
Lecture notes: High resolution geophysical imaging using full

waveform modeling and inversion

L. Métivier

November 16, 2022



2



Contents

Foreword

1 Introduction 7
1.1 High resolution imaging of the subsurface: why do we need it? . . . . . . . 7

1.1.1 Earth’s structure at global and continental scales . . . . . . . . . . . 7
1.1.2 Imaging active zones: crustal scale imaging . . . . . . . . . . . . . . 8
1.1.3 Hydrocarbon resources: crustal scale imaging . . . . . . . . . . . . . 9
1.1.4 CO2 storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Geothermal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Geotechnical engineering . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.7 Archaeology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 How to obtain information on subsurface material properties? . . . . . . . . 14
1.2.1 Drilling is not an option . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Remote sensing as a remedy . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 General frame of an inverse problem . . . . . . . . . . . . . . . . . . 15
1.2.4 The linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Seismic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Type of recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Representation and analysis of seismic data . . . . . . . . . . . . . . 21

1.4 A first glance at seismic inversion methods . . . . . . . . . . . . . . . . . . . 25
1.4.1 Tomography methods: exploiting only the first arrival time . . . . . 25
1.4.2 Full waveform inversion: exploiting all the data . . . . . . . . . . . . 26

2 Full waveform modeling 29
2.1 Elastodynamics equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 General elastodynamics equations . . . . . . . . . . . . . . . . . . . 29
2.1.2 Isotropic and anisotropic media . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 P-waves, S-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.4 Free surface condition and surface waves . . . . . . . . . . . . . . . . 34
2.1.5 Attenuation: from elastic to visco-elastic media . . . . . . . . . . . . 36
2.1.6 Acoustic approximation . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.7 Considerations on first-order hyperbolic systems . . . . . . . . . . . 38

2.2 Absorbing boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Simple 1D acoustic example . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Generalization to elastodynamics . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Higher order absorbing boundary conditions . . . . . . . . . . . . . . 45
2.2.4 Absorbing layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Finite-differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



4 CONTENTS

2.3.3 Staggered grid finite difference scheme for 2D elastodynamics equation 55
2.3.4 Spectral-element for elastodynamics equations . . . . . . . . . . . . 58

3 Full waveform inversion 65
3.1 A PDE constrained least-squares optimization problem . . . . . . . . . . . . 65

3.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Lagrangian operator and KKT system . . . . . . . . . . . . . . . . . 66
3.1.3 Reduced space approach . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 General frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Linesearch strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Computing the descent direction . . . . . . . . . . . . . . . . . . . . 72

3.3 Gradient computation in FWI . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Direct method: the Jacobian matrix . . . . . . . . . . . . . . . . . . 77
3.3.2 Adjoint state method . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.3 Physical interpretation of the gradient in FWI . . . . . . . . . . . . 88
3.3.4 Gradient as a filter in the wavenumber domain . . . . . . . . . . . . 88

3.4 HPC aspects of FWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.1 Frequency-domain implementations . . . . . . . . . . . . . . . . . . . 91
3.4.2 Time-domain implementations . . . . . . . . . . . . . . . . . . . . . 95

3.5 Practical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Foreword

The aim of this course is to provide a first understanding of geophysical imaging and
the mathematical concepts behind. The core of the course is the full waveform inversion
method, a high resolution seismic imaging method which has been developed since the
beginning of the 1980s and is now applied routinely in the industry for oil & gas exploration
and in the academy for global and regional scale imaging. Despite full waveform inversion
is relatively widespread and used in diverse communities, a significant research work is
still ongoing around this method, both in terms of methodology and applications. The
aim of this course is also to give an insight of some of these research directions.
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Chapter 1

Introduction

In the introduction, we first review in which domains obtaining accurate and quantitative
estimates of the subsurface mechanical properties is crucial. We then explain how this
can be based on the propagation of seismic waves in the Earth’s interior, and how this
can be formulated as a typical inverse problem. Finally, we show an example of synthetic
data recorded in a typical controlled source experiment. We explain the main principle of
tomography methods, which exploits only the first arrival travel-times of the waves and
hence have a low resolution power. This is the motivation for full waveform inversion, a
high resolution seismic imaging technique which aims at exploiting all the data.

1.1 High resolution imaging of the subsurface: why do we
need it?

Let us start by reviewing some applications where a high resolution information on the
Earth’s structure is crucial.

1.1.1 Earth’s structure at global and continental scales

Understanding the global structure of the Earth is still at the heart of active research
(Fig.1.1). Questions encompass the early formation of planets related to the accretion
mechanism. Having more precise ideas of the core structure is also crucial to better
understand and interpret the magnetic field. The magnetic field is generated by rotation
of the liquid iron around a solid grain in the core. Delineating the core/mantle boundary is
also a salient question for seismologists, as it likely plays an important role in geodynamic
and geothermal processes. For instance it is said in Lowrie and Ficthner (2020) that

“The layer at the core mantle boundary may serve a the source of material
for mantle plumes that give rise to hot spots, which are important in plate
tectonics. The thermal properties of this layer might also influence the outward
transport of heat from the Earth’s core; in turn this could affect the intricate
processes that generate the Earth‘s magnetic field.”

A high resolution information at the global scale is also crucial for the study of earth-
quakes. Locating hypocenters of earthquakes is a major issue and it requires an accurate
knowledge of the seismic wave velocity at global and continental scales.
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of the internal structure of the Earth at the global scale. Inner (solid)
and outer (liquid) core, mantle, and crust.

1.1.2 Imaging active zones: crustal scale imaging

Better imaging the structure of particular active zones such as subduction zones, volcanic
areas, faults, is also crucial to better understand their mechanisms, and to prevent the
potential hazards related to their activity. An example of such zone is the Nankai trough
near Japan (Fig.1.2). The underlying fault is the origin of Nankai megathrust earthquakes
which devastate Japan regularly. The Eastern segment of the Nankai Trough is known to
have been left without rupture during the most recent earthquakes dating back to 1944
and 1946.
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Figure 1.2: Partitioning of the Nankai Trough into four segments as described by Ando
(1975). Region D was left unruptured during the most recent sequence of two large earth-
quakes (1944 Tonankai and 1946 Nankaido). The solid red line represents the seismic
profile of the SFJ-OBS experiment. White arrows mark the cyclic volcanic ridges devel-
oping on the flank of Izu Bonin Arc. (b) Zoomed view of the survey area, overlaid with
the bathymetry variations. The solid grey line and the dashed red line represent the OBS
shot and receiver profile respectively, while the dashed black line corresponds to the MCS
profile (Górszczyk et al., 2017). Figure taken from Gorszczyk et al. (2019).

A better information on the subsurface structure in this area is crucial to help geo-
physicists interpret the geology and try to infer the risk related to an earthquake in this
zone (next occurrence localization, strength, effect etc...). Recent imaging results using



1.1. HIGH RESOLUTION IMAGINGOF THE SUBSURFACE:WHYDOWENEED IT?9

full waveform inversion (FWI) and their interpretation are presented in Figure 1.3. Note
that the scale here is 20 km depth for 100 km long 2D model. This means that the target
is deep, but still within the crust: we speak of deep crustal scale imaging. This example
is taken from Gorszczyk et al. (2019).
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Figure 1.3: Imaging results and structural interpretation. Migrated section superimposed
on: (a) FWI velocity model blended with average vertical and horizontal velocity gradi-
ent; (b) Average vertical and horizontal velocity gradient of FWI model. Inset presents
different geological block-segments: OMT - oceanic mantle; SOC - subducting oceanic
crust; WDU - weakly deformed unit; MDU - moderately deformed unit; HDU - heavily
deformed unit; BST - backstop. Figure taken from Gorszczyk et al. (2019).

1.1.3 Hydrocarbon resources: crustal scale imaging

Precise, accurate, high resolution information on the structure is crucial for oil & gas
exploration. Locating hydrocarbon resources can request resolution information down to
few meters for targets few kilometers deep in area covering hundreds of square kilometers.
Drilling operations are extremely complicated (and expensive) despite progresses in the
technology. Uncertainty in the structure can lead to dry wells and/or hazards, in particular
in presence of gas.

In Figure 1.4 we present an example of 3D imaging from North Sea data (Valhall oil
field) where a gas cloud, trapped in sediment layers, make the imaging of the reservoir
below challenging. High resolution imaging makes it possible to correctly image the gas
cloud at 1 km depth (gray depth slices). Shallower, glacial sand channels deposits at are
made visible at z = 175 m, a low-velocity zone intersected by scrapes left by drifting
icebergs on the paleo-seafloor is made apparent at z = 500 m depth. This example is
taken from Operto et al. (2015).
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Figure 1.4: Slices of the 10 Hz FWI model.) (a-c) Horizontal slices at (a) 175m depth, (b)
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(2015).
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1.1.4 CO2 storage

CO2 storage is an important challenge industry is facing in the frame of the energy tran-
sition. Reducing greenhouse gas emissions is now accepted as one of the main issue for
modern societies. Part of the solution is sought in the ability to capt directly CO2 at the
source (from industrial plants), and inject it in the subsurface in a controlled environment.
This requires again precise, accurate information on the subsurface structure, to evaluate
permeability of the layers in which the pressured CO2 will be trapped. This also requires
the ability to monitor the state of the storage along time. This yields a specific problem-
atic of monitoring, also known as 4D imaging. Using a permanent device of acquisition,
4D imaging consists in generating 3D images of the subsurface along time to control the
evolution of the subsurface and detect potential leakage. Note that part of the industrial
tools required to develop and pilot CO2 storage are in the hand of the oil & gas industry,
as they have developed tools to inject fluids in the subsurface to enhance oil extraction
and to monitor reservoir production through permanent seismic acquisition devices.

We present in Figure 1.5 a schematic view of the CO2 storage injection system which
has been installed in Sleipner (Norway) since 1996. Sleipner is a pilot site, which has
made possible to test and evaluate the interest of CO2 storage technology. A review of
the experiments and research led in this pilot site is proposed in Eiken (2019)

Figure 1.5: Schematic view of the CO2 storage injection in Sleipner (Norway).

1.1.5 Geothermal energy

Geothermal energy is another technology recently developed to lessen our dependence to
hydrocarbon resources and reduce greenhouse gas emissions. Shallow geothermal resources
(down to 200 m depth) can be exploited to monitor the buildings temperature (both for
individuals and industry), or to produce hot water. Deep geothermal resources (below 200
m depth) can be used for the same purpose or to produce electricity. In both cases (shal-
low and deep geothermal resources exploitation) an accurate knowledge of the subsurface
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structure is required, to detect proper aquifers, and to conduct the drilling and installation
of pumps and/or electricity generators. A monitoring of the installation is also required,
leading, as for CO2 storage, to the problematic of 4D imaging.

1.1.6 Geotechnical engineering

From wikipedia https://en.wikipedia.org/wiki/Geotechnical_engineering, the def-
inition of geotechnical engineering (or geotechnics)

Geotechnical engineering, also known as geotechnics, is the application of sci-
entific methods and engineering principles to the acquisition, interpretation,
and use of knowledge of materials of the Earth’s crust and earth materials for
the solution of engineering problems and the design of engineering works. It is
the applied science of predicting the behavior of the Earth, its various materi-
als and processes towards making the Earth more suitable for human activities
and development (...).

Examples of the application of geotechnics include: the prediction, prevention
or mitigation of damages caused by natural hazards such as avalanches, mud
flows, landslides, rockslides, sinkholes, and volcanic eruptions; the application
of soil, rock and groundwater mechanics to the design and predicted perfor-
mance of earthen structures such as dams; the design and performance predic-
tion of the foundations of bridges, buildings, and other man-made structures
in terms of the underlying soil and/or rock; and flood control and prediction.

For such applications, a precise, accurate, high resolution knowledge of the subsurface
structure is also naturally required.

1.1.7 Archaeology

Finally, recent applications have shown how shallow subsurface imaging can be used in the
frame of archaeological studies. Depth of investigation do not exceed few meters in this
case. Preparing archaeological campaign requires accurate information on the subsurface
structure. Conventional imaging methods based on electromagnetic measurements such as
ground penetrating radar (GPR) can be limited by the penetration depth of these waves.
In (Köhn et al., 2021), a medieval canal named “Fossa Carolina” located in southern
Germany is investigated. Full waveform inversion of elastic wave propagation recordings is
used to image the structure prior to excavation, and is compared with a more conventional
tomography strategy. After excavation, it is possible to assess the quality of the images.
Modern techniques such as full waveform inversion, which will be at the heart of this course,
makes it possible to retrieve higher resolution images than the conventional tomography
technique based on first-arrival travel time.

https://en.wikipedia.org/wiki/Geotechnical_engineering
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Figure 1.6: Figure extracted from Köhn et al. (2021). FWI stands for Full Waveform In-
version and FATT for First Arrival travel-time tomography. The latter technique produce
a low resolution estimate of the shear wave velocity. FWI provides a higher resolution
estimate. Thanks to the excavation, the results can be confronted to the true subsurface
rheology. The comparison between the photography and the FWI result illustrates how
the higher resolution details conform with the reality. In particular, the target (the “Fossa
Carolina” canal) is much more accurately delineated in the bottom right corner of the 2D
shear-wave velocity map.
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1.2 How to obtain information on subsurface material prop-
erties?

Here we review the main principle of seismic imaging and its general formulation as an
inverse problem. We will make a little digression around the linear case for inverse problems
as it illustrates first important concepts in the frame of the solution of inverse problems.

1.2.1 Drilling is not an option

First and foremost, one could wonder why the investigation of the subsurface could not
rely only on direct measurements. That is, in a pragmatic way, drilling. There are several
arguments against this.

• Some applications require an indirect measurement of the subsurface properties
simply because a direct measurement would destroy the target. Archaeology and
geotechnical engineering belong to this category of applications.

• At larger scales, drilling provides a very local information. The subsurface, especially
the crust, can not be accurately represented as a layered medium. Therefore, the
direct measurement provided by a (vertical) well do not provide information on
potential lateral variations of the subsurface.

• Drilling is a highly technical and complex operation. Therefore it is expensive.

• For regional scale and global scale imaging, the depth of investigation of a drilling
operation is far from being sufficient.

Regarding the last point, it is interesting to know that the deepest drilling operation
performed on Earth was achieved by Russians. The operation last for 19 years from 1970
to 1989, on the Kola Peninsula (Fig.1.7). They reached the depth of 12,262 km. At this
depth, they had to face pressure and temperature conditions that made drilling deeper
impossible, the rock behaving more as a plastic than a solid. Given the Earth’s radius is
approximately 6400 km, the deepest drilling ever achieved reaches less than 0.2% of the
Earth’s radius. To give another order of idea, the crust has an average thickness of 33
km, but shows strong variations, measuring as little as 5 km below oceans and as much as
60-80 km under some mountain ranges.

Figure 1.7: Localization of the Kola peninsula on Google Earth (left). Picture of the Kola
Superdeep Borehole drilling site (right).
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1.2.2 Remote sensing as a remedy

As direct measurement is not an option, we need to rely on indirect measurements. This
already means that instead of having an accurate knowledge on the subsurface rheology
(type of rock, permeability, water saturation), we will recover averaged properties of the
subsurface.

The starting point of geophysical imaging is the following: subsurface rheology has
an impact on the propagation of waves.

• These can be electromagnetic waves. In this case, the subsurface structure/rheology
variations affect the mean permittivity and conductivity of the subsurface, which
have an effect on the propagation of electromagnetic waves.

• These can be mechanical (elastic) waves. In this case, the subsurface structure/rheology
variations affect the velocity, density, anisotropy, and attenuation of the subsurface,
which have an effect on the propagation of mechanical (elastic) waves.

From the observation of mechanical or electromagnetic waves, we will infer information on
these “average” subsurface properties. In this course, we will focus on mechanical waves
and leave aside electromagnetic waves. The latter are however used for shallow applica-
tions, such as archeology and geotechnical engineering, to complement or replace seismic
imaging methods. They are also used at the exploration scale, using controlled-source
electo-magnetic methods (CSEM), to retrieve the subsurface resistivity down to several
kilometers depth. The electrical resistivity can help to discriminate between different rock
types. The resolution of such information is however relatively low.

The main idea behind geophysical imaging using mechanical waves is thus that from
the recording of these waves, we can infer information about the subsurface mechanical
properties (macro-scale parameters). From them, more precise information on the rheology
of the subsurface can be obtained, if required, in a second stage (micro-scale parameter).
This second stage is referred to as downscaling in the literature. Geophysical imaging
is focused on the first stage: from seismic waves observation, recover information on the
subsurface mechanical properties.

As such, geophysical imaging belongs to the class of inverse problems. The computa-
tion of seismic waves given the subsurface mechanical properties corresponds to a forward
problem. It can be formalized (as described in the sequel of the course) as the solution
of partial differential equations describing the propagation of elastic waves: the elasto-
dynamics equations. The computation of the subsurface mechanical properties given the
local observation of seismic waves is an inverse problem.

1.2.3 General frame of an inverse problem

In general mathematical notations, an inverse problem can be defined as follows. Let
dobs ∈ D be the data we have on a given physical system. The physical system is described
by some parameters m ∈M. There exists a physical process which relies the observation
and m in this physical system. This process is described by an operator g such that

g : m 7→ g(m)
M→ D. (1.1)

The inverse problem is posed as finding m such that

g(m) = dobs. (1.2)
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In geophysical imaging, dobs corresponds to some partial measurement of the propagat-
ing waves. The parameter m∗ corresponds to the mechanical properties of the subsurface.
The operator g corresponds to the wave propagation operator.

We can refer to Hadamard to have the definition of a well posed problem. Such a
problem should satisfy

• existence
∃m∗, g(m∗) = dobs (1.3)

• uniqueness
m 6= m∗ ⇐⇒ g(m) 6= dobs (1.4)

• continuous dependency of the solution with respect to the data

∀ε, ∃η, ‖dobs,1 − dobs,2‖ < η =⇒ ‖m∗1 −m∗2‖ < ε, (1.5)

where we define m∗1 and m∗2 as

g(m∗1) = dobs,1, g(m∗2) = dobs,2. (1.6)

In practice, inverse problems are often ill-posed to a certain extent. First, it is often
difficult to have strict existence of a solution, simply because of the measurement noise.
In practice, at best, we have

dobs = g(m∗) + ε. (1.7)

From this, existence and uniqueness need to be recast as an equivalence class property:

m solution ⇐⇒ m ∈M∗ε ⊂M, M∗ε = {m ∈M, ‖g(m)− dobs‖ < ε} . (1.8)

If the continuous dependency of the solution can still be verified, we can qualify the inverse
problem as “weakly ill-posed” (informal notion). If however, the continuous dependency
of the solution is not verified, the inverse problem can be qualified as “strongly ill-posed”
(informal notion too).

1.2.4 The linear case

Formulation

To have a first insight on how inverse problems behave and how we can solve them, it is
interesting to consider the linear case. In this frame we will have

d ∈ D ⊂ RN , m ∈M ⊂ RM , g(m) = Am, (1.9)

with
A ∈MN,M (R), (1.10)

where MN,M (R) is the space of real matrices with N rows and M columns.
We have to solve the problem

g(m) = dobs, (1.11)

that is, in this case
Am = dobs. (1.12)

The solution of the inverse problems can thus be defined by

m∗ = A†dobs. (1.13)
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where A† denotes a generalized inverse for the (rectangular) matrix A. Here we focus
on inverse problems which are over-determined: we have more information than discrete
unknowns, that is M < N . This is the situation that we have in practice for full waveform
inversion. If we assume that A is full rank, that is

rank(A) = M (1.14)

then we have
A† = (ATA)−1AT (1.15)

Consequently, the solution m∗ is given by

m∗ = (ATA)−1ATdobs. (1.16)

Link with the least-squares solution

It is interesting to note that in this case m∗ corresponds to the least-squares solution of
the inverse problem. Consider the functional

f : m 7→ ‖g(m)− dobs‖2
M⊂ RM → R+.

(1.17)

We have
f(m) = ‖Am− dobs‖2. (1.18)

The least-squares problem is defined as

min
m

f(m). (1.19)

A solution of this minimization problem is found by searching for the zero of the gradient
of f(m). To compute this gradient, we consider an increment dm ∈M. We have

f(m+ dm) = ‖A(m+ dm)− dobs‖2 = ‖Am− dobs +Adm‖2

= f(m) + 2(Am− dobs, Adm)N + ‖dm‖2
(1.20)

where (., .)N denotes the conventional Euclidean scalar product in RN . Therefore

f(m+ dm)− f(m) = 2(Am− dobs, Adm)N + ‖Adm‖2

= 2(AT (Am− dobs), dm)M + ‖Adm‖2
(1.21)

Note here that transposing the matrix A to apply it to the left hand side of the scalar
product, we move from a scalar product in RN (data space) to a scalar product in RM
(model space).

Consider a first-order Taylor development of f(m), we should have

∀ dm ∈M, f(m+ dm) = f(m) + (∇f(m), dm)M +Odm→0(‖dm‖2) (1.22)

By identification of (1.21) and (1.22), we have

∇f(m) = 2AT (Am− dobs). (1.23)

Therefore, looking for m such that ∇f(m) = 0 is equivalent to solve

2AT (Am− dobs) = 0, (1.24)

which gives

m =
(
ATA

)−1
ATdobs (1.25)

We recover the formula (1.16) which we got from the definition of the generalized inverse
matrix.
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Stability to noise

Consider that

dobs = Am∗ + ε (1.26)

where ε ∈ D represents measurement noise. In this case, the least-squares solution is given
by

mLS =
(
ATA

)−1
AT (Am∗ + ε) = m∗ +

(
ATA

)−1
AT ε (1.27)

Let mε be the projection of the noise in the model space through the operator AT

mε = AT ε (1.28)

Consider a decomposition of mε in the eigenvector basis of ATA

mε =

M∑
i=1

βivi (1.29)

where vi, i = 1, . . . ,M is a basis of eigenvectors of ATA, associated with eigenvalues
αi, i = 1, . . . ,M .

Then, we have

mLS = m∗ +
(
ATA

)−1
mε = m∗ +

M∑
i=1

βi
(
ATA

)−1
vi = m∗ +

M∑
i=1

βi
αi
vi (1.30)

If ATA has small eigenvalues (tending to 0) then potentially the contribution from the

noise can be significant in the reconstruction and the reconstruction error
(
ATA

)−1
AT ε

can be big.

We see that the conditioning of the normal matrix ATA is an indication over the
sensitivity to noise of the linear inverse problem in this case. Note also the following for
the remainder of the course: ATA is the Hessian matrix associated with the functional
f(m), which has an important role in the analysis of the seismic inverse problem related
to full waveform inversion.

Regularization

In practice, one way to reduce the sensitivity of the inverse problem to noise is to regularize
it. A very standard example of regularization consists in using a prior model mp. We
assume we know such a prior model, from prior information on the solution. If such
a model is known, we can add a penalization term in the misfit function 1

2‖m − mp‖2,
weighted by a scalar parameter η ∈ R+. We obtain a regularized inverse problem

min
m

fη(m) =
1

2
‖Am− dobs‖2 +

η

2
‖m−mp‖2. (1.31)

This regularization belongs to the class of Tikhonov regularization (Tikhonov et al., 2013).

The interpretation of this regularization term is that we are looking for a model m
which should at the same time satisfy the linear system Am = dobs in the least-squares
sense while not being too far from the prior model mp (in the least squares sense too). It
can be understood as a way to guide the inversion to look for models satisfying Am = dobs
in the vicinity of mp. The “size” of the vicinity depends on the parameter η.
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A solution of the problem (1.31) can be found by setting the gradient of the regularized
function fη(m) to 0 (as previously). We have

∇fη(m) = AT (Am− dobs) + η(m−mp). (1.32)

Setting this gradient to 0 gives the solution mLS,η

mLS,η =
(
ATA+ ηIM

)−1 (
ATdobs + ηmp

)
. (1.33)

where IM is the identity matrix of size M .
We see immediately that the regularization in this case has an effect of thresholding

the smallest eigenvalues of ATA therefore stabilizing the inversion. We see also that if we
select η →∞, we have

lim
η→∞

(
ATA+ ηIM

)
= ηIM (1.34)

therefore

lim
η→∞

(
ATA+ ηIM

)−1
=

1

η
IM (1.35)

and
lim
η→∞

(
ATdobs + ηmp

)
= ηmp (1.36)

therefore
lim
η→∞

mLS,η = mp. (1.37)

According to the previous interpretation, this result is intuitive. A strong penalization
of the solution among to reduce the vicinity around mp in which we are looking for the
solution, and at the limit, we are restricted only to mp.
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1.3 Seismic data

We have said that we would image Earth’s structure through remote sensing/use of seismic
waves. What is actually the data that we have? How does it look like?

1.3.1 Type of recordings

The data we have correspond to the recording of seismic waves by seismic sensors. These
sensors can be located on ground or in the water. On ground, they are geophones. These
devices record the amplitude of the local velocity displacement of the ground. In the water,
they are hydrophones. These devices record the amplitude of the local pressure field.

Sensors can be deployed permanently (or for a long period of time, from months to
several years). This makes it possible to record seismic activity related to earthquakes
but also ambient noise due to human activities and also ocean or atmospheric forcing.
Ambient noise can be treated so as to yield useful information on the subsurface. This is a
whole research topic which will not be developed in this course. Interested readers might
refer to Nakata et al. (2019) and references therein for an overview.

In seismology, signal from earthquakes is used to image the Earth at global or conti-
nental scales. A sketch of such acquisition is given in Figure 1.8. In exploration, sensors
are deployed temporarily over a given target. Human controlled seismic sources are used
to generate the seismic signal. In the water, pressure airguns are deployed (Fig. 1.9 left).
On ground, vibrating trucks or explosive sources are used (Fig. 1.9 right).

Figure 1.8: Sketch of earthquake recording with sensors deployed all around the Earth.

In terms of mathematics, the seismic data is thus a collection of time functions d(t)
associated with a source s and a receiver r. We will denote it as

dr,s(t), (1.38)

in the following, or equivalently
d(xs, xr, t), (1.39)

or
ds(xr, t), (1.40)

depending on the context. In these notations xr and xs denote the spatial position of the
receiver r and the source s respectively. A single function dr,s(t) will be referred to as a
seismic trace in the following.
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Figure 1.9: Sketch of a controlled source seismic acquisition with airgun sources in the
water (left), vibrating truck on ground (right).
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Figure 1.10: Typical seismic trace d(t) as a function of time.

1.3.2 Representation and analysis of seismic data

A typical example of a seismic trace is presented in Figure 1.10. The time axis is presented
vertically. The horizontal axis corresponds to the amplitude of the recorded signal (here a
pressure recorded by a hydrophone, we will give the detail to which seismic experiment it
corresponds in the sequel). We see different seismic arrivals with different amplitude. The
first arrival is prominent in terms of energy, but later arrivals can still be clearly identified.

Instead of analyzing the data trace by trace, it can be useful to look simultaneously
at several traces. The typical geophysicists’ representation is a juxtaposition of traces
depending on the receiver/source distance, also referred to as offset in the following. Such
a collection of 20 traces is presented in Figure 1.11

When the number of traces is even larger, such a representation of the seismic amplitude
becomes problematic. Instead of using a 2D plot for each trace, a black & white colorscale is
introduced to depict the amplitude. White corresponds to negative values, black to positive
values, while gray corresponds to 0. This yields the typical seismogram representation,
widely used in exploration geophysics, presented in Figure 1.12. Note that juxtaposing
traces depending on the offset makes it possible to visualize laterally coherent events which
can be further interpreted in terms of wave propagation.

The seismogram in Figure 1.12 is synthetic (as opposed to field data): it has been
computed on a computer. The model and acquisition which have served to this compu-
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Figure 1.11: 20 seismic traces dr(t) as a function of time.
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Figure 1.12: A typical seismogram in black and white representation. 161 traces spanning
16 km are used here.

tation are presented in Figure 1.13. A pressure (explosive) source is modeled at the top
left corner of the model. The subsurface model which is presented here corresponds to a
2D map of the pressure wave velocity. Blue values mean low velocity values (close to 1500
m.s−1, the pressure wave velocity in the water), red values mean large velocity values (as
large as 4500 m.s−1, the pressure wave velocity in rigid bodies such as salt bodies). The
receivers are located all along the surface on top of the model. They record the pressure



1.3. SEISMIC DATA 23

Figure 1.13: Pressure wavefield at t = 2.3 s (top), t = 4.6 s, (middle) and t = 6.9 s (bottom)
superimposed on the velocity model used to compute the synthetic data presented in Figure
1.12.

wavefield propagating along time. The pressure field has been computed here by solving
2D acoustic wave propagation equations (to be developed in Chapter 2).

Already at this stage it is interesting to correlate the complexity of the recorded signal
with the complexity/heterogeneity of the subsurface model. High contrasts between low
velocity and high velocity zones generate strong reflections. The boundary condition im-
plemented on top of the model is a free surface boundary condition which represents the
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subsurface/air interface. Waves reaching this boundary are reflected back to the medium.
Higher velocity values have also a visible impact on the wavelength of the propagated
signal, which becomes larger.
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1.4 A first glance at seismic inversion methods

Now that we have seen a first instance of seismic data, we introduce with more details
seismic inversion methods based on the interpretation of such data.

1.4.1 Tomography methods: exploiting only the first arrival time

The first method which has been developed in the frame of seismic imaging to exploit
seismic data and infer mechanical properties of the Earth is tomography. This methods
relies on the exploitation of the first arrival travel-times between sources and receivers.
The principle is relatively simple: pick the first-arrival travel-times on the seismograms
by detecting the “first break” (the moment where the sensor starts recording the wave
traveling the fastest). Manual or automatic picking can used. A rough example of what
would be picked on the previous seismogram is presented in Figure 1.14 where the red line
indicates picked travel-times.

Figure 1.14: Same seismogram as in Figure 1.12 with first-arrival travel time denoted by
the red line.

From these picked travel-times, an inverse tomography problem is solved. This in-
verse tomography problem follows the general formulation of inverse problems we have
introduced previously with

dobs = tobs(xs, xr), m = vP (1.41)

where tobs(xs, xr) denotes the picked travel time from source s to receiver r, and vP is the
pressure wave velocity.

The forward operator g(m) consists in this case in solving an eikonal equation: com-
putation of the first-arrival travel-times between sources and receivers. This can be done
through ray tracing techniques (see Červený, 2001, for a review) or Eulerian based ap-
proach. There is a wide mathematical and geophysical literature on this topic: solving
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eikonal equations is not a trivial problem, as it is a nonlinear PDE. Again, it will not be
developed in this course. The interested reader might be redirected to (Nolet, 2008) and
references therein for a first view.

In the following formulation, we will denote the solution of the eikonal equation by
tcal(xs, xr). In the notation of the general inverse problem we have introduced, we thus
have for the tomography problem

dobs = tobs(xs, xr), m = vP , g(vP ) = tcal(xs, xr) (1.42)

where tcal(xs, xr) is computed through the solution of an eikonal equation.
The corresponding least-squares first-arrival tomography problem can thus be written

as

min
vP

1

2
‖tcal − tobs‖2 + ηR(vP ), tcal = g(vP ). (1.43)

where R(vP ) is a regularization term, for instance

R(vP ) =
1

2
‖vP − vP,p‖2 (1.44)

where vP,p is a given prior P-wave velocity model.
In (1.43), the norm ‖.‖ means summation over sources and receivers, that is

‖tcal − tobs‖2 =
∑
s,r

|tcal(xs, xr)− tobs(xs, xr)|2 (1.45)

A typical tomography result obtained from 3D field data acquired in the Valhall field
(North Sea) is presented in Figure 1.15. Here the method employed is “reflection travel-
time” tomography, hence the picked times correspond to reflected waves instead of trans-
mitted waves as is the case with usual first-arrival travel-time tomography. Nonetheless
these results illustrate a striking feature of tomography methods: the resolution of the
subsurface mechanical parameters estimation is relatively poor. Only smooth variations
are recovered. Comparing with results presented in Figure 1.4 one can see that indeed the
resolution in the latter image is much higher. What can explain such a difference?

1.4.2 Full waveform inversion: exploiting all the data

Tomography is based on the exploitation of travel-times between sources and receivers
(eventually including reflectors). Looking at picture 1.14 makes clear that this operation
results in disregarding more than 99% of the data. Based on this observation, researchers
at the beginning of the 80s (Lailly, 1983; Tarantola, 1984) have proposed to try to exploit
not only the arrival time of selected phases (waves), but the full information, including all
the phases, and their relative amplitude. By doing so, much higher resolution estimates
can be obtained, as the one presented in Figure 1.4. This high resolution seismic imaging
method has been introduced as full waveform inversion (FWI).

The purpose of this course is to detail the mathematical foundation of this seismic
imaging technique, as well as to provide a physical understanding of the underlying con-
cepts on which it is based. The basic idea, compared with tomography, is to replace the
forward modeling operator g(m) by a full wave modeling solver, and to compare the re-
sulting synthetic data to the full observed data dobs(xs, xr, t). The FWI problem is thus
formulated as

min
m

1

2
‖dcal[m]− dobs‖2 + ηR(m), dcal[m] = g(m). (1.46)
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A full wave modeling solver will require to solve partial differential equations represent-
ing the wave propagation within the subsurface. The solution of the associated nonlinear
least-squares problem will require the usage of local optimization strategies and efficient
numerical methods to build the gradient. The implementation of the method on field data
will require a physical understanding of the imaging concepts underlaid by the method.
The purpose of this course is to give an overview of all these elements, as complete as
possible, and also to give perspectives on current scientific questions around FWI which
still stimulate active research.

The remainder of the course is decomposed in two main chapters. The first is de-
voted to full wave modeling: how to represent accurately the propagation of seismic waves
numerically? The second is devoted to full wave inversion: how to design efficient nu-
merical methods to solve the inverse problem? How to implement it in practice to obtain
meaningful results?
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Figure 1.15: Slices of the initial model (vertical wavespeed) built by reflection traveltime
tomography (courtesy of BP) (a-c) Horizontal slices at (a) 175m depth, (b) 500m depth,
(c) 1km depth across the gas cloud. (d-e) Inline vertical slices (d) passing through the
gas cloud (X = 5.6km) and (e) near its periphery (X = 6.25km). (f-g) Cross-line vertical
slices at (f) Y = 8.6km and (g) Y = 11km.



Chapter 2

Full waveform modeling

2.1 Elastodynamics equations

The mathematical model we choose to represent the propagation of seismic waves within
the subsurface is the elastodynamics model. In this approximation, the Earth is seen as an
elastic medium. Two main principles will be used to derive the elastodynamics equations.
First, the Newton law relating forces and acceleration of the medium. Second, the stress
strain relationship. The latter will be derived under the frame of small deformation, leading
to consider only the linear part of the relation between stress and strain, neglecting all
higher order effects. This leads to a linear system of partial differential equations which
we now introduce.

2.1.1 General elastodynamics equations

We consider a reference point x0 = (x0
1, x

0
2, x

0
3) ∈ R3. We consider that this point moves

at position x = (x1, x2, x3) ∈ R3 at time t ∈ R+. We define the displacement, velocity,
and acceleration vectors as 

u(x, t) = (x(t)− x0) ∈ R3

v(x, t) =
∂u

∂t
(x, t)

a(x, t) =
∂v

∂t
(x, t).

(2.1)

We consider a closed volume V around x. The total mass is conserved in this closed
volume, therefore we can apply the second Newton law which expresses the conservation
of momentum. ∫∫∫

V
ρ
∂2u

∂t2
dV =

∫∫∫
V

FdV +

∫∫
S

TdS. (2.2)

In (2.2), F represents the volumetric forces applied on V while T denotes the surface forces
applied on S, the surface of V .

Each component of T can be rewritten as

Ti =
∑
j

σijnj , (2.3)

where σij is the ij component of the stress tensor σ, and nj is the j component of the
vector normal to S.

29
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Here we use the divergence theorem to transform the surface integral into a volumetric
integral ∫∫

S

∑
j

σijnjdS =

∫∫∫
V

∑
j

∂σij
∂xj

dV. (2.4)

We thus obtain ∫∫∫
V
ρ
∂2ui
∂t2

dV =

∫∫∫
V

Fi +
∑
j

∂σij
∂xj

 dV, (2.5)

and hence

ρ
∂2ui
∂t2

= Fi +
∑
j

∂σij
∂xj

. (2.6)

Now we use the stress-strain relation. We introduce the 3 by 3 matrix ∇u such that

∇uij =
∂ui
∂xj

. (2.7)

The strain tensor is defined as

ε =
1

2

(
∇u+∇uT

)
+∇uT∇u, (2.8)

such that

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

3∑
k=1

∂uk
∂xi

∂uk
∂xj

. (2.9)

Here, the small displacement assumption states that the second order part of the strain
can be neglected, such that we finally use

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.10)

At this step, we use the Hooke’s law, which describes the rheology of the medium, and
relates the stress and strain tensors. The rheology can be elastic, plastic, visco-plastic,
etc. In general, a Taylor development of this law is written as

σij = σ0
ij + cijklεkl + dijklmnεklεmn +O(‖ε‖3). (2.11)

with Einstein convention used (summation over repeated indices, here kl and mn).
Here, the small strain assumption states that the second order part of the rheology

law can be neglected, such that we keep only the linear part and the fourth-order tensor
cijkl

σij = σ0
ij + cijklεkl. (2.12)

The stress and strain tensors are symmetric. The strain tensor is symmetric by definition.
The stress tensor is also symmetric, this can be demonstrated from equilibrium of the
moments.

The symmetry of the stress tensor

σij = σji, (2.13)

together with Hooke‘s law 2.12 implies that

cijkl = cjikl. (2.14)
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Similarly, the symmetry of the strain

εkl = εlk, (2.15)

also implies that
cijkl = cijlk. (2.16)

These are called the minor symmetries. Also, it can be shown that the stress-strain relation
can be derived from an energy functional

σij =
∂U

∂εij
. (2.17)

Therefore ∑
kl

cijklεkl =
∂U

∂εij
, (2.18)

then

cijkl =
∂2U

∂εij∂εkl
. (2.19)

The invariance regarding the order of derivation implies the major symmetry

cijkl = Cklij . (2.20)

The minor and major symmetries grouped together makes the number of independent
coefficients reduce from 81 to 21. These symmetries are exploited by the Voigt’s notations
to avoid manipulating 4th order tensors and recast the Hooke’s law as a matrix vector
product. The Voigt’s notations are expressed as the following correspondance between
indices:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6. (2.21)

This makes σ and ε expressible as 6 components vectors

σ = [σ11 σ22 σ33 σ23 σ13 σ12]T = [σ1 σ2 σ3 σ4 σ5 σ6]T , (2.22)

ε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]T = [ε1 ε2 ε3 ε4 ε5 ε6]T . (2.23)

The product of the 4th order stiffness matrix cijkl and the 2nd order stress tensor σij in
the Hooke’s law 2.12 can be rewritten as the matrix-vector product

σ = Cε (2.24)

with

C =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

 , (2.25)

and the same rule for the coefficients of C

C11 = c1111, C12 = c1122, C13 = c1133, C14 = c1123, C15 = c1113, C16 = c1112, . . . (2.26)

For instance

σ23 =
∑
kl

c23klεkl = c2311ε11 + c2322ε22 + c2333ε33 + 2 (c2312ε12 + c2313ε13 + c2323ε23) (2.27)
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yields
σ23 = c41ε1 + c42ε2 + c43ε3 + 2 (c46ε6 + c45ε5 + c44ε4) (2.28)

We introduce the matrix operator D as

D =

∂x1 0 0 0 ∂x3 ∂x2

0 ∂x2 0 ∂x3 0 ∂x1

0 0 ∂x3 ∂x2 ∂x1 0

 . (2.29)

We have
ε = DTu, (2.30)

and also

ρ
∂2u

∂t2
= Dσ + F. (2.31)

Gathering equations we obtain

ρ
∂2u

∂t2
= Dσ + F

σ = σ0 + CDTu.
(2.32)

Finally, instead of working with displacement stress equations, we use the velocity
stress formulation, which yields the first-order hyperbolic system

ρ
∂v

∂t
= Dσ + F

∂σ

∂t
= CDT v +

∂σ0

∂t
.

(2.33)

2.1.2 Isotropic and anisotropic media

The rheology of the medium is described by the stiffness tensor cijkl. The generic form
of the stiffness tensor with 21 coefficients corresponds to the most generic “anisotropic”
rheology. It corresponds to the most complex elastic media. In practice, “simpler” media
can be described with less coefficients.

The most simple media are isotropic media. In this case, the number of independent
coefficient required to describe the elastic medium reduces to 2. These can be chosen in
various way. A common choice is to use the Lamé parameters, labeled λ and µ. In terms
of physics, an isotropic medium is such that the velocity of waves does not depend on the
direction of propagation. The stiffness tensor reduces in this case to the following

C =



λ+ 2µ λ λ 0 0 0
λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0
µ 0 0

µ 0
µ

 (2.34)

A further level of complexity is introduced when considered transverse isotropy (TI). In this
context, there is one direction in space in which the waves propagate at higher speed. If this
direction is aligned with the vertical axis, we will speak of a Vertically Transverse Isotropic
medium (VTI). If it is aligned with the horizontal axis, we will speak of a Horizontally
Transverse Isotropic medium (HTI). If it is not aligned with any of the axis, it will be
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referred to as a Tilted Transverse Isotropic medium (TTI). For VTI and HTI medium,
5 independent coefficients are required. Additional coefficients are then required for the
rotation in TTI media. More complex level of anisotropies involve orthorombic media (9
independent coefficients) and monoclinic media (13 independent coefficients).

In general anisotropy means that the wave velocities depends on the wave propagation
direction. The origin of anisotropy can be intrinsic to the medium: the mineral composi-
tion for instance makes naturally emerge preferred orientations. It can be extrinsic: thin
layering for instance. Piling up thin horizontal layers, with layers thickness much smaller
than the propagated wavelength, result in a medium which is “seen” as VTI by the waves
propagating inside it. The theory of homogeneization tells us that for any finite-frequency
propagation in an elastic medium, the “effective” medium seen by the waves propagating
inside it is actually anisotropic. The Earth is such that there is a continuous wavenum-
ber spectrum in terms of heterogeneities. Independently of the frequency band which
is propagated inside it, there will alway be heterogeneities smaller than the propagated
wavelenghts. These heterogeneities will be seen in practice as an anisotropy.

2.1.3 P-waves, S-waves

Two type of waves propagate within an elastic medium. The first at velocity VP , and
correspond to pressure waves (P-waves, Fig.2.1). The second travel at velocity VS , and
correspond to shear waves (S-waves Fig.2.2). P-waves are the only ones present in fluids,
and result from a compressional effect. They vibrate in the plane of propagation of the
waves. S-waves are present in solids only. They results from a shear effect. They vibrate
in a direction orthogonal to the plane of propagation of these waves.

In isotropic media, the P-wave and S-wave velocities can be expressed depending on
the Lamé parameters as

±

√
λ+ 2µ

ρ
= ±VP , and, ±

√
µ

ρ
= ±VS . (2.35)

Figure 2.1: P-wave propagating in a solid medium.

z

x

Figure 2.2: S-wave propagating in a solid medium.

Poisson’s ratio is defined, depending on the Lamé parameters, as

ν =
λ

2(λ+ µ)
(2.36)
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Figure 2.3: Scheme for the propagation of Rayleigh waves (top) and Love waves (bottom)
.

In fluids, µ = 0, and we have ν = 0.5. In solids, ν ≤ 0.5. One can show that this also
implies that

VS <
VP√

2
(2.37)

The S-waves thus propagate always slower than P-waves. P-waves and S-wave thus also
refer to Primary and Secondary waves.

2.1.4 Free surface condition and surface waves

In elastic media, interaction with the free surface condition also gives birth to surface
waves, namely Rayleigh and Love waves. The free surface is a particular interface: on one
side we have a solid with velocities vP , vS and a density ρ. On the other side we have air
with vP,air < vP , vS,air = 0 and ρair << ρ. In practice, due to this strong contrast, air is
generally considered as void.

The Rayleigh waves result from interferences between P and S waves. The velocity of
Rayleigh waves VR is smaller than S-waves

VR < VS < VP (2.38)

We have actually

v6
R − 8v2

Sv
4
R + (24− 16v2

S/v
2
P )v4

Sv
2
R + 16(v2

S/v
2
P − 1)v6

S = 0 (2.39)

where vR is the Rayleigh wave velocity. For perfect solid media, ν ≈ 0.25 giving vR =
0.919vS .

Lord Rayleigh first studied these waves in 1885. If we analyze the particle motion, we
see that at the surface ux and uz are phase shifted by π. There is an elliptic retrograde
motion at the surface and a linear motion below a certain depth h. Below, we have
an elliptic prograde motion. The depth sensitivity of these waves (penetration depth) is
frequency dependent. This makes these surface waves dispersive in heterogeneous media:
the wave velocity vR depends on the frequency.

Love waves result from interferences between incident, reflected and refracted SH in an
heterogeneous zone close to the surface. These waves do not exist in homogeneous media.
We have

VS,1 < VL < VS,2 (2.40)

VS,1 and VS,2 being the S-wave velocities of the two layers close from the surface, and VL
being the velocity of Love waves. As the Rayleigh waves, Love waves are dispersive: their
velocity depend on the frequency.
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Compared with P-wave and S-waves, which are volumetric waves, surface waves (Rayleigh
and Love waves) only propagate along the surface. They can have catastrophic effects when
earthquakes occurs: these are the most destructive waves as they shake the surface. They
have a very low penetration depth: the energy remains concentrated along the surface. In
terms of imaging and seismic recordings, they dominate volumetric waves in terms of am-
plitudes. For specific targets (in particular at exploration scale) they can be detrimental
to imaging as they hide the signal associated with volumetric waves and carry information
only on the near surface. In this case they are considered as noise (ground roll) and specific
surface waves removal algorithm are employed to remove their imprint from the data.

The free surface condition is imposed at the interface between the subsurface and the
air. On this surface, the tractions perpendicular to it are zero (Igel, 2017). The traction
vector T acting along a direction represented by a normalized three-dimensional vector n,
given a particular stress tensor σ is obtained as

T = σn, (2.41)

which is, component wise

Ti =
3∑
j=1

σijnj (2.42)

The free surface condition is thus

3∑
j=1

σijnj = 0, i = 1, . . . , 3 (2.43)

where n denotes the vector normal to the surface. Assuming the topography is flat, and
the normal pointing upward, we have

n = [0 0 1]T (2.44)

and thus

σ13 = 0, σ23 = 0, σ33 = 0. (2.45)

We see that the free surface also follows the definition of a surface which is subject to zero
parallel shear stress.

In the acoustic approximation, this free surface boundary condition simply boils down
to

P = 0. (2.46)

We thus have in this case a homogeneous Dirichlet boundary condition for the pressure.

For global scale modeling (modeling of seismic waves in the whole Earth), the boundary
conditions consist in a free surface condition on the whole surface of the globe. This
situation is however unique. As soon as smaller scale modeling and inversion is considered
(regional, crustal, exploration, near surface) mimicking the effect of a medium with infinite
extension in depth and on the sides is crucial. This requires the use of dedicated boundary
conditions, namely “absorbing boundary conditions”. Otherwise, artificial (or spurious)
reflections will be observed on the edge of the modeling box which is used to represent
the medium. We briefly review in the next two sections two (possibly complementary)
strategies that can be used to mimic media of infinite extension.
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2.1.5 Attenuation: from elastic to visco-elastic media

Another important element which needs to be considered for full waveform modeling in
the subsurface is the attenuation. The subsurface is not a perfect elastic medium. Energy
dissipation occurs, due to non-reversible phenomenon associated with wave propagation:
thermal dissipation or small scales fractures for instance.

In practice, this energy dissipation can be approximated through the introduction of
Standard Linear Solid mechanisms (SLS). In terms of mathematics, this amounts to the
introduction of ordinary differential equations in the elastodynamics system of PDEs. This
aspect will not be developed further in this course however.

2.1.6 Acoustic approximation

Let us first rewrite the isotropic elastodynamics system in velocity-stress formulation



∂vx
∂t

=
1

ρ

(
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

)
+ fx

∂vy
∂t

=
1

ρ

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

)
+ fy

∂vz
∂t

=
1

ρ

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
+ fz

∂σxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σxx0
∂t

∂σyy
∂t

= λ
∂vx
∂x

+ (λ+ 2µ)
∂vy
∂y

+ λ
∂vz
∂z

+
∂σyy0
∂t

∂σzz
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ (λ+ 2µ)
∂vz
∂z

+
∂σzz0
∂t

∂σxy
∂t

= µ

(
∂vx
∂y

+
∂vy
∂x

)
+
∂σxy0
∂t

∂σyz
∂t

= µ

(
∂vy
∂z

+
∂vz
∂y

)
+
∂σyz0
∂t

∂σxz
∂t

= µ

(
∂vx
∂z

+
∂vz
∂x

)
+
∂σxz0
∂t

(2.47)

If we neglect all shear effects, the elastodynamics system of equations boils down to the
acoustic system. Setting µ = 0 in the previous system yields automatically

σyz = 0, σxz = 0, σxy = 0. (2.48)
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This yields 

∂vx
∂t

=
1

ρ

∂σxx
∂x

+ fx

∂vy
∂t

=
1

ρ

∂σyy
∂y

+ fy

∂vz
∂t

=
1

ρ

∂σzz
∂z

+ fz

∂σxx
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σxx0
∂t

∂σyy
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σyy0
∂t

∂σzz
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σzz0
∂t

(2.49)

We introduce P as P = σxx = σyy = σzz and obtain

∂vx
∂t

=
1

ρ

∂σxx
∂x

+ fx

∂vy
∂t

=
1

ρ

∂σyy
∂y

+ fy

∂vz
∂t

=
1

ρ

∂σzz
∂z

+ fz

∂P

∂t
= λ

∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σP0

∂t

(2.50)

We can also rewrite λ in terms of VP in the acoustic case as

λ = ρV 2
P (2.51)

and we obtain the compact form of the acoustic equations
∂v

∂t
− 1

ρ
∇P = f

∂P

∂t
− ρV 2

P div(v) =
∂σP0

∂t

(2.52)

These equations only model the propagation of P-waves. For applications at the explo-
ration scale, this model is often used to invert for offshore data, that is data acquired with
airgun sources and hydrophones receivers located at few meters depth in the water. In
this case, the imprint in the data of elastic propagation effects is relatively weak. S-waves
propagating within the subsurface are only due to converted P-waves arriving from the
water layer. Recorded S-waves thus are related to P-to S converted waves then S-to-P con-
verted waves to reach the hydrophones. This makes their amplitude relatively negligible
in front of P-wave energy.

On the contrary, for global or regional scale imaging, or inversion of onshore data,
modeling accurately elastic effects is crucial. In this case, the acoustic approximation is
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not used in practice, and modeling engine rely on the solution of the general elastodynamics
equations.

2.1.7 Considerations on first-order hyperbolic systems

We first introduce the following definition.

Definition 1. A first-order hyperbolic system is a system of partial differential equations
which can be put under the form

∂w

∂t
+

d∑
j=1

Aj(x)
∂w

∂xj
+A0(x)w = f (2.53)

where w(x, t) ∈ Rp, p ∈ N, (x, t) ∈ Rd × R+, Aj(x) ∈ Mp(R), j = 0, . . . , d. Here Mp(R)
denotes the ensemble of square real matrices of size p.

The general system of elastodynamics equations can be put under the form of a general
first-order hyperbolic system with

w(x, t) = [v(x, t) σ(x, t)]T ∈ R9,

3∑
j=1

Aj(x)
∂w

∂xj
=

(
0 1

ρD

CDT 0

)
w,

A0(x) = 0.

(2.54)

We can transform this hyperbolic system in a simpler form to study its properties. We
have

∂w

∂t
−
(

0 1
ρD

CDT 0

)
w =

(
1
ρF
∂σ0

∂t

)
(2.55)

By definition of the stiffness tensor, we know that C is symmetric positive definite. We
introduce the compliance matrix S(x) = C(x)−1. We then have(

ρI3 0
0 S

)
∂w

∂t
−
(

0 D
DT 0

)
w =

(
F

S ∂σ
0

∂t

)
(2.56)

which can be rewritten as

S̃
∂w

∂t
−

3∑
j=1

Xj
∂w

∂xj
= F̃ , (2.57)

where

S̃ =

(
ρI3 0
0 S

)
, Xj =

(
0 Dj

DT
j 0

)
, F̃ =

(
F

S ∂σ
0

∂t

)
(2.58)

and

D1 =

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , D2 =

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 , D3 =

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 .

(2.59)
The system is interesting as we can prove easily an energy estimate. More precisely,

we can prove that the norm of the solution at a time t only depends on the norm of the
solution at time 0 if we consider a Cauchy problem with homogeneous Dirichlet boundary
conditions
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Theorem 1. Consider the following Cauchy problem on Ω × [0, T ] with Ω ⊂ R3 and
T ∈ R∗+: 

S̃
∂w

∂t
−

3∑
j=1

Xj
∂w

∂xj
= 0, (x, t) ∈ Ω× [0, T ],

∀x ∈ Ω, w(x, 0) = w0(x),

∀x ∈ ∂Ω, ∀t ∈ [0, T ], w(x, t) = 0.

(2.60)

The L2 norm at time t of the solution w of this Cauchy problem, we denote as ‖w(., t)‖,
is controlled by ‖w0‖:

∃K ∈ R∗+, ‖w(., t)‖ ≤ K‖w0‖ (2.61)

Proof. We recall the definition of the L2 norm here. For two functions defined on L2(Ω),
u(x) and v(x), the L2 scalar product is defined by

(u, v) =

∫
Ω
u(x)v(x)dx, (2.62)

and the L2 norm is the norm induced by this scalar product

‖u‖2 = (u, u). (2.63)

We thus have

‖w(., t)‖2L2 =

∫
Ω
w2(x, t)dx. (2.64)

We first note that the matrix S̃(x) is symmetric positive definite by construction, as
the compliance matrix S(x) is symmetric positive definite.

Therefore, S̃(x) induces a scalar product and a norm on L2(Ω) which we will denote
as (., .)

S̃
and ‖.‖

S̃
respectively

(u, v)
S̃

= (S̃u, v), ‖u‖
S̃

= (u, u)
S̃

= (S̃u, u). (2.65)

Then we consider the quantity ‖w(., t)‖2
S̃

. We are interested in evaluating its variation
with respect to time. We have

d

dt
‖w(., t)‖2

S̃
=

d

dt
(w,w)

S̃
=

(
∂w

∂t
, w

)
S̃

+

(
w,
∂w

∂t

)
S̃

=

(
S̃
∂w

∂t
, w

)
+

(
S̃w,

∂w

∂t

)
. (2.66)

We replace S̃ ∂w∂t in the first term only, using the hyperbolic system. We obtain

d

dt
‖w(., t)‖2

S̃
=

 3∑
j=1

Xj
∂w

∂xj
, w

+

(
S̃w,

∂w

∂t

)
. (2.67)

The linearity of the scalar product makes possible to rewrite this equation as

d

dt
‖w(., t)‖2

S̃
=

3∑
j=1

(
Xj

∂w

∂xj
, w

)
+

(
S̃w,

∂w

∂t

)
. (2.68)

Using the symmetry of the matrices Xj we have

d

dt
‖w(., t)‖2

S̃
=

3∑
j=1

(
∂w

∂xj
, Xjw

)
+

(
S̃w,

∂w

∂t

)
. (2.69)
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Using integration by parts now, and the fact that we assume homogeneous Dirichlet
boundary condition, we have

d

dt
‖w(., t)‖2

S̃
= −

3∑
j=1

(
w,
∂Xjw

∂xj

)
+

(
S̃w,

∂w

∂t

)
. (2.70)

We now use the fact that the matrices Xj do not depend on space (their coefficients
are constant). Therefore we have

d

dt
‖w(., t)‖2

S̃
= −

3∑
j=1

(
w,Xj

∂w

∂xj

)
+

(
S̃w,

∂w

∂t

)
. (2.71)

Using now the symmetry of S̃ and the linearity of the scalar product we obtain

d

dt
‖w(., t)‖2

S̃
=

w, S̃ ∂w
∂t
−

3∑
j=1

Xj
∂w

∂xj

 . (2.72)

As w is the solution of the Cauchy problem (2.60), we have

d

dt
‖w(., t)‖2

S̃
= 0. (2.73)

Therefore, we have conservation of the S norm of the solution along time, which means
that

∀t ∈ [0, T ], ‖w(., t)‖2
S̃

= ‖w(., 0)‖2
S̃

= ‖w0‖2S̃ . (2.74)

To end the proof, we use the following theorem on the equivalence of norm on L2(Ω).
There exists (K1,K2) ∈ R∗+ × R∗+ such that

∀u ∈ L2(Ω), K1‖u‖ ≤ ‖u‖S̃ ≤ K2‖u‖. (2.75)

Therefore we have

‖w(., t)‖2 ≤ 1

K1
‖w(., t)‖2

S̃
=

1

K1
‖w0‖2S̃ ≤

K2

K1
‖w0‖2, (2.76)

which proves the theorem with

K =

√
K2

K1
. (2.77)

2.2 Absorbing boundary conditions

2.2.1 Simple 1D acoustic example

The first category of methods to address the boundary conditions problem is the design
of absorbing boundary conditions. The philosophy here is to prescribe specific boundary
conditions on the edges of the computation domain so as to minimize the energy of reflected
waves.
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Let us introduce this concept in the simple frame of 1D acoustic wave equation. With
these assumptions, (2.52) rewrites

∂v

∂t
− 1

ρ

∂P

∂x
= f

∂P

∂t
− ρc2 ∂v

∂x
=
∂σP0

∂t

(2.78)

We can rewrite (2.78) as a second-order in time partial differential equation on the pressure
field only. We first derive the second equation in time and replace ∂v

∂t inside it using the
first equation. This yields

∂2P

∂t2
− ρc2 ∂

∂x

(
1

ρ

∂P

∂x

)
= s, (2.79)

with

s =
∂f

∂t
, (2.80)

to ease the notations.
We will further assume the density is constant to make things even simpler. In this

case the 1D acoustic equation boils down to the simple 1D scalar wave equation

∂2P

∂t2
− c2∂

2P

∂x2
= s, (2.81)

Interestingly, (2.81) can be factorized as(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
P = s. (2.82)

Assuming the source is localized in space, we have, away from the source(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
P = 0, (2.83)

which implies that the general solution of (2.81) is the superposition of

• 1 wave traveling in the direction x > 0, at speed c, solution of(
∂

∂t
− c ∂

∂x

)
P = 0. (2.84)

• 1 wave traveling in the direction x < 0, at speed c, solution of(
∂

∂t
+ c

∂

∂x

)
P = 0. (2.85)

To define proper absorbing boundary conditions, it is thus sufficient to impose on each
edge that the component traveling inward should be equal to 0. In this case, if we denote
the 1D medium by the segment [−L L] ⊂ R, we would impose

∂P

∂t
(L, t) + c

∂P

∂x
(L, t) = 0,

∂P

∂t
(−L, t)− c∂P

∂x
(−L, t) = 0,

(2.86)
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In practice, these conditions can still be imposed in multi-dimensional context. If we
consider for instance the acoustic system (2.52), we can impose this type of absorbing
boundary conditions on each side of the volume where we would like to mimic a transparent
wall. In this context however, this type of boundary conditions will be exact only for waves
arriving at normal incidence with velocity c. For waves arriving at grazing incidence, the
reflection coefficient will not be negligible, resulting in spurious reflections.

2.2.2 Generalization to elastodynamics

How does this generalize to more complex elastodynamics equations? To answer this
question it is enough to go back to the general hyperbolic form of the elastodynamics
equations (2.53). The first step is to symmetrize the system. We introduce the following
definition

Definition 2. A hyperbolic system is symmetrizable if and only if there exists a symmetric
positive definite matrix S(x) such that

(S(x)Aj(x))T = S(x)Aj(x), j = 1, . . . , d (2.87)

We can first prove that S̃ that we have introduced previously is a symmetrizer for our
system of elastodynamics equations. Indeed we have demonstrated that we could write it
as

S̃
∂w

∂t
−

3∑
j=1

Xj
∂w

∂xj
= F̃ , (2.88)

which is equivalent to

∂w

∂t
−

3∑
j=1

S̃−1Xj
∂w

∂xj
= F̃ . (2.89)

The latter expression is the general form with

Aj = S̃−1Xj (2.90)

As Xj are symmetric matrices, S̃ is a symmetrizer for our elastodynamics system.
Now consider a generic symmetrizer S, with square root B such that S = BTB for a

general hyperbolic system of the form

∂u

∂t
+

d∑
j=1

Aj(x)
∂u

∂xj
+A0u = f. (2.91)

To symmetrize the general first-order hyperbolic system, we first multiply by B to obtain

∂ (Bu)

∂t
+

d∑
j=1

BAj(x)
∂u

∂xj
+BA0u = Bf (2.92)

Next we rely on the identity

BAj(x)B−1∂ (Bu)

∂xj
= BAj(x)B−1B

∂u

∂xj
+BAj(x)B−1 ∂B

∂xj
u (2.93)

that is

BAj(x)B−1∂ (Bu)

∂xj
= BAj(x)

∂u

∂xj
+BAj(x)B−1 ∂B

∂xj
u (2.94)
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Therefore

BAj(x)
∂u

∂xj
= BAj(x)B−1∂ (Bu)

∂xj
−BAj(x)B−1 ∂B

∂xj
u (2.95)

and finally

BAj(x)
∂u

∂xj
= BAj(x)B−1∂ (Bu)

∂xj
−BAj(x)B−1 ∂B

∂xj
B−1Bu (2.96)

In the same spirit we have

BA0u = BA0B
−1Bu (2.97)

and we can rewrite the system as

∂ (Bu)

∂t
+

d∑
j=1

BAj(x)B−1∂ (Bu)

∂xj
−

d∑
j=1

BAj(x)
∂B

∂xj
B−1Bu+BA0B

−1Bu = Bf (2.98)

Introducing v = Bu this yields

∂v

∂t
+

d∑
j=1

BAj(x)B−1 ∂v

∂xj
−

d∑
j=1

BAj(x)B−1 ∂B

∂xj
B−1v +BA0B

−1v = Bf (2.99)

which is in standard first order hyperbolic system form with

u ←→ v
Aj ←→ BAjB

−1

A0 ←→ BA0B
−1 −

d∑
j=1

BAj(x)B−1 ∂B

∂xj
B−1

f ←→ Bf

(2.100)

The point is that the matrices BAjB
−1 are indeed symmetric.

Proof.

∃C > 0, SAj = CTC. (2.101)

Therefore

Aj = B−1B−TCTC, (2.102)

and

BAjB
−1 = B−TCTCB−1 =

(
CB−1

)T
CB−1. (2.103)

To capture the different components of the solution traveling at different speeds on a
symmetrized hyperbolic system, it is then sufficient

• to compute the eigenvalues αj,k of the matrices Aj : this gives the velocities of the
different phases traveling in the medium

• to compute the eigenvectors associated with these eigenvalues: the projection of the
solution on the eigenspace Ker(I − αj,kAj) gives the quantity traveling at speed αk
in the direction j.
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On a specific border, we apply the same method as previously: the absorbing boundary
conditions consists in canceling the components traveling inward.

We can check this gives consistent results for the previous 1D acoustic system. In this
case we have

u = [v P ]T , A = −
(

0 1
c2 0

)
, A0 = 0 (2.104)

A symmetrizer for A is

S =

(
c2 0
0 1

)
, (2.105)

A square root B of the symmetrizer is thus

B =

(
c 0
0 1

)
, B−1 =

(
1
c 0
0 1

)
. (2.106)

Symmetrizing the 1D velocity-stress acoustic system thus yields

∂Bu

∂t
+BAB−1∂Bu

∂x
−BAB−1∂B

∂x
B−1Bu = 0 (2.107)

We have

Bu =

(
cv
p

)
, BAB−1 = −

(
0 c
c 0

)
, BAB−1∂B

∂x
B−1 = −

(
0 0
∂c
∂x 0

)
, (2.108)

Expanding the system, we have
∂ (cv)

∂t
− c∂P

∂x
= 0

∂P

∂t
− c∂(cv)

∂x
+
∂c

∂x
(cv) = 0

(2.109)

This is equivalent to 
∂v

∂t
− ∂P

∂x
= 0

∂P

∂t
− c2 ∂v

∂x
− c ∂c

∂x
v + c

∂c

∂x
v = 0

(2.110)

Therefore this is equivalent to 
∂v

∂t
− ∂P

∂x
= 0

∂P

∂t
− c2 ∂v

∂x
= 0

(2.111)

We recover the previously analyzed first-order constant density 1D acoustic velocity-stress
system (2.78) ! (safety check).

Let us now analyze the eigenvalues of the symmetrized system. The eigenvalues of BAB−1

are α1 = −c and α2 = c. The corresponding eigenvectors are

e1 = [1 − 1]T , e2 = [1 1]T (2.112)
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The projectors on the corresponding eigenspaces are

Pi = eie
T
i , (2.113)

which gives

P1 =

(
1 −1
−1 1

)
, P2 =

(
1 1
1 1

)
(2.114)

The projection of the solution u on Ker(I − α1A) is given by

P1(Bu) =

(
cv − p
−cv + p

)
(2.115)

The condition on the left boundary is thus

cv(−L, t)− P (−L, t) = 0 (2.116)

Deriving this condition in time gives

c
∂v

∂t
(−L, t)− ∂P

∂t
(−L, t) = 0 (2.117)

Replacing ∂v
∂t (−L, t) with equation (2.78) gives

c
∂P

∂x
(−L, t)− ∂P

∂t
(−L, t) = 0 (2.118)

which is consistent with the previously derived absorbing boundary condition for the 1D
acoustic system (2.86).

If we look at the condition on the right boundary we have

cv(L, t) + P (L, t) = 0 (2.119)

Similarly

c
∂v

∂t
(L, t) +

∂P

∂t
(L, t) = 0 (2.120)

and replacing ∂v
∂t (−L, t) with equation (2.78) gives

c
∂P

∂x
(L, t) +

∂P

∂t
(L, t) = 0 (2.121)

which is also consistent with the previously derived absorbing boundary condition for the
1D acoustic system (2.86).

2.2.3 Higher order absorbing boundary conditions

The absorbing boundary conditions we have presented so far are first-order absorbing
boundary conditions (based on first order derivatives). The efficiency of such approach is
known to be relatively limited. For waves arriving at normal incidence on the interfaces,
the reflection coefficient is close to 0 (up to discretization error). However, as soon as the
incidence angle vary from the normal, the reflection coefficient becomes not negligible, the
worst case being waves arriving at grazing angles.

To improve the efficiency of absorbing boundary conditions, a considerable research
work, mainly in the applied math community, has been devoted to the design of higher
order absorbing boundary conditions (Collino, 1993). After years of investigation, it turns
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out that improved accuracy can be obtained, however to the cost of potentially cumbersome
implementation, and with specificities associated with the wave propagation problems
of interest (while we have seen that first-order absorbing boundary conditions can be
generalized easily to any symmetrizable hyperbolic systems). The main issue is that the use
of high order derivatives operator loses the locality property of the boundary conditions.
Non local operators yields difficulties in terms of implementation.

In practice, another class of strategies, named absorbing layers, has emerged. We
present it in the next section.

2.2.4 Absorbing layers

Sponge layers

The leading concept behind absorbing layers is rather simple. Instead of specifying bound-
ary conditions, a layer is added around the domain of interest in which an artificial damp-
ing coefficient is introduced. In terms of mathematics, it amounts to introduce a diagonal
zero-order term in the original hyperbolic system (2.53)

∂u

∂t
+

d∑
j=1

Aj(x)
∂u

∂xj
+A0(x)u+ σ(x)u = f (2.122)

The function σ(x) is referred to as a damping function. This function should be 0 in
the domain of interest, and growth smoothly in the layer. Basics formula are based on
polynomial, cosine, or exponential functions.

This relatively basic strategy is known as sponge layer technique. It has been intro-
duced by Cerjan et al. (1985) using a practitioner approach. In practice it is uncondition-
ally stable however it generates also non negligible artificial reflections at the boundaries,
where the damping function σ(x) transition from 0 to non-zero positive values.

Perfectly Matched Layers

A more elaborate layer method, named as perfectly matched layer (PML) has been intro-
duced by Bérenger (1994) for electromagnetic (Maxwell’s equation). Contrary to sponge
layers, PML have the property to yield null reflection coefficient at the interface between
the domain of the interest and the absorbing layer. This technique relies on the definition
of a split PDE system in the layer, coupled with the original PDE system in the domain of
interest. The description of this method is beyond the scope of this course, however inter-
ested reader might refer to Collino and Tsogka (2001) for an introduction of this method
in the frame of elastodynamics equations.

One difficulty with PML is their potential instability as soon as anisotropic media are
considered. They are also originally designed for first-order hyperbolic systems, which are
not the one numerical methods solve in practice (see next Section 2.3). The definition of
PML equations for second-order in time systems is more involved in terms of implemen-
tation. For these two reasons, in practice, for elastodynamics equations, a combination
of sponge layers and first-order absorbing conditions is used. The first-order absorbing
boundary condition is defined at the external border of the sponge layers. This combina-
tion makes possible to efficiently damp outgoing waves using moderately thick layers. The
accuracy is controlled by the thickness layer.
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2.3 Numerical implementation

2.3.1 Generalities

The elastodynamics equations which have been introduced and analyzed so far do not
exhibit analytical solutions unless in very specific cases, namely in homogeneous media. As
soon as the property of the medium, namely the density and the stiffness tensor coefficients,
depend on space, no simple analytical solution can be found.

Solving these equations thus need to rely on numerical approximations. Four main
families of numerical methods for solving partial differential equations might be identified

• the finite difference method;

• the spectral or pseudo-spectral method;

• the finite element method;

• the finite volume method.

Finite difference is the simplest numerical strategy among this four. It relies on the
computation of the solution on the nodes of a predefined Cartesian grid. The partial
differential operators are approximated on this grid, using formulas based on Taylor’s
development of the solution (therefore assuming sufficient regularity of the solution, at
least up to the order of the method which is used).

The pseudo-spectral method relies on a Fourier expansion of the solution to compute
its spatial derivatives, while the discretization in the time domain remains similar as
for finite difference method. This makes possible to compute the spatial derivatives up
to machine precision, however it requires intensive use of Fourier and inverse Fourier
transform (which can be done through fast Fourier transform algorithms). The pseudo-
spectral is not really used nowadays because the spatial derivative operator approximations
are done globally and would require communication between all the points of the grid
in a parallel environment. This non-locality makes it not possible to be used on parallel
computing platforms, which is the state-of-the-art for nowadays realistic scale applications.

The finite element method relies on the decomposition of the solution on a certain basis
of polynomial of arbitrary orders, and the design of a mesh on which are attached this
polynomial. Depending on the type of mesh and the type of basis which are used, different
flavors of finite element strategy can be derived. Finite element methods are very powerful,
however less easy to implement than finite-difference methods. One key advantage is the
ability to adapt the mesh to specific interfaces (free surface, internal discontinuities) which
is not possible using a conventional finite difference method on a Cartesian mesh.

The finite volume method is designed for the solution of partial differential equations
for which the solution is known to exhibit discontinuities. Excepted specific cases for wave
propagation in the subsurface, this situation is not met and finite volume methods are not
used in this frame.

For more details, a good overview of numerical methods developed for solving the
elastodynamics equations can be found in the book of Igel (2017).

In this Section we will illustrate how the finite-difference method can be used efficiently
to solve acoustic equations. This method is very powerful for marine environment with
flat topography where the free surface can be imposed very easily.
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We will then introduce how a specific finite element methods, namely the spectral
element method (not to be confused with pseudo-spectral methods), can be used to ap-
proximate the solution of general elastodynamics equations. In this case, the ability of this
finite element method to account for varying topography, in conjunction with a specific
choice of polynomial basis to represent the solution, makes it particularly powerful to solve
elastodynamics equations. This latter method is now the state of the art in seismology to
solve elastodynamics equations.

2.3.2 Finite-differences

Constant density acoustic equations

For the sake of simplicity we will consider here only the constant-density acoustic equations
we have already introduced (2.81) in 1D. In 3D, we obtain

∂2P

∂t2
− c2∆P = s (2.123)

where ∆ is the Laplacian operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.124)

and s is a generic pressure source term.
The domain of interest will be

Ω ⊂ R3. (2.125)

We will assume zero initial conditions

P (x, y, z, 0) = 0,
∂P

∂t
(x, y, z, 0) = 0, (2.126)

and homogeneous Dirichlet boundary conditions

∀(x, y, z) ∈ ∂Ω, P (x, y, z, t) = 0, (2.127)

where ∂Ω denotes the boundary of Ω.

Second-order finite difference of second-order derivatives

We first recall the Taylor development formula for a given C∞ function f(x). We have

f(x+ h) = f(x) + hf ′(x) + h2 f
′′(x)

2!
+ · · ·+ hn

f (n)(x)

n!
+ o
h→0

(hn)

f(x− h) = f(x)− hf ′(x) + h2 f
′′(x)

2!
+ · · ·+ (−h)n

f (n)(x)

n!
+ o
h→0

(hn).

(2.128)

By summation of these two developments we get

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +
h4

12
f (4)(x) + o

h→0
(h4). (2.129)

Therefore

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
=
h2

12
f (4)(x) + o

h→0
(h2), (2.130)

which is a second-order approximation of f ′′(x). This is the formula we will use to ap-
proximate the solution of the acoustic equation through finite-differences.
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Cartesian grid

We consider a simple 3D grid where the spatial discretization steps are such that

∆x = ∆y = ∆z = h ∈ R∗+. (2.131)

We solve the acoustic equations on a 3D volume we denote as

Ω = [0 Lx]× [0 Ly]× [0 Lz] ⊂ R3, (2.132)

where

(Lx, Ly, Lz) ∈
(
R∗+
)3
. (2.133)

The time discretization is performed with a step

∆t ∈ R∗+, (2.134)

and the time interval is

[0 T ] ⊂ R, (2.135)

with the total time duration of the modeling being

T ∈ R∗+. (2.136)

The spatial discrete grid is Ωh such that

Ωh =
{
xi, yj , zk, (i, j, k) ∈ N3

}
, (2.137)

where

xi = ih, yj = jh, zk = kh. (2.138)

The time discretization is performed at time tn such that

tn = (n− 1)∆t. (2.139)

Finite difference scheme

We introduce the conventional notations for the value of the pressure on the nodes of the
finite difference grid

Pnijk = P (xi, yj , zk, t
n) (2.140)

We can approximate the Laplacian operator ∆ using the second-order finite difference
formula (2.130). With the previously introduced notations, this gives

∆P (xi, yi, zi, t
n) '

Pni+1jk − 2Pnijk + Pni−1jk

h2
+
Pnij+1k − 2Pnijk + Pnij−1k

h2
+
Pnijk+1 − 2Pnijk + Pnijk−1

h2

(2.141)

Similarly, the second-order time derivatives is approximated as

∂2P

∂t2
(xi, yj , zk, t

n) '
Pn+1
ijk − 2Pnijk + Pn−1

ijk

∆t2
(2.142)
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This yields the finite difference approximation

Pn+1
ijk − 2Pnijk + Pn−1

ijk

∆t2
−

c2
ijk

(
Pni+1jk − 2Pnijk + Pni−1jk

h2
+
Pnij+1k − 2Pnijk + Pnij−1k

h2
+
Pnijk+1 − 2Pnijk + Pnijk−1

h2

)
= snijk

(2.143)
We can rewrite things under the form of an explicit formula for updating Pn+1

ijk such that

Pn+1
ijk = 2Pnijk − Pn−1

ijk +

+
c2
ijk∆t

2

h2

(
Pni+1jk − 2Pnijk + Pni−1jk + Pnij+1k − 2Pnijk + Pnij−1k + Pnijk+1 − 2Pnijk + Pnijk−1

)
+∆t2snijk.

(2.144)
Zero initial conditions also give

P 1
ijk = 0,

P 2
ijk − P 1

ijk

∆t
= 0. (2.145)

assuming a first order discretization of the time derivative at time t = 0. Thus

P 1
ijk = 0, P 2

ijk = 0. (2.146)

In addition, boundary conditions give

Pnijk = 0, ∀ (xi, yj , zk) ∈ ∂Ωh. (2.147)

In practice, how to choose the discretization steps h and ∆t? This choice is driven by
two fundamentals requirement

• stability of the scheme

• small enough numerical dispersion

In the next two paragraphs, we detail these two notions, and explain how to choose h
and ∆t to fulfill these requirements. We provide this analysis in the simple case of the 1D
constant density constant velocity acoustic equation

∂2P

∂t2
− c2∂

2P

∂x2
= s (2.148)

discretized using the second-order finite-difference scheme

Pn+1
i − 2Pni + Pn−1

i

∆t2
− c2P

n
i+1 − 2Pni + Pni−1

h2
= sni (2.149)
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Stability analysis

We start with the stability. We follow the conventional Von Neumann analysis. First
we define the truncation error. We assume that the analytic solution P (x, t) satisfies the
discretized wave equation with an error related to the truncation of the partial differential
operator following the Taylor’s development. This is the truncation error, which we define
by

ηni =
P (xi, t

n + ∆t)− 2P (xi, t
n) + P (xi, t

n −∆t)

∆t2
−c2P (xi + h, tn)− 2P (xi, t

n + P (xi − h, tn)

h2

(2.150)
From the definition of the second-order finite difference formulas, it is easy to show that
the truncation error satisfies

ηni = O(∆t2) +O(h2) (2.151)

We also define the convergence error, which will be of more interest for the stability
analysis. The convergence error is

εni = P (xi, t
n)− Pni (2.152)

where P (x, t) is the analytical solution and Pni the numerical solution provided by the
finite-difference scheme. What is important to see is that the convergence error obeys the
same discrete equation as the numerical solution. We have

εn+1
i − 2εni + εn−1

i

∆t2
− c2 ε

n
i+1 − 2εni + εni−1

h2
= ηni (2.153)

We now consider an expansion of the convergence error as a Fourier series of the form

ε(x, t) =
∑
k

A(t)eikx (2.154)

We look at a single component of this Fourier expansion, at time tn and point xi,

εni = Aneikxi (2.155)

We plus this component in the discrete wave equation to obtain

An+1 − 2An +An−1

∆t2
− c2 e

ikh − 2 + e−ikh

h2
An = 0 (2.156)

considering the truncation error can be neglected (we are interested here only in the
convergence error evolution and can look at the specific case where the truncated error is
0). We can rewrite (2.156) as

An+1 = −An−1 + 2BAn (2.157)

where

B = 1 +
∆t2c2

2h2
(eikh − 2 + e−ikh) (2.158)

We introduce

γ =
An+1

An
(2.159)

We thus have
γ2 − 2Bγ + 1 = 0 (2.160)
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To ensure stability, we want to have

|γ| < 1 (2.161)

This is to make sure that the amplitude of the Fourier component we consider is not
amplified at each iteration in time. The discriminant of the second-order polynomial is

∆ = 4B2 − 4 (2.162)

∆ ≥ 0 is equivalent to |B| ≥ 1, and we have in this case

γ = B ±
√
B2 − 1 (2.163)

therefore |γ| ≥ 1. ∆ < 0 is equivalent to |B| < 1 and

γ = B ± i
√
|B2 − 1|. (2.164)

In this case

|γ|2 = B2 +B2 − 1 = 2B2 − 1 (2.165)

and we have |γ| < 1, as

0 < B2 < 1, 0 < 2B2 < 2, −1 < 2B2 − 1 ≤ 1. (2.166)

The stability condition is thus ensured by |B| < 1, which is equivalent to

− 1 ≤ 1 +
∆t2c2

2h2
(eikh − 2 + e−ikh) ≤ 1 (2.167)

This can be rewritten as

− 1 ≤ 1 +
∆t2c2

h2
(cos(kh)− 1) ≤ 1 (2.168)

Using the identity (
sin

x

2

)2
=

1− cos(x)

2
, (2.169)

we obtain

− 1 ≤ 1− 2∆t2c2

h2

(
sin

kh

2

)2

≤ 1, (2.170)

hence

− 2 ≤ −2∆t2c2

h2

(
sin

kh

2

)2

≤ 0, (2.171)

and

0 ≤ ∆t2c2

h2

(
sin

kh

2

)2

≤ 1. (2.172)

The latter is ensure by the choice
∆t2c2

h2
≤ 1, (2.173)

hence
∆tc

h
≤ 1. (2.174)

This corresponds to the standard CFL condition.
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Numerical dispersion

For the numerical dispersion analysis, we consider a plane-wave solution of the form

P (x, t) = ei(kx−ωt) (2.175)

Plugging this ansatz in the wave equation yields

(−iω)2ei(kx−ωt) − V 2
P (ik)2ei(kx−ωt) = 0 (2.176)

We thus have
− ω2 + V 2

P k
2 = 0, (2.177)

which can be rewritten simply as

VP =
ω

k
. (2.178)

This equation is known as the dispersion relation. The temporal and spatial oscillations
are related to the velocity. In the analytic case, the velocity is the same for all oscillations
k and w. The medium is not dispersive: the propagation velocity does not depend on the
frequency of propagation.

Let us now use the same ansatz in the discretized wave equation. We have

e−iω∆t − 2 + eiω∆t = V 2
P

∆t2

h2

(
e−ikh − 2 + eikh

)
(2.179)

by simplification by ei(kx−ωt). Thus

cosω∆t− 1 = V 2
P

∆t2

h2
(cos kh− 1) (2.180)

or

sin
ω∆t

2
= VP

∆t

h
sin

kh

2
(2.181)

Here we can note that the latter equation has a solution if and only if the CFL condition
is satisfied. The real interest of the latter derivation is to give access to the numerical
dispersion relation, as

ω

k
=

2

k∆t
sin−1

(
VP

∆t

h
sin

kh

2

)
(2.182)

We see that in the approximation h→ 0, we have

ω

k
→ 2

k∆t
sin−1

(
VP

∆tk

2

)
(2.183)

Then in the approximation ∆t→ 0, we recover the analytical dispersion relation

ω

k
→ VP (2.184)

However, in practice, we cannot choose arbitrarily small time steps and spatial discretiza-
tion steps. Therefore it is interesting to see how the discrete propagation velocity varies
with the choice of discretization setups. In practice, the choice of ∆t is already governed
by the previous stability condition, therefore it is common to study the evolution of the
discrete propagation velocity with respect to the spatial discretization step h.

We present in Figure 2.4 the numerical velocity ω
k for a choice of k = 0.05 = 1

20
m.−1, a velocity VP = 2000 m.s−1, and a choice of a spatial discretization varying from
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1 to 20 discretization point per smallest wavelength, considering a maximum frequency
of propagation reaching 12.5 Hz. Three curves are obtained, depending on how the time
discretization step is chosen. The first choice correspond to a fixed ∆t, set to satisfy exactly
the CFL condition for 10 discretization points per smallest wavelength. The second choice
corresponds to set ∆t as

∆t = 0.9
∆x

VP
. (2.185)

The third choice corresponds to set ∆t exactly at the CFL condition for each ∆x. Inter-
estingly in this case, the numerical dispersion is only related to the time discretization.
However this situation is only possible in 1D. In higher dimension, this special case (van-
ishing of the numerical dispersion associated with the spatial discretization) is no longer
valid.

Figure 2.4: Dispersion curve for a choice of k = 0.05 = 1
20 m.−1, a velocity VP = 2000

m.s−1, and a choice of a spatial discretization varying from 1 to 20 discretization point
per smallest wavelength, considering a maximum frequency of propagation reaching 12.5
Hz. Three curves are obtained, depending on how the time discretization step is chosen.
The first choice correspond to a fixed ∆t, set to satisfy exactly the CFL condition for 10
discretization points per smallest wavelength (blue curve). The second choice corresponds
to set ∆t as 0.9 time the CFL condition (red curve). The third choice consists in setting ∆t
exactly at the CFL condition, removing in this particular 1D case the dispersion associated
with the spatial discretization (green curve).
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2.3.3 Staggered grid finite difference scheme for 2D elastodynamics equa-
tion

The finite-difference technique has been popularized in the geophysics and seismology
community by the work of Virieux (1986). In this study, a 2D finite-difference scheme
is proposed for the 2D P-SV elastodynamics equations in the velocity-stress formulation
(1st order hyperbolic system). This 2D finite-difference scheme is actually a transposition
to the 2D P-SV equations of the Yee scheme (Yee, 1966) designed for the 2D Maxwell’s
equation (electromagnetic wave propagation).

The 2D P-SV equations, assuming a VTI anisotropy, and a force source (fx, fz), are

∂vx
∂t
− 1

ρ

∂σxx
∂x
− 1

ρ

∂σxz
∂z

= fx

∂vz
∂t
− 1

ρ

∂σxz
∂x
− 1

ρ

∂σzz
∂z

= fz

∂σxx
∂t
− C11

∂vx
∂x
− C13

∂vz
∂z

= 0

∂σzz
∂t
− C13

∂vx
∂x
− C33

∂vz
∂z

= 0

∂σxz
∂t
− C44

(
∂vx
∂z

+
∂vz
∂x

)
= 0.

(2.186)

The original idea of the staggered finite-difference scheme is to discretize each of the field
vx, vz, σxx, σzz, σxz using a centered (second-order) finite difference scheme on different
staggered grids. An explanation is given in Figure 2.5.

Figure 2.5: Original figure from Virieux (1986)

In our notations

• B corresponds to the buoyancy, which is the inverse of the density 1
ρ
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• U corresponds to the horizontal velocity displacement vx

• V corresponds to the vertical velocity displacement vz

• Σ corresponds to the horizontal normal stress σxx

• T corresponds to the vertical normal stress σzz

• Θ corresponds to σxz

We see that in this scheme,

• vx is centered at the (i, j) point

• vz is at half grid point (i+ 1/2, j + 1/2) point

• σxx and σzz are at (i+ 1/2, j) point

• σxz is at (i, j + 1/2) point

The corresponding finite-difference scheme is

(vx)
n+1/2
ij − (vx)

n−1/2
ij

∆t
−
(

1

ρ

)
ij

(σxx)ni+1/2,j − (σxx)ni−1/2,j

h

−
(

1

ρ

)
ij

(σxz)
n
i,j+1/2 − (σxz)

n
i,j−1/2

h
= (fx)nij

(vz)
n+1/2
i+1/2j+1/2 − (vz)

n−1/2
i+1/2j+1/2

∆t
−
(

1

ρ

)
i+1/2j+1/2

(σxz)
n
i+1,j+1/2 − (σxz)

n
i,j+1/2

h

−
(

1

ρ

)
i+1/2j+1/2

(σzz)
n
i+1/2,j+1 − (σzz)

n
i+1/2,j

h
= (fz)

n
i+1/j+1/2

(σxx)n+1
i+1/2j − (σxx)ni+1/2j

∆t
− (C11)i+1/2j

(vx)
n+1/2
i+1,j − (vx)

n+1/2
ij

h

− (C13)i+1/2j

(vz)
n+1/2
i+1/2,j+1/2 − (vz)

n+1/2
i+1/2j−1/2

h
= 0

(σzz)
n+1
i+1/2j − (σzz)

n
i+1/2j

∆t
− (C13)i+1/2j

(vx)
n+1/2
i+1,j − (vx)

n+1/2
ij

h

− (C33)i+1/2j

(vz)
n+1/2
i+1/2,j+1/2 − (vz)

n+1/2
i+1/2j−1/2

h
= 0

(σxz)
n+1
ij+1/2 − (σxz)

n
ij+1/2

∆t
− (C44)ij+1/2

(vx)
n+1/2
ij+1 − (vx)

n+1/2
ij

h

− (C44)ij+1/2

(vz)
n+1/2
i+1/2,j+1/2 − (vz)

n+1/2
i−1/2j+1/2

h
= 0

(2.187)
Such a scheme exploits the particular structure of the 2D elastodynamics equations, the
temporal derivatives of each field are related to spatial derivatives of other fields (never
the same field). This makes possible to use a centered scheme (therefore of order 2) while
using a spatial discretization step of h. Full grid scheme would require the use of a spatial
grid of size 2h to be centered and hence reach second-order accuracy

f ′(x) =' f(x+ h)− f(x− h)

2h
+O(h2) (2.188)
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The FORTRAN code ELAS2DWM available on my webpage, in the directory associated with
this lecture, implements this 2D staggered grid scheme. Please feel free to download it
and have a look at it. The implementation is rather simple. The numerical experiments
presented in the slides have been performed using this simple code. To compile it you only
need a gfortran compiler (free). The output files are binary files that can be visualized
easily through Octave, Matlab, or Python libraries for instance.
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2.3.4 Spectral-element for elastodynamics equations

Even if the finite-difference method is very powerful and easy to implement, it has some
limitations. The main limitation is related to the modeling of wave propagation in media
with strong interfaces which vary in space, i.e. which do not conform to the Cartesian
grid. The most important of these interfaces is the subsurface/air interface. In marine
environment, this interface. In addition, with receivers and sources located in the water,
the acoustic approximation is relatively accurate. With only hydrophones recording the
pressure, the imprint of elastic effects on the data is weak. In this case, finite-difference
modeling for acoustic equations is a very good option.

In land environment, the subsurface/air interface is not likely to be flat: spatial varia-
tions due to varying topography is common. In addition, receivers on land are geophones,
which record vertical and horizontal displacement velocities. In these recording, the elas-
tic imprint of the wave propagation is strong. We thus need to rely on elastodynamics
equations. TO model accurately P -wave, S-wave, and surface waves, we need to take into
account accurately the subsurface/air interface. This is difficult through finite-difference
technique, therefore finite-element methods are preferred and shown to be more efficient.

In the sequel, we present the state-of-the-art method for numerical model of wave prop-
agation in seismology (see SPECFEM code https://geodynamics.org/cig/software/

specfem3d/, SALVUS code https://cos.ethz.ch/software/production/salvus.html,
or SEM46 code we develop in SEISCOPE). It is a particular instance of finite-element
strategy, making it possible to model very accurately 3D elastodynamics propagation in
heterogeneous anisotropic media with irregular topography. We introduce this method
and review its specificities.

Second-order displacement formulation

The starting point for the spectral element discretization of the elastodynamics equations
is to rewrite the first-order hyperbolic system as a second-order in time hyperbolic system
on the velocity only. This reduces the number of equations from 9 to 3. This system reads

ρ
∂2u

∂t2
−DCDTu = s (2.189)

where the source term s is given by

s = F +Dσ0. (2.190)

We will refer to the domain of interest as Ω ⊂ R3 and the time interval as [0, T ]. We
want to compute an approximation of the displacement function

u(x, t), (x, t) ∈ Ω× [0, T ] (2.191)

solution of (3.134).
We impose free surface boundary condition on the boundary of Ω which we denote as

previously as ∂Ω. The free surface boundary condition expresses as

σ(x, t)n(x) = 0, (x, t) ∈ ∂Ω× [0 T ], (2.192)

which means in terms of displacement that(
CDTu(x, t)

)
n(x) = 0, (x, t) ∈ ∂Ω× [0 T ]. (2.193)

https://geodynamics.org/cig/software/specfem3d/
https://geodynamics.org/cig/software/specfem3d/
https://cos.ethz.ch/software/production/salvus.html
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We also use zero initial conditions

∀x ∈ Ω, u(x, 0) = 0,
∂u

∂t
(x, 0) = 0. (2.194)

Weak form

Here we introduce the L2 scalar product on Ω as

(u, v) =

∫
Ω
u(x, t)v(x, t)dx (2.195)

Finite-element methods are based on the weak form of the elastodynamics equation. This
is, for a sufficiently smooth function w(x)(

ρ
∂2u

∂t2
, w

)
−
(
DCDTu,w

)
= (s, w) (2.196)

Basically we require that w and its derivatives are in
(
L2(Ω)

)3
. We keep in mind that the

scalar product is in space only and not in time. The integral thus depends on time in the
expression above but we do not mention it explicitly to simplify the notations.

Integrating by part second term of the left-hand side in (2.196) yields(
ρ
∂2u

∂t2
, w

)
−
(
CDTu(x, t), DTw

)
+
(
CDTu(x, t).n, w

)
∂Ω

= (s, w) (2.197)

The free surface condition makes the boundary term naturally vanish, yielding(
ρ
∂2u

∂t2
, w

)
−
(
CDTu(x, t), DTw

)
= (s, w) . (2.198)

1D elastodynamics equation

For the sake of simplicity, we will consider in the sequel only the 1D case for the propagation
of shear waves. This simplifies the previous displacement system as

ρ
∂2u

∂t2
− ∂x(µ(x)∂x)u = s (2.199)

where ρ(x) is the density and µ(x) is the shear modulus. The free surface condition is
expressed as

µ(x)u(x, t) = 0, (x, t) ∈ ∂Ω× [0 T ]. (2.200)

The initial conditions remain the same.

Finite element strategy

Finite element methods rely on the approximation of the weak solution as a decomposition
in a basis of Np given functions ϕi(x),

u(x, t) =

Np∑
i=1

ui(t)ϕi(x) (2.201)
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This is named as the Galerkin method. In addition, we assume that the test functions
w(x) are decomposed in the same basis of functions. This assumption is referred to as the
Galerkin principle. We thus obtain(

ρ
∂2u

∂t2
, ϕj

)
−
(
µ(x)

∂u

∂x
,
∂ϕj
∂x

)
= (s, ϕj) , j = 1, . . . , Np (2.202)

Injecting (2.201) into (2.203) yields

Np∑
i=1

∂2ui
∂t2

(ρϕi, ϕj)−
Np∑
i=1

ui(t)

(
µ(x)

∂ϕi
∂x

,
∂ϕj
∂x

)
= (s, ϕj) , j = 1, . . . , Np (2.203)

In matrix notation, this can be rewritten as

M
∂2u

∂2t
(t) +Ku(t) = S (2.204)

where

Mij = (ρϕi, ϕj) , Kij =

(
µ(x)

∂ϕi
∂x

,
∂ϕj
∂x

)
, Sj = (s, ϕj) (2.205)

For the time derivative, we use a second-order finite-difference scheme, such that we obtain

M
un+1 − 2un + un−1

∆t2
−Kun = Sn (2.206)

This gives
un+1 = ∆t2M−1 (Kun + Sn) + 2un − un−1 (2.207)

From here we already see that it each time step, the finite-element scheme requires to
apply the inverse of the mass matrix M . For large scale problem, this can be an issue
in terms of computational cost. Before moving to the specificities of the spectral element
method, we localize the previous equation element by element.

Element decomposition

So far the field u(x, t) and the basis functions ϕi(x) are defined globally on Ω. We further
introduce the discretization over elements by assuming that the function ϕi are attached
to elements Ωe partitioning the domain Ω. We have

Ω =

Ne⋃
e=1

Ωe, ∀(e, e′), e 6= e′ ⇐⇒ Ωe ∩ Ωe′ = ∅. (2.208)

The total number of elements is denoted by Ne. We therefore approximate u(x, t) as

∀x ∈ Ωe, u(x, t) =

Np∑
i=1

uei (t)ϕ
e
i (x) (2.209)

and obtain
Np∑
i=1

∂2uei
∂t2

(
ρϕei , ϕ

e
j

)
−

Np∑
i=1

uei (t)

(
µ(x)

∂ϕei
∂x

,
∂ϕej
∂x

)
, =

(
s, ϕej

)
, j = 1, . . . , Np (2.210)

element by element.
Deriving as above, we obtain the same set of equations as before except that they are

now local to each element. We write it as

M e∂
2u

∂2t
(t) +Keu(t) = Se (2.211)

We will see after how to connect these equations globally (assembly step).
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Choice of Lagrange polynomials

The spectral element method relies on two key elements. The first is the choice of basis
functions ϕi as Lagrange polynomials. So far what has been derived is general and common
to any finite element strategy.

In 1D, Lagrange polynomials are given by

ϕi(ξ) = li(ξ) =

Np+1∏
j=1,j 6=i

ξ − ξi
ξi − ξj

(2.212)

for a given set of distinct points ξj , j = 1, . . . , Np + 1 in the reference cube [−1, 1]3.
The Lagrange polynomial are defined on the domain [−1; 1], named as reference element

in the following. To compute the scalar product implying the polynomial li and lj and
their derivatives it is therefore necessary to define a mapping from the reference element
to the actual element e. This mapping is denoted by F e

F e : ξ 7→ F e(ξ) = x
[−1, 1] → Ωe

(2.213)

The scalar products over Ωe, can thus be rewritten as

(u, v)Ωe
=

∫ 1

−1
u (F e(ξ)) v (F e(ξ))

dx

dξ
dξ. (2.214)

For the mass term, this gives

Np∑
i=1

∂2uei
∂t2

∫ 1

−1
ρ (F e(ξ)) li (F e(ξ)) lj (F e(ξ))

dx

dξ
dξ (2.215)

which we rewrite as
Np∑
i=1

∂2uei
∂t2

∫ 1

−1
ρ(ξ)li(ξ)lj(ξ)

dx

dξ
(ξ)dξ (2.216)

with the slight abuse of notation

ρ(F e(ξ)) = ρ(ξ), li(F
e(ξ)) = li(ξ), lj(F

e(ξ)) = lj(ξ). (2.217)

For the stiffness term we obtain

Np∑
i=1

∫ 1

−1
µ(F e(ξ))

∂li(F
e(ξ))

∂x

∂lj(F
e(ξ))

∂x

dx

dξ
dξ (2.218)

which gives
Np∑
i=1

∫ 1

−1
µ(ξ)

∂li(ξ)

∂ξ

∂lj(ξ)

∂ξ

(
dξ

dx

)2 dx

dξ
dξ (2.219)

with the same abuse of notations. The term
(
dξ
dx

)2
comes from the chain rule for the

derivative with respect to ξ.
Finally the source term becomes∫ 1

−1
s(t, ξ)lj(ξ)

dx

dξ
dξ (2.220)
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with again the same abuse of notations.

We end up with the following equations, element by element

Np∑
i=1

∂2uei
∂t2

∫ 1

−1
ρ(ξ)li(ξ)lj(ξ)

dx

dξ
(ξ)dξ−

Np∑
i=1

∫ 1

−1
µ(ξ)

∂li(ξ)

∂ξ

∂lj(ξ)

∂ξ

(
dξ

dx

)2 dx

dξ
dξ =

∫ 1

−1
s(t, ξ)lj(ξ)

dx

dξ
dξ

(2.221)

Numerical integration

What remains to be done is now to evaluate numerically the integration over the reference
element. In principle, we could use any set of discrete points ξk, k = 1, . . . ,K to perform
this numerical integration. By numerical integration, we mean, for a function f ,

∫ 1

−1
f(ξ)dξ '

K∑
k=1

wkf(ξk) (2.222)

If we want to obtain a diagonal mass matrix, we need to obey the following rule: choose
the same integration points as the collocation points defining the Lagrange polynomial. This
will guarantee the following property

li(ξk) = δik (2.223)

where δik is the Kronecker product

δik =

∣∣∣∣ 1 if i = k
0 else.

(2.224)

This also defines the weights wk as (replacing f by a polynomial li in the quadrature
formula (2.222)

wi =

∫ 1

−1
li(ξ)dξ. (2.225)

We thus have for the mass term

Np∑
i=1

∂2uei
∂t2

K∑
k=1

wkρ(ξk)li(ξk)lj(ξk)
dx

dξ
(ξk) (2.226)

which gives, using (2.223)

Np∑
i=1

∂2uei
∂t2

K∑
k=1

wkρ(ξk)δikδjk
dx

dξ
(ξk) (2.227)

that is
Np∑
i=1

∂2uei
∂t2

wiρ(ξi)
dx

dξ
(ξi)δji. (2.228)

We finally obtain
Np∑
i=1

M e
ij

∂2uei
∂t2

−Ke
ijui(t) = Sej (2.229)
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with 

M e
ij = wiρ(ξi)

dx

dξ
(ξi)δij

Ke
ij =

Np∑
k=1

wkµ(ξk)
∂li(ξk)

∂ξ

∂lj(ξk)

∂ξ

(
dξ

dx
(ξk)

)2 dx

dξ
(ξk)

Sej = wjs(t, ξj)
dx

dξ
(ξj)

(2.230)

Choice of the collocation and integration points

So far we have not discussed how to the choose the points ξk. We have just mentioned
that to obtain a diagonal mass matrix, we need to approximate the integral over the same
set of points used to define the Lagrange polynomial.

A very interesting choice is the selection of the Gauss-Lobatto-Legendre points, defined
as the roots of the polynomial

(1− ξ2)L′(ξ) (2.231)

where L(ξ) is a Legendre polynomial. An example of the repartition of such points in 1D
is given in Figure 2.6.

This choice is motivated by the three following reasons:

1. The GLL points satisfy Gaussian quadrature rule: the integration of a polynomial
of order up to 2N − 1 with N GLL points is exact.

2. The GLL points are such that the boundary of the elements are used. It means
that there is a degree of freedom to represent the solution at the boundary of each
element. This property is very appealing, as we have to enforce the continuity of
the solution on the global domain. To do so, we only need to consider each degree
of freedom at the boundary of an element as unique. Therefore, in the assembly of
the mass matrix and stiffness matrix, one only needs to sum up the contributions
from different elements for boundary degrees of freedom. This simplifies greatly the
assembly of the global matrices M and K.

3. Lagrange polynomials defined over the set of Gauss-Lobatto-Legendre points ensure
the spectral convergence property. Schematically, if we denote by u∗ the solution
of the elastodynamics equations and uSEM its approximation through the spectral-
element method, we have

‖u∗(., t)− uSEM (., t)‖ ≤ CN−s‖u∗‖Hs+1(Ω) (2.232)

where N is the order of Lagrange polynomial used to discretize the solution over
the elements, and Hs(Ω) is the Sobolev space of functions over Ω (namely with
s derivatives which are in L2(Ω)). The spectral convergence thus means that the
convergence speed is driven by the smoothness of the solution. The smoother the
solution is, the fastest the convergence is. This is reflected by the factor N−s in the
right hand side of the inequality (2.232). This is of particular interest when solving
elastodynamics equations in reasonably smooth media, as it is often the case in the
frame of full waveform inversion algorithms. Indeed, in this case, the variations of
the medium remain relatively smooth with respect to the propagated wavelength,
and the wave equation solution is smooth. The convergence formula (2.232) is to be
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Figure 2.6: Example of Gauss-Lobatto-Legendre points repartitions in 1D for different
orders of polynomials. Note that the partition is uneven. Note also that the two extremal
points of the 1D segment are always included in the Gauss-Lobatto-Legendre points.

compared with standard finite element convergence results in classical polynomial
spaces, where we would have

‖u∗(., t)− uSEM (., t)‖ ≤ Chp (2.233)

where h is the size of the element and p the order of the chosen polynomial basis to
represent the solution.

More details on this spectral element methods can be found in (Patera, 1984; Bernardi
and Maday, 1992)



Chapter 3

Full waveform inversion

3.1 A PDE constrained least-squares optimization problem

3.1.1 Formulation

We introduce here the notations which will be used throughout this chapter. The model
parameters that we will aim at recovering from the seismic data will be denoted by m.
These parameters will be represented by functions of space m(x) and will live in the model
spaceM. To link with the modeling chapter, these parameters can be the P-wave velocity
VP (x), the density ρ(x), or any combination of the components CIJ(x) of the stiffness
tensor. We will make a distinction between mono-parameter inversion, in which case m(x)
represents a single parameter class, and multi-parameter inversion, in which case m(x)
gathers several parameter classes, for instance m(x) = [VP (x) ρ(x)] for a multi-parameter
inversion of P-wave velocity VP (x) and density ρ(x). In any case, the model parameters
m(x) always depend only on space. We assume that during the seismic recording experi-
ment, the properties of the subsurface do not change.

The seismic data associated with a source/receiver couple s and r will be denoted by
dobs,s(xr, t), for t ∈ [0, T ] where T is the total recording time. The corresponding calcu-
lated data will be denoted by dcal,s(xr, t).

The wavefield generated by the source s will be denoted by us(x, t). Here x ∈ Ω ⊂ Rd
where d is the dimension of the problem. In practice d = 3, and sometimes, resulting from
approximations, d = 2 is chosen to reduce the computational cost.

The relation between the calculated data dcal,s(xr, t) and the wavefield us(x, t) will be
denoted as

dcal,s = Rus, (3.1)

where R is a restriction operator extracting the values of the wavefield at the receiver
location xr. This can be denoted by the convolution with a Dirac delta function

(Rus)(xr, t) =

∫
Ω
δ(x− xr)u(x, t)dx. (3.2)

For the sake of generality, the wavefield us(x, t) will be considered as the solution
of a general partial-differential equation representing the wave propagation within the
subsurface, from the acoustic to the elastic approximation. We will denote this wave

65
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propagation operator by A(m), such that we have

A(m)us = ϕs, (3.3)

where ϕs(x, t) is the source term corresponding to the source number s.

To distinguish between the dependency of us(x, t) with respect to space and time (as
a function of space and time) and its dependency with respect to the model parameters m
through the solution of the PDE 3.3, we will sometimes denote this dependency through
brackets [m] such that the wavefield in the model m solution of 3.3 is denoted by

us[m](x, t). (3.4)

The same notation can applied to the calculated data, and we denote it as

dcal,s[m](xr, t). (3.5)

In this frame, the full waveform inversion problem corresponds to the following PDE-
constrained optimization problem

min
m

1

2

Ns∑
s=1

‖dcal,s − dobs,s‖2,

subject to ∀s = 1, . . . , Ns, dcal,s = Rus,

∀s = 1, . . . , Ns, A(m)us = ϕs,

(3.6)

where Ns is the total number of seismic sources (shots), and the least-squares norm ‖.‖
corresponds to the L2 distance

‖d1 − d2‖ =

Nr∑
r=1

∫ T

0
|d1(xr, t)− d2(xr, t)|2dt, (3.7)

with Nr the total number of receivers. For practical applications, this number can depend
on the source s. Here we assume that the same number of receivers is attached to each
source for the sake of simplicity. This has no impact on the generality of the results
presented in the sequel.

3.1.2 Lagrangian operator and KKT system

The numerical solution of such constrained optimization problem requires to study the
Lagrangian operator associated with such problem. Here and in the sequel, we will make
the assumption that Ns = 1, only for the sake of concision and clarity. All that will
be developed afterwards can be extended to the case of multiple sources by summation,
thanks to the linearity of the different operators that we will consider with respect to the
sources. For this reason, from now on, we drop the index s in the mathematical derivations.

The Lagrangian operator associated with problem (3.6) is

L(m,u, dcal, λ, µ) =
1

2
‖dcal − dobs‖2 + (A(m)u− ϕ, λ)W + (dcal −Ru, µ)D . (3.8)
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In equation (3.78), we have introduced two different scalar products. The first is defined
in the wavefield space, denoted by (., .)W , corresponding to

(u1, u2)W =

∫ T

0

∫
Ω
u1(x, t)u2(x, t)dxdt. (3.9)

The second is defined in the data space, denoted by (., .)D, corresponding to

(d1, d2)D =

Nr∑
r=1

∫ T

0
d1(xr, t)d2(xr, t)dt. (3.10)

The solution of problem (3.6) are characterized by the zero of the first-order derivatives
of the Lagrangian operator (hence the importance of this operator). More precisely, the
first-order necessary conditions for a candidate (m,u, dcal, λ, µ) to be a solution of (3.6)
correspond to canceling the first-order derivatives of the Lagrangian. The corresponding
system is known as the Karush-Kunh-Tucker (KKT) system. In our case, it writes as

∂L(m,u, dcal, λ, µ)

∂m
= 0

∂L(m,u, dcal, λ, µ)

∂u
= 0

∂L(m,u, dcal, λ, µ)

∂dcal
= 0

∂L(m,u, dcal, λ, µ)

∂λ
= 0

∂L(m,u, dcal, λ, µ)

∂µ
= 0.

(3.11)

In the specific case of the Lagrangian operator we have introduced this amounts to

(
∂A

∂m
u, λ

)
T

= 0

∂L(m,u, dcal, λ, µ)

∂u
= 0

∂L(m,u, dcal, λ, µ)

∂dcal
= 0

A(m)u− ϕ = 0

dcal −Ru = 0,

(3.12)

where the product (., .)T is defined by, for (u, v) ∈ W ×W,

(u, v)T =

∫ T

0
u(x, t)v(x, t)dt (3.13)

We do not get into the details of the three first equations at this stage (this will
be developed later). We see that at convergence, the optimal point in the full space
(m,u, dcal, λ, µ) should at least satisfy the constraints (which is expected).
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Conventional approaches working in this full space are known as primal-dual approach,
and amounts to the solution of the min-max problem

min
m,u,dcal

max
λ,µ

L(m,u, dcal, λ, µ). (3.14)

Solving the full waveform inversion problem with this kind of strategy is never done in
practice, because of the inherent size of the full space. The number of degrees of freedom
to be used under the frame of such a full space approach makes it very difficult to solve
unless very small 1D problem are considered.

Instead of such full space approach, reduced space approach are preferred convention-
ally, which we describe in the following.

3.1.3 Reduced space approach

The rationale behind the reduce space approach consists in eliminating the variables dcal
and u from the problem by solving the corresponding constraint equations. This leads to
the reformulation

min
m

1

2
‖RA(m)−1ϕ− dobs‖2. (3.15)

By doing so, the solution is searched only in the model spaceM, which reduces significantly
the size of the problem. The problem is also formulated as an unconstrained optimization
problem.

However, it is important to keep in mind that the original full waveform inversion
problem can be considered as a PDE-constrained optimization problem. In particular, it
provides insight on how to compute the gradient of the misfit function appearing in the
reduced space problem (3.15).

To solve numerically the problem (3.15), we employ optimization algorithms dedicated
to the solution of large-scale unconstrained problems. We present on overview of these
strategies in the following.



3.2. NUMERICAL OPTIMIZATION 69

3.2 Numerical optimization

3.2.1 General frame

In this section we consider the following unconstrained optimization problem

min
m

f(m), (3.16)

where
m 7→ f(m)
M → R+.

(3.17)

After discretization we have M ⊂ RM . Key quantities will be the gradient of the misfit
function

∇f(m) =



∂f
∂m1

∂f
∂m2

...

∂f
∂mM


∈ RM , (3.18)

as well as its Hessian H(m), the matrix of second-order derivatives of the function f(m),
such that

Hij(m) =
∂2f

∂mi∂mj
, (3.19)

that is

H(m) =


∂2f
∂m2

1

∂2f
∂m2∂m1

. . . ∂2f
∂mM∂m1

...
...

...
∂2f

∂m1∂mM

∂2f
∂m2∂mM

. . . ∂2f
∂mM2

 . (3.20)

Note: the Hessian matrix H(m) is symmetric by construction, following Schwarz’s theo-
rem (the second-order partial derivatives can be switched).

In this Section we consider linesearch-based numerical optimization methods, which
obey the following iteration. From an initial guess m0, build the sequence

mk+1 = mk + αk∆mk, (3.21)

where mk+1 is the new iterate towards the solution of the problem (3.16), αk ∈ R+
∗ is a

scalar parameter representing the length of the step taken in the direction ∆mk, referred
to as the steplength in the following, and ∆mk is a descent direction. This means that
this vector satisfies

(∆mk,−∇f(mk)) = −∆mT
k∇f(mk) > 0, (3.22)

where (., .) is the Euclidean scalar product on RM . Roughly speaking, ∆mk is in a di-
rection not too far from the opposite of the gradient, which is the local steepest descent
direction.

In the sequel we first present how to compute the steplength αk (linesearch strategy),
then we discuss how the descent direction ∆mk is computed. For a wide overview of
numerical optimization, the reader is referred to the excellent book from Nocedal and
Wright (2006).
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3.2.2 Linesearch strategy

Wolfe conditions

The exact linesearch problem, for a given descent direction ∆mk, would consist in solving
the problem

min
α
φ(α) = f(mk + α∆mk). (3.23)

However, in practice, this is never implemented because this would require to solve an
optimization problem on its own at each iteration of the minimization algorithm. This
optimization problem would require to compute several time the gradient of the misfit
function f(m), which we try to avoid as (as will be seen later) this represents the main
computationally expensive task.

Instead of the exact linesearch strategies, standard linesearch algorithms aims at com-
puting a steplength α satisfying the Wolfe’s condition. These two Wolfe’s conditions are
expressed as

1. f(mk + α∆mk) ≤ f(mk) + c1α∇f(mk)
T∆mk,

2. ∇f(mk + α∆mk)
T∆mk ≥ c2∇f(mk)

T∆mk,

where c1 < c2 are user defined constant (usual choices are c1 = 10−4, c2 = 0.9).

The condition 1 in (3.2.2) is referred to as the sufficient decrease condition. As ∆mk

is a descent direction, we know that

∃ε > 0, ∇f(mk)
T∆mk ≤ −ε < 0. (3.24)

Therefore, condition 1 implies that

f(mk + α∆mk) < f(mk), (3.25)

and
f(mk)− f(mk + α∆mk) ≥ c1αε > 0. (3.26)

The condition 1 in (3.2.2) thus guarantees that the step taken in the direction ∆mk pro-
duces a decrease at least equal to c1αε.

The condition 2 in (3.2.2) is referred to as the sufficient curvature condition. We have

φ′(α) = ∇f(mk + α∆mk)
T∆mk. (3.27)

Therefore condition 2 can be interpreted as

φ′(α) ≥ c2φ
′(0). (3.28)

Condition 2 therefore implies that the slope of the function φ(α) should be greater at the
selected step α than at the initial point α = 0. Indeed, if the slope is smaller, this indicates
that increasing the step α is likely to produce a smaller misfit function, therefore it should
be interesting to increase the step. The condition 2 serves as a safeguard towards taking
too small steps, which could lead to convergence issues.

An illustration of the 2 Wolfe conditions is presented in Figure 3.1, taken from Nocedal
and Wright (2006). In the notations of the document, pk should be replaced by ∆mk

(descent direction) and xk by mk.
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Figure 3.1: Illustration of the 2 Wolfe conditions taken from Nocedal and Wright (2006).
In the notations of the document, pk should be replaced by ∆mk (descent direction) and
xk by mk.

The Wolfe conditions are extremely important because it can be proven that, if the
descent direction ∆mk are chosen such that

cos θk =
−∆mk∇f(mk)

T

‖∆mk‖‖∇f(mk)‖
≥ δ > 0 (3.29)

(which means the angle between the descent direction and the opposite of the gradient is
bounded from Π/2 i.e. the descent direction is never orthogonal to the steepest descent
direction), then

lim
k→∞

‖∇f(mk)‖ = 0 (3.30)

when we follow the iteration (3.21). In other words, the iterative scheme (3.21) is glob-
ally convergent as soon as the descent direction ∆mk satisfies condition (3.29) and the
steplength αk satisfies the Wolfe’s conditions.

By globally convergent, it means that starting from any initial guess m0, the iteration
(3.21) will converge towards the closest local minimum of the misfit function satisfying
‖∇f(mk)‖ = 0.

This property is extremely important as it guarantees the robustness of the optimiza-
tion methods that we will use. Note that there exists also other conditions than the
Wolfe’s conditions which can provide this guarantee (Goldstein’s condition for instance).
More details on these aspects are to be found in chapter 3 of Nocedal and Wright (2006).

Linesearch algorithm

We have now some conditions that α should fulfill to yield a convergent minimization
algorithm. In practice, how to choose/compute α? This can be done in various ways. One
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efficient way is the so-called bracketing strategy. The leading idea is to increase the step
length as soon as the curvature condition is not satisfied, and to decrease it if the sufficient
decrease condition is not satisfied. The full algorithm is given in the sequel.

Linesearch algorithm
α0 > 0 ;
α = α0 ;
αL = 0 ;
αR = 0 ;
while Wolfe’s conditions not satisfied do

if 1st Wolfe’s condition not satisfied then
αR = α ;
α = 0.5(αL + αR) ;

end
else if 2nd Wolfe’s condition not satisfied then

αL = α ;
if αR == 0 then

α = 10α ;
end
else

α = 0.5(αL + αR) ;
end

end

end
Algorithm 1: Linesearch algorithm using a bracketing + dichotomy strategy.

3.2.3 Computing the descent direction

Steepest descent

The simplest way to compute the descent direction is to take it as the opposite of the
gradient.

∆mk = −∇f(mk). (3.31)

This is known as the steepest descent direction. This is an easy way to satisfy the criterion
(3.29) as in this case we have systematically

cos θk = 1. (3.32)

Using a linesearch algorithm which satisfies the Wolfe’s condition, we thus obtain a con-
vergent method.

However, one well known drawback with the steepest descent is a potential very slow
convergence rate. This issue can be illustrated on a simple example. Consider a quadratic
misfit function

f(x1, x2) =
1

2

(
x2

1 + ηx2
2

)
, (3.33)

where (x1, x2) ∈ R2 and η ∈ R+. The minimum of f(x1, x2) is reached at point (0, 0). We
have

∇f(x1, x2) = (x1, ηx2). (3.34)
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Figure 3.2: Typical oscillations in convergence when using the steepest descent algorithm
for the minimization of a quadratic function of two parameters. The horizontal axis
corresponds to x2 and the vertical to x1. The level set of the function f(x1, x2) are
represented.

Imagine we start from (1, 1). We have

∇f(1, 1) = (1, η). (3.35)

If η is small, we will progress only very slowly in the direction of x2, and this will produce
oscillations in the direction of x1, crossing each time the optimal value in x1. A graphical
view of this this situation is illustrated in Figure 3.2. In this figure, x2 corresponds to
the horizontal axis and x1 to the vertical axis. The level set of the function f(x1, x2)
are represented. We observe the typical oscillations in the convergence along the x1 axis.
A geometrical interpretation is that the gradient is always orthogonal to the level sets.
When taking η smaller than 1, the level sets correspond to ellipsoids. Following the
steepest descent in this case makes difficult to converge rapidly in the x2 direction.

Newton method

Steepest descent is often referred to as a first-order method because it relies only on the
gradient direction. A significant improvement of this optimization method is obtained by
considering the Newton method. Initially, the Newton method is a root finding algorithm.
It aims at finding the zero of nonlinear functions.

Consider a nonlinear function of a single variable g(x). At each iteration, we approxi-
mate g(x) with its tangent (first-order Taylor development)

g(x) = g(xk) + (x− xk)g′(xk). (3.36)

A new iterate is found by finding the 0 of this tangential approximation

g(xk) + (xk+1 − xk)g′(xk) = 0 =⇒ xk+1 = xk −
−g(xk)

g′(xk)
. (3.37)

A graphical illustration is provided in Figure 3.3. The convergence of the Newton algorithm
is guaranteed only if starting in a vicinity of the solution.
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Figure 3.3: Illustration of one Newton iteration for finding the root of a real value function
f(x).

An extension of the Newton method to the solution of nonlinear systems under the
form

G(x) = 0, (3.38)

where
G : x 7→ G(x)

RM → RM , (3.39)

is
xk+1 = xk − J(xk)

−1G(xk), (3.40)

where J(x) is the Jacobian operator associated with the operator G such that

J(x) =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xM

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xM

...
...

...
∂gM
∂x1

∂gM
∂x2

. . . ∂gM
∂xM

 . (3.41)

The division by the derivative is replaced with the multiplication by the inverse of the
Jacobian matrix J(x) associated with G(x).

The Newton method can be applied in the field of optimization by considering we are
looking for stationary point of the gradient. In other words, we look for m such that

∇f(m) = 0. (3.42)

This is a system of nonlinear equations. If we apply to it the Newton iteration, we
obtain

mk+1 = mk −H(mk)
−1∇f(mk). (3.43)

We see that, compared with the steepest descent algorithm, we have replaced the
descent direction by

∆mk = −H(mk)
−1∇f(mk), (3.44)

and that the steplength is equal to 1.

We can give yet another interpretation to the Newton method applied in the frame of
optimization. Consider the second-order development of the misfit function f(m)

f(m) = f(mk)+∇f(mk)
T (m−mk)+

1

2
(m−mk)

TH(mk)(m−mk)+o
(
‖m−mk‖2

)
. (3.45)
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The iterate mk+1 is the minimizer of this quadratic approximation of f(mk). Indeed,
let qk(m) be defined by

qk(m) = f(mk) +∇f(mk)
T (m−mk) +

1

2
(m−mk)

TH(mk)(m−mk). (3.46)

We have

∇qk(m) = ∇f(mk) +H(mk)(m−mk). (3.47)

Finding a minimizer of qk(m) consists in zeroing its gradient. We have

∇qk(m) = 0 ⇐⇒ ∇f(mk) +H(mk)(m−mk) = 0

⇐⇒ m = mk −H(mk)
−1∇f(mk).

(3.48)

Therefore we see that the Newton iteration, in the optimization frame, amounts to find at
each iteration the minimizer of a local quadratic approximation of the misfit function f(m).

What is the interest of the Newton method compared with the steepest-descent strat-
egy? The convergence rate. While the steepest-descent exhibit poor convergence (it can
be proven to have first-order convergence only), Newton algorithm can be proven to have
second-order convergence. We look back at the 2 parameters example with f(x1, x2) given
by

f(x1, x2) =
1

2

(
x2

1 + ηx2
2

)
. (3.49)

We have

∇f(x1, x2) = (x1, ηx2), (3.50)

and

H(x1, x2) =

(
1 0
0 η

)
. (3.51)

Therefore

H(x1, x2)−1 =

(
1 0
0 1

η

)
, (3.52)

and we have in this case a descent direction given by

−H(x1, x2)−1∇f(x1, x2) = −(x1, x2). (3.53)

This proves that, starting from any point, the Newton algorithm converge in a single iter-
ation in this case, no matter the shape of the ellipsoid.

Despite this appealing second-order convergence property, Newton method is not really
usable for large scale minimization problems. This comes from the requirement to deal
with the Hessian matrix and its inverse. As soon as the number of parameter reaches
O(104), storing, computing, and inverting the Hessian operator reveals computationally
impracticable. To have an order of magnitude, for realistic size FWI problems, we often
deal with O(106) problems in 2D and up to O(109) problems in 3D. This makes the Newton
method unreachable for FWI. More tractable methods are thus required.
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Quasi-Newton methods

Quasi-Newton methods have been designed to overcome the above mentioned difficulty as-
sociated with Hessian computation, storage, and inversion. In this frame, approximations
of the inverse Hessian operator is used, such that the descent direction is given by

∆mk = −Qk∇f(mk), (3.54)

where Qk is an approximation of H(mk)
−1.

A very useful approximation is the one provided by Broyden Fletcher Goldfarb and
Shanno, known as the BFGS approximation. We do not enter into the details of this
approximation here. We simply mention that this method has been designed in the 80s
(Nocedal, 1980) and that it relies on successive rank 2 updates computed from previous
gradient values of an initial guess of the inverse Hessian operator (often chosen as an iden-
tity matrix).

In practice, a limited-memory version of this algorithm has been proposed under the
name of l-BFGS algorithm, which is the sate of the art method for solving large scale uncon-
strained nonlinear minimization problem. The philosophy is to keep in memory only the
l-previous gradient ∇f(mk),∇f(mk−1, . . . ,∇f(mk−l+1) and iterates mk,mk−1,mk−l+1.
From these quantities, an approximation Qk of H(mk)

−1 can be obtained, following the
formula

Qk =
(
V T
k−1 . . . V

T
k−l
)
Q0
k (Vk−l . . . Vk−1)

+ρk−l
(
V T
k−1 . . . V

T
k−l+1

)
sk−ls

T
k−l (Vk−l+1 . . . Vk−1)

+ρk−l+1

(
V T
k−1 . . . V

T
k−l+2

)
sk−l+1s

T
k−l+1 (Vk−l+2 . . . Vk−1)

+ . . .
+ρk−1sk−1s

T
k−1,

(3.55)

where the pairs sk, yk are

sk = mk+1 −mk, yk = ∇f(mk+1)−∇f(mk), (3.56)

the scalar ρk are

ρk =
1

yTk sk
, (3.57)

and the matrices Vk are defined by

Vk = I − ρkyksTk . (3.58)

In its implementation, the l-BFGS algorithm does not build explicitly the Qk matrix,
which would be computationally challenging for large scale problems. It relies on a matrix-
free double recursion loop, which makes it possible to compute directly the matrix vector
product Qkm, for a given model m and the stored values of the gradient and the models.

More details on the l-BFGS algorithm can be found in chapter 7 of Nocedal and Wright
(2006). In particular, the double recursion loop is described in the algorithm 7.4 there, p.
178.
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3.3 Gradient computation in FWI

Following the l-BFGS strategy, the key quantity to compute the implement FWI and
solve the minimization problem associated with the reduced space approach (3.15) is the
gradient of the misfit function f(m). We discuss here how we can compute it efficiently
in terms of computational cost, and how we can interpret it in terms of wave propagation
and seismic imaging.

3.3.1 Direct method: the Jacobian matrix

Derivation

We start by the straightforward formula coming from the definition of the misfit function
associated with the reduced space approach. We recall it here. We have

f(m) =
1

2
‖dcal(m)− dobs‖2 (3.59)

where
dcal(m) = Ru(m), A(m)u = ϕ (3.60)

To obtain the gradient of f(m), we look at its first-order Taylor expansion. Let p ∈ RM ,
we have

f(m+ p) =
1

2
‖dcal(m+ p)− dobs‖2 =

1

2
‖dcal(m) + J(m)p− dobs‖2 +O(‖p‖2) (3.61)

where J(m) is the Jacobian operator defined by

J(m) =
∂dcal
∂m

(3.62)

In details, J(m) is a rectangular matrix of N rows and M columns, such that

J(m) =


∂dcal,1
∂m1

∂dcal,1
∂m2

. . .
∂dcal,1
∂mM

∂dcal,2
∂m1

∂dcal,2
∂m2

. . .
∂dcal,2
∂mM

...
...

...
∂dcal,N
∂m1

∂dcal,N
∂m2

. . .
∂dcal,N
∂mM

 (3.63)

Here, M is the total number of discrete parameters describing the medium, while N is the
total number of discrete data. In the assumption where Ns = 1, we have

N = Nr ×Nt (3.64)

where Nt is the number of time steps obtained after discretization of the wave equation.
We can develop the previous expression (3.61) to obtain

f(m+ p) =
1

2
‖dcal(m)− dobs‖2 + (J(m)p, dcal(m)− dobs) +O(‖p‖2)

= f(m) +
(
p, J(m)T (dcal(m)− dobs)

)
+O(‖p‖2).

(3.65)

We recall here the formal first-order Taylor development of the misfit function f(m)

f(m+ p) = f(m) + (p,∇f(m)) +O(‖p‖2). (3.66)

By identification between (3.65) and (3.66), we deduce that

∇f(m) = J(m)T (dcal(m)− dobs) (3.67)
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Physical interpretation

How can we interpret this formula in terms of wave propagation? We need to figure out
what is the physical meaning behind the Jacobian operator. Let us consider the general
wave equation

A(m)u = ϕ (3.68)

where A(m) stands for a general wave equation operator, u is the wavefield, and ϕ is
the seismic source. We derive this equation with respect to the model parameter mi ∈
R, 1 ≤ i ≤ M . The model parameter mi has to be understood as one entry of the
discrete vector m ∈ RM . Therefore it corresponds to the value of m at a specific spatial
position denoted by i. If the wave equation is discretized using a finite-difference method,
it would correspond exactly to one node of the Cartesian grid used to discretized the wave
equation.

∂A

∂mi
u+A(m)

∂u

∂mi
= 0 (3.69)

Therefore we have

A(m)
∂u

∂mi
= − ∂A

∂mi
u (3.70)

and
∂u

∂mi
= −A(m)−1 ∂A

∂mi
u. (3.71)

This shows that the quantity ∂u
∂mi

is the solution of the wave equation with a source term

− ∂A
∂mi

u. The latter source term corresponds the incident wavefield u multiplied by the

operator ∂A
∂mi

. This operator is in general very sparse, and localized around the position
i. Just for the sake of simplicity, we can thus do the assumption

∂A

∂mi
u ' ui(t) (3.72)

where ui(t) denotes the value of the incident wavefield at the position denoted by i, which
depends on time t. We thus have

∂u

∂mi
' −A(m)−1ui(t) (3.73)

and

R
∂u

∂mi
' −RA(m)−1ui(t) (3.74)

where R is the restriction operator extracting the values of the wavefield at the receiver
locations. We thus obtain

∂Ru

∂mi
=
∂dcal
∂mi

' −RA(m)−1ui(t) (3.75)

We thus see that the column i of the Jacobian matrix J(m) is nothing else than
the wavefield which would have been scattered by a perturbation at position mi

during the propagation of the field u, and which would have been recorded by
the receivers.

This interpretation is crucial to understand the meaning of the gradient formula (3.67).
We introduce the residuals

∆d = dcal(m)− dobs (3.76)
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The residuals are the difference between the calculated data and the observed data. The
aim of FWI is to reduce this difference, such that dcal(m) is as close as possible from dobs.
The residuals can be seen as what remains to be interpreted through FWI by modifying
the current model parameter m, assuming the wave propagation model A(m).

Following the formula (3.67), we have

∇f(m)i =
N∑
j=1

JTij∆dj =
N∑
j=1

Jji∆dj =

Nr∑
r=1

∫ T

0

∂dcal
∂mi

(xr, t)∆d(xr, t) (3.77)

This last equality comes from the fact that the summation over the N indices representing
the data space imply a summation over the receivers Nr and a summation over time time
indices Nt that we have replaced here by its continuous version (integral in time) for the
sake of the interpretation.

Indeed, equation (3.77) reveals that each component i of the gradient is built as
the summation over the receivers of the zero-lag time correlation between the
residuals ∆d and the wavefield which would have been scattered by a perturba-
tion mi of the medium at the spatial position i.

This interpretation makes clear that the gradient is a first-order scattering interpreta-
tion of the residuals. We can see the construction of the gradient as if each position of
space was perturbed, producing an associated scattered wavefield following the propaga-
tion of the incident wavefield u. Each scattering response is correlated with the residuals
as if to test if the scattering response correlated constructively or destructively. If the
correlation is constructive, the entry in the gradient is important. If the correlation is
destructive, the entry in the gradient is negligible. Following the iterative minimization
scheme, these model perturbation will be added (up to a scaling and a multiplication by
the inverse Hessian, which will be discussed later) to the current model estimate.

A graphical illustration of this interpretation is provided in Figure 3.3.1
While this interpretation is crucial to understand the mechanism behind FWI, in prac-

tice the formula (3.67) is never implemented. Indeed, it would require to compute the
scattered wavefield in each spatial location 1 ≤ i ≤ M , which is strictly impracticable.
For this reason, the FWI actual implementation relies on another gradient computation
strategy, known as the adjoint state strategy.
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Figure 3.4: In this Figure, we consider a homogeneous background and three localized
perturbations behaving as scatterers (2 black and 1 green circles). AN array of receivers
is represented in dashed red line. The source is located in the middle of the receiver array.
On the top left Figure, the scattering response recorded by the receivers corresponding
to a perturbation located at the green circle position is presented. This correspond to
one column of the Jacobian matrix, associated with this medium perturbation. On the
top right Figure, we have the residuals obtained when dobs is computed in the medium
containing the three scatterers and the calculated data dcal(m) is computed in the medium
without any scatterer. We see the imprint of the three missing perturbation in the data.
In this case, the gradient at the position of the green circle will correlate constructively
with the residuals: we see that the scattering response of the perturbation at the green
circle corresponds to one of the scattering response in the residuals. Therefore the gradient
will indicate to update the current model estimate m with a perturbation located at the
position of the green circle.
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3.3.2 Adjoint state method

The adjoint state strategy derives from control theory (Lions, 1968), and has been applied
in seismic imaging first by (Chavent, 1974). A recent review of the application of the
adjoint state method in geophysics is presented in (Plessix, 2006). Here we expose the
main principle of the method before we present it in the particular case of 1D constant
density acoustic wave equation.

General formalism

We recall the Lagrangian operator

L(m,u, dcal, λ, µ) = ‖dcal − dobs‖2 + (A(m)u− ϕ, λ)W + (dcal −Ru, µ)D . (3.78)

with the previous definition of the scalar products and norm.
In the case where u is the solution of the wave equation, we have

A(m)u = ϕ (3.79)

We denote this solution by u(m). In the same spirit, when decal is extracted from u(m)
we denote it by

dcal(m) = Ru(m). (3.80)

We thus have
L(m,u(m), dcal(m), λ, µ) = ‖dcal(m)− dobs‖2 = f(m) (3.81)

Therefore, we can relate the gradient of f(m) to the Lagrangian operator in this case,
simply by deriving the latter equation with respect to the model parameters m. We
obtain

L(m,u(m), dcal(m), λ, µ)

∂m
= ∇f(m) (3.82)

If we expand the left hand side, we obtain(
∂A

∂m
u, λ

)
T

+
L(m,u(m), dcal(m), λ, µ)

∂u

∂u(m)

m
+
L(m,u(m), dcal(m), λ, µ)

∂dcal

∂dcal(m)

m
= ∇f(m)

(3.83)

where (., )T is a scalar product in a space yet to be precise. We can recognize in ∂u(m)
m and

∂dcal(m)
m operators close from the Jacobian operator, which we do not want to compute.

We therefore look for adjoint variables λ and µ such that

L(m,u(m), dcal(m), λ, µ)

∂u
= 0

L(m,u(m), dcal(m), λ, µ)

∂dcal
= 0

(3.84)

Interestingly, we see that these two equation belong to the KKT conditions discussed in the
beginning of this chapter. To compute λ and µ satisfying the two latter equations, we need
to express the derivatives of the Lagrangian with respect to u and dcal respectively. To
this purpose, we consider v ∈ W and d ∈ D to obtain the first order Taylor developments.
We have

L(m,u+ v, dcal, λ, µ) = ‖dcal − dobs‖2 + (A(m)(u+ v)− ϕ, λ)W + (dcal −R(u+ v), µ)D .
(3.85)
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Therefore

L(m,u+ v, dcal, λ, µ) = L(m,u, dcal, λ, µ) + (A(m)v, λ)W + (dcal −Rv, µ)D . (3.86)

Hence

L(m,u+ v, dcal, λ, µ) = L(m,u, dcal, λ, µ) +
(
v,A(m)Tλ

)
W +

(
v,−RTµ

)
W , (3.87)

and
L(m,u+ v, dcal, λ, µ) = L(m,u, dcal, λ, µ) +

(
v,A(m)Tλ−RTµ

)
W . (3.88)

This shows that
L(m,u(m), dcal(m), λ, µ)

∂u
= A(m)Tλ−RTµ (3.89)

Similarly, we have

L(m,u, dcal + d, λ, µ) = ‖dcal + d− dobs‖2 + (dcal + d−Ru, µ)D . (3.90)

Therefore

L(m,u, dcal+d, λ, µ) = ‖dcal−dobs‖2 +(d, dcal−dobs)D+O(‖d‖2) (d, µ)D . (dcal −Ru, µ)D ,
(3.91)

and

L(m,u, dcal + d, λ, µ) = L(m,u, dcal, λ, µ) + (d, dcal − dobs + µ)D +O(‖d‖2). (3.92)

Hence
L(m,u(m), dcal(m), λ, µ)

∂dcal
= dcal − dobs + µ (3.93)

We thus obtain that system (3.84) is equivalent to

A(m)Tλ−RTµ = 0
dcal − dobs + µ = 0

(3.94)

which can be rewritten as
A(m)Tλ = RTµ
µ = dobs − dcal

(3.95)

The latter two equations show that to cancel the terms of the gradient expression in
(3.83), the adjoint states λ and µ need to be computed such that

1. µ is equal to the opposite of the residual ∆d introduced earlier;

2. λ is the solution of an adjoint equation associated with the operator A(m)T with
a source term equal to RTµ that is, following the first equation, the residuals ∆d
projected back into the wavefield space W to act as a regular wavefield source

This result is a key for an efficient implementation of FWI. The gradient ∇f(m) can
be computed as

∇f(m) =

(
∂A

∂m
u, λ

)
T

(3.96)

where u is the incident field solution of the wave equation

A(m)u = ϕ (3.97)
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and λ is the adjoint field, solution of the adjoint wave equation

A(m)Tλ = −RT∆d. (3.98)

In practice, wave equation operators are self adjoint, and we are going to see that the
transpose here implies that the wavefield λ is solution of the same wave equation as u,
except for the source term, which is equal to the residuals backprojected from the receiver
positions. In addition, the adjoint field λ is computed backward in time instead of
being computed forward in time as it is the case for u. To have a better insight where
this backpropagation in time comes from, we investigate in details the 1D constant density
acoustic case in the following.

1D constant density acoustic approximation

Let us consider now the special case of 1D constant density acoustic approximation. In
this frame, m = VP and the wave equation

A(m)u = ϕ (3.99)

becomes
1

V 2
P

∂2u

∂t2
− ∂2u

∂x2
= ϕ (3.100)

with initial conditions

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0 (3.101)

and homogeneous Dirichlet boundary conditions

∀x ∈ ∂Ω, u(x, t) = 0. (3.102)

The Lagrangian operator is going to account for all the constraints defining the forward
problem, therefore we add terms to account for the initial conditions and the boundary
conditions. We introduce the adjoint variables

φ1(x), φ2(x), x ∈ Ω (3.103)

to account for the initial conditions and

φ3(x, t), (x, t) ∈ ∂Ω× [0, T ] (3.104)

to account for the boundary conditions.

We also introduce the scalar product associated to the boundary functions (., .)Ω and
(., .)∂Ω×[0,T ] such that

(u, v)Ω =

∫
Ω
u(x)v(x)dx, (3.105)

and

(u, v)∂Ω×[0,T ] =

∫ T

0

∫
∂Ω
u(x, t)v(x, t)dxdt. (3.106)
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The Lagrangian operator becomes

L(VP , u, dcal, λ, µ, φ1, φ2, φ3) =

‖dcal − dobs‖2 +

(
1

V 2
P

∂2u

∂t2
− ∂2u

∂x2
− ϕ, λ

)
W

+ (dcal −Ru, µ)D

+ (u(x, 0), φ1)Ω +

(
∂u(x, 0)

∂t
, φ2

)
Ω

+ (u, φ3)∂Ω×[0,T ]

(3.107)

To obtain the equations for the adjoint variables, we have seen in the general case that
we need to cancel the first order derivatives of the Lagrangian operator with respect to u
and dcal. To do so, we proceed as in the general case by first computing the first-order
Taylor’s development with respect to these two variables to obtain the corresponding par-
tial derivatives.

The first-order Taylor’s development of the Lagrangian with respect to u is given by
considering the quantity

L(VP , u+ v, dcal, λ, µ) =

‖dcal − dobs‖2 +

(
1

V 2
P

∂2(u+ v)

∂t2
− ∂2(u+ v)

∂x2
− ϕ, λ

)
W

+ (dcal −R(u+ v), µ)D

+ (u(x, 0) + v(x, 0), φ1)Ω +

(
∂u(x, 0)

∂t
+
∂v(x, 0)

∂t
, φ2

)
Ω

+ (u+ v, φ3)∂Ω×[0,T ]

(3.108)

We have

L(VP , u+ v, dcal, λ, µ) = L(VP , u, dcal, λ, µ)

+

∫
Ω

∫ T

t=0

(
1

V 2
P

∂2v(x, t)

∂t2
− ∂2v(x, t)

∂x2

)
λ(x, t)dxdt

+

Nr∑
r=1

∫ T

t=0
(Rv)(xr, t)µ(xr, t)dt

+

∫
Ω
v(x, 0)φ1(x)dx+

∫
Ω

∂v(x, 0)

∂t
φ1(x)dx+

∫
∂Ω

∫ T

0
v(x, t)φ3(x, t)dxdt

(3.109)

Let us consider the first term of the right hand side. We are going to use integration
by parts (in time and space). A first integration by part in time gives∫

Ω

∫ T

t=0

1

V 2
P

∂2v(x, t)

∂t2
λ(x, t)dxdt = −

∫
Ω

∫ T

t=0

1

V 2
P

∂v(x, t)

∂t

∂λ(x, t)

∂t
dxdt

+

∫
Ω

1

V 2
P

∂v(x, 0)

∂t
λ(x, 0)dx−

∫
Ω

1

V 2
P

∂v(x, T )

∂t
λ(x, T )dx

(3.110)
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A second integration by part in time gives

∫
Ω

∫ T

t=0

1

V 2
P

∂2v(x, t)

∂t2
λ(x, t)dxdt =

∫
Ω

∫ T

t=0
v(x, t)

1

V 2
P

∂2λ(x, t)

∂t2
dxdt

+

∫
Ω

1

V 2
P

∂v(x, 0)

∂t
λ(x, 0)dx−

∫
Ω

1

V 2
P

∂v(x, T )

∂t
λ(x, T )dx

−
∫

Ω

1

V 2
P

v(x, 0)
∂λ(x, 0)

∂t
dx+

∫
Ω

1

V 2
P

v(x, T )
∂λ(x, T )

∂t
dx

(3.111)

In addition, an integration by part in space gives

∫
Ω

∫ T

t=0

∂2v(x, t)

∂x2
λ(x, t)dxdt = −

∫
Ω

∫ T

t=0

∂v(x, t)

∂x

∂λ(x, t)

∂x
dxdt+

∫ T

t=0

∫
∂Ω
v(x, t)

∂λ(x, t)

∂x
dxdt

(3.112)

A second integration by part in space yields

∫
Ω

∫ T

t=0

∂2v(x, t)

∂x2
λ(x, t)dxdt =

∫
Ω

∫ T

t=0
v(x, t)

∂2λ(x, t)

∂x2
dxdt+

∫ T

t=0

∫
∂Ω
v(x, t)

∂λ(x, t)

∂x
dxdt

−
∫ T

t=0

∫
∂Ω

∂v(x, t)

∂x
λ(x, t)dxdt

(3.113)

Before assembling the results, a last technical step remains to be investigated. Based
on the definition of the restriction operator, we have

Nr∑
r=1

∫ T

t=0
(Rv)(xr, t)µ(xr, t)dt =

Nr∑
r=1

∫ T

t=0

∫
Ω
δ(x− xr)v(x)dxµ(xr, t)dt (3.114)

Therefore we have

Nr∑
r=1

∫ T

t=0
(Rv)(xr, t)µ(xr, t)dt =

∫ T

t=0

∫
Ω

Nr∑
r=1

µ(xr, t)δ(x− xr)v(x)dxdt (3.115)

Based on all the previous integration by parts and this last rewriting, we obtain the
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following identity

L(VP , u+ v, dcal, λ, µ) = L(VP , u, dcal, λ, µ)

+

∫
Ω

∫ T

t=0

(
1

V 2
P

∂2λ(x, t)

∂t2
− ∂2λ(x, t)

∂x2

)
v(x, t)dxdt

+

∫ T

t=0

∫
Ω

Nr∑
r=1

µ(xr, t)δ(x− xr)v(x)dxdt

+

∫
Ω
v(x, 0)φ1(x)dx+

∫
Ω

+
∂v(x, 0)

∂t
φ1(x)dx+

∫
∂Ω

∫ T

0
v(x, t)φ3(x, t)dxdt

+

∫
Ω

1

V 2
P

∂v(x, 0)

∂t
λ(x, 0)dx−

∫
Ω

1

V 2
P

∂v(x, T )

∂t
λ(x, T )dx

−
∫

Ω

1

V 2
P

v(x, 0)
∂λ(x, 0)

∂t
dx+

∫
Ω

1

V 2
P

v(x, T )
∂λ(x, T )

∂t
dx

+

∫ T

t=0

∫
∂Ω
v(x, t)

∂λ(x, t)

∂x
dxdt−

∫ T

t=0

∫
∂Ω

∂v(x, t)

∂x
λ(x, t)dxdt

(3.116)
This makes possible the following rewriting in terms of scalar products

L(VP , u+ v, dcal, λ, µ) = L(VP , u, dcal, λ, µ)

+

(
1

V 2
P

∂2λ(x, t)

∂t2
− ∂2λ(x, t)

∂x2
+

Nr∑
r=1

µ(xr, t)δ(x− xr), v

)
W

+

(
φ1(x) +

∂λ(x, 0)

∂t
, v(x, 0)

)
Ω

+

(
φ2(x) + λ(x, 0),

∂v(x, 0)

∂t

)
Ω

+

(
φ3(x, t) +

∂λ(x, t)

∂x
, v(x, t)

)
∂Ω×[0,T ]

−
(

1

V 2
P

λ(x, T ),
∂v(x, T )

∂t

)
Ω

+

(
1

V 2
P

∂λ(x, T )

∂t
, v(x, T )

)
Ω

−
(
λ(x, t),

∂v(x, t)

∂x

)
∂Ω×[0,T ]

(3.117)
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We thus have

∀v ∈ W,
∂L(VP , u, dcal, λ, µ)

∂u
.v = 0 ⇐⇒



1

V 2
P

∂2λ(x, t)

∂t2
− ∂2λ(x, t)

∂x2
+

Nr∑
r=1

µ(xr, t)δ(x− xr) = 0

φ1(x) +
∂λ(x, 0)

∂t
= 0

φ2(x) + λ(x, 0) = 0

φ3(x, t) +
∂λ(x, t)

∂x
= 0

λ(x, T ) = 0

∂λ(x, T )

∂t
= 0

λ(x, t) = 0 x ∈ ∂Ω

(3.118)

For the derivative of the Lagrangian with respect to dcal, the previous derivation in
the general case remains valid here, and we have

∂L(VP , u, dcal, λ, µ)

∂dcal
= dcal − dobs + µ (3.119)

Putting everything together thus yields the following systems for the adjoint variable
λ, µ, φ1, φ2, φ3 

1

V 2
P

∂2λ(x, t)

∂t2
− ∂2λ(x, t)

∂x2
= −

Nr∑
r=1

µ(xr, t)δ(x− xr)

µ(xr, t) = dcal(xr, t)− dobs(xr, t)

λ(x, T ) = 0

∂λ(x, T )

∂t
= 0

λ(x, t) = 0 x ∈ ∂Ω

φ1(x) = −∂λ(x, 0)

∂t

φ2(x) = −λ(x, 0)

φ3(x, t) = −∂λ(x, t)

∂x

(3.120)

This derivation is important as it clearly illustrates how the adjoint field is the solution
of the same wave equation as the incident field, except that it is defined through final
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conditions and that the source term corresponds to the residuals.

Now the gradient term needs to be made explicit in the 1D acoustic approximation.
We have

∂L(VP , u, dcal, λ, µ)

∂VP
=

∫ T

0

∂

∂VP

∫
Ω

(
1

V 2
P

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
− ϕ(x, t)

)
λ(x, t)dxdt

= − 2

V 3
P

∫ T

0

∂2u(x, t)

∂t2
λ(x, t)dt

(3.121)
We recover the fact that the gradient in this case is computed as the zero-lag time corre-
lation of the incident wavefield u(x, t) and the adjoint wavefield λ, scaled by the quantity
− 2
V 3
P

, with λ solution of the adjoint wave system (3.120).

3.3.3 Physical interpretation of the gradient in FWI

See slides of SESSION 9.

3.3.4 Gradient as a filter in the wavenumber domain

In the frame of imaging, it is important to relate the wavenumber content of the gradi-
ent to the parameters the seismic imaging experiment : acquisition, velocity, frequency
content of the data. This is proposed in the papers of Wu and Toksöz (1987) and Sirgue
(2003) through a plane wave analysis of the gradient.

In this frame, we consider a simple 2D case with a single source/receiver couple. We
assume that the incident field (respectively the adjoint field) is a monochromatic field
propagating in the direction denoted by the unit vector ps, from the source), (respectively
pr, from the receiver). We have

u(x, ω) = eik0ps.x, λ(x, ω) = eik0pr.x, (3.122)

where x = (x, z) ∈ R2 and k0 is given by

k0 =
2πω

c0
. (3.123)

In equations (3.122) and (3.123) ω is the frequency of the monochromatic plane waves,
while c0 is the velocity of the medium.

As a zero lag cross-correlation of the two wavefields (neglecting the weighting term),
the gradient can be approximated as the product of the two monochromatic field. Indeed,
following the convolution theorem, the cross-correlation in the time-domain is equivalent
to a product in the frequency-domain. Therefore we have the following approximation for
the gradient

∇f ' eik0ps.xeik0pr.x = eik0(ps+pr).x (3.124)

The situation is illustrated in Figure 3.5 where we consider a diffracting point at x.
The wavenumber content of the gradient, following equation (3.124), is

k = k0 (ps + pr) . (3.125)
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Figure 3.5: S and R denote the source and receiver position at the surface. ps and pr are
the vectors in the direction of the rays connecting the diffraction point x to the source
and receiver respectively. These rays can be computed in the asymptotic approximation.
In the plane wave approximation we consider here, these rays are straight. The angle θ is
the angle formed by the vector ps and pr, while the angle φ is the sum of the angles φs
and φr corresponding to the angle made by ps and pr with the vertical.

We can express it through the illumination angle θ formed by the two vectors ps and pr

at point x. They connect the diffracting point x to the source S and the receiver R. In
this plane wave analysis, we consider that the ray connecting them are straight. We have

‖k‖2 = k2
0‖ps + pr‖2 = k2

0

(
‖ps‖2 + ‖pr‖2 + 2ps.pr

)
(3.126)

We use the fact that ps and pr are unit vector (their norm is equal to 1), and that the
scalar product between two vectors is given by the product of their norm and the cosine
of the angle between them to obtain

‖k‖2 = k2
0‖ps + pr‖2 = 2k2

0 (1 + cos θ) (3.127)

Here we use the following trigonometric identity

cos 2x = cos(x+ x) = cos2 x− sin2 x = cos2 x− (1− cos2 x) = 2 cos2 x− 1. (3.128)

Therefore
1 + cosx = 2 cos2

(x
2

)
. (3.129)

Hence

‖k‖2 = 4k2
0 cos2

(
θ

2

)
, (3.130)

and

‖k‖ = 2k0 cos

(
θ

2

)
(3.131)

that is

k =
4πω

c0
cos

(
θ

2

)
(cosφ, sinφ) (3.132)

where
φ = φs + φr (3.133)
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with φs and φr being the angle made by ps and pr with the vertical direction (see Fig. 3.5).

Through the formula (3.132), a point in the wavenumber space can be attached to each
source/receiver pair. An example is provided in Figure 3.6, where we consider a velocity
c0 = 2000m.s−1, a mean frequency f0 = 5 Hz, a target point at x=5000 m and z = −3000
m, and a fixed spread acquisition with 101 sources and 101 receivers located close to the
surface at z= -5 m, spanning the horizontal axis from x = 0 m to x = 10000 m, with an
interval distance ∆x = 100 m.

Figure 3.6: kx and kz denotes the horizontal and vertical wavenumber component in the
2D approximation. Each point represented here corresponds to a couple of sources and
receivers. The mean frequency f0 is equal to 5 Hz. The velocity c0 is equal to 2000 m.s−1.
An ensemble of 101 sources and receivers is considered here, spanning the horizontal axis
from x = 0 m to x = 10000 m, with an interval distance between each source and receiver
∆x = 100 m.

Formula (3.132) is very important, as it tells what is the wavenumber content injected
in the model through the gradient update, depending on the illumination angle θ, the fre-
quency content of the data ω, and the velocity c0. As expected, for wavenumber content
varies linearly the data frequency: low frequency data fills the low wavenumber content
of the model, while high frequency content gives the information on higher wavenumber
content (higher resolution).

Interestingly, one can also plays on the illumination angle to modify the wavenumber
content injected in the model. This is important because in practice the frequency of the
data is constrained by the source which is available. In seismic exploration, propagating
low frequency content (lower than 3 Hz) requires very energetic source, which is not always
feasible. Accessing low wavenumber content is thus an issue. This can be partly overcome
by playing with the acquisition design. For illumination angles close from 180 degrees,
equation (3.132) tells that the wavenumber content of the gradient tends to 0. Accessing
such large illumination angles (especially at depth) requires to separate sources and re-
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ceivers by a large distance (offset). The larger the offset is, the deeper balistic/transmitted
energy recorded by the source/receiver couple is.

In practice, if streamer acquisition is used, the maximum offset is limited by the size
of the cables towed by the acquisition ships. In modern acquisition, streamer length can
reach around 10 km long. Another strategy, more and more used both in the academy and
the industry, consists in using receiver spanned on the sea floor, named as Ocean Bottom
Station (OBS). In this frame, the acquisition ships can shoot further aways from the OBS
than in conventional streamer acquisition, and offsets can reach several tens of kilometers,
provided the recording time is sufficiently long.

On the other hand, formula (3.132) also tells that higher resolution information cor-
responds to illumination angle close to 0. This corresponds to reflected energy, instead of
balistic/transmitted energy for large illumination angles. In other words, high resolution
information is contained in the reflection part of the data. Correctly interpreting the re-
flections will provide the highest resolution information on the subsurface model.

Finally, one can also see that the wavenumber content of the gradient is directly linked
to the inverse of the velocity value. In deep part, where the velocity reaches 4000 m.s−1 and
higher values, lower resolution is thus expected, compared with shallower/less consolidated
zones where the P-wave velocity can be around 2000 to 3000 m.s−1. This also means that
higher resolution should be expected from the reconstruction of S-wave velocity compared
with P-wave velocity in the frame of elastic full waveform inversion, as S-wave velocity is
always lower than the P-wave velocity.

See illustration slides of SESSION 10.

3.4 HPC aspects of FWI

3.4.1 Frequency-domain implementations

In the early implementations of FWI, instead of solving dynamic problems, the wave
propagation modeling was converted to the solution of time-harmonic equations. In the
elastic approximation, the time-domain partial differential equations can be written in
compact form as

ρ
∂2u

∂t2
−DCDTu = s (3.134)

Applying a Fourier transform, this leads to the solution of the elliptic problem

− ρω2u−DCDTu = s (3.135)

where the Fourier transform operation symbol is omitted to simplify the notations, and
ω = 2πf is the circular frequency, while f is the frequency of the monochromatic field u
which is computed.

In the acoustic approximation, this comes to the solution of the following elliptic prob-
lem

− ω2P − V 2
P∆P = s (3.136)

This elliptic problem is referred to as Helmholtz problem in the literature.
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After discretization, this comes to the solution of the linear system

(ω2I + V 2
PD)P = −s (3.137)

where D is the discretization of the Laplacian operator ∆ = ∂
∂2x

+ ∂
∂2y

+ ∂
∂2z

.

In terms of gradient computation, the correlation in time of the incident and adjoint
field becomes simply a product between the two monochromatic fields, such that if we
compute the gradient in the acoustic case we obtain

∇f(m) = −2ω2

V 3
P

u(x, ω)λ(x, ω) (3.138)

This simplifies quite significantly the gradient computation step, as we get rid of the time
integral which, as will be explained in the next section, requires careful implementation
when working in the time domain. If multiple frequencies are considered at the same time,
the integration in time is simply replaced by a summation over frequencies, such that the
gradient is given by

∇f(m) = −
∑
ω

2ω2

V 3
P

u(x, ω)λ(x, ω)dω (3.139)

In practice, two strategies exist to solve large scale linear systems

• iterative solvers

• direct solvers

Solution through iterative solvers

Iterative solvers can be good strategies when the conditioning of the linear system is good
(and the spectrum as good properties, namely eigenvalues relatively well separated). Such
iterative solvers are GMRES (Saad, 1986), or conjugate gradient for symmetric positive
definite matrices (Hestenes and Stiefel, 1952). In practice, they do not require too much
memory, because only matrix-vector products need to be computed, and the matrix of the
linear system needs not be assembled explicitly. We speak of matrix-free algorithms. In
addition, they can efficiently benefit from parallel computing architecture, as a matrix-
vector product can be easily parallelized on multiple-core computers.

However, when the condition number of the linear system is bad, or the spectrum
as clustered eigenvalues, then the convergence of iterative solvers might be dramatically
slow, leading to bad computational cost/computational efficiency. The discretization of
the Helmholtz problem yields such ill-conditioned linear systems. Let us see a simple ex-
ample in 1D acoustic.

In this case D is a tridiagonal matrix of the form

D =
1

h2
D0 (3.140)

where

D0 =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 (3.141)
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We can rewrite the Helmholtz system as(
ω2h2

V 2
P

I +D0

)
P = −sh

2

V 2
P

(3.142)

We introduce the matrix A as

A =
ω2h2

V 2
P

I +D0 (3.143)

The minimum wavelength λmin is such that

λmin =
VP,min
f

(3.144)

where VP,min is the minimum value of the P-wave velocity. To have a correct numerical
dispersion with a second-order finite difference scheme, we need to ensure at least 10
discretization point per minimum wavelength, which yields

h =
VP,min

10f
(3.145)

If we assume the medium is homogeneous (constant velocity VP , the coefficient on the
diagonal of A is thus

ω2h2

V 2
P

− 2 =
4π2f2V 2

P

V 2
P 100f2

− 2 =
π2

25
− 2 ' −1.6 (3.146)

A direct observation tells that the matrix is not diagonal dominant for this value on the
diagonal. In this particular case the values of the matrix remain the same but the size
of the matrix increases as the frequency increases, for a given model size, following the
definition of the discretization step. It can be observed numerically that the condition
number of this matrix increases very fast with the size of the matrix.

Designing fast convergence iterative solvers for the Helmholtz equation or Helmholtz-
type equations is a notoriously difficult problem, see for instance (Ernst and Gander, 2012).
In practice, one should rely on specific preconditioning techniques. Preconditioning for a
linear system

Ax = b (3.147)

means considering solving a (left-) preconditioned linear system

PAx = Pb (3.148)

where P is an approximate of A−1 such that the condition number and the spectral prop-
erties of the matrix PA are better than that of the matrix A, or a (right-) preconditioned
linear system

APy = b, x = Py (3.149)

where again P is an approximate of A−1 such that the condition number and the spectral
properties of the matrix AP are better than that of the matrix A.

In practice, numerous strategies have been proposed for efficient and scalable precon-
ditioning operator P for Helmholtz-like equation but none is fully satisfactory. All the
methods finally face scalability issues when considering high frequency problems for which
a large number of wavelengths needs to be propagated.
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Solution through direct solvers

To avoid convergence issues related to the use iterative solvers, FWI implementation for
time-harmonic equations rely on direct solvers. In this frame, a lower/upper triangular
factorization of the matrix A is performed, such that

A = LU (3.150)

with L and U respectively lower and upper triangular matrices. Such a decomposition is
obtained through a Gaussian elimination strategy. Sophisticated parallel Gaussian elimi-
nation algorithms exist today, one instance of solvers implementing it being the MUMPS
solver (MUMPS-team, 2019). MUMPS rely on a multi-frontal strategy to perform parallel
LU decomposition of a given matrix (Amestoy et al., 2000; Duff et al., 1986).

One significant advantage of such direct solver strategy is to benefit from a reduced
computation time for each right hand side as soon as the factorization has been computed.
Indeed, once A is factorized, the problem

Ax = b (3.151)

is equivalent to

LUx = b (3.152)

Defining

y = Ux (3.153)

one solves first

Ly = b (3.154)

then

Ux = y (3.155)

The solution of the linear system thus amounts to the solution of 2 triangular system. For
the lower triangular system, a forward substitution algorithm employed. For the upper
triangular, a backward substitution algorithm is employed. The algorithmic complexity
of these two substitution is linear with the size of the linear system, making them very
efficient from a computational point of view.

The main bottleneck of direct solvers is the factorization step. For large scale matrices,
involving up to billions of entries, the memory requirement to store the factors, even if
the matrix A is sparse, is a challenge. One has to keep in mind that, despite the sparsity
of A, its LU factorization yields dense triangular matrices L and U , which is the main
inconvenient of Gaussian elimination.

Time-harmonic implementation of FWI have thus rely on the use of direct solvers, up
to moderate scale targets (modeling with few tens up to one hundred wavelengths in each
direction in 3D). In this frame, it is possible to take into account all the sources, thanks
to the good computational efficiency of the solving step once the matrix is factorized.

To end up with this time-harmonic/frequency-domain implementation, one could say
that the decimation in frequency of the data is compensated by the ability to consider all
the seismic sources at the same time thanks to the LU decomposition. The redundancy
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of the data makes it possible to design imaging techniques with such frequency decimation.

In terms of parallel implementation, the scalability of the corresponding algorithms
is limited to the scalability of the direct solvers, which is known to be not extremely
satisfactory. For typical applications, the scalability is observed up to few hundred of
processors.

3.4.2 Time-domain implementations

Time domain implementation is more involved than frequency-domain implementation,
however it yields better scalable algorithm, less memory demanding, and therefore makes
it possible to work on large scale targets. This is now the method of choice developed both
in industry and academy.

Gradient implementation

We first review how to build the gradient in practice, using explicit time-stepping schemes,
following the adjoint state strategy. We will again take the acoustic case as a reference to
illustrate the problems and solutions.

The gradient formula in the time domain is given by

∇f(m) = − 2

V 3
P

∫ T

0

∂2u(x, t)

∂t2
λ(x, t)dt (3.156)

Let us introduce v as the second-order derivative in time of the pressure wavefield

v(x, t) =
∂2u(x, t)

∂t2
(3.157)

Therefore

∇f(m) = − 2

V 3
P

∫ T

0
v(x, t)λ(x, t)dt (3.158)

After time discretization, the gradient formula becomes

∇f(m) = − 2

V 3
P

N∑
n=1

vn(x)λn(x)∆t (3.159)

where N is the total number of time steps.
The main difficulty comes from the fact that to compute the summation in time (3.159),

we need to access the wavefields v(x, t) and λ(x, t) at the same time indices simultaneously.
However, v(x, t) is computed from an initial condition, using an explicit time-stepping
scheme, such that we compute iteratively

v0(x), v1(x), v2(x), . . . vN (x) (3.160)

On the other hand, λ(x, t) is backpropagated from a final condition, using also an explicit
time-stepping scheme, such that we compute iteratively

λN (x), λN−1(x), λN−2(x), . . . λ0(x) (3.161)

This is illustrated in Figure 3.7.
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Figure 3.7: Illustration of the gradient building in the time domain following the adjoint
state strategy. Picture taken courtesy of Pengliang Yang (Yang et al., 2016).

This raises questions/difficulties in terms of implementation. One obvious solution to
the problem is to store in time the wavefield v(x, t). It yields the following algorithm.

ALGO1: storing technique

1. Compute v(x, t) from its initial condition and store it at all time steps. We keep in
memory v0(x), v1(x), v2(x), . . . vN (x)

2. Simultaneously backpropagate λ(x, t) and assemble the gradient.
For n = N to n = 0 do :

compute λn(x) in reverse sense

access to vn(x) in the memory

add the contribution λn(x)vn(x) to the gradient

End for

However, this requires potentially a heavy memory load. The number of snapshots
correspond to the total number of time steps, and each snapshot can be already significant
to store in a 3D volume. Consider for instance a mesh of 5003 points, and 4000 time steps.
The total volume in octets to store in memory, in single precision (32 bits precision) is

500× 500× 500× 4000× 4 = 500× 109 (3.162)

which makes 500 GO of RAM. For a reference, a single node of the local HPC machine
Dahu in Grenoble is 32 cores with 192 GO of memory.
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Alternative algorithms have thus been designed in the frame of time-domain FWI im-
plementation, with the objective to reduce the memory requirement. In this frame, the
state-of-the-art algorithm consists in backpropagating the incident field and the adjoint
field at the same time. To do so, a preliminary computation of the incident field from the
initial time to the final time is performed, and the incident field is stored at the final time
in the whole domain, as well as its total time history, but only on the boundaries. A first
publication on this strategy is due to Dussaud et al. (2008). The corresponding algorithm
is sketched below.

ALGO2: incident field backpropagation technique

1. Compute v(x, t) in forward sense from its initial condition and store it at all time
steps only on the boundaries of the domain.
We keep in memory v0(x), v1(x), v2(x), . . . vN−1(x) for x ∈ ∂Ω and vN (x) for
x ∈ Ω

2. Simultaneously backpropagate λ(x, t), v(x, t) and assemble the gradient.
For n = N to n = 0 do :

compute λn(x) in reverse sense

recompute vn(x) in reverse sense

add the contribution λn(x)vn(x) to the gradient

End for

Of course the computation cost of ALGO2 is more expensive than for ALGO1 as we
have to recompute the incident field from its final value and its values stored at the bound-
aries. In total, we have to solve 1 forward propagation problem in step 1, and 2 forward
propagation problems in step 2, which leads to the solution of 3 wave propagation prob-
lems. In ALGO1, we do not have to recompute the wavefield, therefore, we solve only for
2 wave propagation problems.

On the other hand, ALGO2 is much less memory demanding. If we take the previous
example, for a cubic domain of 5003 grid points and 4000 time steps, we have to store

1. 1 final snapshot of the wavefield vN (x) : 5003 × 4 octets

2. the history of the wavefield on the boundaries : 6× 5002 × 4000× 4 octets

The total memory request is thus(
5003 + 6× 5002 × 4000

)
× 4 = 24, 5× 109 (3.163)

The memory demand is thus reduced to 24.5 GO in this case.

ALGO2 is the one chosen in practice, unless very large memory machines are avail-
able, or, as is be discussed later, we have access to very large number of cores, and domain
decomposition can be used in conjunction with parallelism with sources, to reduce the
memory request per computational unit. This is developed in the next section on paral-
lelization.
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Before moving to this point, we need to discuss the specific case, yet very important,
of attenuating media. In some applications, we use a visco-acoustic or visco-elastic mod-
eling of the wave propagation within the subsurface. This is to represent the attenuation
of the waves propagating in the subsurface in specific geologies. Earth is in practice an
attenuating media (part of the energy is dissipated along the propagation, due to multiple
phenomena such as thermal dissipation, cracks, anelastic behavior of the subsurface). This
can be significant in fluid-filled rocks, where a network of fractures is filled with water,
or gas for instance. In this case, the imprint of attenuation is important and need to be
taken into account to reproduce with sufficient fidelity the observed data.

In terms of modeling, there are multiple ways to account for attenuation in the partial
differential equations representing the wave propagation. The most commonly used one is
Maxwell Generalized Body, or Standard Linear Solid model (these two are the same, only
with different names). Mathematically, ordinary differential equations are added to the
PDE’s coming from elastodynamics.

In terms of numerical implementation, this has a strong consequence for the gradient
building step. The backpropagation of the incident wavefield in an attenuating media is
numerically instable. This can be understood as, in reverse computation, at each time
step, the field has to be amplified rather than dissipated, and the consequence is the nu-
merical instability. Exponential increase at each time step cannot be done with sufficient
numerical accuracy, yielding the numerical error to blow up in few number of time steps.
This makes ALGO2 unavailable in the frame of visco-acoustic or visco-elastic modeling.

To face this difficulty, but yet devise lighter memory technique than ALGO1, check-
pointing strategies have been designed. The essence of checkpointing strategy is to do a
preliminary computation of the incident wavefield in forward sense, as in ALGO2, and to
store snapshot of the incident wavefield at specific time steps. For optimality, these can
be distributed following a logarithmic law. Then, the adjoint field is backpropagated from
its final condition, while the incident wavefield is computed in forward sense from the
closest snapshot available. This reduces the additional computational steps, while miti-
gating the total memory requirement. The checkpointing algorithm is sketched in ALGO3.
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ALGO3: checkpointing technique

1. Compute v(x, t) from its initial condition and store it at log(N) distributed time
steps.
We keep in memory vkj (x), j = 1 . . . , log(N) for x ∈ Ω.

2. Backpropagate λ(x, t) and recompute v(x, t) from the closest snapshot to assemble
the gradient.
For n = N to n = 0 do :

compute λn(x) in reverse sense

recompute vn(x) in forward sense from last checkpoint

add the contribution λn(x)vn(x) to the gradient

End for

We see that the memory demand in this case is log2(N) snapshots of the wavefield,
instead of N snapshots if the “store all” ALGO1 is used. However, in terms of computa-
tional cost, the recomputation from the closes checkpoint requires a significant number of
additional computing steps. In the previously introduced example, the memory imprint
of the checkpointing strategy would be

5003 × log2(4000)× 4 ' 1.4957× 109 (3.164)

The memory demand is thus reduced to approximately 1.5 GO in this case, which is even
smaller than the revere computation strategy of ALGO2. However, here the recomputa-
tion effort is more significant.

Finally, let us mention another development proposed in Yang et al. (2016), as an
improvement of conventional checkpointing techniques for gradient computation in atten-
uating media. The leading idea is to control the instability in the reverse propagation of
the incident wavefield by measuring the total energy of the wavefield E(t) defined simply
by

E(t) =

∫
Ω
‖v(x, t)‖2dx. (3.165)

When performing the reverse propagation of the wavefield in the attenuating media, the
numerical instability is detected as soon as the energy of the wavefield departs too far away
from the one which has been recorded when computing the in the forward sense. In this
case, the incident wavefield is recomputed from the closest snapshot, as in conventional
checkpointing strategy. Once the stability is restored, the recomputation of the incident
wavefield in backward sense can be used again, until a new instability is detected or the
initial time step has been reached. This strategy makes possible to perform some backward
computation of the incident wavefield, even in an attenuating media, thus reducing the
number of time steps at which the incident needs to be recomputed, compared with con-
ventional checkpointing strategies. It uses the same number of snapshots of the wavefields
in memory, therefore the memory request is the same as for conventional checkpointing.
This strategy is sketched in ALGO4.
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ALGO4: improved checkpointing technique

1. Compute v(x, t) from its initial condition and store it at log(N) distributed time
steps.
We keep in memory vkj (x), j = 1 . . . , log(N) for x ∈ Ω.
We also compute E(t) and keep it in memory as Eref (t).

2. Backpropagate λ(x, t) and v(x, t) to assemble the gradient. If an numerical instability
is detected, recompute v(x, t) from the closest snapshot.
For n = N to n = 0 do :

compute λn(x) in reverse sense

recompute vn(x) in reverse sense.

If |E(t)− Eref (t)| > tol then recompute vn(x) from closest snapshot.

add the contribution λn(x)vn(x) to the gradient

End for

A comparison of the different proposed algorithms is presented in Figure 3.8. ALGO2
has been introduced as reverse propagation (RP) technique. ALGO4 has been introduced
in the literature as checkpointing assisted reverse-forward simulation (CARFS).

R
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Figure 3.8: Comparison of the different algorithm in terms of memory imprint and recom-
putation ratio R. R is equal to 1 in the case where the incident field is stored (ALGO1).
In the frame of reverse propagation (when it is stable, in non-attenuating media), R is
equal to 2: the incident wavefield is computed twice, or more precisely the number of
time-stepping iterations is multiplied by 2. For checkpointing algorithm (ALGO3), one
can see that the recomputation ratio rapidly increases as soon as the number of stored
snapshots is less than N

2 (a common situation). Finally, we see that the recomputation ra-
tio R associated with CARFS (ALGO4) is much lower than that of checkpointing strategy
for the same number of stored snapshots.
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Parallelization techniques

To make FWI algorithms able to benefit from modern computational architectures, it
is necessary to make them able to exploit parallelism on multi-core computers. While
Moore’s law has been enough to guarantee computational efficiency of sequential algo-
rithms at the end of the XXth century, today computational efficiency is dependent on the
scalability of algorithms, that is their ability to run on multi-core architectures efficiently.

For FWI, there is a first obvious level of parallelism which can be employed for time-
domain algorithm. This is the parallelism on sources. Indeed, the misfit function f(m)
can be rewritten as a summation over sources of sub misfit function depending only on
one specific seismic source, that is

f(m) =

Ns∑
s=1

fs(m), (3.166)

with

fs(m) =
1

2

Nr∑
r=1

∫ T

0
|dcals [m](xr, t)− dobs,s(xr, t)|2dt. (3.167)

In this frame, we also have

∇f(m) =

S∑
s=1

∇fs(m) (3.168)

with

∇fs(m) =

(
∂A

∂m
us[m], λs[m]

)
, (3.169)

or, specifically in the acoustic case

∇fs(m) =
−2

V 3
P

∫ T

0

∂2us
∂t2

λs(t)dt. (3.170)

This means that, for assembling the gradient on a parallel computer, one can distribute
the computation of the contribution associated with each source s, namely ∇fs(m), and
gathers the result as a simple summation of these contributions. Each contribution can
be computed independently, and simultaneously, by different computing units. This is
sketched in the algorithm below.

Gradient computation: parallelism over sources

1. For s = 1 to s = Ns do in parallel

compute ∇fs(m) following ALGOx (x=1,2,3 or 4 depending on user choice)

end do

2. Gather the contribution of each processor on a master processor

∇f(m) =

Ns∑
s=1

∇fs(m)

For practical applications where the number of sources can reach several thousands,
this level of parallelism is very useful. Each time-domain FWI algorithm embeds this par-
allelism level. However, for further efficiency and to decrease the computational time, an
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additional level of parallelism is very often implemented, at the level of the incident and
adjoint wavefield computations.

When explicit time-stepping schemes are employed, it is relatively easy to parallelize
the computation of the time-domain wavefields using domain decomposition methods.
We will not enter into the details of these methods here, but we can mention the main
properties/ideas of this strategy. The main idea is to decompose the computation domain
Ω in subdomains Ωi such that

Ω = ∪Nd
i=1Ωi (3.171)

The solution of the wave propagation problem is computed at each time step in parallel
on each subdomain Ωi. Once the computation associated with the time iteration has been
performed, the domains exchange information on their boundaries with the neighboring
domains, so that they have access to the required information at the next time step to
compute the spatial derivatives at their boundaries.

Compared with previous parallelization level over sources, the implementation of such
domain decomposition methods is slightly more involved. However, in the frame of finite
difference techniques with simple stencil (order 2 or order 4), the communication between
domains is relatively simple. In the frame of spectral element methods, has discretiza-
tion points on the border of the elements are used, the communication between domains
is also relatively simple. Using a Cartesian based mesh makes things easy to locate the
neighboring domains to communicate with. If not, a lookup table has to be built as a
pre-processing step to register who to communicate with before entering the time-loop. A
sketch of the domain decomposition algorithm for explicit time stepping schemes is pre-
sented in the algorithm below.

Wavefield computation: parallelism over subdomains

1. For n = 1 to n = N do (time loop)

For i = 1 to i = Nd do in parallel on each subdomain

compute uni (x), x ∈ Ωi

end do

exchange information with neighboring domains
end do

With these two levels of parallelism combined (sources + domain decomposition), we
can develop time-domain FWI algorithms scalable up to tens of thousands of computing
units (cores). In practice, we might not access easily to machines with so many available
computing units, therefore for practical applications, another algorithm is used on top of
that to reduce the overall computational cost of FWI. An illustration of such double level
of parallelization is given in Figure 3.4.2.

Random source subsampling

We mentioned in the paragraph on frequency-domain/time-harmonic FWI implementa-
tion that the use of direct solvers makes possible to use the whole seismic sources at a
time for a given inversion. This use of massively redundant data compensates for the
severe decimation which consists in considering single or few monochromatic fields instead
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Figure 3.9: Illustration of the double level of parallelism for time-domain implementation
of FWI algorithms.

of time-dependent wavefields.

Conversely for time-domain FWI, we do not consider any decimation in time, and
therefore it is reasonable to decimate the data on the source side. In order not to in-
troduce to strong artifacts in the reconstructed models yet, this needs to be done in a
“reasonable” manner. One conventionally used is the choice of a random source subsam-
pling algorithm.

The idea is the following: instead of taking into account the total number of seismic
sources at the same time, we proceed to the inversion of small subsets of the datasets. The
source are randomly chosen in each subset. The idea is to use non overlapping datasets,
such that the pool of available sources always decrease and that each source is used at
least once in the inversion.

3.5 Practical applications

See slides of SESSION 12.
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