
Computers and Fluids 227 (2021) 105018 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

Hybrid particle-grid methods for the study of differential diffusion in 

turbulent flows 

Simon Santoso 

a , Jean-Baptiste Lagaert b , Guillaume Balarac 

c , d , ∗, Georges-Henri Cottet a 

a Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Grenoble, 380 0 0, France 
b Laboratoire de Mathématiques Orsay, Université Paris Saclay, Paris, 750 0 0, France 
c Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, Grenoble, France 
d Institute Universitaire de France (IUF), Paris, France 

a r t i c l e i n f o 

Article history: 

Received 25 February 2021 

Revised 5 May 2021 

Accepted 26 May 2021 

Available online 5 June 2021 

Keywords: 

Particle method 

Finite-volume method 

Differential diffusion 

Passive scalar 

a b s t r a c t 

This paper is devoted to the development and application of hybrid methods combining, on the one hand, 

semi-lagrangian methods for the advection-diffusion of scalars, and, on the other hand, either finite vol- 

ume or spectral methods, depending on the flow geometry, for the Navier-Stokes equations. A particular 

focus is made on the accuracy and scalability of the methods. These methods are then used to study 

differential diffusion of scalars on two canonical cases: Homogeneous Isotropic Turbulence and a jet flow. 

We first characterize differential diffusion in terms of spectral distribution. We then use the Reynolds 

decomposition to bring out the different mechanisms involved in the energy budget of the scalar and we 

analyze their spatial distribution. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The advection-diffusion of a scalar function in turbulent flows 

s a phenomenon that occurs in various situations. In heat transfer, 

he scalar function is the temperature [1] . In the context of mass- 

ransfer, [2] investigates the concentration of gases in a canal. In 

ombustion, the advected scalar can also be the mixture fraction 

etween the different injected components of the mix [3] . In the 

ase of a non-diffusive scalar, it can be captured by its level sets, 

hich leads to the numerical treatment of multiphase turbulent 

ows [4] . 

Passively advected scalars mainly differ by their diffusivity 

roperties characterized by the Schmidt number (or Prandtl num- 

er, when temperature is considered), the viscosity-to-diffusivity 

atio. 

Although direct numerical simulation is a powerful tool to pre- 

ict the dynamics of scalars, the case of scalars with high Schmidt 

umbers remains a challenge. Indeed, for Schmidt numbers, Sc, 

arger than one, the Kolmogorov scale ηK , defined as the smallest 

ariation scale of the velocity, is linked with the Batchelor scale ηB , 

he smallest variation scale of one scalar, by the following relation 
∗ Corresponding author at: Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 

renoble, France. 
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B = 

ηK √ 

Sc 
. (1) 

he above relation shows that for Schmidt numbers larger than 

ne, the scalar dynamics occurs at scales smaller than the Kol- 

ogorov scale, whereas the range of scalar dynamics scales is 

maller than the range of turbulent scales for Schmidt number 

maller than one [5] . As a consequence, the accurate treatment 

f scalar advection-diffusion at high Schmidt numbers requires a 

ner mesh for the scalar than for the momentum. This is the rea- 

on why numerical studies are in general restricted to moderate 

chmidt numbers (see for instance [6] ). 

The case of high Schmidt scalar advection-diffusion has how- 

ver been treated in several papers such as [7] where authors stud- 

es several statistics of scalar with Schmidt number up to 64 and 

 turbulent Reynolds number equal to R λ = 140 , using a spectral 

ethod on a unique mesh. In such simulations, the velocity is 

learly over-resolved. The multi-scale nature of the problem natu- 

ally leads to using two different grids to solve the Navier-Stokes 

quations on the one hand, and, on the other hand, the scalar 

dvection-diffusion equations for the scalars. Gotoh et al. [8] de- 

cribe a method combining a spectral method for the Navier Stokes 

quation and compact finite-difference schemes for simulations of 

ecaying turbulence on different grids. The Schmidt numbers con- 

idered in this study are 1 and 50. More recently, [9] introduced a 

ethod combining a spectral method to solve Navier-Stokes and a 

igh order semi-lagrangian particle method to study scalars with 

https://doi.org/10.1016/j.compfluid.2021.105018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.105018&domain=pdf
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chmidt numbers up to 128. It was demonstrated that the CFL-free 

ature of the particle method and its high parallel scalability led to 

ubstantial savings over a pure spectral method achieving a com- 

arable accuracy. The idea of using different grids for the flow and 

he scalar was also used in [10] for Rayleigh Benard convection in 

quare cavities discretized by finite-differences. 

These methods allow to investigate the fundamental physics of 

urbulent scalar transport but they are not suited to industrial ap- 

lications. In this paper we extend the work of [9] to study dif- 

erential diffusion in homogeneous turbulence and in jets. For the 

ase of jets we propose a method combining a semi-lagrangian 

article method with a finite-volume solver for the Navier-Stokes 

quations. The finite-volume solver YALES2 [11] is chosen for its 

ood parallel performance and because it is widely used in the 

tudy of reacting flows. In order to reach high resolution with op- 

imal efficiency, special care must be given to the parallel imple- 

entation of the particle-grid coupling. The hybrid method will be 

sed to study the mixing of scalars in the context of Homogeneous 

sotropic Turbulence and a jet flow for values of the Schmidt num- 

er higher than what was previously done. 

Many studies have been devoted to the mixing of scalars in a 

urbulent flows [12,13] . If two scalars are seeded in exactly the 

ame manner, difference in their mixing dynamics are only due to 

he difference of their molecular diffusivity. This is the differential 

iffusion phenomenon [14] . Due to the molecular origin of the dif- 

erential diffusion, it is expected that this phenomenon could be 

egligible at high enough Reynolds number. However, experimen- 

al studies show that differential diffusion persists at high Reynolds 

nd/or Schmidt numbers [15] . The proposed hybrid approach is in 

articular used to better understand the differential diffusion phe- 

omenon occurring for the mean and turbulent fields, by using 

uantities based on the scalar difference. 

The article is structured as follows. In the first section we re- 

all the definition of semi-lagrangian particle methods for trans- 

ort equations. We define the coupling with finite-volume solvers 

nd its parallel implementation. In Section 3 we discuss the accu- 

acy and the computational efficiency of the hybrid method com- 

ared to a pure finite-volume method. Finally, in Section 4 we ap- 

ly the hybrid method to study differential diffusion in two con- 

gurations : first, in the case of homogeneous turbulence,with a 

article spectral hybrid method along the lines of [9] , then, in the 

ase of a jet flow, with the hybrid particle finite-volume method. 

. Numerical methods and parallel implementation 

In this section some details are given about the numerical 

ethod used to solve the coupled system equations, and their im- 

lementation. 

For incompressible flows, the dynamics of the flow is governed 

y the Navier-Stokes equations, 

∂v 

∂t 
+ v · ∇v = −∇ 

(
p 

ρ

)
+ ν�v (2) 

 · v = 0 (3) 

ith v the velocity field, p the pressure field, and ν and ρ the 

iscosity and the density, respectively. The dynamics of a passive 

calar, θ , seeded in the flow is governed by a advection-diffusion 

quation, 

∂θ

∂t 
+ v · ∇θ = κ�θ (4) 

here κ is the diffusion coefficient of θ . The Schmidt number is 

hen defined as Sc = ν/κ . 

As previously said, for Schmidt number larger than one the 

calar dynamics develops at smaller scales than the scales of fluid 
2 
otions, i.e. the Kolmogorov scale, defined as the smallest length 

f the turbulent motion, is larger than the Batchelor scale, defined 

s the smallest length of scalar fluctuations. This motivates the use 

f different grids to solve scalar and flow equations. In this work, 

he scalar advection-diffusion Eq. (4) is solved on a fine cartesian 

esh while Navier-Stokes Eqs. (2) and (3) are solved on a coarser 

structured or unstructured) mesh. Note that in the case where 

everal scalars are advected, the size of the scalars mesh is driven 

y the scalar with the highest Schmidt number as its Batchelor 

cale will be the smallest. 

In this work, the Navier-Stokes equations are solved using an 

ulerian approach with either pseudo-spectral method as in [9] , or 

 finite-volume method on unstructured meshes. To overcome an 

dditional CFL constraint due to the use of a fine mesh, a semi- 

agrangian particle method is used for the scalar transport. 

.1. Semi-lagrangian particle methods 

The principle of semi-lagrangian particle methods is to concen- 

rate the transported quantity θ on a set of particles. Starting from 

 set of particles initially located on a cartesian and uniform grid, 

he advection phenomenon is first simply taken into account by 

oving the particles using the local advection velocity field. To 

void accuracy issues with the particles distortion in space, the 

articles are remeshed after each time-step on the original grid us- 

ng an interpolation kernel with good conservation and regularity 

roperties. 

If θn 
j 

and θn +1 
j 

denote scalar values at grid points for two suc- 

essive time-steps, the method is summarized by the following for- 

ula 

n +1 
i 

= 

∑ 

j∈P 
θn 

j 

(

x i − ˜ x j 

�x θ

)
, i ∈ P, (5) 

here P is the particle set, x i is the position of the i th grid point,

˜  j is the position of the particle j after one advection step, �x θ is 

he grid size and 
 is the remeshing kernel. These methods have 

een extensively used for the transport of vorticity in 2D and 3D 

ows (see [16–18] and the references therein). For the transport of 

calar they have been analyzed and validated in [19] . 

Semi-lagrangian particle methods are conservative and avoid 

FL stability conditions. The time-step limitation only depends on 

he maximal strain in the flow |∇u | ∞ 

, independently of the grid 

ize. It reads 

t ≤ 1 

|∇u | ∞ 

. (6) 

heir order of convergence depends on the regularity and mo- 

ent conservation of the considered kernel. Kernel formula have 

een derived in [19] . In this paper we use a second order kernel 

riginally given in [20] . It is given by tensor products of the one- 

imensional following formula : 

(x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
12 (1 − | x | )(25 | x | 4 − 38 | x | 3 − 3 | x | 2 + 12 | x | + 12) if 0 ≤ | x | < 1
1 

24 (| x | − 1)(| x | − 2)(25 | x | 3 − 114 | x | 2 + 153 | x | − 48) if 1 ≤ | x | < 2 
1 

24 ( 3 − | x | ) 3 ( 5 | x | − 8)( | x | − 2) if 2 ≤ | x | < 3 

0 otherwise 

(7) 

s 
 has a compact support, the algorithm can be implemented in 

 parallel manner to optimize the computational cost. This topic is 

ddressed below. 

Since particles are on a cartesian grid at each time-step, dif- 

usion or source terms can easily be handled in a time-splitting 

ashion using classical finite-differences. 

Finally, note that semi-lagrangian particle methods can be im- 

lemented together with adaptive mesh refinement strategies in 

rder to further enhance their adaptivity by optimizing particle 
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pacing as a function of the local variations of the scalar [20,21] . 

n particular, particle refinement can be obtained through wavelet 

ased multi-resolution analysis which can provide a high degree of 

ompression and further reduce the computational cost. 

.2. Hybrid method 

In this work, the resolution of scalar transport equations by a 

emi-lagrangian particle method is coupled with the resolution of 

avier-Stokes equations using an Eulerian approach. To consider 

urbulent mixing at high Schmidt numbers, a finer grid can be 

sed for the scalar transport than for the flow fields. This hy- 

rid approach benefits from the stability of semi-lagrangian par- 

icle method. As already mentioned, the time-step is only limited 

y the maximal strain and not by a CFL condition depending on 

he grid-size. In practice, it that means that the time-step is only 

onstrained by the grid-size of the flow solver. 

In the applications considered in Section 4 , the Navier-Stokes 

quations are solved either by a pseudo-spectral method or by a 

nite-volume method. The coupling of a pseudo-spectral method 

ith a semi-lagrangian particle method has been described and 

horoughly validated in [9] , both from the point of view of ac- 

uracy and computational efficiency. The main issues of the cou- 

ling, velocity interpolation for particles advection and the paral- 

el implementation, highly benefit from specific features of spec- 

ral methods. In particular, for pseudo-spectral methods the mesh 

s uniform and cartesian. The domain decomposition between pro- 

esses is thus algebraic and structured. Moreover, the scalar mesh 

s only a uniform refinement of the mesh used for velocity compu- 

ation and spectral interpolation from a cartesian mesh to another 

s straightforward. This choice of interpolation ensures an interpo- 

ation error that decreases exponentially fast with respect to the 

rid size. 

We now focus on an hybrid method combining a finite-volume 

olver and a semi-lagrangian particle method, something which, to 

ur knowledge has never been done. The Navier-Stokes equations 

re solved with the so-called YALES2 pair-based finite-volume 

olver. This solver uses a tetrahedral mesh and a node-centered 

pproach. The control volumes are the cells of the dual mesh, gen- 

rated by computing the barycenter of each cell of the primal 

esh [11] . The unknowns are classically the average of the ad- 

ected quantities over the control volume. This approach leads to 

 second-order accurate scheme on structured meshes. It is stable 

nder the following CFL condition 

 u | ∞ 

�t ≤ 0 . 9�x (8) 

e refer the reader to [22] for more details. 

The Navier-Stokes equations are solved thanks to a two steps 

rediction-correction method [23] . The first step consists in the ad- 

ection of each averaged quantity at the flow velocity. The time 

ntegration for this step is made with a Runge-Kutta-like fourth- 

rder scheme TFV4A [24] . As a result of this step an intermedi- 

te velocity field v ∗ is computed. The second step consists in the 

orrection of the pressure field p by solving the following Poisson 

roblem : 

 · 1 

ρ
∇p = 

1 

�t 
∇ · v ∗ (9) 

q. (9) can be solved with several methods. For instance, [25] uses 

 BiCGStab algorithm, while [26] use a deflated preconditionned 

onjugate gradient method. This latter method will be used in the 

resent work. 

The coupling with the semi-lagrangian method for the scalar 

ransport follows the description done in [9] by replacing the spec- 

ral interpolation by a linear interpolation: particles are created on 

ach scalar nodes of a cartesian mesh, then advected using a lin- 

ar interpolation of the velocity and a second-order Runge-Kutta 
3 
ntegrator and finally remeshed on the scalar mesh. Note that us- 

ng second order linear interpolation is consistent with the order 

f the remeshing kernel. 

Scalar diffusion is done on the grid using a classical second- 

rder 7-points finite-difference scheme and an explicit time- 

dvancing scheme. This results in the following stability condition: 

t < 

1 

6 

κ

�x 2 
(10) 

n practice, in our applications the values of the diffusivity coeffi- 

ients κ are small enough to ensure that this condition is not more 

estrictive than the CFL condition imposed on the finite-volume 

olver for the Navier-Stokes equations. 

Since in our study there is no feedback of the scalars to the 

ow, the accuracy of the hybrid method can be deduced from that 

f the underlying finite-volume and particle methods. Overall, the 

ybrid method is second order in space and first order in time. It 

s stable for a time-step satisfying the conditions (6), (8), (10) . 

.3. Parallel implementation 

Starting from a distributed coarse mesh that discretizes the 

patial domain and is used to compute the velocity, a carte- 

ian and possibly finer mesh is created to solve the advection 

quations. Scalar nodes are added in a cartesian fashion: x i jk = 

i �x, j�y, k �z). Virtual particles are then created on each of those 

calar nodes and moved with the flow velocity. The location of 

 i jk inside the coarse mesh is thus needed to interpolate the ve- 

ocity at x i jk from the unstructured mesh. As a consequence, an 

lement K of the unstructured mesh of velocity and the set of 

calar nodes contained in K must be handled by the same pro- 

essor (constraint C1). Finally, the advected particles are commu- 

icated to the processor which handle the element which contains 

hem and remeshed on the fine cartesian grid. 

As a consequence of C1, the domain decomposition for the 

artesian mesh must follow the unstructured decomposition of the 

nite-volume mesh. 

The particle remeshing and the diffusion term may involve 

arge stencils (6 grid points in each direction in the simulations of 

he Section 4.3 ). In order to manage them efficiently, ghost nodes 

re added at the boundaries between two processes (constraint 

2). The remeshing is done in these ghost nodes which are then 

ynchronized by MPI communications. This is all the more com- 

lex as the decomposition is not algebraic and that the association 

f these ghosts to their only physical node is non trivial. 

Fig. 1 illustrates constraint C1. In particular, the four nodes 

arked by a cross are located, within rounding error, at the bound- 

ry between two processes. Two cartesian nodes coincide with 

odes B and D of the finite-volume mesh, two are on a finite- 

olume edge. In order to avoid artificially introducing a scalar 

ource term, a single particle must be created at this point. To do 

o, those ghost scalar nodes must be created in a single copy, for 

xample on the lowest rank process that could accommodate it. If 

he node is duplicated, so are the particles, and, for the remesh- 

ng step, the value of the scalar associated with this node will be 

dded several times as each copy of the particle is remeshed. For 

oint A, it is the first process. 

From the implementation point of view, we must determine if 

he cartesian node is near a finite-volume node, edge or face and 

hen use the communicator defined on the node/edge/face of the 

nstructured mesh to obtain the list of the processes that could 

ost this node. Then all these processes choose the one with the 

owest rank (without additionnal communication) and then make 

ure that the chosen node does indeed host this node. 

As for the C2 constraint, Fig. 2 illustrates the ghost nodes to be 

reated. The difficulty lies in the creation of a communicator allow- 
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Fig. 1. Distribution of particle nodes in the finite-volume domain partition. Letters 

stand for finite-volume nodes. Scalar nodes are marked by a circle; scalar nodes 

near process boundaries are marked by a cross. The colors match the hosting pro- 

cesses. 

Fig. 2. Distribution of particle ghost nodes. The physical nodes are marked by a 

circle, the ghosts of process 2 by a cross of the color of the process that contains the 

associated physical node. The brown ghost nodes are supported via the boundaries 

conditions. For the sake of simplicity, the width of the half stencil is fixed at 2 in 

this illustration. 
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ng to synchronize the ghost nodes and the ”real” associated nodes. 

o do this, one needs to know which process contains the ”real”

ode associated with it. This step is done using the particle relo- 

ation algorithm natively implemented in YALES2. This algorithm 

as originally defined to track physical particles in the flow [27] . 

Several remarks can be done here. Particles are not created on 

host nodes ; ghosts are only used during particle remeshing. The 

artition of the scalar nodes set is extremely dependent on the 

artition of the element set. As a consequence, a load balancing 

roblem can appear if the element set is poorly distributed among 

he processors. Domain decomposition is performed by the Metis 

ibrary. It is based on the number of cells of the finite-volume 

esh. We will see in Section 3.2 that in some situations this de- 

omposition is successful. However, as we will see in Section 4.3 , 

n highly non homogeneous cases the load balancing can signifi- 

antly deteriorate. 

. Accuracy and computational efficiency 

A set of numerical experiments are now performed to assess 

he accuracy and the efficiency of the proposed approach. As we 
4 
lready said, the hybrid method combining a pseudo-spectral and 

 semi-lagrangian particle method have been studied in [9] . We 

ocus here on the transport equation, solved either by a semi- 

agrangian method or the finite-volume method implemented in 

ALES2 for the advection-diffusion equation. We first compare the 

ccuracy of these two methods, then their computational cost. We 

nally measure the parallel scalability of the full hybrid method 

hich combines the finite-volume solution to the Navier-Stokes 

quations and the semi-lagrangian particle method to advect the 

calar. 

.1. Accuracy 

To compare the accuracy of semi-lagrangian particle method 

ith the finite-volume method implemented in YALES2, we con- 

ider a cube of size 2 π with periodic boundary conditions. The 

nite-volume mesh is obtained by perturbation (shaking) of a uni- 

orm tetrahedral mesh. The particle mesh is a uniform cartesian 

rid. We impose the following velocity field u on the finite-volume 

esh, and scalar initial distribution on the particle mesh, 

 x = sin (x ) cos (y ) cos (z) , 
 y = − cos (x ) sin (y ) cos (z) , 
 z = 0 , 

(11) 

(x , 0) = cos (8 x ) cos (8 y ) cos (8 z) . (12)

hree grid sizes are considered for the scalar mesh with number of 

lements N θ = 128 3 , 256 3 and 384 3 . For the particle method, the 

elocity at scalar nodes is obtained thanks to a linear interpolation 

rom the velocity field given on a 128 3 cartesian mesh, and par- 

icles are advected with a fourth order Runge-Kutta scheme. For 

hese grid resolutions we monitor the decay of the scalar variance 

RMS : 

RMS = 

(
1 

V 

∫ 
V 

θ2 dV 

)1 / 2 

nd its time-derivative. The value of the latter quantity, which 

hould correspond to the physical dissipation, is a good indicator 

f the numerical dissipation produced by the methods. Those de- 

ays are compared to a reference solution obtained by a pseudo- 

pectral method. Two different diffusivity coefficients for θ will be 

onsidered : κ = 6 . 6 10 −3 (case 1) and κ = 8 . 3 10 −4 (case 2). 

For case 1, Fig. 3 shows that both methods give accurate dissi- 

ation rates even at the lowest resolution. 

For case 2, with a smaller scalar diffusivity, one can observe on 

he top pictures of Fig. 4 that the finite-volume method has trou- 

les to converge to the reference solution. By contrast, Figs. 5 and 

 show that the semi-lagrangian method gives at the lower reso- 

ution results that are comparable to the higher resolution finite- 

olume simulation. We also note that the semi-lagrangian method 

s actually at the lowest resolution slightly under-dissipative, a fea- 

ure which is often shared by high order methods. 

.2. Computational cost 

To measure the efficiency of the hybrid method in terms of 

omputational cost, we now consider the case when the velocity 

s given by the finite-volume Navier-Stokes solver and we com- 

are the hybrid method with a full finite-volume method, that 

s a method where both the Navier-Stokes equations and the 

calar transport equations are solved by the finite-volume solver 

f YALES2. 

The velocity field is initialized with the formulas (11) . The vis- 

osity is equal to ν = 5 10 −3 which corresponds to a Reynolds 

umber equal to Re = 

U max ×2 π
ν � 1256 . We set the Schmidt num- 

er equal to 6, which corresponds to the diffusivity coefficient of 
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Fig. 3. Comparison of finite-volume and semi-lagrangian methods with the reference solution (black) for the test case (11) with κ = 6 . 6 10 −3 . Top (resp bottom) pictures 

show results for the pure finite-volume method (resp semi-lagrangian method). Grid sizes are 128 3 (red), 256 3 (orange) and 384 3 (green). Left pictures : scalar RMS, right 

pictures : time-derivative of scalar RMS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Comparison of time per iteration for finite-volume and semi lagrangian method for several 

grid size and 100 CPUs. 

Method Velocity Grid size Scalar Grid size Time per iteration [s] 

Finite-Volume 384 3 384 3 3.50 

Semi-lagrangian 128 3 128 3 0.52 

128 3 256 3 1.41 

128 3 384 3 4.28 

t
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d

g

he second test case in the previous subsection. In light of what 

as seen above, a grid of 128 points in each direction is sufficient 

or the DNS of the Navier-Stokes equation by the finite-volume 

ethod. For the scalar transport a grid of 128 3 points would be 

nough for the particle method whereas the finite-volume solver 

ould require a grid of 384 3 to achieve a similar accuracy. 

We measure the time per iteration for 128 3 , 256 3 and 384 3 

articles, compared to the finite-volume method using 384 3 grid 

oints (see Table 1 ). For that test, simulations were run on 100 CPU 

ores. We observe that the higher resolution case shows a slight 

verhead for the hybrid method, due to the interpolations needed 

n the algorithm. The lower resolution case shows a factor 7 speed- 
5 
p for the particle method. Given that the time-step of the particle 

ethod is related to the velocity strain, which itself is controlled 

y the grid resolution used to solve the Navier-Stokes equation, we 

btain for the hybrid method using 128 3 grid points an additional 

actor 3 speed up over the 384 3 finite-volume method can be ex- 

ected. This roughly leads to an overall factor 20 speed-up over 

 full finite-volume solver yielding comparable accuracy. In future 

ork we will combine the semi-lagrangian particle algorithm with 

irectional splitting, along the lines of [19] , which will further re- 

uce its computational time. 

These results show that the hybrid method can be seen as a 

ood alternative to the pure finite-volume method. Note however 
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Fig. 4. Comparison of finite-volume and semi-lagrangian methods with the reference solution (black) for the test case (11) with κ = 8 . 3 10 −4 . Top (resp bottom) pictures 

show variance of the scalar and its time derivative for the pure finite-volume method (resp semi-lagrangian method). Grid sizes are 128 3 (red), 256 3 (orange) and 384 3 

(green). Left pictures : scalar RMS, right pictures : time-derivative of scalar RMS. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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hat in the case presented here, because the finite-volume and par- 

icle meshes are uniform, the load balancing, based on partitioning 

f the finite-volume mesh, is also optimal for the particle distribu- 

ion on the cartesian mesh. We will see in the application dealing 

ith a jet that this is not always the case. 

.3. Parallel scalability 

Fig. 7 shows the strong and weak scalability of the hybrid 

ethod. The strong scalability was studied using 512 3 and 1024 3 

articles. In both cases, the Navier-Stokes equations were solved 

n a 256 3 grid. The number of cores ranges between 128 and 1526. 

e note that for 512 3 particles, the strong scaling (top picture of 

ig. 7 ) deteriorates beyond 512 cores, due to communications be- 

ween processors. As expected, this problem tends to disappear for 

024 3 particles and the scaling is almost perfect up to 1536 cores. 

The weak scaling was performed starting from a tetrahedral 

esh with 256 3 velocity elements and 512 3 particles. Since [11] al- 

eady demonstrated the good scalability of the fluid solver, we only 

onsider the semi-lagrangian part of the algorithm. We increase 

he number of particles from 512 3 particles to 930 3 . The bottom 
6 
icture of Fig. 7 shows that the time of one iteration remains al- 

ost constant up to 1536 cores. 

. Application to the differential diffusion of passive scalars 

This section is now dedicated to the study of differential diffu- 

ion. Various experimental [15,28,29] and numerical [30–33] stud- 

es have been devoted to the differential diffusion process, mainly 

n homogeneous isotropic turbulence (HIT), and turbulent jet con- 

gurations. In these works, the differential diffusion is character- 

zed by various quantities. First the correlation coefficients be- 

ween scalars or between scalar gradients can be considered. These 

uantities decay until complete decorrelation for decaying (un- 

orced) scalar [34] , whereas non-zero coefficients value are ob- 

ained at steady state when a mean scalar gradient forcing is used 

31] . This asymptotic value is found to be only dependent of the ra- 

io of Schmidt numbers of the couple of the scalars under consid- 

ration [31,33–35] , showing that the differential diffusion increases 

ith this ratio. The differential diffusion can also be character- 

zed by another scalar field, defined as the difference between the 

calars [36] . The variance of this scalar difference has been consid- 
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Fig. 5. Comparison, for the time derivative of the scalar RMS, of the reference solu- 

tion (black), the finite-volume result with N = 384 3 (green) and the semi-lagrangian 

result with N = 128 3 (red). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Close up of the bottom right picture of Fig. 4 . 
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red. It decays with the Reynolds number. The decay of the scalar 

ifference variance is predicted as a power law of the Reynolds 

umber, but different values of the exponent have been proposed 

35–37] . The spectrum of the scalar difference has also been in- 

ensively studied in previous works. This spectrum is found to de- 

rease for all wavenumbers for unforced mixing [34] and turbu- 

ent jet configurations [15,38] . However, for scalar fields forced by 

 mean scalar gradient, the scalar difference spectrum increases at 

mall wavenumber and decreases at high wavenumbers, with the 

resence of a peak [31,37] . This confirms that the phenomenon of 

ifferential diffusion is fundamentally dependent on the nature of 

he underlying flow field [38] or the nature of the mixing condition 

forced or not) [30] . The forcing term allows to limit the differen- 

ial diffusion to small scales, whereas without forcing the effects 

re propagated from small to large scales. Moreover, the range of 

cales of the differential diffusion is found to increase with the 
ig. 7. Left picture : weak scaling for the hybrid method. The blue line shows the time

ashed line shows the perfect scaling. Right picture : shows weak scaling for the hybrid m

he references to colour in this figure legend, the reader is referred to the web version of

7 
chmidt numbers ratio [33] . Finally, in terms of scales transfer, the 

ifferential diffusion phenomenon is mainly dominated by local 

ransfers, even if non-local transfers could increase with the val- 

es of the Schmidt number [33,39] . 

.1. Equations for quantities based on the scalar difference 

In the present work, the proposed hybrid method is used to 

tudy differential diffusion phenomenon for values of the Schmidt 

umber ratio higher than previously reported in literature, in two 

ifferent canonical flow configurations: homogeneous isotropic tur- 

ulence (HIT) and transitional round jet. The differential diffusion 

s mainly characterized by quantities based on the scalar differ- 

nce. 

Let us consider two scalars θα and θβ , seeded in exactly the 

ame manner but with different molecular diffusivities, κα and κβ , 

espectively. Their governing equation are given by equation (4) , 

nd their mixing dynamics will differ only due to the difference of 
 of one iteration for 512 3 particles and the red line for 1024 3 particles. The black 

ethod for a number of processors ranging from 256 to 1536. (For interpretation of 

 this article.) 
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Fig. 8. Normalized kinetic energy spectra for Reynolds numbers R λ = 30 , 55, 90 and 

180. Increasing Reynolds numbers go with increasing inertial ranges. 

w

T

m

d

M

s

t

t

4

t

4

i

n

p

s

F

e

s  

b

t

p  

b

e

t

k

l

F

S  

s

e

N  

m

d

heir molecular diffusivity. The proposed analysis is mainly devoted 

o the characterization of the scalars difference, z = θα − θβ . 

From the scalars transport equation, the governing equation of 

can be written as, 

∂z 

∂t 
+ ∇ · (zv ) = S�z + D �w, (13) 

ith w = θα + θβ , S = 

κα+ κβ

2 , and D = 

κα−κβ

2 . Note that this equa-

ion is original and slightly different from the form used by Hunger 

t al. [6] or Bilger and Dibble [36] . This allows to define without

mbiguity the diffusion and source terms, which depend both on 

he molecular diffusivity on the scalars. The scalar difference, z, 

s solution of a scalar advection-diffusion transport equation with 

 diffusivity coefficient equal to S, and with an additional source 

erm, D �w . The evolution of z can be studied from an energy point

f view by studying z 2 (by analogy with the kinetic energy, 1 
2 v · v ,

or the velocity field). The governing equation of z 2 reads as 

∂z 2 

∂t 
= ∇ ·

(
S∇ z 2 + 2 Dz∇ w − v z 2 

)
︸ ︷︷ ︸ 

Diffusion 

−2 S∇ z · ∇ z ︸ ︷︷ ︸ 
Dissipation 

−2 D ∇ z · ∇ w ︸ ︷︷ ︸ 
Production 

. 

(14) 

his allows to define without ambiguity diffusion, dissipation and 

roduction terms, which depends on both molecular diffusivities. 

Defining the last term as a production term needs some dis- 

ussion. To highlight the role of this term, let us consider a large 

nough volume to assume no scalar flux at the boundaries of this 

olume. By integrating equation (14) on this volume, we can con- 

ider the global equilibrium of the differential diffusion process. 

he left-hand-side of this equation represents the time variation 

f the integration of z 2 in the considered volume, which is in equi- 

ibrium with diffusion, dissipation and source terms. The diffusion 

erms can be grouped in a divergence form meaning that their in- 

egration over the considered volume will be equal to zero. This 

hows that these terms do not participate in the global balance, 

ut only act as spatial re-distribution. Conversely, the dissipation 

erm, −2 S∇ z · ∇ z, is always negative meaning that this term will

ead to a decrease of the differential diffusion process. In a steady 

tate, the last term should be a production term, with a positive 

ntegral, to lead to a global equilibrium between production and 

issipation. A phenomenological argument can be given to discuss 

he sign of the production term. Indeed, the production term also 

eads 

(κα − κβ ) ∇z · ∇w = −(κα − κβ ) 
(
( ∇θα) 

2 −
(∇θβ

)2 
)
. (15) 

n the case κα > κβ , for example, that is when the scalar θα is 

ore diffusive than the scalar θβ , it can be expected that the 

calar gradient of θα has a smaller magnitude than the gradi- 

nt of θβ . Since κα − κβ > 0 , it can thus be expected that −(κα −
β ) 

(
( ∇θα) 

2 −
(∇θβ

)2 
)

is mainly positive, and that the term acts 

s a global production term. 

In this work, to characterize the effect of turbulence on this 

uantity, the Reynolds decomposition is also adopted : z = 〈 z〉 + z ′ ,
ith 〈 z〉 the averaging of z, and z ′ the fluctuation. The turbulent 

eld will be characterized by 〈 z ′ 2 〉 . Since 〈 z 2 〉 = 〈 z〉 2 + 〈 z ′ 2 〉 , consid-

ring the governing equation of 〈 z〉 2 and 〈 z ′ 2 〉 will allow to char-

cterize the differential diffusion phenomenon occurring for the 

ean and turbulent fields, and their transfer. 

The governing equation of 〈 z〉 2 reads as 

∂〈 z〉 2 
∂t 

= ∇ ·
(
S∇〈 z〉 2 + 2 D 〈 z〉∇〈 w 〉 − 〈 v 〉〈 z〉 2 − 2 〈 z〉〈 v ′ z ′ 〉 )

−2 S∇〈 z〉 · ∇〈 z〉 − 2 D ∇〈 z〉 · ∇〈 w 〉 + 2 〈 v ′ z ′ 〉 · ∇〈 z〉 , 
(16) 
8 
hereas the governing equation of 〈 z ′ 2 〉 reads as 

∂〈 z ′ 2 〉 
∂t 

= ∇ ·
(
S∇ 〈 z ′ 2 〉 2 + 2 D 〈 z ′ ∇ w 

′ 〉 − 〈 v 〉〈 z ′ 2 〉 − 〈 v ′ z ′ 2 〉 )
−2 S〈∇ z ′ · ∇ z ′ 〉 − 2 D 〈∇ z ′ · ∇ w 

′ 〉 − 2 〈 v ′ z ′ 〉 · ∇〈 z〉 . 
(17) 

his governing equation show the scalar energy balance for the 

ean and turbulent fields respectively. Similarly to equation (14) , 

iffusion, dissipation and production terms can be identified. 

oreover, an additional term, 2 〈 v ′ z ′ 〉 · ∇〈 z〉 appears with opposite 

igns in both equations. This term acts as the transfer term be- 

ween mean and turbulent fields. This is a key term to understand 

urbulence influence on the mean field for differential diffusion. 

.2. Differential diffusion phenomenon in homogeneous isotropic 

urbulence 

.2.1. Flow configuration 

The first flow configuration consists in a forced homogeneous 

sotropic turbulence, using a random forcing applied at a low wave 

umber [40] to maintain kinetic energy. The hybrid method cou- 

ling a pseudo-spectral method for the flow dynamic, with the 

emi-lagrangian particle method for scalars is used in this case. 

our Reynolds numbers based on the Taylor microscale are consid- 

red: R λ = 30 , 55, 90 and 180. The simulation parameters are cho- 

en such that k max ηK > 1 . 5 where k max is the maximum wavenum-

er in the domain, and ηK is the Kolmogorov scales [41] . This leads 

o a discretization in the pseudo-spectral method using N 

3 
u grid 

oints, with N u = 64 , 128, 256 and 512 for the four Reynolds num-

ers under consideration, respectively. Fig. 8 shows the kinetic en- 

rgy spectra of the four considered Reynolds numbers. The spec- 

ra are normalized by the classic Kolmogorov scaling, with ε the 

inetic energy dissipation rate. The highest Reynolds number al- 

ows to obtain an inertial range with a k −5 / 3 law over one decade. 

or each Reynolds number, four passive scalar are considered with 

chmidt numbers, Sc 1 = 3 / 16 , Sc 2 = 3 / 4 , Sc 3 = 3 and Sc 4 = 12 re-

pectively. In order to resolve the scales corresponding to the high- 

st Schmidt number, the particle grid uses N 

3 
θ

grid points with 

 θ = 4 N u . The initial scalar field is the same in all these experi-

ents [42] . To enforce a stationary scalar field, a mean scalar gra- 

ient is imposed [39] . Fig. 9 shows the instantaneous scalar field, 
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Fig. 9. Planar cross-section of the flow colored by the instantaneous scalar fields at two different Schmidt number, Sc = 3 / 4 (left) and Sc = 12 (right) for R λ = 180 . 

Fig. 10. Statistical measures of the differential diffusion. Left picture: correlation coefficients of the gradients of different scalars, equation (18) , as a function of R Sc for 

various R λ . The solid line shows the model given by equation (19) . Right picture: Scalar variance spectra for scalars with Sc = 12 (thick line) and with Sc = 3 / 16 (thin line) 

and the spectrum of the associated scalar difference, z, variance (dotted-dashed line), for R λ = 180 . 
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t R λ = 180 , for the Schmidt numbers Sc 2 and Sc 4 to characterize

he difference of the range of turbulent mixing scales. 

This database is next used to study the differential diffusion 

henomenon for various Reynolds numbers and various Schmidt 

umbers ratios. The Schmidt number ratios are defined as R Sc = 

c α/Sc β , with Sc α > Sc β . With the DNS database, three Schmidt

umbers ratios can be considered: three couples of Schmidt num- 

ers lead to R Sc = 4 : (3 / 16 , 3 / 4) , (3 / 4 , 3) and (3,12); two cou-

les of Schmidt numbers lead to R Sc = 16 : (3 / 16 , 3) and (3 / 4 , 12) ,

nd the couple of Schmidt numbers (3 / 16 , 12) leads to R Sc = 64 .

he hybrid method allows to consider differential diffusion phe- 

omenon at Reynolds numbers, Schmidt numbers and Schmidt 

umber ratios higher than previously reported in literature. 

.2.2. Statistical characterization of the differential diffusion 

henomenon 

Fig. 10 shows classical statistical characterization of the differ- 

ntial diffusion. First, Fig. 10 (left) shows the correlation coeffi- 

ients of the gradients of scalars as a function of the Schmidt num- 

ers ratio. This correlation is defined as, 

 α,β = 

〈∇ θα · ∇ θβ〉 
||〈∇ θα〉||||〈∇ θβ〉|| (18) 

here the bracket operator consists in the spatial averaging. This 

orrelation coefficient is only controlled by R , independently of 
Sc 

9 
he Reynolds number and of the values of the Schmidt num- 

ers. The decorrelation is more and more pronounced when R Sc 

ncreases. This results has been previously established by Yeung 

31] and Fox [35] , by modeling this correlation coefficient as, 

 α,β = 2 

(
R Sc + 

1 

R Sc 

+ 2 

)−1 / 2 

, (19) 

ased on the stationarity and homogeneity of the scalar mixing. 

he DNS results are in perfect agreement with this model. This 

alidates the model at high Schmidt number ratios and confirms 

he independence of this quantity with the Reynolds number on a 

arger range of values. 

To analyze more in depth the differential diffusion phe- 

omenon, spectra of the scalar difference variance can be con- 

idered. Fig. 10 (right) shows the scalar variance spectra for both 

calars with Sc = 12 and Sc = 3 / 16 at R λ = 180 , and the vari-

nce spectrum of the scalar difference, z, between these two 

calars. Both scalars have first an inertial-convective range, and the 

calar with the higher Schmidt number (higher than 1) exhibits 

 viscous-convective range at the highest wave numbers. At these 

cales, the spectrum of the scalar difference perf ectly follows the 

pectrum of the scalar with the highest Schmidt number, because 

here is no mixing at these scales for the scalar with the small- 

st Schmidt number [37] . At larger scales, the variance spectrum 

f z increases roughly as k 3 / 2 , as already observed by Yeung [31] . 
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Fig. 11. Left picture: variance spectra of the scalar difference for all the cases of the DNS database. The spectra are normalized by using the Batchelor scaling based on 

the highest Schmidt number. The arrow shows increasing values of R Sc . Right picture: evolution of the ratio between the scale of the peak of the differential diffusion and 

the Bachelor scale of the scalar with the highest Schmidt number, l p / ηB α , as a function of R λ for all the couples of scalars: R Sc = 4 (3/16-3/4, square; 3/4-3, circle; 3–12, 

diamond), R Sc = 16 with (3/16-3, triangle up; 3/4-12, triangle down) and R Sc = 64 (cross). The dotted lines show the mean value computed at fixed R Sc . 
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Fig. 12. Correlation coefficient as a function of R Sc between the opposite of the 

dissipation term, −D , and the production term, P, in equation (14) . 
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his means that there is a peak for this spectrum characterizing 

he scales of the differential diffusion. 

These results suggest to normalize the variance spectrum of the 

calar difference with the Batchelor scaling based on the highest 

chmidt number, as already proposed by Yeung et al. [33] . Fig. 11 

left) shows the normalized variance spectra of the scalar differ- 

nce for all the cases of the database. As expected, a good col- 

apse is found for all the spectra for high enough wave numbers. 

oreover, the normalized spectra are found independent of the 

eynolds number. However, the collapse is only partial, because 

t depends on R Sc . In particular, the spectrum peak of the differ- 

ntial diffusion process depends on R Sc . The typical scale of the 

ifferential diffusion, noted l p , is defined from the peak wavenum- 

er. Fig. 11 (right) shows the value of the ratio between scale of 

he peak the differential diffusion, l p , and the Bachelor scale of the 

calar with the highest Schmidt number, ηB α . This ratio, l p / ηB α , 

eems to only depend on R Sc . This means that this typical scale 

s not directly linked with the large scales, but with the smallest 

cale of the less diffusive scalar. 

.2.3. Transfer of the differential diffusion phenomenon 

As already mentioned, to deeper characterize the differential 

iffusion phenomenon, the transport equation of the square of the 

nstantaneous scalar difference, z 2 , equation (14) can be consid- 

red. Note that in the case of forced homogeneous isotropic tur- 

ulence, one can simplify Eqs. (16) and (17) . Indeed, in this case 

 z〉 = 0 , and then, 〈 z ′ 2 〉 = 〈 z 2 〉 . Therefore, equation (16) can be

ropped. Moreover, at steady state, equation (17) leads to 

2 S〈∇ z · ∇ z〉 = −2 D 〈∇ z · ∇ w 〉 , (20)

howing that the global equilibrium between dissipation and pro- 

uction terms necessary holds in the considered flow configura- 

ion. To assess if the equilibrium acts also locally the correlation 

etween the opposite of the dissipation term, −D , and the produc- 

ion term, P , appearing in the transport equation of z 2 , Eq. (14) , is

hown in Fig. 12 for all the scalar differences of the database. The 

issipation and the production terms are highly correlated with a 

oefficient correlation higher than 0.9. It is observed that the co- 

fficient correlation increases with R Sc and it is very close to 1 for 

 Sc = 64 . This means that the equilibrium is well verified, not only 

lobally, but also locally, i.e. that P = −D not only in average. This
10 
s confirmed by Fig. 13 showing the joint probability density func- 

ion (J-PDF) between −D and P , for two different couples of scalar 

t R λ = 180 . The J-PDF of exactly equal terms will be aligned on

he y = x line. This confirms the local equilibrium : the magnitude 

f the production and dissipation terms are very close locally, in 

articular for high R Sc . Moreover, even if P is positive in average, 

t can be also observed that P can be locally negative, unlike −D 

hich is always positive by definition. 

This suggests that the differential diffusion is a local phe- 

omenon, and that the transfers between scales are weak. To bet- 

er analyze the scales transfer of the differential diffusion phe- 

omenon, spatial filtering is next used [43,44] . The objective is to 

plit the fields between large and small scales. This scales separa- 

ion is performed by using the following filtering operation, 

¯
 (x , t) = 

∫ 
s (y , t) G �̄(x − y ) dy , (21)

ith s̄ the filtering of the field s , and G �̄ the filter kernel with a fil-

er size �̄. The scalar field, z, is then decomposed as a filter-scales 

FS) field, z̄ , and a subfilter-scales (SFS) field. To better understand 
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Fig. 13. Joint probability density function (J-PDF) between the opposite of the dis- 

sipation term, −D and production term, P, for R λ = 180 . The solid lines are for 

R Sc = 64 ( Sc 1 = 12 and Sc 2 = 3 / 16 ), whereas the dotted lines are for R Sc = 4 ( Sc 1 = 3 

and Sc 2 = 3 / 4 ). The isocontours are in the range 10 −6 to 10 −2 with a logarithm 

scale. 
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Fig. 14. Evolution of the FS global equilibrium with the filter size for R λ = 180 and 

R Sc = 4 ( Sc 1 = 12 and Sc 2 = 3 ). The filter size is normalized by the characteristic 

scale of the differential diffusion, l p . 
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he FS/SFS interaction, the transport equation for z̄ 2 is written as, 

∂ ̄z 2 

∂t 
= ∇ ·

(
S∇ ̄z 2 + 2 D ̄z ∇ w̄ − v̄ ̄z 2 − 2 ̄z T 

)
−2 S∇ ̄z · ∇ ̄z ︸ ︷︷ ︸ 

D 

> 

−2 D ∇ ̄z · ∇ w̄ ︸ ︷︷ ︸ 
P > 

+2 T · ∇ ̄z ︸ ︷︷ ︸ 
T > < 

, 

(22) 

ith T = v z − v̄ ̄z , the SFS flux of the scalar difference. This allows 

o characterize the differential diffusion occurring at scales higher 

han the filter size, �̄. This equation is close to the equation ob- 

ained for the (full) scalar difference field, z 2 , with diffusion terms 

ritten in the divergence form, SF dissipation term, D 

> , and SF 

roduction term, P > . There is also an additional term, T > < = 2 T · ∇ ̄z ,

hich represents the scales transfers from the filter-scales to the 

ubfilter-scales. These FS/SFS transfer terms can act as either a sink 

erm for the FS field, meaning a transfer from FS to FSF (forward 

catter), or as a source term, meaning an inverse transfer (back- 

ard scatter). 

As already mentioned, the diffusion terms will be zero in av- 

rage in the considered flow configuration. The FS global equilib- 

ium is then between 〈 D 

> 〉 , 〈 P > 〉 and 〈 T > < 〉 . The evolution of the

S global equilibrium with the filter size is shown by Fig. 14 at 

 λ = 180 and R Sc = 4 ( Sc 1 = 12 and Sc 2 = 3 ). In the previous sec-

ion, the characteristic scale of the differential diffusion process, 

 p , has been identified. The filter size is normalized by this scale. 

he case �̄/l p = 0 corresponds to the non-filtered case, and the 

lobal equilibrium between dissipation and production is found. 

or larger filter size, the FS/SFS transfer term is no more zero. The 

agnitude of this term increases but this term is negative show- 

ng that there is mainly a transfer from large to small scale (di- 

ect transfer). This transfer is maximum around �̄/l p ≈ 1 , confirm- 

ng thus that l p is the correct characteristic scale of the differen- 

ial diffusion phenomenon. However, even at this filter size the 

ean FS/SFS transfer does not exceed 10% of the mean production. 

his confirms that the differential diffusion is mainly local phe- 

omenon, with weak scales transfers. Note that the three terms 

re almost zero for �̄/l p > 5 . This means that all the differential

iffusion happens at subfilter-scales for �̄/l p > 5 , confirming that 

he differential diffusion is a small-scale phenomenon. 

Fig. 15 shows the evolution of the mean FS/SFS transfer term 

ith the filter size at a given R λ, for various R Sc (left) and at

iven R , for various R (right). The ratio between the mean FS/SFS 
Sc λ

11 
ransfer and the total (unfiltered) production term appears to be 

nly controlled by R Sc . Indeed, this ratio is independent of the 

eynolds number ( Fig. 15 , right) and independent of the values of 

oth Schmidt numbers ( Fig. 15 , left). Moreover, the FS/SFS transfer 

ecreases with the increase of R Sc . This is consistant with the ob- 

ervation previously done showing a very high correlation between 

issipation and production terms. This confirms that the differen- 

ial diffusion is more and more local with increasing of R Sc , with a

ery weak part of scales transfer. 

.3. Jet flow 

In this section we study the physics of differential diffusion in 

he flow created by a transitional round jet. We first specify the 

ow configuration. We also define the grid resolution required for 

he velocity and the scalars, depending on the Schmidt numbers. 

e finally discuss the physics of differential diffusion based on a 

eynolds decomposition. 

.3.1. Flow and grid configuration 

To now study the differential diffusion in flow configuration 

ith a mean field, a round jet in transition to turbulence is con- 

idered. The flow configuration is defined by its inlet velocity pro- 

le. At the inlet, the mean velocity field is non zero only for the 

treamwise component, which is given by a hyperbolic tangent 

rofile [45] : 

 ref (x ) = 

U 1 + U 2 

2 

− U 1 − U 2 

2 

tanh 

(
R 

4�0 

(
r 

R 

− R 

r 

))
, 

here U 1 is the centerline velocity, U 2 is a small co-flow, �0 is the 

omentum thickness of the initial shear layer, r the radial coor- 

inates (taking the origin at the center of the jet), and R the ini- 

ial jet radius. The Reynolds number is fixed at a moderate value, 

e = U 1 R/ν = 1500 . To accelerate the transition a forcing term is 

dded. This forcing is first composed by a random part only added 

n the shear layer of the jet to the three velocity components. It 

ollows a Passot-Pouquet spectrum with an amplitude set to 10 % 

f U 1 . For the streamwise component, the forcing is then comple- 

ented by a deterministic part, which consists in a varicose (ax- 

symetric) excitation [46] , 

 df (x , t) = εu ref (x ) sin 

(
2 πSt R 

U 1 + U 2 

2�
t 

)

0 
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Fig. 15. Evolution of the mean FS/SFS transfer term normalized by the mean production term as a function of the filter size normalized by the characteristic scale of the 

differential diffusion, l p : at R λ = 180 where the arrow indicates increasing values of R Sc (left); at R Sc = 16 for various R λ (right). 
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ith a forcing amplitude ε = 2 . 5% , and St R fixed at 0.033 to trigger

he frequency predicted by the linear stability theory [45] . 

To consider the differential diffusion process in this flow config- 

ration, two scalars are seeded in the jet with a hyperbolic tangent 

rofile similar to the streamwise velocity, with the scalar value 

qual to 1 in the jet and zero in the outer region. The scalars only

iffer by their molecular diffusivity, leading to Schmidt numbers 

.8 and 8. The scalars will be denoted by θ0 . 8 and θ8 , respectively. 

Unlike in the previous case, this configuration cannot be han- 

led by a spectral method for the Navier-Stokes equations. The hy- 

rid method described in Section 2 coupling finite-volume method 

nd a semi-lagrangian particle method is instead used. This allows 

lso to consider distinct computational domains for the flow and 

calar dynamics. For the flow dynamics, the domain is a paral- 

elepiped with size 20 R × 14 R × 14 R in the streamwise and the two

ransverse directions, respectively. The size of the transverse direc- 

ions are large enough to allow the flow rate added by the co-flow 

o be larger than the flow rate entrainment of the jet. An homoge- 

eous spatial resolution is used in the core of the jet, that is where

orticity is not negligible, with a cell size � ≈ 0 . 375 R which is the

ypical mesh size used for similar configuration at similar Reynolds 

umber [47] . Outside the core of the jet, the mesh is unrefined to 

imit the number of cells. Overall, the mesh consists of 50 millions 

etrahedra. 

For the advection of scalars, the domain is a smaller paral- 

elepiped with size 20 R × 5 R × 5 R in streamwise and both trans-

erse directions. Choosing smaller transverse sizes than for the 

nite-volume solver amount to choosing homogeneous Dirichlet 

onditions on the lateral boundaries. This has a negligible effect 

n the dynamics of the scalar as the box is big enough so that 

he flow is mostly outgoing at these edges. Note that the semi- 

agrangian method, unlike eulerian methods, does not face issues 

elated to possible spurious reflections at boundaries. 

To choose the grid size in the particle box, we have undertaken 

he following refinement study that can also serve as an accuracy 

heck for the hybrid method. We considered the more challenging 

alue Sc = 8 and first looked at the energy norm of the scalar θ8 ,

sing either the hybrid method or the pure finite-volume method, 

or grid sizes �, �/ 2 and �/ 4 , where we recall that � is the mesh

ize of the finite-volume mesh in the core of the jet. The results, 

hown on the left picture of Fig. 16 , show that, unlike the pure

nite-volume method, the hybrid method gives converged results 

or the RMS of θ , with the grid size �. However, to obtain reliable

b

12 
alues for the different diagnostics presented below, it is also de- 

irable to have accurate values for the scalar gradients. The bottom 

icture of Fig. 16 shows that the grid size � for the hybrid method 

s not sufficient and a grid size �/ 2 , although not yet converged, 

as found to give reasonable accuracy. This grid size corresponds 

o a particle mesh with 1068 × 268 × 268 points. 

.3.2. Computational cost 

Let us now discuss the computational efficiency of the method. 

The simulations were carried out on 840 cores of the Occigen 

achine of the Cines made of xeon E5 cores running at 2.6GHz. 

To simulate a scalar with a Schmidt number Sc = 8 , the hy- 

rid solver takes 2.4s of wall-clock time per time step for a grid 

ize �/ 2 . The pure finite-volume method using the same grid-size 

n the core of the jet, which, as we have seen earlier, would not 

e enough to achieve the same level of accuracy, and a time-step 

wice smaller due to the CFL condition, would require 4s to reach 

he same physical time. 

However, the efficiency obtained in this configuration for the 

ybrid method is not quite inline with the timings shown in 3 . A 

imple extrapolation from the results of Table 1 , assuming perfect 

calability, would give a wall-clock time of about 0.7s per iteration. 

his discrepancy is due to a domain partitioning leading to a poor 

oad-balancing in the jet configuration. 

For load balancing in the finite-volume solver, the computa- 

ional domain can be roughly divided into 3 zones. In the core of 

he jet, the velocity mesh is uniform as already mentioned. Good 

oad balancing can thus be achieved for both the finite-volume and 

article solvers. A second zone is located near the lateral edges of 

he domains. In this area the scalar values are small or zero. This 

rea is therefore mostly void of particles. Although the size of the 

elocity cells are much bigger than the size of the particle cells, 

n this area particles do not deteriorate the load balancing. Finally 

here is a third intermediate zone with large velocity scales asso- 

iated to large cells of the finite-volume mesh. Here, the ratio be- 

ween the computational load of the semi-lagrangian solver and 

he finite-volume solver increases significantly. 

For the moment, it has not been possible to obtain an accept- 

ble domain partitioning with METIS leading to satisfactory load 

alancing for both the finite-volume and particle solvers. 
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Fig. 16. Evolution of L 2 −norm of θ8 (left) and ∇θ8 (right) after scalar initialization and over t = 10 U 1 /R . Finite-volume method with mesh size � in the core (black curve) 

and hybrid method with grid size � (red curves), �/ 2 (yellow curve) and �/ 4 (green curve). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 17. Iso-surface of the Q-Criterion for Q = 0 . 1(U 1 /R ) 2 colored by the streamwise vorticity ω x . 
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.3.3. Instantaneous pictures of the flow dynamics and the 

ifferential diffusion 

The mixing of scalars is mainly dominated by the flow dynam- 

cs during the transition process through laminar to turbulent flow. 

he main structures of the flow dynamics can be observed using 

he Q-Criterion [4 8,4 9] . This value is a good indicator of presence

f vortices. Fig. 17 shows the iso-surface Q = 0 . 1(U 1 /R ) 2 . The clas-

ical rings created by Kelvin-Helmholtz instabilities can be found 

p to x/R < 8 . Beyond x/R = 10 , there is an abrupt increase in the

evel of small-scales turbulence due to the appearance of pairs of 

treamwise vortices between two consecutive primary vortices in 

greement with the classical scenario of transition in free shear 

ayers. 

To give now a qualitative illustration of the mixing phenomena, 

nstantaneous contours of scalars in the central plane are shown 

n Fig. 18 . The turbulent mixing activity emerges as soon as far 
13 
s coherent structures become extensive. Thus, the turbulent mix- 

ng starts with an engulfment of the two jet fluids through the 

hear layers implied by the Kelvin Helmholtz vortices. With the 

ppearance of the three-dimensional vortices, ejections of space- 

oherent packets of scalars into the ambient fluid appear, leading 

o the mushroom-shaped tracer structures, as shown by Fig. 19 . For 

/R > 10 , the mixing finally occurs in the core of the jet. 

The effect of molecular diffusivities clearly appears on these fig- 

res. Whereas thin layers of scalar exist for the scalar θ8 , with a 

chmidt number equal to 8, they are quickly removed by diffu- 

ion effect for the scalar θ0 . 8 , with a Schmidt number equal to 0.8. 

hese thin layers for θ8 are mainly visible in the core of the Kelvin- 

elmholtz vortices and in the three-dimensional vortices. 

To characterize the differential diffusion process, Fig. 20 shows 

he instantaneous contours of the scalar difference, z = θ0 . 8 − θ8 , 

n the central plane. As expected, z is first different to zero only at 
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Fig. 18. Instantaneous contours of scalars in the central plane for θ0 . 8 (top) and θ8 (bottom). 

Fig. 19. Instantaneous contours of scalars in the plane x/R = 10 for θ0 . 8 (left) and θ8 (right). 

Fig. 20. Instantaneous contours of z = θ0 . 8 − θ8 in the central plane. 

14 
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Fig. 21. Instantaneous contours of Dissipation (top) and Production (bottom) terms from 14 in the central plane. 

Fig. 22. Value of 〈 z〉 (top) and z rms (bottom) in the mid-plane. 
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d

he turbulent/non turbulent (T/NT) interface [6] at the beginning 

f the transition process. The differential diffusion occurs in the 

ore of the jet, simultaneously with the appearance of the three- 

imensional vortices. Fig. 21 shows the dissipation and production 

erms identified in the transport equation of z 2 , Eq. (14) , in the

entral plane. Similarly to the isotropic turbulent configuration, it 

eems that the two terms are highly correlated, showing that a lo- 

d

15 
al (in space and time) equilibrium occurs between the dissipation 

nd the production for the differential diffusion process. 

.3.4. Analysis of the differential diffusion based on Reynolds 

ecomposition 

To deeper characterize the effect of turbulence, the Reynolds 

ecomposition can be adopted to distinguish the mean field, 〈 z〉 , 
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Fig. 23. Budget of 〈 z〉 2 , Eq. (16) . Radial profile at x/R = 3 (left), and 6 (right). 
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nd the turbulent field, z rms = 

√ 〈 z ′ 2 〉 . Fig. 22 (a) shows 〈 z〉 in the

id-plane of the jet. At the beginning of the jet, 〈 z〉 is non zero

nly in the shear layer due to the diffusion difference. Turbulent 

ixing due to the appearance of the Kelvin-Helmholtz vortices 

eads to an important radial growth of the phenomenon to the 

iddle of the jet. For x/R > 10 , i.e. at the end of the potential

ore, 〈 z〉 is zero everywhere, which means that differential diffu- 

ion only persists in the turbulent field. This is confirmed by Fig 

2 (b) which shows z rms in the mid-plane of the jet. As expected 

ifferential diffusion in the turbulent field starts with the appear- 

nce of the Kelvin-Helmholtz vortices, and it is then located in the 

hear layer. At the end of the potential core, when the differential 

iffusion disappears of the mean field, it is dominant in the cen- 

er of the jet for the turbulent field, and the phenomenon persists 

o the end of the domain. The distribution of z rms is similar as the

istribution of the turbulent kinetic energy [50] . In particular max- 

mum values of z rms occur within the shear layer just downstream 

f the location of potential core breakdown. 

Similarly to the analysis proposed by Anghan et al. [50] on the 

urbulent kinetic energy budget, the main mechanisms leading to 

he observed distribution for the mean field, 〈 z〉 , and the turbulent 

eld, z rms can be given by looking at the budget Eqs. (16) and (17) .

ig. 23 shows the radial profile of the terms of the budget of the 

ean field, Eq. (16) , namely diffusion, dissipation, production and 

ransfer terms. The production of differential diffusion in the mean 

eld mainly occurs in the edges of the shear layer. The production 

s mostly balanced by diffusion and dissipation. The transfer term 

s mainly negative, showing that the transfer occurs from the mean 

eld to the turbulent field. However, the transfer term is one order 

f magnitude below the other terms, showing that this term does 

ot have a significant influence on the mean field. 

Going downstream, the magnitude of the peaks of production 

anishes to zero. Downstream of x/R = 6 , the transfer term be- 

omes comparable to the other terms, but in this zone the dif- 

erential diffusion mainly occurs in the turbulent fields. It can be 

oted that the production term has a negative value close to the 

roduction peaks, which are mainly compensated by the diffusion 

rocess, showing that the diffusion essentially consists in spread- 
16 
ng from the production region towards the center of the jet and 

he non-turbulent region. Fig. 24 shows the radial profile of the 

erms of the budget of the turbulent field, equation (17) . The 

ransfer term is the opposite of the term appearing in the mean 

eld budget. However, this term is clearly dominated by produc- 

ion and dissipation terms, showing that there is a decoupling be- 

ween mean and turbulent field for the differential diffusion phe- 

omenon. Moreover, from the first step of the transition process 

ntil the full turbulent state, the diffusion is also clearly dominated 

y the production and dissipation terms. There is a clear equilib- 

ium between these two terms. Note that this equilibrium is ex- 

ected at the end of the jet, where 〈 z〉 ≈ 0 , as already discussed

or the HIT case, equation (20) . But the equilibrium assumption is 

lso valid at the beginning of the jet. It seems even valid for the 

nstantaneous field as previously shown by Fig. 21 . 

. Conclusion 

Thanks to an hybrid method combining an eulerian (either 

seudo-spectral of finite-volume) method and a second order 

emi-lagrangian particle method with good parallel scalability, we 

ere able to study differential diffusion at a reasonable computa- 

ional cost for Schmidt numbers that were not previously reported. 

he hybrid method was validated both form the point of view 

f accuracy and computational efficiency against a purely finite- 

olume method. 

This method allowed us to perform a numerical study of the 

ifferential diffusion phenomenon in homogeneous isotropic tur- 

ulence and in a transitional round jet. By studying quantities 

ased on scalar difference, it has been observed that the transfer 

etween mean and turbulent fields is weak, and, furthermore, that 

he scales transfers for the turbulent field are limited. This con- 

rms previous studies showing that the differential diffusion is a 

ocal phenomenon in space and time. 

Simulations made in the jet configuration showed that there is 

oom for improvement in the load balancing for the hybrid finite- 

olume / particle method. Difficulties arose from domain partition- 

ng solely based on the finite-volume solver. In the future we plan 
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Fig. 24. Budget of 〈 z ′ 2 〉 as given by Eq. (17) . Radial profile at x/R = 3 (top left), 6(top right), 9 (bottom left), and 15 (bottom right). 
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o experiment with alternative parallel strategies. The domain de- 

omposition for each of the meshes, unstructured mesh for the ve- 

ocity and cartesian mesh for the scalars, will be performed sep- 

rately. The velocity field, computed on the unstructured mesh, 

ill then have to be communicated to the processors in charge of 

ransporting the scalar field. With such an approach we expect the 

oad balancing to be optimized independently on the two process 

ools used for velocity and scalar calculations. 

Future works will also include the extension of the hybrid 

ethod to the coupling of the finite-volume method with multi- 

esolution particle method as described in [20] . This should allow 

o increase the local density of particles and therefore to address 

ven higher Schmidt numbers. 
0
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