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ABSTRACT

Viscoelastic full-waveform inversion is recognized as a chal-
lenging task for current acquisition deployment at the crustal
scale. We have developed an efficient formulation based on a
time-domain spectral-element method on a flexible Cartesian-
based mesh. We consider anisotropic elastic coefficients and
isotropic attenuation. Complete gradient expressions including
the attenuation contribution spread into those of elastic compo-
nents are given in a consistent way. The influence of attenuation
on the P-wave velocity reconstruction is illustrated through a toy
configuration. The numerical implementation of the forward
problem includes efficient matrix-vector products for solving
second-order elastodynamic equations for 3D geometries: An
original high-order integration for topography effects is per-
formed at nearly no extra cost. Combined adjoint and forward

field recomputation from the final state and previously saved
boundary values allows the estimation of misfit gradients for
density, elastic parameters, and attenuation factors with no
I/O efforts. Two-level parallelism is implemented over the
sources and domain decomposition, which is necessary for a
realistic 3D configuration. The misfit gradient preconditioning
is performed by a so-called Bessel filter using an efficient differ-
ential implementation based on finite-element ingredients on
the forward mesh instead of the often-used, costly convolution
approach. A 3D synthetic illustration is provided on a subset
(2 × 7 × 3 km) of the SEG Advanced Modeling (SEAM) Phase
II Foothills model with 4 lines of 20 sources. The structurally
based Bessel filter and a simple data hierarchy strategy consid-
ering early body waves before all waves including surface waves
allow a precise reconstruction of the P- and S-wavespeeds while
keeping a smooth density description.

INTRODUCTION

In the majority of earth imaging applications, the physics of wave
propagation can be described through partial differential equations
(PDEs). The coefficients of such PDEs, related to the physical and
mechanical parameters of the subsurface, can be adjusted through
comparisons between the recorded and the numerically simulated
data. Among the various techniques, the full-waveform inversion
(FWI) technique (Lailly, 1983; Tarantola, 1984) offers the possibil-
ity to extract high-resolution (down to half the local wavelength)
and quantitative multiparameter models of the subsurface (for re-
views of the method, see Virieux and Operto, 2009; Virieux et al.,
2017).

Because the pioneering 2D FWI applications with surface seismic
data (Ravaut et al., 2004; Operto et al., 2006; Brenders and Pratt,
2007), most of FWI applications at the crustal scale have been per-
formed under the acoustic approximation, generally for marine envi-
ronments (Plessix and Perkins, 2010; Sirgue et al., 2010; Vigh et al.,
2013; Warner et al., 2013; Operto et al., 2015). In such a flat-surface
condition, numerical methods designed with finite-difference (FD)
discretization appear to be a reasonable and efficient choice due
to their numerical efficiency, their relatively simple implementation,
and the fact that optimized modeling kernels developed for reverse
time migration can be shared. When considering the elastic-wave
equation, fluid/solid contrasts can also be implicitly and efficiently
considered for representing simple bathymetry with FD. However,
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standard FD formulations are often limited to a regular-spacing grid,
although there are interesting extensions for deformed grids (Moczo,
1989; de la Puente et al., 2014; Petersson and Sjögreen, 2015;
Shragge, 2016). In addition, significant extra effort should be per-
formed when considering surface topography or important geologic
interfaces (Robertsson, 1996; Bohlen and Saenger, 2006). Extensions
such as the summation-by-parts approaches (Petersson and Sjögreen,
2012), immersed-boundaries implementation (LeVeque, 2007; Lom-
bard et al., 2008; Gao et al., 2015; Huiskes et al., 2017), or hybrid
techniques (Moczo et al., 1997) have been proposed. However, they
have not yet displayed superior efficiency compared with finite-
element (FE) methods, which are based on a variational formulation,
naturally honoring the boundary conditions. Moreover, the FE
formulation can easily consider deformed meshes, allowing us to re-
present complex geometries. Among many FE families, the so-called
spectral-element methods (SEMs) have become popular in geophys-
ics for regional and global seismology problems (Faccioli et al.,
1997; Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999).
The particular choice of tensorial-based hexahedral elements,
Lagrange polynomial basis functions, and Gauss-Lobatto-Legendre
(GLL) integration points embedded in conventional SEM formula-
tions leads to a diagonal mass matrix by construction, resulting nat-
urally in an efficient and accurate explicit time-marching scheme,
without any mass-lumping strategy (Marfurt, 1984). Realistic geom-
etries, such as geologic basin structures or even the approximated
ellipsoidal shape of the earth, can be described using hexahedral
elements in unstructured meshes, allowing accurate numerical calcu-
lation of seismic wavefields (Komatitsch and Vilotte, 1998; Koma-
titsch and Tromp, 1999). One of the main issues for these wave
simulations turns out to be the hexahedral mesh buildup, which
can require significant human effort (Peter et al., 2011).
When considering on-shore seismic acquisitions, free-surface-

related effects can be quite important in the wavefield. For example,
significant elastic and viscoelastic effects can be observed in the
presence of weathering and unconsolidated near-surface, complex
topographies and strong geologic interfaces (shale-carbonate for
example). These complex effects cannot be fully removed or com-
pensated by data preprocessing, such as attenuation compensation
or ground-roll removal, implying that a correct description of the
physics is strongly advisable for accurate model parameter estima-
tion. Moreover, considering the complete physical phenomena of
the wave propagation would allow taking the benefit of each piece
of recorded data, for more accurate results and higher resolution.
Regarding anelastic media, attenuation affects the amplitudes and
phases of the seismic wavefield; it is thus necessary to consider its
effect precisely during the modeling and imaging processes. In ac-
tive seismic applications, the approximation of constant Q-value
over a frequency band is widely accepted. Viscous effects have been
widely considered in acoustic-based frequency-domain modeling
and FWI, at least as passive parameters during inversion, thanks
to the straightforward and free implementation through complex-
valued velocity. Impressive 3D viscoacoustic illustrations have been
shown in Operto et al. (2015) and Amestoy et al. (2016) for velocity
model building by monoparameter frequency-domain FWI based
on a sparse direct solver, or more recently with a joint reconstruction
of the Q model (Operto and Miniussi, 2017). When moving toward
elastic and/or viscoelastic approximation, especially for 3D land
data, frequency-domain approaches with direct solvers are out of
reach for actual computer hardware technology, as mentioned by

Gosselin-Cliche and Giroux (2014). Alternative iterative solvers
would require efficient and robust preconditioning for the modeling
part (Li et al., 2014; Kostin et al., 2016). In addition, dispersive and
complex wavefield would require considering a significant number
of discrete frequencies, an additional argument reducing the attract-
ability of frequency-domain approaches (Sirgue and Pratt, 2004;
Brossier et al., 2009). Thus, the time-domain formulation is the cur-
rently selected approach when performing FWI for elastic media at
various scales (Tape et al., 2010; Peter et al., 2011; Fichtner et al.,
2013; Vigh et al., 2014; Borisov and Singh, 2015; Zhu et al., 2015).
The time-domain formulation also allows the application of time
windowing, wavefield separation, and various signal processing
techniques, which favors strategies based on data-windowing hier-
archy in FWI. It should be noted that these strategies are difficult to
achieve in the frequency domain with few discrete frequencies,
aside from the product by exponent decay of the Laplace transform
proposed by Shin and Cha (2008). For example, regional and global
scales FWI benefit from this time-domain formulation, in which the
phases can be separated and selected before inversion (Maggi et al.,
2009). At the exploration scales, seismic phases are however mixed
up, and prior separation can be more challenging. In comparison to
the frequency-domain approach, the time-domain formulation leads
to a memory intensive and numerically expensive forward problem
when attenuation is considered (Bohlen, 2002; van Driel and
Nissen-Meyer, 2014). FWI gradient estimation also involves the
zero-lag crosscorrelation in time between the incident and adjoint
wavefields, weighted by the spatial radiation pattern. Although elas-
tic modeling allows recomputing the incident field backward in time
from the final snapshot and boundary field values thanks to the
reversibility of the wave equation (Dussaud et al., 2008), the attenu-
ation breaks this property. In such a case, checkpointing-based
approaches (Griewank and Walther, 2000; Symes, 2007; Anderson
et al., 2012; Komatitsch et al., 2016; Yang et al., 2016b) or com-
pressed storage strategies (Boehm et al., 2016) are required, increas-
ing again the computational cost in CPU time and memory of the
FWI in viscoelastic media.
In this manuscript, we aim at developing an efficient, flexible,

and accurate viscoelastic FWI methodology, dedicated to explora-
tion-scale targets. This method is based on the SEM for the model-
ing part. In the first section, we review the second-order viscoelastic
and elastic-wave equation for the displacement field. The associated
FWI problem is formulated, and the FWI gradient expressions are
derived for anisotropic elastic parameters and isotropic attenuation
coefficients, based on a least-squares misfit function. As an illus-
tration of these exact expressions, the impact of the attenuation
when recovering elastic parameters will be pointed out in a toy con-
figuration in the third section: No implicit approximation is consid-
ered on attenuation mechanism aside from the standard-linear-solid
(SLS) description. We shall discuss the similarities and differences
with previous expressions provided in the literature. In the second
section, we describe our efficient SEM-based implementation in the
FWI scheme, including flexible mesh design, optimized modeling,
and inversion kernels. Our strategy focuses on the algorithmic
balance between numerical efficiency, memory requirement, and
simulation accuracy, especially for 3D viscoelastic problems.
The geologic prior knowledge can be incorporated through the Bes-
sel function-based gradient preconditioning, directly implemented
by an SEM formulation on the same mesh as the wavefield model-
ing (Trinh et al., 2017b). In the third section, numerical performance
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for the modeling part is evaluated. Similar computational behaviors
are observed compared with the open-source FD modeling package
SW4 V1.1 (Petersson and Sjögreen, 2013) and SEM-based tool
SPECFEMV2.0 (Peter et al., 2011). Furthermore, a careful analysis
on the viscoelastic gradient of compressional velocity in an ideal
configuration emphasizes the impact of the attenuation on the
reconstruction of velocity parameters. The fourth section is devoted
to 3D elastic FWI examples at the exploration scale, which is a sub-
set of the SEAM Phase II Foothill benchmark (Oristaglio, 2012,
2016; Regone et al., 2017). The examples illustrate the importance
of all the individual components that we have developed, including
a data-windowing hierarchy for simultaneous P- and S-wave veloc-
ity estimation. The required computer resources for 3D elastic and
viscoelastic FWI on this subset are also provided.

VISCOELASTIC MODELING AND FWI

The viscoelastic wave propagation can be written in its complete
form as�

ρðxÞ∂ttuiðx; tÞ∂jσijðx; tÞ þ fiðx; tÞ;
σijðx; tÞ ¼ Mijklðx; tÞ �t εklðx; tÞ þ T ijðx; tÞ; (1)

where the density is denoted by ρ, the displacement by u, and the
second-order stress and strain tensors by σ and ε, respectively.
The external force is denoted by the vector f, and the tensor T
is the possible stress failure. The attenuation effect is described by
the relaxation rateMijkl, and the symbol �t stands for convolution in
the time domain. These equations use the Einstein convention (sum-
mation over repeated indices).

Elastic forward problem

The pure elastic-wave equation can be seen as a particular case of
the viscoelastic equation with the specific relaxation rate

Mijklðx; tÞ ¼ cijklðxÞδðtÞ; (2)

where cijkl is the elastic (or unrelaxed) stiffness coefficient and δðtÞ
is a Dirac delta function, resulting in the elastic-wave equation:�

ρðxÞ∂ttuiðx; tÞ ¼ ∂jσijðx; tÞ þ fiðx; tÞ;
σijðx; tÞ ¼ cijklðxÞεklðx; tÞ þ T ijðx; tÞ: (3)

Following the Voigt indexing and matrix notation, the second-order
elastic-wave equation of displacement field u can be written as

ρ∂ttu ¼ DCDTuþ S; (4)

where the spatial derivative operator in the Cartesian space is
denoted by D

D ¼
 ∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

!
; (5)

the elastic stiffness tensor is denoted by C, the transposed operator
by “:T ,” and the source term by S. The elastic equation is self-ad-
joint, implying that we can develop an adjoint system similar to the

incident problem. This property makes possible to use the same
numerical scheme for incident and adjoint fields propagation.

Viscoelastic forward problem

The attenuation effect in seismic data is characterized by the en-
ergy loss per cycle of the phase, measured by the quality factor. The
seismic attenuation is then described by the quality-factor tensor
QijklðxÞ (Emmerich and Korn, 1987; Carcione et al., 1988). The
coefficients of this tensor are the model parameters that we consider
for describing the attenuation. In the frequency domain, the inverse
of these parameters is defined as the ratio of the imaginary and real
parts of the complex relaxation rate M̂ijklðx;ωÞ, in which the “ :̂ ”
notation denotes the Fourier transform. For realistic crustal scale
application, the approximation of a constant Q over the considered
frequency band ½ωmin;ωmax�, together with the assumption that
Q ≫ 1 are usually accepted. Assuming that L SLS systems at spe-
cific reference frequencies ων ∈ ½ωmin;ωmax� are used to fit a con-
stant Q parameter over this frequency range, one may introduce
anelastic coefficients Yijkl

ν , ν ¼ 1; : : : ; L, in the definition of the
complex relaxation rate M̂ijklðx;ωÞ as (Emmerich and Korn,
1987; Blanch et al., 1995; Moczo and Kristek, 2005; van Driel
and Nissen-Meyer, 2014)

M̂ijklðx;ωÞ ¼ cijklðxÞ
�
1 −

XL
ν¼1

Yijkl
ν ðxÞ ων

ων þ iω

�
: (6)

Instead of computing L anelastic coefficients Yijkl
ν ðxÞ for each spa-

tial location x, Yang et al. (2016a) propose the approximation
Yijkl
ν ðxÞ ≈ yνQ−1

ijklðxÞ for the entire medium, in which the scalars
yν being L dimensionless anelastic coefficients. The complex relax-
ation rate can thus be written as

M̂ijklðx;ωÞ ¼ cijklðxÞ − cijklðxÞQ−1
ijklðxÞ

XL
ν¼1

yν
ων

ων þ iω|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
attenuation mechanisms

:

(7)

In equation 7, the product between the two fourth-order tensors cijkl
and Q−1

ijkl is a term-by-term product. The coefficients yν are esti-
mated from the following least-squares minimization problem:

min
yν

�Z
ωmax

ωmin

�
Q−1

ref

�
yν

ωνω

ω2 þ ω2
ν
− 1

��
2
�
; (8)

which minimizes the distance between a given constant-value
Q−1

ref with its approximation over the frequency band ½ωmin;ωmax�.
The value of this constant is usually chosen such that
Qref ∈ ½minijkl;xðQijklðxÞÞ;maxijkl;xðQijklðxÞÞ�. Equations 7 and 8
incorporate explicitly the attenuation parameters Q−1

ijklðxÞ into the
wave equation, following a cheap-memory strategy: instead of
storing the L × 21 anelastic coefficients Yijkl

ν ðxÞ associated with
21 coefficients MijklðxÞ at each spatial location (Komatitsch and
Tromp, 1999), we only need to store L scalar yν for the entire
medium and the heterogeneous attenuation parameters over the
medium. We also store L reference frequencies ων associated with
L SLSs.

SEM-based elastic and viscoelastic FWI R63
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To separate the elastic rheology (represented by the unrelaxed
stiffness coefficients cijklðxÞ in equation 7) with the attenuation
mechanisms, which are frequency-dependent, we introduce attenu-
ative stiffness coefficients caijkl. In the case of fully anisotropic at-
tenuation, these parameters can be linked to the unrelaxed quantities
through

caijklðxÞ ¼ cijklðxÞQ−1
ijklðxÞ: (9)

The convolution relationship between stress and strain in equation 1
then becomes

σijðx;tÞ¼cijklðxÞεklðx;tÞ−caijklðxÞ
XL
ν¼1

ψν;klðx;tÞþT ijðx;tÞ;

(10)

where the memory variable ψν;klðx; tÞ satisfies the first-order ordi-
nary differential equation (ODE):

∂tψν;klðx; tÞ þ ωνψν;klðx; tÞ ¼ ωνyνεklðx; tÞ: (11)

The mathematical demonstration is given in Appendix A, which is
coherent with Moczo and Kristek (2005) and Yang et al. (2016a).
Similar to the elastic case (equation 4), following the Voigt index-
ing, the second-order viscoelastic wave equation can thus be
written as�

ρ∂ttu ¼ DCDTu −DCa
P

L
ν¼1 ψν þ S;

∂tψν þ ωνψν ¼ yνωνDTu; ν ¼ 1; : : : ; L;
(12)

where ψν is the memory-variable vector associated with each SLS.
The matrix Ca ¼ ðCa

IJÞ6×6 contains the attenuative stiffness coeffi-
cients, with 21 independent components in the case of fully aniso-
tropic attenuation. Due to the memory variables, the viscoelastic
equation 12 is not self-adjoint. This property is related to the energy
dissipation; however, we shall show that the considering adjoint
system can be transformed into a similar structure as the incident
problem. It should be noted that the memory variables can act either
on the stress fields as it is the case here (equation 10), or on the
displacement fields (Petersson and Sjögreen, 2012). The former
strategy requires L × 6 variables and two spatial derivatives per for-
ward problem, whereas L × 3 incident memory variables with at
least three spatial derivatives are needed in the latter approach:
two derivatives for the displacement fields and at least one for
the memory variables. Because the estimation of the spatial deriv-
atives is the most expensive operation in our SEM-based modeling
kernels, we inject the memory variables into the stress fields as
shown in equation 10 to optimize the computational cost.

Isotropic attenuation

Practical applications are generally limited to isotropic attenua-
tion because constraining the anisotropic attenuation parameters is
difficult for surface seismic acquisition. It is important to highlight
that the isotropic attenuation regime implies that the attenuative
stiffness tensor ðCa

IJÞ6×6 is isotropic but not the inverse quality fac-
tor matrix ðQ−1

IJ Þ6×6 (Moczo et al., 1997). Hence, the Voigt-noted
matrix can be written in the form

Ca ¼

2
6666664

λa þ 2μa λa λa 0 0 0

λa λa þ 2μa λa 0 0 0

λa λa λa þ 2μa 0 0 0

0 0 0 μa 0 0

0 0 0 0 μa 0

0 0 0 0 0 μa

3
7777775;

(13)

where λa and μa are the attenuative Lamé coefficients. Thus, we
consider the effective mechanisms with

λa þ 2μa ¼ 1

3
Q−1

p ðC11 þ C22 þ C33Þ;

μa ¼ 1

3
Q−1

s ðC44 þ C55 þ C66Þ; (14)

where the heterogeneous model parameters Qp and Qs are the at-
tenuation parameters associated with the P- and S-wavespeeds
ðVP; VSÞ that we use. In the case of the isotropic-attenuation mecha-
nism and isotropic-elastic rheology, the proposed solution is con-
sistent with the development suggested by Moczo et al. (1997).
Equation 14 also implies that isotropic attenuation has an isotropic
impact on compressional and shear components even when consid-
ering anisotropic elasticity, which is physically meaningful. By
doing so, the attenuation parameters Qp and Qs are explicitly in-
corporated in the wave equation, even for anisotropic elasticity, and
therefore they can be naturally considered in the FWI framework.
Let us mention that the anisotropy feature is important for the char-
acterization of the earth, which might come from intrinsic and/or
structure-induced anisotropy such as layering structures. Therefore,
considering isotropic attenuation while taking into account elastic
anisotropy is a good approximation for describing seismic wave
propagation in surface acquisitions.

Inversion problem

The standard FWI problem attempts to reduce the data misfit
between the calculated dcal and the observed data dobs at receiver
locations by iteratively minimizing the following least-squares
norm:

χðmÞ ¼ 1

2
kdcalðmÞ − dobsk2: (15)

The data dcal are computed on the model parameters m. The for-
mulation implies a summation over all sources and receivers and
an integral over the recording time. Standard FWI is a local opti-
mization method, in which the descent direction relies on the gra-
dient of the misfit function, computed by the adjoint method
(Plessix, 2006). We follow the Lagrangian strategy to develop
the displacement and memory variable adjoint fields ðū; ψ̄ νÞ based
on the second-order forward problem presented in equation 12. The
mathematical details are provided in Appendix B. It should be high-
lighted that the second-order adjoint system has nearly identical
equations as the incident problem�

ρ∂ttū ¼ DCDT ū −DCa
P

L
ν¼1 ψ̄ ν − R†Δdu;

∂tψ̄ ν − ωνψ̄ν ¼ −yνωνDT ū;
(16)

except for the sign “–” in the memory variables. The adjoint wave-
field propagates backward in time from a final condition. The “–”
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sign in front of the memory variables thus implies that the back
propagation of the adjoint wavefield is stable in time, as is the
forward propagation of the incident wavefield. In addition, the
algorithm workflow for the forward and backward propagation
can be similar.
The optimal choice of model parameters m, especially in an at-

tenuating medium, is not obvious and is expected to be dependent
on the medium complexity, acquisition design, and radiation pat-
tern. As a reference and natural parameterization, we compute
the gradient for the density ρ, the independent components of
the unrelaxed stiffness components ðCIJÞ, and the inverse of the
quality factors Qp and Qs

m ¼ ðρ; CIJ;ð1≤I≤J≤6Þ; Q−1
p ;Q−1

s Þ: (17)

The mathematical details for the gradient computation of each
model parameter are presented in Appendix B. For the elastic and
viscoelastic problems, the gradient on density ρ is the zero-lag
crosscorrelation of the adjoint displacement field and the incident
acceleration field

∂χðmÞ
∂ρ

¼ ðū; ∂ttuÞΩ;t: (18)

The gradient on attenuation parameters Q−1
p and Q−1

s can be esti-
mated as

∂χðmÞ
∂Q−1

p;s
¼ −

�
ε̄;
XL
ν¼1

∂Ca

∂Q−1
p;s

ψν

�
Ω;t
; (19)

which is the zero-lag crosscorrelation of the adjoint strain field ε̄ and
the incident memory variable field ψν. The explicit expression of
the scaled quantity ∂Ca∕∂Q−1

p;s is provided in Appendix B. The ob-
tained expression 19 is coherent with the Q gradient proposed by
Fichtner and van Driel (2014).
Following the separation of the elastic rheology and attenuation

mechanism in equation 7, the CIJ elementary gradient has two
terms:

∂χðmÞ
∂CIJ

¼
�
ε̄;

∂C
∂CIJ

ε
�

Ω;t
−
�
ε̄;
XL
ν¼1

∂Ca

∂CIJ
ψν

�
Ω;t
: (20)

The first term has an identical expression as the elastic gradients
proposed by Tromp et al. (2005); Virieux et al. (2017), which is
the zero-lag crosscorrelation of the adjoint ε̄ and the incident strain
fields ε. The adjoint and incident strain fields are calculated in the
anelastic medium. The second term is related to the memory var-
iablesψν. The explicit expressions of the scaled quantities ∂C∕∂CIJ

and ∂Ca∕∂CIJ are given in Appendix B, which confirm that the at-
tenuation coefficient Qp has an isotropic impact on compressional
components, thus having an isotropic impact on VP estimation (a
similar interpretation for the attenuation coefficient Qs). The devel-
opment of ∂Ca∕∂CIJ also highlights that, in a weakly attenuative
medium, the second term in the viscoelastic CIJ gradient (Equa-
tion 20) can be neglected and tends to zero in a purely elastic
medium. Because the memory variables ψν obey the first-order
ODE 11 with the incident strain field ε as the source, the magnitude
of the second term is generally small compared with the first
term. However, we shall expect an accumulative influence on the

amplitude of the model parameter reconstruction. A numerical il-
lustration of this effect on a simple inclusion example is presented
in the “Numerical investigations” section.
This interpretation is also consistent with other theoretical inves-

tigations in the literature. Tarantola (1988) shows that the gradient
with respect to the general relaxation rate is the crosscorrelation of
the adjoint and the incident strain fields. By considering the chain
rule with respect to the stiffness coefficients, in which the relaxation
functionM is given in equation 7, a two-term expression for the CIJ

gradient, as for our formulation 20, shall be obtained. Liu and
Tromp (2008) also express the gradient of the misfit function
through the crosscorrelation of the adjoint and incident strain fields,
scaled by the perturbation of the relaxation rate δM. The time
dependency of this perturbation is related to the second term in
our gradient expression. For numerical implementation, Liu and
Tromp (2008) and Komatitsch et al. (2016) assume that δM is time
independent, resulting in a simplification of the gradient kernels,
explaining why they obtained similar expression as for the elastic
case.
Furthermore, the gradient for any parameter α (seismic velocity,

anisotropic parameter, impedance, etc.) can be computed by the
chain rule using the density ρ, CIJ and Q−1

p;s elementary gradients

∂χðmÞ
∂α

¼
X6
I¼1

X6
J¼I

∂χ
∂CIJ

∂CIJ

∂α
þ ∂χ

∂ρ
∂ρ
∂α

þ ∂χ
∂Q−1

p

∂Q−1
p

∂α

þ ∂χ
∂Q−1

s

∂Q−1
s

∂α
: (21)

EFFICIENT SEM-BASED IMPLEMENTATION

The section introduces an efficient SEM-based 3D viscoelastic
FWI methodology designed for crustal-scale exploration. Our im-
plementation, embedded in the SEM46 code (SEM for Seismic Im-
aging at eXploration scale) relies on several key elements,
compared with existing modeling and FWI packages: (1) optimized
SEM computing kernels for incident and adjoint fields, coupled
with low-memory attenuation implementation (Deville et al.,
2002; Yang et al., 2016a), (2) flexible Cartesian-based deformed
mesh with high-order geometry representation to capture complex
topographies and variable element sizes to reduce the numerical
cost (Trinh et al., 2017a), (3) two message passing interface
(MPI)-based parallelism levels for tackling large-scale and multi-
ple-shot experiments, (4) various nonlinear optimization methods
thanks to the SEISCOPE optimization toolbox (Métivier and Bross-
ier, 2016), (5) FWI gradient building with the checkpointing-as-
sisted reverse-forward simulation (CARFS) method, combining
reverse propagation with compressed boundary storage and check-
pointing (Yang et al., 2016b, 2016c), and (6) structurally based non-
stationary and anisotropic smoothing filter implemented with SEM
on the modeling mesh (Trinh et al., 2017b).
We use a classic hexahedron-based SEM frame (Faccioli et al.,

1997; Komatitsch and Tromp, 1999) for wave modeling, in which
the physical domain Ω is decomposed into a set of nonoverlapping
hexahedral elements. The same mesh is used for the inversion steps.
Each hexahedral element can be mapped to the reference cube
½−1; 1� ⊗ ½−1; 1� ⊗ ½−1; 1�. The cube is further discretized into a
set of ðN þ 1Þ3 GLL points ðξk1 ; ηk2 ; ζk3Þ; k1; k2; k3 ¼ 0; : : : ; N,
where N refers to the interpolation order and k1; k2, and k3 are
the indexing of GLL points in z-, x-, and y-dimensions, respectively.
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These collocation points are used to define ðN þ 1Þ3 basis func-
tions; each function is a triple product of Lagrange polynomials
of degree N.

Optimized and low-memory viscoelastic
modeling kernels

Considering the choice of Lagrange polynomials as basis func-
tions and the GLL quadrature for numerical integration, the weak
form of the second-order viscoelastic wave equation 12 of the dis-
placement field u can be written as

�
M∂ttu ¼ −KuþDwCa

P
L
ν¼1 ψν þ F;

∂tψν þ ωνψν ¼ ωνyνDu:
(22)

The global mass and stiffness matrices are denoted by M and K,
respectively, and the source term is denoted by F. The global mass
matrixM is diagonal by construction for SEM approaches. The op-
eratorD estimates the spatial derivatives of a vector in the Cartesian
space. The operatorDw is equivalent to a spatial derivative operator
weighted by GLL weights. The free-surface condition is naturally
taken into account by the weak formulation.
Considering a high-order interpolation N allows using a coarse

mesh design. However, it also implies a strict Courant-Friedrichs-
Lewy (CFL) stability condition on the time stepping, which signifi-
cantly increases the number of time steps for the forward simulation.
Our SEM implementation is based on limited interpolation orders for
test functions with N ¼ 4 or 5. It has been shown that these orders
provide a good compromise between the numerical accuracy and
the CFL constraint (Komatitsch and Vilotte, 1998; Komatitsch and
Tromp, 1999). In addition, because our SEM modeling kernel aims
at performing seismic modeling in heterogeneous media with spatial
resolution down to half of the wavelength (optimal resolution of FWI;
Virieux and Operto, 2009), higher order SEM coupled with coarse
meshes would not easily represent the medium without using the
homogeneization theory (Capdeville et al., 2010). Further research
on the efficiency and accuracy of using higher orders should be
conducted.

Optimized modeling kernels for the product of the displacement
vector by the stiness matrix

The most computationally intensive part of the modeling kernel
is the product of the displacement vector by the stiness matrix. The
stiffness matrix K can be factorized as

K ¼ DwCD: (23)

The implementation of the product of the displacement vector by
the matrix K is thus based on this factorization through a decom-
position into three steps: the estimation of the spatial derivatives of
the displacement leading to the strain component, the product with
the stiffness coefficient leading to the stress components, and the
last estimation of the spatial derivatives. Each spatial-derivative cal-
culation is matrix free, and it is implemented following Deville et al.
(2002) approach, taking benefit from the tensorial properties of
hexahedral elements, optimizing the loop vectorization and cache
usage by smart management of fast and slow dimensions in tables
combined with manual loop unrolling for inner loops.

Low-memory viscoelastic modeling kernel

A second-order explicit Newmark scheme is implemented for the
time integration to compute the displacement field at each time step
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999). The
first-order ODE governing the memory variables (equation 22)
needs to be incorporated into the time scheme without degrading
the second-order accuracy. To do so, the memory variables are up-
dated at half time steps compared with the displacement field

ψitþ1∕2
ν ¼ 2 − ωνΔt

2þ ωνΔt|fflfflfflfflffl{zfflfflfflfflffl}
γν

ψit−1∕2
ν þ ωνyν

2Δt
2þ ωνΔt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
βν

Duit; (24)

as shown in the viscoelastic Newmark scheme in Algorithm 1 for
ν ¼ 1; : : : ; L. Following this expression, the memory variables at
the next step are explicitly computed from the previous step and the
already known displacement field. Therefore, we only need to store
a single entity of the ψν fields, i.e., L × 6 tables of memory vari-
ables per time step. In addition, as highlighted in equations 7 and 8,
we only store L scalar anelastic coefficients yν to reduce the
memory requirement related to SLS attenuation mechanism (Yang
et al., 2016a). These two strategies allow us to reduce the memory
footprint of viscoelastic simulation while preserving the accuracy.
The simulation quality of our approach is illustrated in Appendix C,
through the LOH benchmarks generated by Pacific Earthquake En-
gineering Research Center (Moczo et al., 2006). We obtain an ex-
cellent agreement with elastic and viscoelastic semianalytical
solutions on layered medium, calculated from the boundary integral
method (Coutant, 1989), even for the cross-comparison of different
attenuation mechanisms.

Flexible Cartesian-based mesh design

In a completely unstructured FE mesh, a setup stage is required at
the beginning of any simulation in which the indices or any neigh-
borhood look-up tables are precomputed. We simplify the mesh de-
sign by considering a Cartesian-based deformed mesh to combine
the accurate representation of the topography allowed by the FE

Algorithm 1. Viscoelastic Newmark scheme.

1. for it ¼ 1; : : : ; nt do

2. Prediction phase

3. uit ¼ uit−1 þ Δtvit−1 þ Δt2
2
ait−1

4. vit−1∕2 ¼ vit−1 þ Δt2
2
ait−1

5. Resolution phase

6. εit ¼ Duit

7. ψitþ1∕2
ν ¼ γνψ

it−1∕2
ν þ βνεit (equation 24)

8. σit ¼ Cεit − Ca
P

L
ν¼1

ψitþ1∕2
ν þψit−1∕2

ν
2

9. ait ¼ −M−1Dwσit þ Fit

10. Correction phase

11. vit ¼ vit−1∕2 þ Δt
2
ait

12. end
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meshes and the convenience of an implementation on an FD grid
(Cupillard et al., 2011; Gokhberg and Fichtner, 2016). The spatial
position of each element can be obtained directly from its x, y, and z
indices, without using any neighborhood look-up-tables or search-
ing steps over the global mesh. The topography variation is repre-
sented by vertically deformed elements as shown in Figure 1a. The
numbers of elements in the x-, y-, and z-directions are constant,
although the element size can vary. For the basis functions at inter-
polation order N ¼ 4 or 5, SEM allows to accurately model elastic
waves propagation with approximately six GLL nodes per shortest
wavelength (Komatitsch, 1997). This condition is referred to as the
volume condition.

Cartesian-based mesh with variable element-size

In most geophysical targets, the velocity is spatially varying, lead-
ing to spatially varying wavelengths. The element size should thus be
adapted to the variation of the local shortest wavelength. Figure 1b
shows an example of such a flexible mesh design for a 3D target, in
which the element size varies from 49 to 142 m in three directions.
The mesh is built upon the condition that six GLL points per shortest
wavelength are required. Under the same constraint, Figure 1a illus-
trates the constant element-size mesh, in which the element size is
40 m in each direction. In this cross section, by using a variable
element-size mesh, the number of elements is reduced by a factor
of 3.03 times in the z-direction, 1.57 times in the x-direction, and
1.47 times in the y-direction: almost a factor seven in total, while
keeping the Cartesian-based topology of the mesh. The reduction of
the number of elements systematically reduces the numerical cost by
the same factor, or even more if it induces the relaxation of the CFL
stability condition of the explicit time-marching scheme.

Complex topography representation

When considering significant topography variations, hexahedral
elements can be vertically deformed as illustrated in Figure 1. The
shape of each element is defined by a set of ðnþ 1Þ control points in

each direction, leading to ðnþ 1Þ3 control points and associated
shape functions in 3D geometry. The spatial position of GLL points
inside the element is computed from these control points and shape
functions through

xðξ; η; ζÞ ¼
Xnþ1

k1¼1

Xnþ1

k2¼1

Xnþ1

k3¼1

lk̂ðξ; η; ζÞxk̂; (25)

where k̂ stands for the triple indexes k1, k2, and k3. The associated
shape functions are a triple product of Lagrange polynomials of de-
gree n: lk̂ðξ; η; ζÞ. The number of control points and shape func-
tions ðnþ 1Þ is not related to the interpolation order N of the test
functions needed for solving the wave-equation PDE.
Figure 2a and 2b show the relative position of GLL points inside

a deformed elements under P1 (using eight corners of each element
as control points and linear shape functions) and P4 representation
(ð4þ 1Þ3 GLL points are used as control points and order 4 shape
functions). The P1 representation of the surface cannot honor sharp
spatial variation of the free surface, as shown in Figure 2c, which
might affect the accuracy of the simulation due to the interaction
between elastic waves and the complex surface. Decreasing the
element size is one way for following the rapid variation of the
topography, namely, the surface condition: At least two spatial sam-
pling points per shortest topographic wavelength are required to
honor the interaction at the surface. This criterion might be stricter
than the volume condition, and it would significantly increase the
computational cost. The surface condition limitation can be over-
come by using higher order Pn representation, such as n ¼ 4 (Fig-
ure 2d) where all GLL points inside the element are considered as
control points.
Figure 2d further confirms that the P4 representation provides a

better description of the complex topography because ð4þ 1Þ2 GLL
points are used in each element to capture the topography map, in-
stead of ð1þ 1Þ2 points for the P1 case. Thus, this leads to a more
accurate spatial positioning of GLL points inside the element.
To evaluate the influence of the topography representation on

Figure 1. The 3D mesh generation on a realistic example (4 km in the z-direction, 8 km in the x-direction, and 2 km in the y-direction). (a) A
subset of the constant element-size mesh with dz ¼ dx ¼ dy ¼ 40 m. (b) A subset of the variable element-size mesh, in which the number of
elements is reduced 3.03 times in the z-direction, 1.57 times in the x-direction, and 1.47 times in the y-direction: dz ∈ ½49 − 142� m,
dx ∈ ½49 − 139� m, and dy ∈ ½49 − 100� m.
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the accuracy of the wavefield simulation, we use a homogeneous
model with a complex surface extracted from the SEAM Phase II
Foothills benchmark as shown in Figure 3a. The medium is meshed
at 100 m element-size, under P1 and P4 topography representations.

A single-valued envelope misfit estimated at each receiver location
(Kristeková et al., 2006) is used to compare the observed seismo-
grams with the reference solution, computed from a 25 m mesh
under P1 topography representation. The comparison is shown in
Figure 3b: For the same number of elements, thus the identical
numerical cost, the P4 surface representation provides a more ac-
curate estimation of the wavefield. Moreover, the simulation error
of the P1 (100 m) mesh is accumulated with offset, which might
damage the information at far offsets, thus the velocity estimation
of the near surface during the inversion. Trade-offs between topog-
raphy representation and velocity parameters in acoustic land-FWI
have been investigated numerically by Huiskes et al. (2017). When
considering surface waves, the influence of topography representa-
tion on elastic FWI is expected to be even more important.
It should be noticed that only the volumetric Jacobian matrix as-

sociated with the mapping from the reference space to the deformed
space is required for the wave propagation. Using high-order geo-
metric representation (Pn) therefore only affects the mesh building
step and the computation of the Jacobian, which are computed only
once in the FWI workflow. Moreover, similar optimized strategy as
the matrix-free spatial-derivative estimation in the modeling kernels
section can be applied for the computation of the volumetric Jaco-
bian. The computational cost of the wavefield modeling is thus
unaltered, while the simulation accuracy related to the complex
wave phenomena at the free surface is significantly improved.
The combination of the variable element-size mesh design with
high-order topography representation makes possible using as
coarse elements as possible without degrading the medium geom-
etries’ representation, then providing a good balance between com-
putational cost and numerical accuracy. We are aware that such
high-order shape functions might affect the SEM convergence prop-
erties. However, our numerical experiments in Figure 3 confirm
a rather low simulation error compared with a reference solution.
In addition, it is widely known that the convergence characteristics
of SEM are already lost when solving the wave equation in a hetero-
geneous medium inside each element, which is the cases of majority
practical applications.

Parallel implementation

Our implementation relies on a two-level MPI-based paralleliza-
tion. The inner level is designed on a Cartesian-based domain de-
composition, which ensures an efficient load-balancing and an easy
implementation. In particular, this avoids the use of a third-party
mesh partitioner, even if the number of possible subdomains should
be constrained by the mesh splitting in each direction. This parallel
level is quite standard and efficient in SEM as gathering information
through MPI communications is equivalent to the assembly pro-
cedure of FE schemes. This communication involves a single-depth
“layer” of degree of freedom at each domain interface whatever is
the SEM interpolation order, different from FD schemes. The outer
MPI level is performed over seismic shots managed in parallel. This
level is embarrassingly parallel because the communications steps
only involve the summation of the misfit function and gradient con-
tributions of each seismic shot and the scatter of physical param-
eters models and descent directions. Practical applications show
that this second MPI-based level generally satisfies the perfect theo-
retical efficiency. It has to be noted that, compared with other SEM
implementations relying on a single shot framework, our framework
generally involves a large number of shots in parallel. The domain
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Figure 3. (a) A complex topography extracted from the SEAM II
Foothills model. (b) Envelope misfit comparison: red — between
the P1 (100 m) mesh with the reference solution and blue — be-
tween the P4 (100 m) mesh with the reference solution, which
shows significant improvement in the numerical accuracy. The
reference solution is obtained from the simulation on P1 (25 m)
mesh.
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Figure 2. Left: Position of GLL points (the red triangles) of a cross
section inside a 3D element for interpolation order N ¼ 4 using
(a) the eight corners of each element and linear shape function
and (b) the ð4þ 1Þ3 GLL control points associated with P4 shape
functions. The control points are highlighted by the black circles.
Right: The associated with topography description (for a cross sec-
tion extracted from SEAM II Foothills model) using (c) P1 and
(d) P4 representation. The positions of control points are marked
by the sign “+,” showing that the P4 representation provides a better
representation of the complex topography. The element size is
100 m for both cases.
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decomposition per shot thus contains few tens of CPU cores, lead-
ing to a strong memory and computational load per core. In prac-
tical exploration FWI-liked applications, the communication
between subdomains is negligible compared with the computation
on each domain. The asynchronous communication would thus
only provide a marginal saving.
The parallel efficiency of our implementation has been assessed

on different hardware architectures (Intel CPU-based) with dif-
ferent interconnect technologies, showing very good properties.
An example of strong scaling for the domain decomposition level
is conducted on a benchmark with 192 × 192 × 192 elements
(4.5 × 108 degrees of freedom [dof]). The efficiency is assessed
from an architecture embedding Intel Omni-Path interconnect and
Intel Xeon E5-2697 v4 nodes (36 cores/node). Figure 4a shows
the efficiency for intranode parallelization. As usual for PDE-based
numerical schemes, the memory bandwidth appears to be a strong
bottleneck: For the low number of MPI processes, we benefit from
the whole memory bandwidth leading to artificially good perfor-
mance (scalability larger than 90% up to eight process). When the
number of MPI processes is increased, memory-bandwidth-bound
effects appear, leading to an efficiency decrease (down to 60% for
32 process). This effect is directly associated with the memory-band-
width bound, and when the hardware is fully used as in production,
only the 32 processes number should be considered as a reference. In
Figure 4b, the strong scaling is pushed up to 512 MPI process, show-
ing stable and good scaling property, greater than 94%.

Nonlinear optimization with the SEISCOPE
optimization toolbox

The inversion kernel relies on the SEISCOPE optimization tool-
box (Métivier and Brossier, 2016). The library embeds various non-
linear optimization methods, coupled with the same line-search
algorithm satisfying the Wolfe conditions (Nocedal and Wright,
2006). The library works through a reverse-communication inter-
face, requesting the user to provide misfit function and gradient,
and potentially preconditioner application. The optimization kernel
is therefore fully included in the FWI main code, without any upper
level wrapper.

Balancing memory requirement and computational
cost for viscoelastic gradient building

FWI gradient estimation, required as the input
of the optimization process, involves the zero-
lag crosscorrelation in time between the incident
and adjoint wavefields, weighted by the spatial ra-
diation pattern (equations 18–20). The adjoint-
state approach is thus considered for the gradient
estimation, which requires access to the incident
and adjoint wavefields at the same time (Plessix,
2006).Wemight store the incident wavefield in the
core-memory or out-of-core memory at the ex-
pense of the I/O cost (Boehm et al., 2016). To
avoid a heavy memory requirement, the incident
field can be recomputed from the last snapshot
and the boundary wavefield simultaneously with
the propagation of the adjoint field. For elastic
medium, the incident field can be perfectly recon-
structed by the reverse propagation in time from

the last snapshot and the stored wavefield at the boundaries, synchro-
nously with the propagation of the adjoint field backward in time.
Gradients are directly accumulated during this process, resulting in
a cheap operation with limited I/O operations (Dussaud et al., 2008).
Typical SEM simulation requires several time steps on the order of

104, which might lead to significant memory requirement for storing
the boundary wavefields. Our implementation relies on compressed
boundary storage to mitigate the memory cost (Yang et al., 2016c).
The time stepping given by the CFL condition is generally much
smaller than the Nyquist requirement, and the compression technique
can be quite efficient: During forward propagation, the boundary
wavefield is saved at every r time step (r ≫ 1), where r is the deci-
mation ratio. When reconstructing the incident field, at each time
step, the boundary wavefield is interpolated from the decimated time
series through Lagrange polynomial interpolation. Numerical experi-
ments show that only the displacement field u (and not its spatial
derivatives, nor time derivatives) needs to be saved at boundaries,
after the prediction phase in the viscoelastic Newmark time-marching
scheme (Algorithm 1), for an accurate reconstruction of the incident
displacement u and velocity v fields.
In an anelastic medium, propagation of the adjoint field back-

ward in time (equation 16) is as numerically stable as the forward
propagation of the incident fields (equation 12) because they share
the same equations. However, the irreversibility of the viscoelastic
wave equation makes the reverse propagation of the incident field
unstable, which requires specific strategies for efficient gradient ac-
cumulation (Tarantola, 1988; Griewank and Walther, 2000; Liu and
Tromp, 2008; Komatitsch et al., 2016). To overcome this issue, we
implement a viscoelastic version of the CARFS algorithm (Yang
et al., 2016b), which makes a smart decision between the reverse
modeling and the forward modeling using checkpoints based on
the strain-energy measure. Similar to standard checkpointing tech-
niques, the checkpoint distribution is computed from the binomial
law, the optimal number of checkpoint being related to the total num-
ber of time steps nt by log2ðntÞ. For each checkpoint, we store the
displacement, velocity, and memory variable fields uit; vit;ψit−1∕2

ν .
During the forward propagation of the incident field (Algorithm 2),
at each time step, a reference global strain energy is also recorded

Eit
ref ¼

1

2
ðσitεitÞΩ: (26)

This global measure is used for monitoring the stability of the reverse
simulation of the incident wavefield based on a predefined energy
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Figure 4. Strong scaling of the domain decomposition MPI level for a 192 × 192 × 192
element application, on an Intel Omni-Path interconnect and Intel Xeon E5-2697 v4
node (36 cores/node) architecture: (a) intranode efficiency and (b) internode efficiency,
showing stable and good scaling property.
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tolerance. In our application, we use tol ¼ 0.1, as shown in Algo-
rithm 3. Above this tolerance, the nearest earlier in time checkpoint
is considered. A forward simulation from this checkpoint until the
current time level is performed. During this forward simulation,
the checkpoints are also redistributed. Once done, the reverse simu-
lation of the incident wavefield together with the propagation of the
adjoint wavefield backward in time can be continued.
The combination of this compression technique through decima-

tion and interpolation with the CARFS approach provides a good
balance between the memory requirement, simulation accuracy, and
the computational cost, which is directly linked to the recomputa-
tion ratio of the incident field. Additional compression strategies
could also be used to further reduce the memory requirement
and I/O requests (Boehm et al., 2016).

Structure-oriented Bessel preconditioning

In practical applications, the gradient vector gðxÞ can exhibit un-
constrained or unrealistic high-wavenumber components, which are

incompatible with the intrinsic resolution of FWI. Often, these un-
desirable features of the misfit gradient are removed through con-
volution filtering with Gaussian or Laplace kernels. Moreover, by
incorporating some geologic prior knowledge, this gradient smooth-
ing can also be used for constraining the inversion (Guitton et al.,
2012). With the same objective of removing artifacts and incorpo-
rating available prior knowledge of geologic information, we have
introduced a nonstationary, anisotropic Bessel smoothing filter
B3DðxÞ based on the modified spherical Bessel function of the sec-
ond kind of order zero (Abramowitz and Stegun, 1972; Trinh et al.,
2017b). The anisotropic filter shape is defined by variable coherent
lengths: Lv is associated with the direction perpendicular to the lo-
cal bedding plan; Lu and Lw are related to the planar structure of
potential geologic features. The 3D orientation is controlled by azi-
muth θ and dip φ angles. The azimuth is the horizontal angle mea-
sured from the y-axis, and the dip is the angle created by the
oriented plan with the horizontal direction. Their values range such
that θ ∈ ½−π; π� and φ ∈ ½−π∕2; π∕2�.
Instead of convolving the original vector gðxÞ with the forward

filter B3DðxÞ to get the smoothed vector sðxÞ, we solve the following
equation relying on the sparse inverse operator

B−1
3DðxÞ � sðxÞ ¼ gðxÞ: (27)

Due to the definition of the inverse operator (Trinh et al., 2017b),
equation 27 is equivalent to a Helmholtz-like PDE, in which the
original gradient gðxÞ appears in the right side. Under the
assumption of the slow spatial variation of the filter parameters,
their spatial derivatives can be neglected. Equation 27 governing
the smoothing process can thus be approximated as

sðxÞ − ∇T
z;x;yPðxÞPTðxÞ∇z;x;ysðxÞ ¼ gðxÞ; (28)

where the operator ∇z;x;y is the spatial derivatives
ð∂∕∂z; ∂∕∂x; ∂∕∂yÞT and the upper symbol “T” stands for the trans-
posed operator. The information related to the geologic variation of
the medium (i.e., filter parameters) is embedded in the matrix

PðxÞ ¼
2
4 Lv cos φ Lu sin φ 0

−Lv cos θ sin φ Lu cos θ cos φ Lw sin θ
Lv sin θ sin φ −Lu sin θ cos φ Lw cos θ

3
5;

(29)

which can be interpreted as the projection between the Cartesian
space and the locally rotated dimensionless coordinates system.
Following the weak formulation of SEM, equation 28 naturally

yields a symmetric, positive definite, and well-conditioned linear
system

ðMb þKbÞs ¼ Mbg: (30)

The mass matrix Mb associated with the application of Bessel filter
is diagonal by construction, and the stiffness matrix Kb is symmet-
ric by definition. We solve this linear system 30 through a parallel
conjugate gradient iterative solver, using the same mesh and opti-
mized kernels developed for the wave equation. The most expensive
operator is the product of the sparse stiffness-matrixKb with a given
vector. Again, the factorization of this matrix

Algorithm 2. Forward propagation.

1. for it ¼ 1; : : : ; nt do

2. Forward propagation of the incident field: Fit∶Wit−1 → Wit

3. Record the reference strain-energy Eit
ref for W

it

4. if (At the checkpoint position) then Store the snapshot
uit; vit;ψit−1∕2

ν

5. if (At the decimated location: mod(it,r)=0) then Store the
boundary of the displacement field uit

6. end

Algorithm 3. Gradient estimation.

1. for it ¼ nt − 1; · · · ; 1 do

2. Adjoint time-step: at ¼ nt − it

3. Forward propagation of the adjoint field: Fat∶W̄at−1 → W̄at

4. if (At the checkpoint position) then

5. Read the snapshot uit; vit;ψit−1∕2
ν

6. else

7. Interpolate the boundary of the displacement field uit

8. Backward propagation of the incident field:
ðFitÞ−1∶Witþ1 → Wit

9. Measure the energy of the reconstructed wavefield Eit
rec

10. if (Instability: jEit
ref − Eit

recj > tol · Eit
ref ) then

11. Forward propagation from the closest checkpoint prior
to the current time level it

12. Replace the used checkpoints by new snapshot positions

13. end

14. end

15. Gradient collection (equations 18–20);
16. end
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Kb ¼ DwðPPTÞD; (31)

is used to achieve an efficient implementation (Deville et al., 2002).
The overall scheme has a linear algorithmic complexity with respect
to the coherent length ðOðLÞÞ, to be compared with the complexity
OðL3Þ for a standard windowed-convolution-based filter. In prac-
tical applications, the smoothing process can be performed at a neg-
ligible fraction of the computational cost of the forward/adjoint
problems (less than 1%). A cascaded application can be used to
produce other filter decays; for example, a double application of
Bessel operators provides an accurate approximation of the Laplace
filter (Trinh et al., 2017b). Illustrations on the gradient smoothing
are shown in “3D case study” section.

NUMERICAL INVESTIGATIONS

The simulation quality of our elastic and viscoelastic forward
modeling is illustrated through the comparison with semianalytical
solutions in Appendix C. In this section, we show that our approach
exhibits similar overall computational efficiency as some open-
source FD and SEM schemes. We shall also illustrate the effect
of the second term in the viscoelastic CIJ gradient mentioned in
equation 20.

Comparison with other open-source codes
for the modeling part

For 3D elastic and viscoelastic seismic modeling, it is important
to check relative performance of this newly designed code SEM46
with two well-established open-source programs: SW4 V1.1 and
SPECFEM V2.0 (CPU version). SW4 uses a fourth-order FD ap-
proach (Sjögreen and Petersson, 2012), whereas SPECFEM V2.0
relies on a SEM approach (Peter et al., 2011). We choose SPEC-
FEM V2.0 instead of SPECFEM V3.0 because we want to perform
our comparison on CPU: SPECFEM V3.0 has been mainly opti-
mized for GPU platforms (Komatitsch et al., 2010). The three
programs are compiled with Intel 2015 compiler and optimized
option-O3 on a Intel Sandy Bridge EP E5-2670 2.6 GHz with
64 Gb of RAM, Infiniband FDR nonblocking computing network.
We use a homogeneous model of 12 × 12 × 12 km for the com-

parison. For viscoelastic comparison, in each code, quality factors are
set as Qp ¼ Qs ¼ 40, described by three SLSs. In most practical
applications, SW4 recommends to use at least six points per shortest
wavelength for an acceptable accuracy, leading to the grid sampling
at 25 m (Petersson and Sjögreen, 2013). Therefore, the FD grid con-
tains 481 × 481 × 481 points. Because approximately six GLL points
per shortest wavelength allows us to accurately model elastic waves
with P4 spectral elements, the SEM mesh is filled with 120 × 120 ×
120 elements at 100 m size and the interpolation order N ¼ 4 is used
for SEM46 and SPECFEM. This setting leads to the same number of
spatial points (1.1 × 108) for the FD grid and SEM meshes.
The total recording time is 6 s leading to 908 time steps in SW4

and 4000 time steps in SEM46, due to the CFL condition. A similar
configuration is considered for SPECFEM with identical number of
dof and time steps as for SEM46. Figure 5 compares the computa-
tional cost of SEM46 with the one of SW4 and SPECFEM for par-
allelism over different domain decomposition settings. Even with
much larger number of time steps, SEM implementations exhibit
comparable computational cost as SW4 for elastic and viscoelastic
modeling. In this comparison, SEM46 uses a triclinic elasticity

coupled with an isotropic attenuation implementation, whereas iso-
tropic elasticity and isotropic attenuation are considered in SPEC-
FEM. The anelastic effect is described by independent Qp and Qs

quality factors in SEM46. Only isotropic elasticity and shear quality
factor Qs is taken into account by the version of SPECFEM V2.0
we use, which somehow simplifies the numerical implementation.
Even though our SEM46 implementation exhibits comparable
computational performance as the ones of SPECFEM V2.0 for the
forward 3D elastic and viscoelastic simulations, under the same
computer and compilation environment. The efficiency of these dif-
ferent codes might be improved by possible local code rewriting,
but overall they require similar, if not identical, computer resources.
More quantitave benchmarking will require a careful analysis of
numerical errors and interaction between teams who have devel-
oped these codes: This is not our present target.

Influence of the attenuation on the velocity gradient
estimation

In equation 20, we have intensively discussed the expression of
the viscoelastic CIJ gradient

∂χðmÞ
∂CIJ

¼
�
ε̄;

∂C
∂CIJ

ε
�

Ω;t
−
�
ε̄;
XL
ν¼1

∂Ca

∂CIJ
ψν

�
Ω;t
: (32)

It should be noticed that the second term has never been explicitly
reported before, although correctly handled by Fichtner and van
Driel (2014). To our understanding, it is generally ignored in prac-
tical applications (Liu and Tromp, 2008; Komatitsch et al., 2016).
Its magnitude is small in a weakly attenuating medium compared
with the first-term contribution. However, its influence should in-
crease with the attenuation, especially at far offsets. Therefore, in a
highly attenuating medium, ignoring the second term might affect
the model parameter estimation.
The contribution of the second term in equation 32 is illustrated on

a simple toy example. We use a simple setting with homogeneous
background VP ¼ 2300 m∕s, VS ¼ 1500 m∕s, ρ ¼ 1000 kg∕m3,
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Figure 5. Numerical efficiency compared with SW4 V1.1 and
SPECFEM V2.0 (CPU-based) packages over different domain de-
composition.

SEM-based elastic and viscoelastic FWI R71

D
ow

nl
oa

de
d 

02
/1

3/
19

 to
 1

52
.7

7.
15

6.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



and a VP inclusion in the center of the model as shown in Figure 6a.
The medium is strongly attenuating with Qp ¼ Qs ¼ 40.
In Figure 6a, the medium is illuminated by four sources, high-

lighted by the red triangles. For each source, a plan containing
6241 receivers is located at the opposite side of the inclusion;
for example, when the source position is xs ¼ 250 m, the receiver
plan is at xr ¼ 6750 m. Free-surface conditions are applied at all
faces of the model to increase the illumination through the reflection
at the boundary of the model. The source time function is a Ricker
wavelet, centered at 10 Hz. With this setting, the distance between
sources and receivers is approximately 30 dominant P-wavelengths.
Because a very sparse acquisition is used in this toy example, we

use a long recording time (9 s) so that the medium can be sampled
by a multiple reflected wavefield. We use a homogeneous initial
model VP ¼ 2300 m∕s. Figure 6b shows an estimation of the first
VP gradient computed from elementaryCIJ gradients in equation 32.
The inversion problem is ill-constrained leading to significant arti-
facts in the gradients. However, we only apply a minimal Bessel
smoothing to remove the numerical artifacts above the Nyquist
wavenumber associated with the underlying mesh.
Figure 6c shows the VP gradient estimation when ignoring the

second term in the elementary CIJ gradients. The difference
between the gradients (c and b) in Figure 6d highlights the small
amplitude modification at the inclusion position and the places
intensively sampled by the wavefield. It should be noted that
without the second term, the gradient (c) is underestimated at the
inclusion position, implying a noncorrect estimation of the model
update. On this setting, we run a FWI test with 60 iterations in
which the model fit at the inclusion position is shown in Figure 7.
The model fit decreases faster when considering the correct gra-
dient. The comparison effectively shows that ignoring the second
term in the gradient estimation might affect the reconstruction of
the model parameter. The effect manifests at later stages, when
the shape of the target has been found, and the inversion attempts
to recover the correct amplitude of model parameter.
In practical applications, these effects might be negligible

compared with other sources of uncertainties. However, the correct
gradient can be collected without any extra cost because the incident
adjoint fields ψν are available during the simultaneous forward
and backward propagations of the adjoint and the incident fields
(Algorithm 3).

3D ELASTIC CASE STUDY

In this section, we apply our FWI frame on an isotropic elastic
example coming from a 3D subtarget of the SEAM Phase II Foothill
model (Oristaglio, 2012, 2016; Regone et al., 2017) to highlight the
importance of each element which have been presented.

Model description and 3D acquisition design

The topography variation is significant for this target, with a maxi-
mal vertical variation of 800 m as shown in Figure 8. The bedding
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Figure 6. (a) Homogeneous background with a VP inclusion in the
center of the model. Source positions are highlighted by the red
triangles. (b) First viscoelastic FWI VP gradient computed from
elementary CIJ gradients in equation 32. (c) First FWI gradient
without considering the second term. (d) Difference between gra-
dients (c and b), which highlights the contribution related to the
second-term gradient.
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Figure 7. An example of the model fit at the inclusion position be-
tween the true VP and the inverted model using the correct gradient
estimation (red) and without considering the second term (blue),
which highlights the accumulative effect on model parameter esti-
mation.

Figure 8. The 3D acquisition design superimposed on the topog-
raphy and the underlying mesh, in which the colorbar illustrates
the absolute depth Zabs (m) from a predefined zero depth: The
source positions are marked by the red triangles ΔSx ¼ 320 m and
ΔSy ¼ 500 m. For each source, 3C receivers are deployed in the
whole surface with ΔR ¼ 12.5 m.
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plans are gently dipping in the x-direction with folding structures,
which can be visualized from the depth section in Figure 9a, 10a,
and 11a. The model also has an unconformity at 2–3 km depth, which
might be difficult to recover through FWI. Velocity attributes ex-
tracted at 20 m below the free surface in Figure 12a show interesting
features with complex geometry that FWI aims to reconstruct.
We use a 3D surface acquisition with four source lines, each line

including 20 sources. The source positions are indicated by the red
triangles in Figure 8, with inline and crossline source-spacing ΔSx
and ΔSy taken at 300 and 500 m, respectively. For each source, a
grid of 3C receivers is deployed on the whole surface, the distance
between two adjacent receivers being 12.5 m. We use a vertical
point force. The source-time function is a Ricker wavelet, centered
at 3.5 Hz. The total recording time is equal to 6 s.

Inversion setup

SEM is used for the forward and inversion problem. The
observed data are generated with a constant element-size mesh,
whereas the inversion problem is computed over a variable
element-size mesh, locally satisfying the volume condition. A sharp
density model, as the velocity models in Figure 11a, is considered
for the observed data generation. As illustrated in Figures 2c and 3,
the P4 representation should be used to describe rapid topography
variations of the surface, especially for the variable element-size
mesh. Because the sources and receivers are located at the free sur-
face, the P4 representation also helps to correctly position sources
and receivers. As shown in the observed-data panel in Figure 13, the
seismic wavefield is complex, including highly dispersive surface

waves due to the rapidly varying topography.
Significant backscattering of body and surface
waves as well as mode conversion at steep-slope
surface positions can also be observed, for exam-
ple, at X ¼ 3 km (the associated Vs cross section
is presented in Figure 9a).
The initial VP and VS models that we use (Fig-

ures 11b and 12b) are smoothed versions of the
true model. A similar smoothed model is used
for density as the input of the inversion process.
To investigate on different aspects of elastic FWI,
such as gradient preconditioning and data-win-
dowing hierarchy, we choose here a set of starting
models compatible with the frequency-content of
the data: The calculated data in the initial models
are not cycle skipped compared with the observed
data, as shown in Figure 13a. We invert simulta-
neously for VP and VS, and the density is kept un-
changed, as a passive parameter. Each inversion
sequence consists of 60 iterations of the limited-
memory Broyden-Fletcher-Goldfarb-Shanno
(l-BFGS) optimization method. We do not apply
other preconditioning or regularization than the
Bessel gradient smoothing as detailed below.
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Figure 9. Gradient smoothing illustration underneath the source line at Y ¼ 750 m:
(a) true velocity model, (b) initial model, (c) original scaled gradient without any
smoothing, showing significant acquisition footprint and artifacts due to a sparse acquis-
ition. (d) Smoothed gradient by Bessel filter in which the parameters are described in
Figure 10b and 10c, which clearly show the dip and azimuth filtering effect.
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Figure 10. Top: depth section (xy-view) at z ¼ 1 km, bottom: cross section (zx) at Y ¼ 100 m. (a) True VS velocity model with gentle dipping
in zx-section and folding in xy-view. (b) Smooth azimuth field that nicely follows the folding the structures in xy-view. (c) Smooth dip field that
is almost homogeneous.
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Figure 11. Left: VP velocity cross section at Y ¼ 1 km, middle: VS cross section at Y ¼ 1 km, and right: VS cross section at X ¼ 5 km.
(a) True models, (b) initial models, and (c) inversion results by only using the early-body waves, starting from the initial models. (d) Inversion
results by using all the wavefield, starting from models in (c), showing significant improvement for the VS estimation. (d) Inversion results by
using all the wavefield, starting from the initial models — no significant update in VP estimation.
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Structure-oriented gradient preconditioning

The raw gradient computed on the initial model is presented in
Figure 9c, showing significant acquisition footprint at the near sur-
face. Unrealistic oscillations also occur at greater depths, due to
the limited illumination coming from the sparsity of the sources.
However, the targets have considerable dipping and folding struc-
tures, which can be characterized by smooth azimuth and dip
fields as shown in Figure 10b and 10c. Because the structures
vary quicker in the vertical direction than the horizontal directions,
we design a highly anisotropic filter shape in which the vertical
coherent length Lv being 25 m, much smaller than for other

directions. Due to the presence of an unconformity, the horizontal
coherent lengths Lu and Lw increases from 25 m near the disconti-
nuity position to 100 m elsewhere. By doing so, the filter has
an isotropic shape near the unconformity to avoid any smearing
effect across the unconformity. The anisotropic coherent lengths
design together with the 3D rotation result in the oblate-spheroid
shape of the filter volume, with the major plan toward the dipping
direction of the bedding plan. In practical applications, the filter
design can be based on an interpretation of the migrated
image computed from the initial models or any geologic prior in-
formation about the medium such as well logs and geologic
description.
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Figure 12. Velocity attributes extracted at the relative depth ΔZ ¼ 20 m from the free-surface. Left: VP and right: VS. (a) True models with
interesting channels, (b) initial models, and (c) inversion results by only using the early-body waves, starting from the initial models. (d) In-
version results by using all the wavefield, starting from models in (c), showing that surface waves can bring additional information to improve
inversion results at near-surface for VP and VS.
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By considering these filter parameters in the structure-oriented
Bessel preconditioning, we obtain the smoothed gradient in Fig-
ure 9d: The artifacts due to the acquisition footprint and the poor
illumination are effectively reduced, without degrading the deeper
structures. The continuity of the features at greater depths is enhanced
because the oscillations are weaken. We also obtain a correct orien-
tation of the geologic features. In this example, the smoothing process
costs only 0.4% running time of one FWI iteration. The structure-
oriented Bessel gradient precondition described above is systemati-
cally applied into any inversion sequence in the next section.

Data-windowing hierarchy

Due to the rough topography, the seismic wavefield is quite com-
plex with dispersive surface waves and significant back-scattering
waves as shown in Figure 13. A two-step data-windowing hierarchy
is considered to mitigate the dominance of the VS parameter over
VP, due to the presence of surface waves. The models are first in-
verted with early-body waves, arriving before the surface waves.
The observed models will then be used as starting models for
the inversion will the entire wavefield. During the first step, a bot-
tom mute is used to separate the early-body waves with the surface
waves and underlying reflected and back-scattering waves.

Inversion results

The cross sections of the results obtained after the first step are
shown in Figure 11c. The inversion successfully recovers main
structures of the VP model. The reconstruction of the VS model
is limited at 2 km depth due to the shallow penetration of the shear
component. The models presented in Figure 11d and 12d are ob-
tained after the second step, accounting for the whole data set. Add-
ing surface waves and other parts of the wavefield does not degrade
the VP estimation and improve significantly the VS model. The con-
tinuity of the near-surface features are strengthened, and the deeper
structures are better resolved. The unconformity is well-recon-
structed in the VS model at the 2 km depth (Figure 11d, the middle
and right panels). This is in part due to the nonstationary design of
the Bessel filter. When looking at the velocity attributes extracted
at 20 m below the free surface (Figure 12c and 12d), inverting for
surface waves actually improves the thin-structure imaging and am-
plitude estimation for VP and VS.

Discussions

Importance of the data-windowing hierarchy

Because the calculated data from the initial models are not cycle
skipped compared with the observed data, one
can run the inversion will the entire wavefield,
without any distinction between body and sur-
face waves. The inverted results are shown in
Figure 11e, in which the VS is well-recon-
structed. However, we observe insignificant up-
dates of the VP model. Because the data are
dominated by surface waves, the least-squares
misfit function is mainly sensitive to VS. The
data-oriented strategy we use in this 3D example
is thus crucial: By focusing on early body waves
before considering the whole data, our data-win-
dowing hierarchy makes it possible to better con-
strain the P-wave velocity.
Figure 13 shows the comparison of observed

data with the calculated data computed from the
initial models and the final inverted models (Fig-
ures 11 and 12d). It should be remarked that
compared with the observed data, the initial
models produce simple surface waves estimation
and weak amplitude of the first arrival due to
wrong velocities at the source location. After
the two-step data-windowing hierarchy, the in-
version successfully recovers details in the veloc-
ity models, resulting in an improved agreement
with the observed data for surface, body, and
back-scattering waves.
For complex real data applications, especially

in foothill environment, this data separation be-
tween early body waves and surface waves might
be difficult to achieve. In such a case, a model
hierarchy could be used on top of this data-win-
dowing strategy, in which Bessel gradient pre-
conditioning and/or model regularization could
be used to monitor the wavenumber-content of
the allowed model updates. At the first step, only
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Figure 13. Data comparison at the shot line Y ¼ 750 m between the observed data and
calculated data: (a) dcal estimated from initial models in Figures 11b and 12 and (b) dcal
computed from inverted models in Figures 11b and 12. Final inverted models signifi-
cantly improve the data fit for the back-scattering, body, and surface waves. The inver-
sion also recovers the body-wave amplitude, related to the radiation efficiency of the
source from model perturbation.
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low-wavenumber VS updates would be allowed to enhance the VP

reconstruction.

Structure-oriented Bessel preconditioning enhances the model
estimation

The importance of the gradient preconditioning is highlighted in
Figure 9. If prior information about the structures such as the local 3D
rotation is not available, a simple stationary anisotropic Bessel pre-
conditioning could be enough to remove artifacts in the gradient
(Trinh et al., 2017b), for example, with coherent lengths Lv ¼ 25 m,
Lu ¼ Lw ¼ 100 m, and 0° dip and azimuth angles. It should be
repeated that the anisotropic design relies on the fact that geologic
features vary quicker in the vertical direction than in the horizontal
direction.
To highlight the importance of our filter design with variable

coherent lengths and 3D rotation, Figure 14 shows the difference
between inverted results with the nonstationary structure-oriented
preconditioning and the inversion with the stationary filter, under
the same inversion hierarchy and setting. The comparison shows
nonneligible modification of the amplitude estimation for VP and
VS, especially following the dipping directions. In particular,
significant difference can also be observed at the unconformity be-
cause the nonstationary filter is reduced to isotropic shape near this
location. The model update is thus not smeared out across the
unconformity, leading to a sharp interface as shown in the final
VS model in Figure 11d. It should be noted that we only impose

the relative position of the unconformity, and we simply reduce
the filter effect at this location. By doing so, the filter does not ar-
tificially sharpen the interface but let FWI free to reconstruct it.

Computer memory and elapsed time

The 3D elastic inversion study has been performed on 1600
cores, in which the computation for each shot being performed
on 20 cores (i.e., 80 sources and only 20 subdomains per shot).
The incident fields are reconstructed from the decimated boundary
wavefield with a decimation ratio equal to five. The total memory
requirement per shot is thus approximately 44 Gb. Each gradient
computation in parallel is performed in 20 min, leading to almost
21 h for one FWI sequence of 60 iterations, as shown in Table 1. It
should be noted that storing the incident fields at each time step
would require approximately 889.5 Gb per shot without any com-
pression.
On the same 3D models with similar numerical setting, we add

homogeneous viscous properties with Qp ¼ Qs ¼ 50, which is the
value of quality factors in the near-surface region of the SEAM II
Foothills benchmark. To derive benefit from whole memory while
optimizing the elapsed time, 80 checkpoints are stored and a deci-
mation ratio equal to five is used for wavefields saving at the boun-
daries. The energy tolerance for monitoring the reconstruction of
incident fields is set as 5% (Algorithm 3), leading to a recomputa-
tion ratio equal to 3.2. The waves propagation in anelastic medium
is more expensive than the elastic cases: One gradient costs 1.36 h

0 1 2 3 4 5 6
X (km)
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1

2

Z
 (

km
)

–150 –100 –50 0 50 100 150

0 1 2 3 4 5 6
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0

1

2

Z
 (
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–150 –100 –50 0 50 100 150

a) b)

Figure 14. Difference between inverted results with structure-oriented preconditioning (Figure 11d) and the inversion results with stationary
smoothing Lv ¼ 25 m, Lu ¼ Lw ¼ 100 m, 0° dip and azimuth angles. (a and b) VP and VS cross sections at Y ¼ 750 m. The rotational
gradient preconditioning mainly affects the amplitude estimation.

Table 1. Top — memory requirement and computational cost for the elastic FWI test on the 3D subset of the SEAM Phase II
Foothills benchmark. Bottom — estimation for 3D viscoelastic test with a similar setting.

Total memory
per shot

First gradient
estimation

FWI
(60 iterations)

3D elastic FWI example (3 × 7 × 2 km) — 1600 cores: 3.98 × 106 dof;
82.6 × 103 receivers per source; 104 time steps; decimation ratio = 5; mesh
with all deformed elements. Inverting for VP; VS parameters

44 Gb 20 min 20.8 h

3D viscoelastic FWI test — 1600 cores: quality factors Qp ¼ Qs ¼ 50;
incident fields reconstruction: 80 checkpoints, decimation ratio = 5, energy
tolerance = 5% leading to recomputation ratio ≈3.2.

70 Gb 1.36 h 84.8 h
(estimation)
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in parallel, providing an estimation of 85 h for 60 iterations. In this
setting, we obtain a factor 4 between elastic and viscoelastic inver-
sion. It should be noted that storing the incident fields at each time
step would require 3.5 Tb per shot, due to the fact that the CIJ gra-
dient requires access to strain and memory-variable incident fields
(equation 20).
It should be noted that Table 1 provides estimations for a rela-

tively small example. In realistic applications, even with variable-
element mesh design, we expect to consider 108 dof with a longer
recording time. In such applications, storing a large number or
checkpoints or incident wavefields even at the Nyquist frequency
in core memory is infeasible. One might use the out-of-core
memory at the expense of the I/O cost. We rather focus on storing
a small number of checkpoints in core memory with limited I/O
request but higher recomputation ratio of the incident fields.

CONCLUSION

We provide a complete review of the 3D multiparameter FWI in
viscoelastic medium, using SLS mechanisms. We separate pur-
posely the elasticity with the attenuation mechanisms, which offers
an easy and explicit coupling between the anisotropic elasticity and
isotropic attenuation. The attenuation parameters are explicitly in-
corporated in the wave equations and therefore can be naturally re-
constructed in the FWI framework. Even if the second-order
viscoelastic wave equation is not self-adjoint, we can develop
the adjoint system with similar equations as for the incident fields,
implying that they can be propagated under the same numerical
scheme. Following the forward and adjoint formulation using
SLS mechanisms, the gradient expressions for density, attenuation
parameters, and stiffness coefficients CIJ are simply zero-lag cross-
correlations in time between incident and adjoint fields, weighted
by the associated spatial radiation pattern. The gradient for any
other parameter can be computed by chain rule from these elements.
We report a two-term expression for the CIJ gradient: The first term,
related to the zero-lag crosscorrelation of the adjoint and incident
strain fields, is commonly used in practical application. The second
term can be interpreted as the time dependency of the perturbation
of the relaxation rate. The influence of the second term is shown to
have an accumulative effect on the amplitude of the model param-
eter estimation, depending on the physical domain and acquisition
settings.
We present an integrated SEM-based workflow, capable of effi-

ciently performing 3D modeling and FWI in the time domain for
elastic and viscoelastic exploration-scale targets. Our approach relies
on the trade-off between computational cost, accuracy and memory
requirement. The simulation accuracy is ensured by the use of a Car-
tesian-based deformed mesh with high-order geometry interpolation
to capture rough topography variations. The element size can be
adapted to the variation of the local shortest wavelength to reduce
the numerical cost. The Cartesian-based mesh also allows to access
the spatial position and the neighbors of each element without any
extra cost. Two MPI-based parallelism levels are considered for tack-
ling large-scale and multiple-shot experiments, associated with an
efficient computation and low-memory implementation of incident
and adjoint fields. The simulation accuracy of our approach is illus-
trated through the comparison with elastic and viscoelastic semian-
alytical solutions via the boundary integral method. For the same
physical model and similar numerical settings, we achieve compa-
rable computational cost as two open-source codes: SW4 V1.1

and SPECFEM V2.0 (CPU version) for elastic and viscoelastic sim-
ulations.
For the gradient calculation, the incident field is reconstructed

from the stored wavefield in the boundaries, synchronously with
the propagation of the adjoint field. The gradient is directly accu-
mulated during this process, resulting in a cheap operation. To re-
duce the memory requirement, the boundary wavefield is saved at
decimated positions in time and reinterpolated when needed. In a
viscoelastic medium, the instability in the reconstruction of the in-
cident wavefield can be mitigated by using the elastic version of
CARFS algorithm. This strategy is critical in realistic applications,
normally associated with a large number of dof and time steps, in
which massive storage and intensive I/O might not be the optimal
choice. The structurally based nonstationary and anisotropic Bessel
smoothing is considered for an efficient gradient preconditioning.
The filter is implemented as a PDE solved with SEM, directly on the
modeling mesh, following the same high-performance-computing
structure as the one for the wave equation.
The complexity of the data and elastic multiparameter FWI prob-

lem in complex land areas are illustrated through a 3D subset of
SEAM Phase II Foothill model. The two-step data-windowing hi-
erarchy makes possible for simultaneous estimation of VP and VS.
Surface waves can be treated as additional sources of information,
to provide better constraints on VP and VS estimation, at near-sur-
face and deeper parts. In this model, the smoothing process costs
only 0.4% the computational cost of one inversion iteration, but it
significantly enhances the structure and model parameter estima-
tion. Perspectives include the applications on a real foothill data
set, in which rough topography and near-surface heterogeneities
make the subsurface imaging very challenging.
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APPENDIX A

STRESS AND STRAIN RELATIONSHIP
IN THE TIME DOMAIN

According to equation 1, in anelastic medium, the stress σij is the
convolution of the relaxation rate Mijkl with the strain εkl as

σijðx; tÞ ¼ Mijklðx; tÞ �t εklðx; tÞ þ T ijðx; tÞ: (A-1)

In the frequency domain, this relationship becomes

σ̂ijðx;ωÞ ¼ M̂ijklðx;ωÞε̂klðx;ωÞ þ T̂ ijðx;ωÞ: (A-2)

Under the assumption that L SLSs at specific reference frequencies
ων are used to fit a constant Q parameter over the frequency band
½ωmin;ωmax�, the associated expression for the complex relaxation
rate M̂ijklðx;ωÞ is represented in equation 7. Equation A-2 now be-
comes

σ̂ijðx;ωÞ¼
�
cijklðxÞ−cijklðxÞQ−1

ijklðxÞ
XL
ν¼1

yν
ων

ωνþiω

�
ε̂klðx;ωÞ

þT̂ ijðx;ωÞ: (A-3)

By using the definition of the attenuative stiffness coefficients caijkl
given in equation 9, we can rewrite equation A-3 as

σ̂ijðx;ωÞ ¼ cijklðxÞε̂klðx;ωÞ

− caijklðxÞ
XL
ν¼1

yν
ων

ων þ iω
ε̂klðx;ωÞ þ T̂ ijðx;ωÞ:

(A-4)

Introducing the complex memory variable ψ̂ ν;klðx;ωÞ such that

ψ̂ ν;klðx;ωÞ ¼ yν
ων

ων þ iω
ε̂klðx;ωÞ; (A-5)

leads to the simplification of equation A-4 into

σ̂ijðx;ωÞ ¼ cijklðxÞε̂klðx;ωÞ − caijklðxÞ
XL
ν¼1

ψ̂ ν;klðx;ωÞ

þ T̂ ijðx;ωÞ: (A-6)

In the time domain, equation A-6 is equivalent to the relationship
between stress and strain mentioned in equation 10.
Equation A-5 can be developed as

ðiωþ ωνÞψ̂ ν;klðx;ωÞ ¼ ωνyνε̂klðx;ωÞ: (A-7)

By applying the inverse Fourier transform into this equation, we
obtain

∂tψν;klðx; tÞ þ ωνψν;klðx; tÞ ¼ ωνyνεklðx; tÞ; (A-8)

which is the ODE governing the propagation of the memory var-
iables, mentioned in equation 11.

APPENDIX B

ADJOINT FIELDS DEFINITION
AND GRADIENTS ESTIMATION

The misfit function in equation 15 between the synthetic and the
observed data dobs can be written as

χðmÞ ¼ 1

2
kRWðmÞ − dobsk2; (B-1)

where R is a restriction operator extracting the full wavefield W at
receiver positions for each source. We define the incident wavefield
from the displacement and memory variable vectors as

W ¼ ðu1; u2; u3|fflfflfflfflffl{zfflfflfflfflffl}
u

;ψ1;1; : : : ;ψ1;6|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ψ1

; : : : ;ψL;1; : : : ;ψL;6|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ψL

ÞT:

(B-2)

The forward problem (equation 12) can now be written as

0
BBB@
ρI3 0 : : : 0

0 0 : : : 0

: : : : : : : : : : : :

0 0 : : : 0

1
CCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B2ðmÞ

∂ttWþ

0
BBB@

0 0 : : : 0

0 I6 : : : 0

: : : : : : : : : : : :

0 0 : : : I6

1
CCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B1

∂tW

þ

0
BBB@

−DCDT DCa : : : DCa

−y1ω1DT ω1I6 : : : 0

: : : : : : : : : : : :

−yLωLDT 0 : : : ωLI6

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B0ðmÞ

W ¼ S; (B-3)

or

Fðm;WÞ ¼ B2ðmÞ∂ttW þ B1∂tW þ B0ðmÞW − S ¼ 0;

(B-4)

where the modelm represents some physical parameters of the sub-
surface.

Adjoint system

Based on the second-order forward problem and the misfit
function in equation 15, we introduce the associated Lagrangian
functional with the Lagrangian multiplier W̄

Lðm;W;W̄Þ ¼ 1

2
kRW − dobsk2 þ ðW̄; Fðm;WÞÞ:

(B-5)

Similar to the incident full wavefieldW, the adjoint multiplier con-
sists of adjoint displacement and memory variable fields

W̄ ¼ ðū; ϕ̄1; : : : ; ϕ̄LÞT: (B-6)

Following the standard development of the adjoint-state method
(Plessix, 2006), the Lagrangian multiplier should satisfy the
following equation:
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B†

2∂ttW̄ − B†

1∂tW̄ þ B0ðmÞ†W̄ ¼ −R†ðRW − dobsÞ;
(B-7)

resulting in the second-order adjoint system:

�
ρ∂ttū ¼ DCDT ū −D

P
L
ν¼1 yνωνϕ̄ν − R†Δdu;

∂tϕ̄ν − ωνϕ̄ν ¼ −CaDT ū;
(B-8)

where Δdu is the displacement misfit at receiver positions, acting as
a source term. We introduce the modified adjoint memory variables
ψ̄ν such that

yνωνϕ̄ν ¼ Caψ̄ν; (B-9)

which transforms the adjoint system into

�
ρ∂ttū ¼ DCDT ū −DCa

P
L
ν¼1 ψ̄ν − R†Δdu;

∂tψ̄ν − ωνψ̄ν ¼ −yνωνDT ū:
(B-10)

The adjoint system now has nearly identical equations as the inci-
dent problem in equation 12, except the sign “–” in the memory
variable ODE.

Gradient expressions

The gradient of the misfit function on any model parameter can
be computed through

∂χ
∂m

¼
�
W̄;

∂Fðm;WÞ
∂m

�
: (B-11)

The gradient on density ρ is given by

∂χ
∂ρ

¼
�
W̄;

∂B2

∂ρ

�
¼ ðū; ∂ttuÞ: (B-12)

The gradient on stiffness coefficient CIJ is given by

∂χ
∂CIJ

¼
�
W̄;

∂B0

∂CIJ

�

¼
�
ε̄;

∂C
∂CIJ

ε
�

Ω;t
−
�
ε̄;
XL
ν¼1

∂Ca

∂CIJ
ψν

�
Ω;t
: (B-13)

The gradient on attenuation parameters Q−1
p;s is given by

∂χ
∂Q−1

p;s
¼
�
W̄;

∂B0

∂Q−1
p;s

�
¼ −

�
ε̄;
XL
ν¼1

∂Ca

∂Q−1
p;s

ψν

�
: (B-14)

The CIJ gradient in equation B-13 involves the multiplication of the
incident strain field with the quantity ∂C∕∂CIJ, which is a matrix
with zero or one coefficients. An example is given in the equation
below:

∂C
∂C13

¼

2
666664

0 0 1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777775: (B-15)

The CIJ and Q−1
p;s gradient expressions (Equation B-14) also require

the matrices ∂Ca∕∂CIJ and ∂Ca∕∂Q−1
p;s. Under the isotropic attenu-

ation regime, our approximation in equations 13 and 14 provides
simple expressions of the derivatives of the attenuative stiffness ten-
sor Ca with respect to elastic stiffness coefficients and attenuation
parameters as

∂Ca

∂CIJ

				
I≠J

¼ 0; (B-16)

∂Ca

∂CII

				
I¼1;2;3

¼ 1

3
Q−1

p

2
666664

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777775; (B-17)

∂Ca

∂CII

				
I¼4;5;6

¼ 1

3
Q−1

s

2
666664

0 −2 −2 0 0 0

−2 0 −2 0 0 0

−2 −2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777775; (B-18)

∂Ca

∂Q−1
p

¼ 1

3

�X3
I¼1

CII

�
2
666664

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777775; (B-19)

∂Ca

∂Q−1
s

¼ 1

3

�X6
I¼4

CII

�
2
666664

0 −2 −2 0 0 0

−2 0 −2 0 0 0

−2 −2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777775:

(B-20)

These expressions confirm that the attenuation coefficient Qp has
an isotropic impact on compressional components, thus having an
isotropic impact on VP estimation (a similar interpretation for the
attenuation coefficient Qs). Equations B-17 and B-18 also highlight
that, in a weakly attenuative medium, the second term in the vis-
coelastic CIJ gradient (Equation 20) can be neglected and tends
to zero in elastic medium.
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APPENDIX C

SEMIANALYTICAL SOLUTIONS
COMPARISON — LOH BENCHMARKS

The LOH benchmark has a layered material model, in which the
top 1000 m have different properties than the rest of the domain
(see Table C-1). The problem is driven by a single-point moment
source Mxy ¼ 1018 N:m, positioned in the lower half-space at depth
zs ¼ 2 km. The receiver is located at the free surface with the distance
approximately 10 km from the source (Δxsr ¼ 6 km, Δysr ¼ 8 km).
We are going to compare the SEM46 solutions with the AXITRA

open-source package solutions, which offers a highly accurate
semianalytical solution on a layered medium via the boundary in-
tegral method (Coutant, 1989). For viscoelastic solution, only the
Kjartansson’s constant Q model is originally available in AXITRA
(Kjartansson, 1979). We thus introduce the approximation by three
predefined SLS mechanisms over the modeling frequency range of
the benchmark.

LOH1 comparison

LOH1 solutions come from an elastic simulation with a Gaussian
source time function centered at 2.65 Hz. The SEM mesh consists
of a set of regular cubic elements, with the element size calculated
from the volume condition: dx ¼ dy ¼ 200 m. The element size in
the vertical direction is a factor of the thickness of the top layer dz ¼
100 m to better represent the sharp interface.
In the LOH configuration, the wavefield is complex with disper-

sive surface waves and multiple body-wave reflections between the
free surface and the sharp contrast. However, Figure C-1 shows an
excellent agreement between the elastic SEM46 simulation result
and the semianalytic solution obtained from AXITRA. Because
SEM is a continuous FE method, it has some intrinsic limitation
in the representation of the sharp contrast. We thus do not push
the comparison further with any time-frequency analysis.

Table C-1. Medium properties of the LOH benchmark.

VPðm∕sÞ VSðm∕sÞ ρðm∕sÞ Qp Qs

Top layer 4000 2000 2600 120 40

Half-space 6000 3464 2700 155.9 69.3
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Figure C-1. Excellent agreement between the elastic SEM46 sim-
ulation result and the semianalytic solution obtained from AXITRA
on LOH1 configuration. Blue, SEM46 solution; red, AXITRA
solution.
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Figure C-2. Excellent agreement between the viscoelastic SEM46 simulation result and the semianalytic solution obtained from AXITRA on
LOH3 configuration: (a) using three SLSs mechanism and (b) Kjartansson model with reference frequency fr ¼ 100 Hz. Blue, SEM46 sol-
ution; red, AXITRA solution.
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LOH3 comparison

LOH3 solutions come from a viscoelastic simulation with a
Gaussian source time function at a 3.18 Hz center frequency. The
medium is meshed with regular cubic elements dx ¼ dy ¼ 160 m

and dz ¼ 100 m to better represent the sharp contrast at z ¼ 1 km.
SEM46 uses three SLSs to approximate the constant quality factors.
By using the same SLS mechanisms (similar dimensionless anelas-
tic coefficients yν and reference frequencies ων), we obtain an ex-
cellent agreement between the SEM46 and modified-AXITRA
solutions in Figure C-2a. Figure C-2b also shows very good fit be-
tween SEM46 and AXITRA solutions with Kjartansson model, at
reference frequency fr ¼ 100 Hz. It has been highlighted by Wang
(2009) that the SLS model has a finite phase velocity at infinite
frequency (V∞ < ∞), whereas Kjartansson’s constant-Q model as-
sumes V∞ ¼ ∞. The use of a “tuning” frequency is thus necessary
to match solutions obtained by different attenuation models. It
should be remarked that a different attenuation model provides a
different expression of the medium parameters, leading to difficul-
ties for assessing the validation of the attenuation propagation.
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