
2D elastic equations in a VTI medium

• We recall the general form of the 3D elastodynamics equations

ρ
∂v

∂t
= Dσ + F

∂σ

∂t
= CDT v +

∂σ0

∂t

(43)

with

v = [vx vy vz ]T , σ = [σxx σyy σzz σyz σxz σxy ]T (44)

C =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66


, D =

∂x1 0 0 0 ∂x2 ∂x3

0 ∂x2 0 ∂x3 0 ∂x1

0 0 ∂x3 ∂x2 ∂x1 0

 . (45)
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2D elastic equations in a VTI medium

• For the 2D P-SV system we have (using invariance along y axis)

ρ
∂v

∂t
= Dσ + F

∂σ

∂t
= CDT v +

∂σ0

∂t

(43)

with

v = [vx vz ]T , σ = [σxx σzz σxz ]T (44)

C =

C11 C13 C14

C13 C33 C34

C14 C34 C44

 , D =

(
∂x1 0 ∂x3

0 ∂x3 ∂x1

)
. (45)
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2D elastic equations in a VTI medium

• In the VTI (Vertical Transverse Isotropic) approximation, C14 and C34 vanishes yielding

ρ
∂v

∂t
= Dσ + F

∂σ

∂t
= CDT v +

∂σ0

∂t

(43)

with

v = [vx vz ]T , σ = [σxx σzz σxz ]T (44)

C =

C11 C13 0

C13 C33 0

0 0 C44

 , D =

(
∂x1 0 ∂x3

0 ∂x3 ∂x1

)
. (45)
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2D elastic equations in a VTI medium

• Expanding it we find (assuming zero stress source and only vertical and horizontal force sources)

∂vx
∂t
− 1

ρ

∂σxx

∂x
− 1

ρ

∂σxz

∂z
= fx

∂vz
∂t
− 1

ρ

∂σxz

∂x
− 1

ρ

∂σzz

∂z
= fz

∂σxx

∂t
− C11

∂vx
∂x
− C13

∂vz
∂z

= 0

∂σzz

∂t
− C13

∂vx
∂x
− C33

∂vz
∂z

= 0

∂σxz

∂t
− C44

2

(
∂vx
∂z

+
∂vz
∂x

)
= 0

(43)
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Vertical Transverse Isotropy

• A VTI medium is an effective medium which can be associated with the vertical piling of thin

layers

• By thin we mean : layer thickness smaller than the wavelength of the propagated wave

• In this simple anisotropy case, the effective medium is homogeneous, with a horizontal velocity

which is faster than the vertical velocity

• The wave are not reflected by the layers, but apparently, it travels faster in the horizontal (x , y)

plane and slower in the vertical direction z
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General Transverse Isotropy

• This can be extended to the case of horizontal layering (HTI) media

• More generally, this can be extended to any layering structure with an angle: we speak of TTI

anisotropy in this case for Tilted Transverse Isotropy
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Parameterization in a 2D VTI medium with Thomsen parameters

We can parameterize a 2D VTI medium with five independent parameters

• VP : pressure wave velocity

• VS : shear wave velocity

• ρ : density

• ε and δ : Thomsen parameter to represent VTI anisotropy (Thomsen, 1986)

The relations with the stiffness matrix coefficient are

C33 = ρV 2
P

C11 = ρV 2
P(1 + 2ε)

C44 = ρV 2
S

C13 = −ρV 2
S + ρ

√
(v 2

P − v 2
S )

2
+ 2δv 2

P (v 2
P − v 2

S )

(44)
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Example of propagation in a 2D VTI medium

Source settings

• Vertical force source fz , localized in space (Diract) and with a Ricker wavelet time signature

fz(x , z , t) = δ(x − xS)δ(z − zS)r(t) (45)

with (xS , zS) the spatial coordinates of the source and

r(t) =
(

1− 2π2f 2
0 (t − t0)2

)
e−π

2f 2
0 (t−t0)2

(46)
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Example of propagation: homogeneous isotropic medium

Medium settings: homogeneous medium

First modeling in an isotropic medium

• VP = 2000 m.s−1 : pressure wave velocity

• VS = 1000 m.s−1 : shear wave velocity

• ρ = 2000 kg.m−3: density

• ε = 0: Thomsen parameter 1

• δ = 0: Thomsen parameter 2
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Example of propagation: homogeneous isotropic medium

Figure 1: vz field with a vertical force source emitting a 5 Hz Ricker wavelet in the center of an isotropic

medium
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Example of propagation: homogeneous isotropic medium

Figure 2: vx field with a vertical force source emitting a 5 Hz Ricker wavelet in the center of an isotropic

medium
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Example of propagation: homogeneous VTI elliptic medium

Medium settings: homogeneous medium

Second modeling in an VTI elliptic medium

• VP = 2000 m.s−1 : pressure wave velocity

• VS = 1000 m.s−1 : shear wave velocity

• ρ = 2000 kg.m−3: density

• ε = 0.3: Thomsen parameter 1

• δ = 0.3: Thomsen parameter 2
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Example of propagation: homogeneous VTI elliptic medium

Figure 3: vz field with a vertical force source emitting a 5 Hz Ricker wavelet in the center of a VTI elliptic

medium
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Example of propagation: homogeneous VTI anelliptic medium

Medium settings: homogeneous medium

Second modeling in an VTI anelliptic medium

• VP = 2000 m.s−1 : pressure wave velocity

• VS = 1000 m.s−1 : shear wave velocity

• ρ = 2000 kg.m−3: density

• ε = 0.3: Thomsen parameter 1

• δ = 0.1: Thomsen parameter 2
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Example of propagation: homogeneous VTI anelliptic medium

Figure 4: vz field with a vertical force source emitting a 5 Hz Ricker wavelet in the center of a VTI anelliptic

medium
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Comparison between isotropic and VTI media

vz in an isotropic medium
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Comparison between isotropic and VTI media

vz in an elliptic VTI medium
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Comparison between isotropic and VTI media

vz in an anelliptic VTI medium
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Choice of boundary conditions

The choice of homogeneous Dirichlet boundary conditions corresponds to

ρ
∂v

∂t
= Dσ + F

∂σ

∂t
= CDT v +

∂σ0

∂t

(47)

with {
v(x , t) = 0; x ∈ ∂Ω,

σ(x , t) = 0, x ∈ ∂Ω
(48)
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Choice of boundary conditions

In terms of simulation, this is what it yields

Figure 5: vz field with a vertical force source in the center of a VTI isotropic medium emitting a 5 Hz Ricker

wavelet with homogeneous Dirichlet boundary conditions
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Choice of boundary conditions

However, what we would like resembles more to

Figure 6: vz field with a vertical force source in the center of a VTI isotropic medium emitting a 5 Hz Ricker

wavelet with absorbing boundary conditions
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Choice of boundary conditions

How to design such absorbing boundary conditions?
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