with or without substrate ([26], [27]), tissues
have been described as a viscoelastic liquid in nature. The flow of viscous fluid arround
circular obstacle in two or three dimension was experimented by Stokes ([28]), mechanical
behavior of viscoelastic or viscoplastic materials are described in Ref. [29]. The main pur-
pose of the report is deriving a new simple model for a thin layer of viscoelastic fluid when
the motion is essentially driven by viscosity and numerically investigate the prediction of
that simple model. Mathematically, the problem is formulated as a system of partial differ-
ential equations. The set of equations is designed to describe the behavior of cell tissues,
moving on a artificial substrate. The behavior of the cell tissues have been described as an
active viscoelastic fluid. We need to obtain the reduced model because it is computationally
much less costful and easy to solve numerically than the full Oldroyd model (See [22] for
numerical simulations of full 3D model) and also the images are easier to analyse than three-
dimensional (3D) ones, specially for extracting physical quantities like cell velocity, shape,
deformation ([11]) etc. We can also easily investigate its predictions to show the capabilities
and potentials of the model. In several works of mathematical literature, we can notice the
reduced models of thin layers for viscoelastic flows. For example, take a look at Refs. [7] and
[8] where reduced models are derived for the Oldroyd-B (OB) system of equations. Oldroyd
models are widely-used differential model for viscoelastic fluids where viscosity plays mojor
role for fluid flow. Various models for thin layers of non-Newtonian fluids have already been
derived in the physics and applied mathematics literature. Based on the work of “Francois
Bouchut and Sebastien Boyaval” (See Ref. [1]) in Upper Convected Maxwell (UCM) model,
we have derived a thin layer form of the Oldroyd equations. There are some versions of
reduced UCM models which can be cosidered close to our work, see Refs. [9] and [10] for
instance. One can also find sketch of these works in Ref. [I1]. But in these cases, the reduced
models are obtained with another methodologies and with different perspectives and bound-



ary conditions rather than applying asymptotic analysis for general fluid equations. There
are also other existing thin layer models with different methodologies see for example, Refs.
[12], [18], [19], [20], [21]. In our thin layer problem, the length (longitudinal characteristic
length) L is extensively larger than the height (layer depth) h. So, the aspect ratio of height
and lengh is intensively small (£ ~ ¢ < 1). Here, the influence of each term is compared
with €. As the cells migrate over a flat surfacee and the only force is the active pulling force,
So, there would be no gravity-driven free-surface thin-layer flows. The numerical resolution
for viscous fluid is done in Rheolef C++ Library (See Ref. [3]).

In Section 2, we have introduced the 3-dimensional Oldroyd model for viscoelastic fluids
with the equations for conservation of mass and conservation of momentum. In Section 3,
we developed some of its properties in the mathematical setting that is adequate to take
step towards creating a thin layer problem from the initially defined Oldroyd model. Firstly,
we have expanded the primary 3D model to make our problem simple. We take the axes
wise components and introducing new notations, we transformed the model in 2D form. We,
then make the physical terms dimensionless. Next, the dimensionless model is expanded
asymptotically. An asymptotic expansion is a special kind of an asymptotic expression, in
which a function is approximated by partial sums of some series (may be convergent or
divergent). According to the need of our problem, we take partial sums till second order of e
and ignore higher order terms because of very small €. After that, we have used some clear
mathematical hypothesis to reduce the system of equations and finally derived the closed
system of equations. We also have discussed the general assumptions we made to reach
the desirable closed system of equations. Section4 is devoted for doing the Variational
formulation of our new reduced model and generating a discontinuous finite element space,
where our continuous system of equations can be approximated discretely. In this section, we
also provide the numerical solutions and explain the results. Finally, Section 5 is engaged
to the conclusion, where physical interpretation of situations, modeled by our system of
equations and some idea about further works are discussed.

Figure 1: Figure in left shows Cell migration in 2-Dimension, without obstacle, See Ref. [7]
and Figure in right shows Cell migration around an ostacle in 2- Dimension, See Ref. [2]



2 Problem formulation

Here, we have considered the Oldroyd model together with the equations for conservation of
mass and conservation of momentum. It forms a very commonly used mathematical model
to describe viscoelastic fluids. The viscoelastic fluid is incompressible in nature. In this
model, we consider the z, y, z-components. So, u, 7, o, are functions of ¢, x, y, z where u
is the cell’s velocity, T is the elastic stress tensor and o is the total stress tensor. Depth (h)
is the function of ¢, x, y.

2.1 Notations

Uy Oy
Here we denote the velocity u = | u, | and the ‘nabla’ operator V = | 0,
U, az

Tex Tzy Tzz
The elastic stress tensor T = | Ty Tyy Ty-
Tez Tyz Tzz
The gradient of velocity tensor can be written as:
Optty  Oyuy 0 Uy
Vu=|0u, Ju, Ou,
Oty Oyu, 0O,u,
The rate of deforjmation tensor is denoted as:
Vut+(V
D(u) = Yer(Ve)_
The divergence of a vector (velocity vector) is:

divu = d,u, + Oyuy + 0,u,.

The divergence of a tensor (total stress) is:
Op Opy + Oy Oy + 05 04

divo = | 0,04y + 0,0y + 0.0y,
Op Oz + 0y 0y, + 0,0,

2.2 Problem statement

The constitutive equations for viscoelastic materials are:

o= —pl+2nD(u)+ .

AT+ 7 — 2n, D(u) = 0.

Where ¥ denotes the upper-convected derrivative of the tensor 7, such that:

T=0,T1+ (u.V)T — Vut — 7 VuTl.

These constitutive equations are completed by the equations of mass conservation and con-
servation of momentum.

div(u) = 0.

,0<8t’u, + (u.V)u) —dive =0.

Here, the density p is considered constant (because of the imcompressible nature) and so,
the mass conservation equation reduces to div(u) = 0.



We have considered a free surface flow problem, where the flow domain is defined by:
A@t) ={(x,y,2) ER}| (z,y) €Q, 0< 2z < h(t,z,y)}.

where h(t, x,y) is the height and 2 is the bottom surface of the flow.

The boundary dA(t) splits in two components I'f(¢) and €.

Ts(t) = {2l 2 = ht,,y)}
Free Surface

Cells move towards right

=>

0

Le(t)={2] (z,y) € Q& z=h(t,z,y)} and 2 is in the bottom z = 0.
The kinematic condition at free surface can be described by % =0 at z = h(t,z,y), where
F(t,z,y,z) = h(t,z,y) — z. Hence, The kinematic equation of the free surface is:
Oh + ugy Oyh 4+ uy Oyh —u, = 0 on I'y(t) or at z = h.
The boundary conditions are:
o.n =0 on I'(t).
Ont + cfuy = fo and u.m =0 at Q.
where ¢y > 0 is the friction coefficient and n is the outward unit normal vector. The out-

—0y h
ward unit normal vector on I'y is n = | =0, h | and the outward unit normal vector on (2
1
0
isn=10
-1

Here, f, denotes the given active force, u; denotes the tangential component of the velocity
vector u and o, denotes the tangential component of the vector o n, represented as:

uy =u — (u.n)n.

ont =0n— ((ocn)n)n.

Let, T" > 0 be the final time. Now, the final problem can be written as:



Find 7, uw, h such that:

div(u) =0 in |0,T[xA(t)
o= —pl+2nD(u)+71 in |0,T[xA(t)
p(@tu + (u.V)u) —dive =0 in |0,T[xA(?)
MNOoT+ (uV)T —Vur —17Vul)+7-2n,Dwu)=0 in ]0,T[xA(t)

Oh + ug Oph +uy Oyh —u, =0 in |0,T[xI(t)

on=0 in ]0,T[xI(t)

un=0 in ]|0,T[xQ
o+ crup = fo  in 10, T[xQ

Where, the entire problem is closed by the initial conditions for h, w, 7:
h(t = 0) = hg, in Q

u(t = 0) = up in A(0)

T(t =0) = 19 in A(0).

3 Derivation of a thin layer approximation

3.1 Expansion

We need to expand the primary equations and create more simplified forms for our computa-
tional ease. Initial equations are three dimensional. It is tough to handle them and without
reducing the dimension it would be computationally costful to look for numerical solutions
and also it would not be straightforwrd to include active forces. So, here our first step is
expanding the initial equations and consider their components axes wise. By this way, we
have generated simplified versions of the equations and then by introducing the planar and
vertical components, we write the primary three dimensional equations in two dimensional

forms. The detailed expansion is shown in Appendix (6.1).

3.2 Splitting planar and vertical components

We introduce the new notations:

U Uz u
o u, = (J) Hence, u = | u, | = (us)
Yy uz z

Ox
e V,= (&E) Hence, V= |0, | = <Vs>.
0, )

o div,u, = V. u,.



e The planar elastic stress tensor 7, = (Tm Txy), Ter = (sz)‘

Tay  Tyy
Ts T,
Hence, 7 = < °r sz).

TSZ TZ z

e divyT, = V,.7s.

. o
e Similarly, total stress tensor o = UST 5.
o-Sz O-ZZ

e divyo, = V,.0,.

We have introduced the new notations and accordingly change the one dimensional equations
in two dimensional forms, by using the new notations. The detailed transformation is shown
in the Appendix 6.2. Eventually, changing the forms of primary three dimensional equations,
we get:

Equation for conservation of mass:

divsus + O,u, =0 (2a)

Equations for conservation of momentum:

p(@tus + (us. Vg + u,0,) u3> —divyo, — 0,05, =0 (2b)
p(@tuz + (us. Vs + u, Gz)uz> —divyos,t — 0,0, =0 (2¢)
Constitutive equations:
os = —pl + 75 + 219 Ds(us) (2d)
Osz = Tsz + 1o (0:us + Vsu,) (2e)
Os = =P+ Toz + 20 Oyu, (2f)

A [8th + (us. Vs + 1.0,)Ts — (Vous)Ts — To(Vsus)! — (0,us) e, — Tsz(azus)T}
+7s = 21, Dy(us) (2g)
A [&Tsz + (Us. Vs + 1.0.) Tz — (Vs + 0.0) Tz — (0us) T2 — TsVsuz] + Tez
= 1y (Oous + Vsu.) (2h)
A |:8th2 + (us. Vi +u.0.) T — 2(02us) e — (V)" 7y — TszT.(Vsuz)} +Ts = 21, O,u, (2i)

Kinematic equation:

Equations for boundary condition at free surface:
—05(Vsh)+0s, =0 (2k)
— 04" (Vsh)+ 0., =0 (21)

8



Equations for boundary conditions at bottom:
u, =0 (2m)

Osz — CfUg = _.fas (2Il)
Where, the entire problem is closed by the initial conditions for h, ws, Ts, 7..:
h(t = 0) = hg, in Q
us(t =0) = uso in A(0)
Ts(t = 0) = 750 in A(0).
To2(t = 0) = 7., in A(0)

3.3 Dimension analysis

Dimensionless numbers are necessary to reduce the number of parameters that describe a
system. In this way, we can reduce the amount of experimental data required to make
correlations of physical phenomena to scalable systems. The most common dimensionless
number in fluid dynamics are the Reynolds number (Re) and the Weissenberg number (We).
The Reynolds number is a dimensionless number used to predict the flow patterns in different
fluid flow situations. It is used in several situations where the fluid is in a relative motion to
surface. Low reynolds number means that the fluid flow tend to be dominated by laminar flow
which is our case of thin layer problem whereas, high Reynolds number creates turbulence
in fluid’s velocity and direction of flow. The Weissenberg number is also a dimensionless
number used in the study of viscoelastic flows. It compares the elastic forces to the viscous
forces. More specifically, the Weissenberg number is the ratio of elastic forces and viscous
forces. We have denoted the characteristic dimensions of length by H, L, the characteristic
dimensions of velocity by U, V, the characteristic dimensions of tensor or pressure by X..

3.3.1 Choices of characteristic quantities

As we have a thin layer problem, we can say that the ratio between height and length is very
small.

So,az%éHzeL.

r=Li y=Lj, 2=Hz h=Hh.

V= %63, divy, = %cﬁvs, 0, = %85.

us = Uug, u, = Vu, and V = ¢eU.

T=XT,0=%X0,p=22p, fo =2fa

Where 3 = )l _ 0l [n = 1p + ol

The characteristic time is: ¢ = ﬁt.

U, K Ug.

All the terms of X forms are dimensionless. In further sections, we know the terms are
dimensionless but we ignore “tilde” for reducing writing complexity. Our objective is to
change the differential equations in a manner such that all the equations become dimension-
less. So, we will replace the physical terms by newly assumed terms. The idea is simple, any
physically meaningful equation must have same dimensions on the left and right sides.

Reynolds number: Re = 29

Weissenberg number We = ’\TU



3.3.2 Forming dimensionless equations

We are generationg the dimentionless terms from previous equations of the problem.

3.3.2.1 Conservation of mass

For the equation of mass conservation:

. 0 Vusy . 2] Uu
+divy(Uug) + 8((Hz)) =0. = Ydivyus + 8(§ng)) =0.

= Udivyu, + 40 = 0. = Y (divyu, + 242 ) = 0.

= divs ug + 0,u, = 0.

3.3.2.2 Conservation of momentum

We consider the projections on the planar and vertical axis, the equations for conservation
of momentum are:

1. Planer component:

O(Uuy) 1 O(Uus) Ydivio, Yo,
Uus.—Vy)Uug + Vu, — = 0.
( I A R T77% ) T
U? 8u3 8(“,3) 2. b aasz .
= pf< TR (us. V) ugs + u, ) ) - z(dlvsas) - 5_L( P ) = 0.
Multiplying both sides by %, we get:
U?c /0ug O(ug) . 00,
p?( ot +(U3.Vs) US+UZW) —E(leS 0'3) — 92 =0.
Nowp%:p%:%:}%e.
Hence,
£ Re [@us + (us. Vs + uzaz)us} —edivgo, — 0,04, = 0.
2. Vertical component:
0eUu, 1 d(eUu,) P s 200,
A LN R s z 2 a/_1 N\ ) _d sUsz — == U.
<8(5t) + (Uu LV )eUu, +eUu 9(eLz) ) 7 divso L) 0

U?e . r Z
= P (atuz + (us.Vs)u, + u,0, uz) — Zdlvs O, — g—Lazazz = 0.
Multiplying both sides by é, we get:

U2€ . T 1
pT (@uz + (us.Vs)u, + u,0, uz> —divyos,' — —0,0,, = 0.
€
As we know that U%p = Re.

= =’Re [atuz + (us. Vs +u,0,) uz] —edivyos,t — 0,0, = 0.

10



3.3.2.3 Constitutive equations:

Considering the projection for total stress tensor o, we get:

1. Planar component:
Yos=—Xpl + X715 + 219 %D (us).
=>0's:—pf—|—7's+2"° Dy(uy).

(Because & = 2Z = U %)
So, asz—pI+Ts+2(1— B) Ds(us).
(a3 6 = 5 §=mo =)

2. Shear component:
Y05, = XTs, + 770(5% 82“3 + %Vsuz)'
= Osy = Tsx + (1 — 6)( O, ug + 6Vsuz)
= E0s, =ETsx + (1 6)(8 us +2Vu,).

3. Vertical component:
Y0, =—Yp+ YT, + 2770% azuz
=0, =-Dp+ 7. +2(1 —p)0.u,.

Considering the projections for elastic tensor 7, we get:

1. Planar component:

oxT. v oxT V.Uu V.Uu 0,Uu
s 3-_823 . s s SES_ZS s s\T_ Yz SZSZT
A —8(§t)+(UU 7 Ts+eUu 3(cL2) 7 Ts— 2T ( 7 ) T
T
. 9
ST, M] tor = 28 ().
el
Ux Ux
= )\T OrTs+Us. Vg Te+1,0,Ts—VgUg Ts—Ts VSUST] —A— 7 [8 Us Ton! +Tssz (0, 'u,s)
2
+XTs = U Dg(us).

> : .
As Y = %, So, L= = % and X is constant term so we can cancel it.

U U
)\f OiTs+Us. Vg Te+1U,0,Te— VlUs Ts—Ts VsusT} —)\—L [@us Tes! +Tes (@uS)T]
€

2
7y = % D, (uy).

We know that the Weissenberg number We = 2¥ and 77" = (. Hence:

L
cWe |0rst (s, V g 41,0, )Ts— (V gtts) Ts—Ts (V st )] “We [(azus)fszufsz (azus)T]

+e1s — 2608 Ds(us) = 0.

11



2. Shear component:

U U elU U U Ux YeU
— o2 — U,. — YTer—(— — YiTgr——— -
)\|:Lat Tsz+(L us. Vot —r u,0,) T (T Vst 7 0.u) NTos—— (0:tt) 7o = —— T Visus
U elU
+XTe =1, <5_L O, ug + T Vsuz).
AU 1
T [athz + (us-vs + uzaz>7-sz - (Vsus + azuz)TSZ - g(azus>7—zz —& Tsvsuz] + Z"rsz
n, U /1
= pT(g 8211,3 +é VSUZ)
Doing similar operation like before, we get:
AU 1
T [afTsz + (us~vs + uzaz>7-sz - (Vsus + 8zuz)7-sz - g(azus>7—zz —& Tsvsuz] + ETsz
n, 1
Sl (= 0.us + € Viu,).
n e

1
= We [@Tsz + (us. Vo 4+ 1.0,) Tor — (Visth + 0,0, ) Tor — g(@us)nz —€ ‘TSVSUZ] + 7o

= B(1 D.us + € Vau,).
£

= cWe [8t78z+ (us.Vs—i—uzaz)‘rsz—(Vsus—i—azuz)Tsz] ~We (0.u)Too—"We Ts Vgt e T

—B(0.us +£” Vu,) = 0.

3. Vertical component:

YU U elU elU eUX
A [Tﬁthz—f— (ZU,S.VS—’—E—LUZaZ) ZTZZ_Qg_L(aZUZ)ZTZZ_T

by
P (V)|

(VSuZ)T.Tsz—

U
+X7,, = ollb® 0.u.
eL

YU
= )\T [&Tzz + (us.Vs —I—qu)Z)Tzz —2(0,u) T, — (V) Tor — 5TSZT.(Vsuz)} + 37,

Xy,
n

=2

0,u,.

= We [&Tzz—l— (us.Vs—l—uZ@Z)TZZ —Q(aZUZ)TZZ} —cWe [(VSUZ)T.’TSZ—l—TszT.(Vsuz)} +7T.

—2B0,u, = 0.

12



3.3.2.4 Kinematic condition

The kinematic condition at free surface becomes:

%&h + ELLU(VSh).us —eUu, = 0.

= Oh + (Vsh).us — u, = 0.

3.3.2.5 Boundary conditions

e Boundary conditions at free surface are:
1. —E—ELUS (Vsh) 4+ Yo, = 0.
= —cos(Vsh)+ 05, = 0.
2. —==Lo T (V,h) +Xo.. =0.
= —c0,,1 (Vsh)+o0..=0.

e Boundary conditions at bottom are:

1. eUu,=0=u, =0.
2. Yos, —cfUus = =X fqs.

ecrU ~ . . . .
= Oy, — %us = —fas (Where ¢; = e¢y, discussion about the assumption is
made in 3.5.3).

ceU . . .
= 05y — €0Ug = — fos (Where a = CfT, is a dimensionless term).
= 05, — QU5 = — fqs.

3.3.3 Final equations

Eventually, here we have written down the final set of dimensionless equations:
Conservation of mass:

divsus + O,u, =0 (3a)

Conservation of momentum:
£ Re [&us + (us. Vs + uzﬁz)us} —edivgos — 0,05, =0 (3b)
=?Re [@uz + (us. Vg + u,0,) uz] —edivyos,t — 0,0, =0 (3¢)

Constitutive equations:

os=—pl+71s+2(1—p)Ds(us) (3d)
Oz = _p+Tzz+2(1_6> azuz (38)
EOgy = ETsz + (1 - ﬁ)(azus + 52Vsuz) <3f)

sWe [8,57'3 + (us. Vs +u,0.)Ts — (Vsus) Ts — T (VsusT)} —We [(@us) Tes! +Tes (8ZUS)T
+e7s — 260 Ds(ug) =0 (3g)

cWe [@Tsz + (us‘Vs + uzaz)Tsz —(Vsus+ 8Zuz)rsz} —We (0,us)T, — e WeTe Vgu, + ¢ T

13



—B(0.us +2° Vou,) =0 (3h)

We [@Tzz + (us. Vs + u.0,) 7. — 2(8Zuz)7'zz} —cWe [(VSUZ)T-TSZ + Tl (Veus)| + Tos

—280,u, =0 (3i)
Kinematic condition at z=h:

oh+ (Vsh)us —u, =0 (3j)

Boundary condition at z = h:
—c05(Vsh)+ 05, =0 (3k)
— 05,7 .(Vgh) +0..=0 (31)

Boundary condition at z = 0:
u, =0 (3m)
Osz — EQUs = _.fas (311)

Where, the entire problem is closed by the initial conditions for h, ws, Ts, 7..:
h(t = 0) = ho, in €

us(t =0) = uso in A(0)

Ts(t = 0) = 750 in A(0).

To2(t = 0) = 7., in A(0)

3.4 Asymptotic expansion

Asymptotic expansion or asymptotic series is a series of functions. It has the property that
truncating the series after a finite number of terms provides an approximation to a given
function as the argument of the function tends towards a particular or more often an infinite
point. Here, in the series expansion we have considered terms till O(e?), terms with > O(e?)
are ignored because they are very small, so negligible. So, we expand u, 7, o, h, p upto

O(g?).

us = w9 +cu,V + 2 u,@.

U, = uﬁf’) +e ugl) + &2 ug).

7 = 750 + e,V 4 2 7,

Tsz = Tsz(o) + € Tsz(l) + g2 Tsz(2)-
Toe = T + o7 + 272,
h=h0 4 cp® 4 2p3),

Os = 0'3(0) + 50’8(1) + €2 0'3(2)-
Os, = Usz(o) +e€ Usz(l) + 52 032(2)-
Ozz = O—,gg) + 5U£i’) + 52 O—,g)
p=p O 4+ epl® 4 2p@),

14



3.4.1 Expansion in finite series form
3.4.1.1 Conservation of mass

divsug + 0,u, = 0

= div,us© + 9.u + f(dlvs w4+ 9.ul ) 2 (divsus® + 0 u(2)) 0.
Equating the coefficient of ' in LHS and RHS, we get:

divsus® + 9.ud) =0, i=0,1,2...

3.4.1.2 Conservation of momentum

e Planar component: ¢ Re [@us + (us. Vs + uzﬁz)us} — edivgoy — 0,0, = 0.

= ¢ Re [8tus(0) 4 (s @V 1 1?8, u,© 4 - <8tus(1) + (usM. W, + ug”az)usm)}
— (diveo, O + e divea, V) — (0.0,.0 + 0.0,V + 2 0.0,.,%) = 0.

D04, = 0.
=
Re [8tus(0) + (u V.V, + ui")az)usm)} —diveo, — 0.0..Y = 0.

e Vertical component: *Re|dyu, + (us. Vs + u.0.) uz} —edivyo,,” — 0.0.. = 0.
= =2Re [&uio) + (us .V, + uV0, )uio) +e (&eug) (usV.V, +ulMa,) uil))]
—e(divy O'SZ(O)T +edivyo,, MW7) — (0. o + 20,0 ) = 0.

a Uzz =
divy (O'SZ(O))T +0.0 =0,

z

3.4.1.3 Constitutive equations

Equations for total stress tensor o are:

e 0, = —pl+71s+2(1—5) Ds(us).
= 0,0 + 20,V = —(POT + pO1) + (1,0 4+ e7,) + 2(1 — B) [Dy(is*)
+ D, (u,M)].
= 0,0 = —pOT 4+ 7,0 +2(1 — 3) Dy (us?).

L4 Uzz:_p+7zz+2(1_ﬁ)auz
= ol = O + 70 + 201 - §) 9.uL.

e co,. =cTs, + (1 — B)(0,us + °Vsu,).
= [O'SZ(O) 50’8z(1)] =¢ [Tsz(o) + ETsz(l):| +(1-0) [(8zu3( ) 4 20,u,) + 22V 1)
1—8)0,us® =0.
[0 o
a-s (0) — 7- (0) + ( )dzus(l)

Equations for the elasticity tensor 7 are:
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o cWe [8t73+(us.Vs+uzaz) —(Vsus) 7s—75 (Vsus )] —We [(azus) Ter! +Tss (8zus)T]
+e71s — 268 Ds(us) = 0.

= cWe 97O+ (w0 V400,70 — (7, ©) 7,0~ 7,0 <v us<0>T>+a (B
(009, + 10070+ (0.9, 10070 = (Va0 7,0 (9,0,00) 0
P (Vaus ) =7 <Vsus‘”T)ﬂ e [(0:us®) 7O 4 7,0 (000,07
2 (0:1s") Tue O T4 0) T0a D70 (0,08, O)T 47, (0.0, O)T) | 427,04
57'5(1)] — 28 [Dsms(o)) + 8Ds(us(l))] _0
(0-1s9) T, OT 4 7,0 (., O)T = 0,
= Ve [aﬂsm) + (us 0.V, +u0,) 7,0 — (V,u,®) 7,0 — 7,0 (Vsus(O)T)} + 7,0
26 Dy 0) = We[(01,) 7007 + (0:08,®) 70T 7, (000, 0)7 4 7, (0,00,

e cWe [@TSZ + (us. Vs +1.0,) T — (Vsus + 8Zuz)7'sz} —We (0.us)T.. —°WeT,Vu, +
€ Tey — B(azus + &2 Vsuz) = 0.
= cWe [8t7'sz(°) + (0. V, +ul”0,) 7.0 — (V@ + 9,07, + (athz(l)
+ (0. Vo +u0.) 70 + (u, V.V, + ul0.) 7.0 — (V@ + 0 uio)mz(”
— (Vou,M + 8Zugl))7'sz(0)>] — We [(8 s )TZ(S) €<(azus( )Tzz (0w )TZ(E))]
+e <‘Tsz(0) +e Tsz(1)> — B [(@us(o) + £ 0,u W)
+e? (vsug‘”)} —0.
(B0.us® + We d,us O =0 = 0.4, (3 + We TZ(S)) = 0.
. dwe [aﬂsz(o) + (u9.V, + u?8,) 7.0 — (V,u,® + 0 u(0>)7_sz(o)} _ We[(azu;(’))fz(;)
(0,72 + 7O = 5w, = 0.

o We -8@2 + (us. Vg +1.0.) 7. — 2(@%)7}4 —cWe [(VSUZ)T,TSZ + TSZT,(VSUZ)] + 7.,
— 28 0,u, = 0.

= We 92+ (. Vot ul9,) 7 ~2(0.0.) Tzz>+e(8mz (@Y 4 ul0,) 7D
+ (V.Y + ulM0.) 7Y — 20D — (8 W7l ﬂ —cWe [(Vsuz)(O)T.Tsz(O)
+ Tsz(O)T (Vsu,(zO)>i| + (Tz((z]) cTZZ ) 25( Qa (1)) = 0.

= We [@Tég) + (us(o)-vs + UgO)a )Tz(g) (azuz) Tz(z)} + Tzz —2B0.u

3.4.1.4 Kinematic equation at free surface (z = h)

ath + (Vsh).us — Uy, = 0
= 3h® + (VD)@ — ) =0, i=0,1,2..., atz=h
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3.4.1.5 Boundary conditions

Bounday conditions at z = h are:

.« c0u(Vah) 0w =0
=~ 0 (Voh) + (0,0 (Vh®) + 0,0 (V,00) )|

+ |:0-Sz(0) + Easz(l)] — 0

) — 0
O, )
= at z = h
{_,,8@ (Vah®) + 0,0 = 0.

o —<c0,,7.(Vsh)+o0..=0.
= —E[USZ(O)T.(VSh(O))] + (09 + oDy = 0.

o0 — 0
SUp S at 2 = h
—05, 0T (V,h0) 4+ 50 = 0.

Boundary conditions at the bottom are:

eu,=0=ul =0, i=01,23. atz =0

® O;, —E0Ug = _fas-
= (o’sz(o) —+ go-sz(l)) — 8au3(0)) — _(fas(O) + 8,fas(1))'
0 — _¢ (0
Os2 - .fas .
= . at z = O
{O-SZU) - aus(o) = _fa,s(l)-

3.4.2 Final equations

Eventually, I have written down the final set of equations after assymptotic series expansions:

Conservation of mass:
div, u,? + azug,’) =0

COHSQI’V&tiOH Of momentum:
0.0, =0

Re|0us? + (u,0 .V, + u0,)u, V| — divy o,V — 0.0,.1Y =0
0.0 =
divy (07527 4+ 0.0 =0
Constitutive equations:
0,0 = —pO1 + 7,0 4 2(1 = 3) D, (u,0)

O = 0 40 421 )

zz
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(4e)
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(1= 3)d.u,V =0 (4h)

052" = 7.0 + (1 - )0,V (41)

(0:1s) 7007 + 7. (0.0, V) =0 (4j)

We [Oth(O)—{—(uS(O).Vs+ugo)az)‘rs(0)—(Vsus(o)) 750 —7,© (Vsus(O)T)] +71,9—26 D, (u,?)

— We [((?Zus(l)) 702 OT 4 (01, @) 7. 0T 4 7,0 (900, 4 1, () (6Zu3(0))T] (4K)
d.us® (B+Wer) =0 (41)
We[ma® 4 (0.9, 4 u00.) 7 ® — (T, 4 0.7, ]
—We [(azus(o))Tz(i) + ((9zus(1))7'z(g)] + 760 — B0u,Y =0 (4m)
We [8tTZ(2) + (us(o).Vs + ugo)az)TZ(S) - 2(8Zuz)(0)7'z(g)] +79 2804 =0  (4n)

Kinematic equation:

oh D + (Vb D), — ug) =0 (40)
Boundary condition at z = h:
© =9 4
O (4p)
— 0,0 (V) 4.V =0 (4q)
o =0 (4r)
— 0., 9T (V,hO) 450 =0 (4s)
Boundary condition at z = 0:
ul =0 (4t)
Usz(o) = _fas(O) (411)
O-sz(l) - aus(o) = _fas(l) (4V)

Where, the entire problem is closed by the initial conditions for h, ws, Ts, 7..:
hO(t =0) = A", in Q
ws D (t = 0) = ug0® in A(0)
T, (t = 0) = 740 in A(0).
7.t =0 =79 in A(0)

z

3.5 Reduction

We are going to reduce the number of equations, derived from the assymptotic expansion.
We have used some certain mathematical hypothesis to do so.
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3.5.1 Reduced equations

e From (4d) and (4r), ol = 0 v oz
= p©@ =79 4 2(1—p)0. ul (Puttlng o =0in (4g)).

e From (4h), (1 — 3)0,u,® = 0.
If 0 < 8 < 1, then 0,u,® = 0.
Which means: u,? is independent of z.

e From (4b) and (4p), 6,.,(? =0, V 2.
fas¥ =0 (As 6.0 = — £, from (4u)).
Assuming 0,u,"") = 0 from (4i), we find: 7,,(® =0,
when 1 — 3 # 0 (discussion about the assumption is made in 3.5.3).

e From (4a), divyu,® = —9.u
=[5 divg us® dz = — I 2,u dz.
In (4t), u” =0 at 2 = 0. Hence, we can say that:

u? = —zdivy us @ (As, u,® does not depend on z).

e From (40), 9, + (V) u,® = —hOdiv, u,©.
— 0,00 4 div, (us®. KO) = 0.

e From (4c),
Re foh (O, + (uS(O)VS + ugo)az)uso]dz — foh [divs o, 4+ 0.0,.V]dz = 0.

By using Leibniz integral rule:
[ divs o, + 0.0, V] dz = divs [ 0, dz — 0, OV O
+o0..V(z=h)—0.Y(z=0).

From (4¢), 6.."" = 6,9V h© at z = h.
From (4v), at z =0, 0. = au,® — £,V

Hence, foh [divs os© + 0.0,.V] dz = div, foh 0.0 dz — aus® + f,.Y

As, Re is very small, we can deduce that:
~div, [} 0,0 dz + au,© = f,.,0.

p©@ =794 2(1 - 6)0, ul (from (49)) because ol = ).
= p0) = 9 2(1 — B) divsus® (As, 0.4 = —div,u ).
So, from (41), 05 = 7, — 701 4+ 2(1 — 8) [Dy(us @) + div, u, 1],

Hence, —divs foh [TS(O)—T,Z(S)I+2(1—ﬁ) (Ds(us(o))+divs A I)} dz+aus® = £,
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The depth average of any function f is f = ]11 f x)dx, where h is the depth
So, taking the depth average, we can say: f (T ©) 0)]) dz=h (f‘s(o — AZ(S)I).

Hence:
— div (h [+s<o> — 701 4+2(1-p) (Ds(us“”) + div, us(O)]ﬂ) +ou,©® = £, (5)

e From (4k),
We [aﬂs«» + (9.9, + 1”970 — (V,u, @) 7, © — 7,0 (Vsu;ow)} + 7,
— 283 Dy(us?) = 0. (because Dus® = a u,M) = 0).
= We [am(O) + divg (1@ us @) + 0, (W7, 0) — (V@) 7,© — 7, (Vsus“))T)}
+ 71,0 — 28 D (u, V) = 0.
= We fh [ath(O) diVS(TS(O) u,s )40, (u,(ZO)Ts(O))—(VsUs(O))TS(O)—TS(O) (Vsus(O)T)} A=
+ @ dz — 28 [) Dy(us®)dz = 0.
Using Lelbnltz integral and the value u”) = —h divs us® at z = h, we get:
We [(9,5 foh 75 dz+div, f (1:© u, ) dz— f (Vaus ) 1,0 dz— f 7.0 (V,u,© )dz]
+ [ O dz =28 [P Dy(u,©)dz = 0.
= We [ag (h#:) + divg (h 7Y 4, @) — h (Vu, @ 7)) = h 7,0 (V,u <o>T)]
+h 7Y —28h Dy(us, ) =0 (As us) is 1ndependent of 2).
= We [0 (7,9) + (0. V)7, = V@ 7,0 = 7,0 V,u,07] 4 7,0
- 25 Ds(us(o)) =0 (AS, @h(o) + les (’Ll,s 0). h( )) = O)

v (0)
Wes, +7.9 —28D,(u,?) =0 (6)

v (0)
(where, [at (7 + (u, 0. V)7 — Vo, 7,0 — 7© Vsus((’)T] — 7 ).

e Similarly, from (4n), we can say that:

We (aﬁg) + (us' . V)7 + 2divs(u, ) t@) + 79 4 28diveu,” =0.  (7)
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3.5.2 Closed system of equations

So, finally we get a closed system with equations. Here we are going to ignore the orders
(like (0), (1)) of terms and the hats (like 7,”, 7'”)) and denote them in an usual way for
simplicity. So, we get four equations and four unknown variables h, u,, 75, 7.., depending
upon t, x, y, such that:

Oh + divg(us h) = 0. (8)

—divy | (7, — 7ol 4 21— B)(D, () + divy(e) D)) | + atty = fus. (9)

We Ty + 75 — 28D (ug) = 0. (10)

We (@Tzz + (us. V)T + 2 divs(us)Tzz> + 7., + 26 divs(ug) = 0. (11)

We have We as the Weissenberg number, § = # as the retardation number of Oldroyd

model. « is the dimensionless friction coefficient. The Right-Hand-Side of the equation (10)
fas is the dimensionless active force.
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3.5.3 Assumptions

Here, we have made some strong assumptions to reach the final set of equations for the closed
system.

1. The first strong assumption, we made for the friction coefficient is: ¢ = e¢; and

= %, a dimensionless term. The reason behind the assumption is to generate
feasible reduced system of equations. The equation o, — au,® = _fa,s(l) will
rather change into 4, — au,© = — £, if ¢; # eép. As, 64,0 =0, Vz, So,

ou,0) = fas(o) at 2 = 0. Now, if fas(o) =0, then u,(?Y = 0 at z = 0 because a # 0.
We know that 0,us(”) =0, Vz. So, we would get the planar velocity us® =0, Vz,
which is absurd.

2. We have assumed that d,us") = 0.
From the equation o,,® = 7,,© + (1 — B)0.u."V, we get, 7.0 = —(1 — B)D.u,V
because 04, = 0, Vz. As, multiple partial derrivatives of 7, or d.u,") is equal
with zero (equation 4m). Hence, both terms are constants. Here, taking constant equal
with zero, .u,Y) = 0. As 8 # 1, hence, 75, = 0 too. The assumption could have
been made conversely but it’s our freedom of choice to be theoritically more accurate.

3. The choice 8 # 1 is made because our work is in Oldroyd model. We can choose =1
which will change it to Upper Convected Maxwell model. We can analyse the case for
=1 (n,=mn,1 =0) which would also show some significant results.

e The dimensionless constitutive equations will be changed.
os=—pl+Ts
02z = =P+ Tz
Osz = Tsz
cWe [8t73+(us.Vs+uzaz)Ts—(Vsus) Ts—Ts (VS'U,ST)} —We [(@us) Too! +Tsz (Oous)”
+e7s — 26 Dy(us) =0
cWe [8,5TSZ+ (uS.VS—i—uZ(?z)TSz—(Vsus—i—azuz)rsz] —We (0.u)Toe—"We Ts Vgt e Tss
- (8Zus + &2 Vsuz) =0
We |:(9th2—|- (us.Vs—l—uzaz)TZZ—Q(E?ZUZ)TZZ] —cWe [(Vsuz)T.Tsz—i—TszT,(Vsuz) +Tsz
—0,u, =0

e As 0,, = T, after assymptotic expansion:
0,9 =0= 7.0 =0, Vz (No assumption is required).
From the equation 0,u,® (1 +We TZ(S)) =0, we get:
d.us® =0, Vz (As Werl? = —1 is impossible).

22



Rest of the analyses will be more or less same as before and finally, we will obtain
the closed system of equations:

Oph + divy(us k) = 0.
_div, [h (TS T +2(1 — B)(Dy(us) + divs(us)]))] F Uy = fae
We (8,57'3 + (us.V)Ts — (Vug)Ts — TS(VsuS)T) + 75 —2D(ug) = 0.

We (@TZZ + (us. V)T + 2 divs(us)Tzz> + 7.. + 2divg(us) = 0.

4 Numerical methods

4.1 Variational formulation and finite element method approxi-
mation

So, finally the last step before doing numerical solutions. Variational formulation is required
to make the continuous system of partial differential equations suitable towards doing nu-
merical solutions. We will define a discontinuous finite element space to approximate the
continuous system.
We have considered a special case: We = 0 because the case We # 0 is very complicated to
check for numerical results.
From the closed system of equations, with We = 0, we have to find h, us.

When We = 0, using equation (10), we can say that: 75 = 28 Ds(us) and from equation
(11), we can say that: 7,, = —28 divs(us). Now, replacing the values of 75, 7., in the equa-
tion (9), we get:

— div, [h (Z(Ds(us) + divs(us)l)ﬂ + oty = fus. (12)

Hence, we found the equations (8) and (12) for doing Variational formulation.
The system is closed by the boundary conditions on 0f2:

us.v =0. (13a)

(osv).t=0. (13b)

where v is the outward unit normal vector at the boundary and ¢ denotes the tangent vector
by which the cell flows around the obstacle.
The initial conditions are us(t = 0) = uso and h(t = 0) = hy.
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1. For all v, € H}(Q), multiplying the PDE equation (12) by v, and taking integration
over (), we can say that:
— [, [divs [Qh(Ds(us) + divs(us)lﬂ s dr + [ ausvsdr = [ fasvsde.
By using Green’s formula, we obtain:
Jo 2k Dy(us) = V(vs) da+ [, 2h (divs(us)]) : V(vs) do [, 0t vs dz+ [, 71 (ws)v0(vs) dT =
Jo fasvs da.
Now, [oo71(%s)Y0(vs) dI' = 0 at the boundary conditions.
So, we can say that:

JREXCSR AT

A 2h (divg(us)I) : Vs('vs)dx—i-/

aus.vsdx:/fas.'vsdx.
Q Q

(14)
For any matrices A, B € R?*? where A is symmetric (A = AT), we know that:
A:B= Zi,j Ai,j Bi,j-
= A : BT = Zi,j Ai,j Bj,i-
= A : BT = Z’L,] Ajﬂ B],z = A . B
So, A:B= A: (B+TBT>.

In the above equation, Ds(us) is symmetric, So we can say that: Dg(us) : Vs(vs) =

Vs svsT
Dy(uy) : Telbe)t Teteo)”

As Yelbalt Vool — P (a,), hence D (us) : Vi(v5) = Dy(us) : Dy(vy).

Similarly, for (divg(us)l) : Vs(vs), where (divg(us)!) is symmentric, we can say that:
(divy(ws)]) : V(vs) = (divy(ws)]) : Dy(ws) = divy(us). (1 : Ds(vs)>.

Now, I : Dy(vs) = divg(vs).

Hence, (divs(us)l) : Vs(vs) = divg(us).divg(vs).

So, From equation (14), we can say that the variational formulation is:

/Q [Qh (Ds(us):Ds(vs)+divs(us).divs(vs))+aus.vs}dx: /Q Fosvsdz.  (15)

We can rewrite the variational formulation in a standard form:

Let V C H}(Q), a Hilbert space. We have a bilinear form on V' x V|

a(ts, va) = [, [2h( Dy(us) : Dy(ws) + divs(us) divs('vs)> ta us.vs] d.

and a linear form on V,

l(vs) = [ fas-vs dz.

Hence, Yvs € V, a(us, vs) = I(vs).

The discontinuous finite element space is defined by:

Vi, = {vsn € L*(Q); Vsnx € P, ¥V K € Tp,}, where k > 0 is the polynomial degree.
This leads to a discrete version ay;, of the bilinear form a, defined V wugp, vs € V.
So finally, the discrete variational formulation writes:

Find ugp, € V), such that:

an(Ush, Vsn) = h(Vsn), ¥ vsn € V.

2. Using equation (9), we can say that:
8th + diVS (ush) =0.
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= Oih + (us.V)h + hdivs(us) = 0.
Hence, by approximating with respect to time, we get:

h"zt_hn + (us". V)" 4+ b divg(u,™) = 0
where h™ is known and we need to find A" € H{.
= % + (us". V)" + A divg (us™) = &
So, finally,

n+1 1 h"

(5 A
Let u, € W1*°(Q)? and introduce the space: X = {¢ € L*(Q); (us.V,)p € L?(2)4}
and, for all h, p € X

(h ©) fQ (us. Vh o+ (27 + divy(us))) he dx + [, maz(0, —us.n)he ds.

l(p) fQ ;¢ dzx. Then, the variational formulation writes:
(F V): find h € X such that
clh,p) =1Uy), Yo € X.
The term maz(0, —us.n) =
o8 _.
The discontinuous finite element space is defined by:
X, ={on € L*(Q); ok € Py, VK €Ty}, where k > 0 is the polynomial degree.
X, ¢ X and that the V 4h, term has no more sense for discontinous functions h, € Xj,.
We can introduce the broken gradient Vg, as a convenient notation.
(Vshhh)\K = Vs(hh|K)7 VK € Tj.
Thus,

n divs(usn)> + (" V)R = (16)

(usml~usm) jo ositive and vanishes everywhere except on

/Us Vanhnonds = Y / s Vsphy opde ¥ by € X
Q

KeTy,

This leads to a discrete version ¢y, of the bilinear form ¢, defined for all hy, , p, € X,
by

1 .
cn(hn, on) = / (us.Vshhh 90h+(Kt+lesh(Us)))hh op dr + maz(0, —us.n)hyppds
Q a0

T Z/ n[hl{ent + 5 !us.n\[hh][goh])ds.
ses?)

The last term involves a sum over S} , the set of internal sides of the mesh T},. Each
internal side S € S} has two possible orientations: one is choosen definitively. Let
n be the normal to the oriented side S: as S is an internal side, there exists two
elements K and K, such that S = 0K_ N 0K, and n is the outward unit normal
of K_ on 0K_NS and the inward unit normal of K, on 0K, NS. For all h, € X},
where hj, is in general discontinuous accross the internal side S. We define on S the
inner value h, = hpx_ of h as the restriction hpx_ of hy in K_ along 0K_ N S.
Conversely, we define the outer value h; = hyk, . We also denote on S the jump

-t
[hn] = h;, — hi and the average {h,} = (hh+hh) The last term in the definition of ¢, is
ponderated by a coefficient § > 0. Choosing § = 0 correspond to the so-called centered
flux approximation, while 6 = 1 is the upwinding flux approximation. The case § = 1
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and k£ = 0 (piecewise constant approximation) leads to the popular upwinding finite
volume scheme. Finally, the discrete variational formulation writes:
(FV)y, : find hy, € X}, such that

Ch(hh7 Qph) = l(@h) VQOh € Xh-
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4.2 Results
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Figure 2: Figures show the change of the profile depth h for different time steps
(100, 10000, 100000). Figure on top has the friction coefficient & = 5 and figure in bot-
tom has the friction coefficient @ = 10. The front is moving forward with timesteps.
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Figure 3: Figures show the change of the profile planar velocity u for different time steps
(100 and 100000). Figure on top has the friction coefficient o = 5 and figure in bottom has
the friction coefficient & = 10. The front is moving forward with timesteps.

28



1 T T T
/ﬁ i=100000, alpha=10 ——
0.9 E i=100000, alpha=5 —— -
0.8 -

0.7 - .

0.6 - .

04 =
0.3 .

0.2 .
0.1 \ -
0 | | | | |

Space

I |
i=100000, alpha=10 ——
i=100000, alpha=5 ——

0.08 .
S 0.06 - .
0.04 =

0.02 - .

0 1 \ l \ !
-1 -0.5 0 0.5 1.5 2

Space

[

Figure 4: Figure on top compares the depth h for friction coefficient 5 and 10 at a particular
time step (100000). Figure on bottom compares the planar velocity u for friction coefficient
5 and 10 at a particular time step (100000)
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4.2.0.1 Discussion of results

The initial conditions used to obtain the numerical results are:

h(t = 0) = hg, in Q

u(t =0) = uo =0 in A(0)

The numerical results are derived for the special case We = 0, the case for We # 0 would be
arduous and numerically much more complex. So, we rest this case. The function for active
force is chosen inversely proportional to depth (f.s %) As, we can see in the numerical
results the planar velocity u rises upto a certain point and then finally falls to zero with
increasing time period also the front is moving forward by increasing the timesteps. The
peak velocity of u depends on the friction coefficient a.. If «v is high, the peak velocity of u
is low because friction reduces planar velocity and make the movement slow (see Figs, 3 and
4(bottom) for comparision). The profile depth h shows an upward inclination of collective
cells on top with increasing time period and then come to zero after certain time. We can
see that h decreases for increasing timesteps. Depth & is high for higher values of friction
coefficient at every timestep and the front is ahead when friction coefficient is low (see Figs,
2 and 4(top) for comparision). Collective cells get advance movement with increasing time.
Due to the migration, the depth of cells change. After, a certain time period the migration
is stopped. As, the process is happening continuously, we get a moving front at every
progressing time step and also comparatively lower depth of cells at the commencement. If I
could add more timesteps then accordingly the front would have moved further in the space
and will generate better results. Same explanation for planar velocity (u), it changes with
progressing timesteps and finally becomes zero when migration is stopped.

4.2.0.2 Code

#include '"rheolef.h"
using namespace rheolef;
using namespace std;
Float hO (const point& x) { return (x[0] <= 0) 71 : 0; }
point f (const Float& h, const point& grad_h) {

Float norm_grad_h = norm(grad_h);

if (h < 0.1 || norm_grad_h < le-15) {

return point(0,0);
} else {

return (1/h)*point(1,0);

}

}

int main(int argc, charkx*argv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
Float alpha (argc > 2) 7 atof(argv[2]) : 10;
Float tf (argc > 3) 7 atof(argv([3]) : 0.1;
size_t n_max 100000;
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size_t k_max = 10;

Float tol = 1le-7;

derr << "# alpha = " << alpha << endl
<< "# tf = " << tf << endl;

Float delta_t = tf/n_max;

quadrature_option qopt;
qopt.set_family ("gauss_lobatto");
qopt.set_order (1);
space Vh (omega, "P1","vector");
Vh[0] .block ("left");
Vh[0] .block ("right");
if (omega.dimension() == 2) {
Vh[1] .block ("top");
Vh[1] .block ("bottom");
}
trial u (Vh); test v (Vh);
space Hh (omega, "P0");
trial phi (Hh); test psi (Hh);
space Xh (omega, "P1","vector");
trial uu (Xh); test vv (Xh);
form muu = integrate (dot(uu,vv), qopt);
solver smuu (muu.uu());
Float t = 0;
field h = interpolate(Hh, hO0);
field uh (Vh, 0);
field gh (Xh, 0);
branch even_h("t","h");
//branch even_u("t","u","g");
branch even_u("t","u");
odiststream out_h ("h.branch");
odiststream out_u ("u.branch");
out_h << even_h(t,h);
//out_u << even_u(t,field(uh[0]),field(gh[0]));
out_u << even_u(t,field(unh[0]));
t = delta_t;
for (size_t n = 1; n <= n_max; ++n, t += delta_t) {
field h_prev_n = h;
derr << "# n =" <K<K n<K<K "t ="<K<t << endl
<< "# k rel_err_12 er_rel_linf" << endl;
for (size_t k = 0; k < k_max; ++k) {
field h_prev_k = h;
field uh_prev_k = uh;
// 1) viscous problem
form ah = integrate (h_prev_k*(2*ddot(D(u),D(v))+div(u)*div(v)) + alphaxdot(u,v),
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field zh = integrate (~h*div(vv))

+ integrate ("boundary", h*dot(vv,normal()));
gh.set_u() = smuu.solve (zh.uQ));
field 1h = integrate (dot(compose(f,h,gh), v), qopt);
solver sah (ah.uu());
uh.set_u() = sah.solve(lh.u());
// 2) transport problem
form ch = integrate (dot(uh,grad_h(phi))*psi + (1/delta_t + div(uh))*phi*psi)

+ integrate ("boundary", max(0, -dot(uh,normal()))*phi*psi)

+ integrate ("internal_sides",
- dot(uh,normal () )*jump (phi)*average (psi)

+ 0.5%abs(dot (uh,normal()))*jump (phi)*jump(psi));
field kh = integrate ((1/delta_t)*h_prev_n*psi);
solver sch (ch.uu());
h.set_u() = sch.solve(kh.u());
Float rel_err_linf = field(h - h_prev_k) .max_abs()
+ field(uh - uh_prev_k) .max_abs();
Float rel_err_12 = sqrt(integrate(omega,sqr(h - h_prev_k),qopt)
+ integrate(omega,norm2(uh - uh_prev_k),qopt));

derr << k << " " << rel_err_12 << " " << rel_err_linf << endl;
if (rel_err_12 < tol) break;

out_h << even_h(t,h);
//out_u << even_u(t,field(uh[0]),field(gh[0]));
out_u << even_u(t,field(uh[0]));

5 Conclusion

In this report, we have mathematically analysed the collective cell migration. Initially, the
problem is defined by the 3D Oldroyd model because it is widely used models for viscous
flows. Further, we have used a reduced model to show the motion of thin layers of viscoelas-
tic fluids below a free surface and over a flat surface. The flow is driven by an external force.
More specifically, we have shown that for the given boundary conditions and under scaling
choices (see 3.3.1), the solution of the incompressible Oldroyd system of equations can be
approximated by the solutions to the reduced model (see 3.5.2) in some asymptotic region.
We think that our asymptotic regime is physically meaningful, and model make sense in the
domain of modelling collective cell migration as viscoelastic flows. The variational formu-
lation is done on the basis of reduced closed system of equations. We consider the special
case Weissenberg(We) = 0 for variational formulation and genrated the discontinuous fi-
nite element space to obtain numerical results, albeit rather non zero Weissenberg number
could show the comparable contributions of both elastic and viscous effects in the process of
collective cell migration. In the final results, we have explored the behavior of parameters h
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(layer depth) and us (planar velocity) under some certain values of friction coefficient («).
Due to lack of knowledge, there is flexibility in choosing the active force f,s as a suitable
smooth function to fit for numerical approximation. According to my knowledge, the project
is a pioneering work and I am glad to take part in this topic. I give my effort in the research
project but I know it is not enough to obtain the summit of its pedagogical studies. There is
still a lot to explore, learn and obtain. I believe that the project will open doors for further
research work in future.
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6 Appendix

6.1 Expansion

1. Expanding the equation (1a), we get:
Optty + Oyuy + O,u, = 0.
2. Expanding the equation (1b), we get:

The zz, xy, yy, £z, yz, 2z components are:
Ogz = =P+ Tz + 2770 axux

Ouy = Tuy + Mo (Opuy + Oyuy)

Tyy = =P =+ Tyy + 210 Oyt

Opr = Tgz T Tlo (axuz + az“x)

Oy = Ty + Mo (Oyu, + 0,uy)

Oy = =P+ Tz + 2770 azuz

3. Expanding the equation (1c), we get:

(a) The x component is:

p(@tux + Uz 03 Uy + UyOy Uy + 1,0, um> — 0p0gy — Oy0yy — 0,04, = 0.
(b) The y component is:

p(@tuy + Uy 0y Uy + uyOy Uy + u,0, uy> — 0y0yy — Oyoyy — 0,0,, = 0.

(¢) The z component is:
p(@tuz + Uy Oru, + uyOyu, + uzazuz) — 0p04, — 0y0y, — 0,0, = 0.

4. Expanding the equation (1d), we get:

(a) The xz component is:
A (@TM + U0 Tog + UyOy Tog + 120:Tog — 200Uy Tow — 204Uy Toy — 202U, Tm> + Tax
= 21, OpUy.

(b) The zy component is:

)x(@ﬂmy + Ug Op Ty + UyOyTay + 1.0,Tyy — OpligTay — OyliaTyy — 02U Ty — OpllyTog

— OyUyToy — 8zuysz> + Tuy = Ny (Opty + Oyuy).
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(c) The yy component is:
A(E)ﬂyy + Uy Oy Tyy + Uy Oy Tyy + 1, 0,Tyy — 2 OpllyTyy — 2 OytlyTyy — 2 8Zuy7'yz> + Tyy
= 1 (Optty + Oyuy).

(d) The zz component is:

)\(athz + uxaxT:pz + uyaysz + uzaszz - azuxTzz - ayugvaz - azu:rTzz - axuszx
- ayuzTgcy - azuszz) + Taz =1 (axuz + azux)

(e) The yz component is:

A (@TW + U0y Ty + Uy Oy Tye + 10,7y — OpUy Ty — OyUyTy, — O Uy Toy — OpUsTay
— OyU,Tyy — azuzTyz> + 7y = 1 (Ouy + Oyu).

(f) The zz component is:
)x(@ﬂzz + Uy 0y Toy + UyOyToy + U, 05T,y — 205U, Ty — 204U, Ty, — 205U, TZZ> + Toz
= 21, 0,u,.

5. Expanding equation (1f), we get:
Oz Uzy Ozz _a:n h
on=0= |0y oy o,.]|.|—-0h| =0
Opz Oyz Oz 1
= —0320:h — 04y0yh + 04, = 0.
—04yOph — 0y 0yh + 0y, = 0. » at z=h.
—04.0:h — 0y,0,h + 0., = 0.

6. Expanding equation (1g), we get:
w.(0,0,—1) = 0= u, =0 at z = 0.

7. Expanding equation (1h), we get:
Ot +crup = fo=>0mn— ((an).n)n+cfut =fo=>on= ((o‘n).n)n—cfut—i-fa.
The LHS is:

Opz Ozy 0Ou:(t, 7, 2) 0 — Oy
on = |0y 0oy Oy- 0 | =10y
Ogz Uyz 02z —1 02z
From the RHS, we can say that:
<(a’n).n>n —crur + f,
—Ogz 0 Cr Uy faa:
= =0 |- | 0 |n—|cruy |+ | fay
—0,, -1 0 0
0 Cr Uy fa;t
= 0,, 0 — | Cr Uy + fay
-1 0 0
—Cr Uy + fa:p
= —Cf uy + fay
—O0zz
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From LHS=RHS, we can say that:
Ogz = Cfly — fa:c = Ogz — CflUy = _fax at z = 0.
and oy, = cyuy — foy = 0y — Cpuy = —fo at 2= 0.

Where, the entire problem is closed by the initial conditions for h, uw, 7:

h(t = O) = ho, in
u(t =0) = ug in A(0)
T(t =0) = 79 in A(0).

6.2 Change of form

e The equation of mass conservation is:
divu = 0 = d,u, + Oyuy + 0,u, = 0 = divsus + J,u, = 0.

Changing the form of equations for conservation of momentum are are shown below:
Combininig first two equations from 3, we get:

0 (“y) (s 1,0,) (uy) us0: (uy> (ay) ' (Uzy Uyy) O (UyZ) -0
Hence, we can say that:
p(@tus + (us. Vs +u,0,) us> — V05— 0,04, =0.

= p(@tus + (us. Vs + u,0,) us> —divio, — 0,04, = 0.

Considering the last equation from 3, we get:

p(@tuz + (uz 0y + uy0y)u, + uzﬁzuz> — (g ) (om O'yZ) 0,0, = 0.
y

= p(@tuz + (us. Vs + u, az)uZ) divyos, — 0, 0,, =0.

We know that Vu = | ,u, 0Oyu, 0,uy,
Opu, Oyu, O.u,
(Vou,)T Vu,
dus’T  Ou, ) ’
Vsus + (Vsus)? Ous + Vu,
(Vou)T + 0. u,” 20,1, )

Optly Oyuy  O,uy _( V.u, azuS)

(Vsu.)T 0.u,
Hence, Vu® = (
So, Vu + Vul = 2D(u) = (

_ 2 DS(US) O.us + Vu,
S0, 2 D(u) = ((Vsuz)T + O.us" 20.u. >
where V us + (Vsus)? =2 D, (us).

The change of forms for constitutive equations after are shown below:
Considering the first three equations from 2, (We are considering the second equation
two times because of the symmetric nature of total stress tensor o), we can say that:

Owe Ozy\ _ (1 0 Toz  Tay 20Uy OyUg + Oy
(Ury Uyy) P (O 1) - (Txy Tyy) o <ay“x + Opuy 20yuy
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= 0y = —pl + 75 + 219 Ds(us).
Considering the fourth and fifth equations from 2, we can say:

Oxz o Tz + ax + a Uy
oy = Ty Mo ay Uy T MOz u, .

= Ogy = Tsz T Mo (@zus + Vsuz)'

Considering the first three equations from 4, (We are considering the second equation
two times because of the symmetric nature of elastic tensor 7), we can say that:

A (7 7)o ety w0 (7 ) < (Grue D) (T )

Tex Tay\ (Ocla Oru Uy Tez Texr Ta
N (Twy Tyz) (ayux 3@/“3) O (uy) (sz Tyz) - (Ty2> 0 (uz uy) } " (Try Tyz)
= 21 Ds(us).
So, changing the form of equation, we can rewrite:
A [&TS + (us. Vs + 1.0,)Ts — (Vus)Ts — To(Visus)' — (Oous)7s." — Tsz(azus)T]
+7s = 2n, Ds(us).

Considering the fourth and fifth equations from 4, we can say:

T:Ez T:Ez aﬂ? um T:Ez u$
A [@ (TyZ) - (uwax 0yt uz(?z) (TyZ) - (ay) (“y> ~ e (TyZ) 0 (uy) T
- Tex Tay aa: . Uy ax - Tz
(Txy Tyy> <ay) uz} — (32 (uy) - (ay) UZ) <TyZ).

So, changing the form of the equation, we can rewrite:

)\ [8t7-sz + (us-vs ‘l' uzaz)Tsz - (Vsus ‘I' azuz)Tsz - (azus)Tzz - Tsvsuz] + Tsz
=1p (8Zus + Vsuz).

Considering the last equation from 4, we can say that:

A -atTZZ_'_(uxa‘r—i_uyay—i_uza’«’)722_2(82162)7—22_(ax ay) Uz- (:xz> _(sz TyZ) . <g$> UZ]
= 21, 0,U; — Ty Y Y

So, changing the form of the equation, we can rewrite:
MOTeot (Us. Vi +1.0.) 7o — 2(0u. ) To — (VSUZ)T.TSZ—TSZT.(VSUZ)} +7.. = 21, O.u..

The kinematic condition at free surface (z = h) is:
Oph + uy Oph 4+ uy Oyh — u, = 0 = Oth + (Vsh).us —u, = 0.

Change of forms for boundary conditions at free surface (z = h) are shown below:
Considering the first two equations from 5, we can say that:

_ (me ny) (&c) h+ (sz) =0= —0,(Vsh)+o0,.=0.
Ozy Oyy 9y Tyz

Considering the last equation from 5, we can say that:
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_ (sz O'yz) (g;) h+oc,2=0
= —0s,! (Vsh) +0..=0.

e Boundary condition at the bottom (z = 0) becomes:

u, = 0 and
sz /u’$ fa:v
—c = )
(JW) d <“y) (fay>
= Oz — CfUg = _fas-

Problem 1. We need to show that:

0,

where ,(t, z,2) = h(t{x) Oh(x’t)
The boundary conditions are:

uz(t,x, z)dz and V.u(t, x, z) = 0.

1. u(t,x,z).n =0 when z = 0.
2. Oh(t,z) + uy(t,x,2)0x(h(t,x)) = u.(t,z, z) when z = h(t, ).

Proof. As div u(t,z, z) = 0, Hence, we can say that foh(t’x) (Opuy(t, x, 2) +0,u,(t, x, 2))dz = 0.

We use Leibniz’s integral rule for differentiating the integral a% foh(t’m) ug(t, x, z)dz.
So,
0

h(t,z)
%/0 Uz (t,x, 2)dz = u(t, x, h(t,x))0x(h(t,x)) — uy(t, z,0)0,(0)

h(t,z)
+ / Opug(t, x, z)dz
0

h(t,z) h(t,x)
= / Oty (t, x, 2)dz = @w/ Uy (b, 2)dz — ug(t, x, h(t, )0 (h(t, )i, (1)
0 0

Further,

From the boundary conditions, we can say that:
o Oh(t,x) + uy(t,z, h(t,x))0(h(t,x)) = u.(t,x, h(t,x))

i (ux(t7xa0>7uz<t7‘ruo))(n$7n2) = O
where n, =0 and n, = —1

= u,(t,z,0) =0
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Using the value of u,(t,z, h(t,x)) and u,(t,z,0) in equation (2), we get:

h(t,z)

/ O.u,(t,x,z)dz = Oph(t, x) + u.(t, 2, h(t, )0 (h(t, 2)).coorennne. (3)
0
Summing equation (1) and equation (3), we will get:
(t,z) (t,z)
/ Opug(t, x, z)dz +/ O.u,(t, x, z)dz
0 0
(t,x)
= 0, / Uy (t, , 2)dz + Oph(t, ) + u,(t, x, h(t, ) 0. (h(t, x)) — u.(t, z, h(x))O h(x)

h(t,z)
= / 8 Uy (T, @, 2) + O, (t, @ z))dz = Oih(t,x) + ax/ ug(t, z,2)dz....... (4)
0

As, 1,(t,x, 2) h(tx) fh(m ug(t,x, 2)dz

Hence, fo um (t,z,2)dz = h(t, z)u,(t, x, 2).
Using this value in equation (4), we get:

/h(m) <axux(t,$, 2) + O.u.(t, z)>dz = Oh(t, ) + O (h(t, 2) s (8, 2, 2))cevveeenonns (5)

Comparing equation (4) and equation (5) and using the fact that foh(t’x) <8xux(t,x,z) +
O.u,(t,x, z))dz = 0, we conclude that:

h(t,x) h(t.x)
/ (&Cux(t, x,z) + O0.u,(t, x, z))dz = Oih(t,z) + 8w/ ug(t, x, 2)dz
0 0

= Oih(t,x) + 0. (h(t, x)u,(t,z,2)) =0

Problem 2. We need to show that:

h(t,z) h(t,x)
p@t(/ uz(t,x,z)dz) +8$</ (pu (t,z,2) +p(t,z,2) — Tm(t,x,z)>dz> =
0 0

h(t,z)
/ fe(t,x, 2)dz — 74, (L, 2, 0)
0

Where the boundary conditions are:
u(t,z, z).n =0 where z = 0 and n = (0, —1). So, u,(t,z,0) = 0.

o Oih(t,x) + uy(t,x, 2)0:h(t, ) = u.(t,x, z) when z = h(t, x).
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o (p(t,z,z)[—7(t,z,2)).(—0.h(t,x),1) = 0 when z = h(t,z). As we know that 7(¢,z, z) =

Tea(t, ,2) Tax(t 2, 2) )
( )

Teo(t, 2, 2) Tou(t,x, 2)

_ (Pt x,2) — Ttz 2)  —Te(t,x, 2)
Hence, (p(t,z,2)I —7(t,z,2)) = (b2 2) p— ot z.2))

So(pt,x,h) L — 7(t,z, h)).(=0.h(t,x),1) = 0 implies
(p(t,z, h) — Tpu(t, z, h)) O h(t, x) — Tp.(t, x,h) = 0 (Considering the projection on X —
axis)
Proof. Consider the equation of Conservation of momentum:
p(@tu(zﬁ, x,z)+ (u(t,x, z).V)u(t, x, z)) = —Vp(t,z, z) + divr(t,z, z) + f(t,x, z)
Assuming the projection on X — axis only, we get:
p((?tux(t, x, 2)tug(t, ©, 2)0puy (t, x, 2)tu,(t, x, 2)0,u.(t, x, z)> +0.p(t, x, 2) = (OpTan(t, , 2)+0. 72, (t, x, 2))
= fa

h(t,z)
/ (&ux(t, T, 2) + ug(t, x, 2)0puy (t, x, 2) + uy(t, x, 2)0u.(t, x, z))dz
0

h(t,z)
— / (@ux(t, x,2) + Ol (t, . 2) + 0, (ue(t, 7, 2)us(t, 2, z)))dz ........... (1)
0

< As Opul(t, @, 2)+0. (us(t, x, 2)us(t, 1, 2)) = uy(t, @, 2)pus(t, @, 2) +ug(t, z, 2)Opu, (t, z, 2) +
uz(t, z, 2)0u,(t, x, 2)+tu,(t, x, 2)0,u(t, T, 2) = u.(t, x, 2)Opuy(t, z, 2)+u,(t, x, 2)0u. (L, x, 2),
using the equation for conservation of mass 0, u,(t,z, z) + d,u,(t,z,z) =0 ).

Using Leibniz integral rule:

h(t,z) h(t,x)
8t/ Uy (t,x, 2)dz = / Orug(t, x, 2)dz + uy(t, v, h)Osh(t, x)
0 0
h(t,x) h(t,x)
= / Oug(t, z,2)dz = at/ ug(t, z, 2)dz — u,(t,x, h)Oph(t, T).......... (2)
0 0
h(t,x) h(t.z)
0 / ui(t,x, z)dz = / Opu(t,w, 2)dz + ui(t, z, h)0.h(t, z)
0 0
h(t,z) h(t,x)
N / it x, 2)d= = O, / (7, 2)dz — w2( 2, h)Ouh(E, 2) e (3)
0 0
h(t,z)
/ 0. (ux(t, x, z)u,(t, x, z))dz = u,(t, z, h)u,(t, z, h) — u,(t, z,0)u,(t, x,0)
0

h(t,z)
= / 9. (uy(t, , 2)u(t, z,2))dz = (@h(t,x) + u,(t, x, h)@xh(t,x)>ux(t, z,h)
0
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h(t,z)
= / 0. (uz(t, x, 2)us(t, z, 2))dz = Oph(t, x)uy(t, x, h) + ul(t, z, h)O,h(t, x).......... (4)
0

< As we know that 0:h(t, ) + u,(t, z, h)0.h(t,z) = u.(t,z,h) and u.(¢t,z,0) = O)
Summing equation (2), (3), (4), we get:

h(t,z)
/ ((’%Ux(t, x,z) + 0pui(t, @, 2) + 0. (ua(t, 2, 2)u.(t, 2, z)))dz
0
h(t,z) h(t,x)
= 8t/ uy(t, x, 2)dz + am/ u(t,x, 2)dz ... (5)
0 0
We know that:

Oy (t,x, 2)+ug(t, x, 2)0puy(t, , 2)+u,(t, x, 2)0,u(t, x, 2)+0,p(t, T, 2)— (0 Tuu(t, T, 2)+0,Tp. (t, 2, 2)) = fa

Hence,

h(t,z)
/ p(@tum(t, x,2) + ug(t, x, 2)Opug(t, z, 2) + u, (L, x, 2)0u(t, x, z))dz
0

h(t,z) h(t,z) h(t,z)
—I—/ Oy (p(t, T, 2) — Tee(t, 2, Z))dz — / 0, Tur(t,x,2))dz = / frdz
0 0 0

or we can say that:

h(t,z)
/ p<8tuz(t, z,2) + O0pul(t, @, 2) + 0. (us(t, 2, 2)u.(t, z, z)))dz
0

h(t,z) h(t,z) h(t,z)
—l—/ 0, (p(t, T, 2) — Tpe(t, 2, z))dz — / 0. Tur(t,x,2))dz = / fodz
0 0 0
h(t,z) h(t,z) h(t,z)
= 0tp/ ug(t, x, 2)dz + axp/ ul(t, o, 2)dz + / om (p(t, T, 2) — Tp(t, x, z))dz
0 0 0

h(t.z) h(tx)
—/ 8z7xz(t,x,z))dz:/ fudz.....(6)
0 0

Using Leibniz integral rule:
h(t,x) h(t,x)
/ on (p(t, T, 2) — Te(t, 2, z))dz = 81/ (p(t, T, 2) — Tu(t, x, z))dz—
0 0
(MLmhy—un@hDQﬁ@x)

h(t,z)
/ @%@L@@:Hﬁwﬁym@%m:—@@%mﬂhmampm@@ﬂﬁ@%m
0

Substracting this two equations:

h(t,x) h(t,z)
A R e A e S
0 0
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h(t,z)
&E/ (p(t, T, 2) — Tpe(t, x, z))dz) + 7. (t, 2,0)
0

Using this value in equation (6), we get:

h(t,z) h(t,z) h(t,z)
p@t/ ux(t,:)s,z)dz%—p@w/ ui(t,az,z)dzjt('?x/ (p(t,x,z)—Tm(t,x,z)>d2)+rm(t,x,0)
0 0 0
h(t,z)
:/ fa(t,x, z)dz
0

h(t,z) h(t,z)
= p@t(/ ug(t, x, z)dz) + 0, / (pui(t, x,2)dz + p(t,x, 2) — e (L, x, Z))dz =
0 0

h(t,z)
/ fuo(t,x, 2)dz — 7pp(t,2,0).... (proved)
0
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