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Abstract. In this article, we introduce a new algorithm for solving
discrete optimal transport based on iterative resolutions of local ver-
sions of the dual linear program. We show a quantitative link between
the complexity of this algorithm and the geometry of the underlying
measures in the quadratic Euclidean case. This discrete method is then
applied to investigate to wo optimal transport problems with geometric
�avor : the regularity of optimal transport plan on oblate ellipsoids, and
Alexandrov's problem of reconstructing a convex set from its Gaussian
measure.

1. Introduction

Numerical methods for optimal transport are currently restricted to very
speci�c settings: the measures involved should have a continuous density,
the space should be a �at torus or an Euclidean space and the cost func-
tion should be given by the square of the Euclidean distance (see below for
a survey of these methods and their exact application domain). In many
applications of optimal transport in geometry, however, the underlying cost
function is non-Euclidean. This happens for instance when the underlying
space is a more general Riemannian manifold and the cost function is the
squared Riemmanian distance. More general cost functions also arise in the
reformulation of some classical inverse problems arising in convex geome-
try into the language of optimal transport. For instance, the cost function
that naturally appears when reformulating Alexandrov's problem [23, 5] is
c(u, v) = − log(max(〈u|v〉, 0)), and the underlying space is the unit d-sphere.
Similar cost functions also appears in inverse problems coming from geomet-
ric optics [11]. In addition to non-Euclidean cost functions, it is sometimes
natural in these geometric situations to consider optimal transport between
measures that are not absolutely continuous with respect to the Lebesgue
measure on the underlying space. Examples of such measures include the
curvature measures of singular convex sets. These di�culties make it impos-
sible to use currently existing numerical approaches for optimal transport in
many geometric problems.

This article makes two main contributions. First, we propose a simple
algorithm based on local linearizations in order to solve discrete optimal
transport. Our main contribution is an upper bound on the complexity of
each local linearizations in term of the geometry of the underlying measures.
This bound holds when the cost function is the squared Euclidean norm,
and is obtained as the consequence of a theorem from convex analysis due
to Bronsted and Rockafellar. This gives a �rst quantitative explanation
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of the (empirically recorded) hardness of solving discrete optimal transport
problems involving highly concentrated measures. The second contribution
consists in numerical experiments that illustrate the e�ectiveness of simple
discretizations of optimal transport in order to solve continuous geometric
questions.

1.1. Overview of numerical methods for solving optimal transport.

Continuous methods. There exist many PDE-inspired numerical methods to
solve the quadratic transport problem. The �rst to have been proposed is
an augmented Lagrangian method of Benamou and Brenier [3] that solves
the time-continuous optimal transport problem on the plane, also recovern-
ing the optimal �static� transport map. Loeper and Rapetti[21] proposed to
solve optimal transport between the uniform measure and a measure with
positive density on the torus by a direct resolution of the Monge-Ampère
equation corresponding to mass preservation under periodic boundary con-
ditions. Very recently Benamou, Froese and Oberman [4] propose a method
to solve the Monge-Ampère equation under the boundary conditions that
arise in the (non-periodic) Euclidean optimal transport problem.

Semi-discrete optimal transport. Instead of solving the optimal transport
problem between absolutely continuous measures, one can approximate the
target measure by a sum of Dirac masses. This approach has been used �rst
as a theoretical tool by proposed by Pogorelov [25], and many numerical
implementations have been proposed [12, 24, 2, 22]. In order to apply this
approach, one needs to compute generalized Laguerre diagrams in an e�cient
way, e.g. almost linear in the number of points. This practically limits this
approach to 2D problems, and for the squared Euclidean distance.

Discrete optimal transport. The simplest discretization of the optimal trans-
port problems is known in the combinatorial optimization community as
the linear assignement problem. Given an integer-valued square matrix
(cij)16i,j6N , the question is to �nd a permutation σ of the set {1, . . . , N}
that minimizes the total transport cost

∑
16i6N ciσ(i). The linear assignment

problem is a standard problem in combinatorial optimization and many al-
gorithms have been developed to solve it [9], among which the so-called
Hungarian method or the auction algorithm [6] and their variants. The best
worst-case complexity for solving the linear assignment problem for a dense
N ×N integer-valued cost matrix is of order O(N5/2 log(NC)), where C is
the value of the maximum entry in the cost matrix. Note that this worst-case
complexity is only an upper-bound on the running time of the best algorithm
currently known, and there is no known lower bound on the complexity of
the problem but the trivial ones. This worst-case bound is too general to
fully exploit the geometry of the problem and is therefore very often not
representative of the running time of the algorithm.

Some algorithms [?] exploit the geometry of the cost function to improve
these upper bounds. However, there seems to be no complexity analysis
that exploits the �geometry� of the two involved point sets, such as their
concentration on lower dimensional subsets, even though this geometry has
a huge impact on the actual running times, up to many order of magnitude.
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1.2. Contributions. We introduce in an iterative method made of local
linearizations in order to solve the discrete optimal transportation problem.
In the linear assignment case, this means solving the linear program that
appear, which has 2N variables and N2 constraints, to a sequence of linear
programs with fewer constraints. Our main theoretical result is an upper
bound on the complexity of these local linearization in the squared Euclidean
case, as measured by the number of constraints. It turns out that in this
case, the number of contraints that appear is equal to the cardinality of the
weighted ε-neighborhood graph. Given for two point sets X and Y in Rd, and
a weight function w : Y → R, this graph is de�ned as follows:

Gε(w) =

{
(x, y) ∈ X × Y ; ‖x− y‖2 + w(y) 6 min

z∈Y
[‖x− z‖2 + w(z)] + ε

}
.

We show that the maximum cardinality ofGε(w) can be linear in the cardinal
N = |X| = |Y | when these sets satisfy some simple geometric assumptions.
This result (Theorem 4.1) is obtained as a consequence of a theorem on the
ε-di�erential of convex functions due to Bronsted and Rockafellar. To the
best of our knowledge, this is the �rst quantitative highlight of a link between
the complexity of an algorithm designed to solve discrete optimal transport
problems and the geometry of the underlying measures.

In the last section we illustrate how very simple discretizations can yield
approximate solutions to two continuous optimal transport problems with
geometric �avor, that are currently out of reach for numerical PDE meth-
ods. In these applications, the probability measures that are involved are
replaced by uniform probability measures on discrete point sets, and we use
our algorithm to solve the discrete optimal transport problems.

• In a �rst illustration we show how our discrete approach can give
qualitative information when studying the regularity of optimal trans-
ports. More precisely, as it has been proved in [7, 13], we illustrate
numerically the fact that discontinuous transport plans can occur be-
tween non-vanishing densities even on simple convex manifolds like
oblate ellipsoids.
• Our second example is related to Alexandrov's problem, i.e. the
reconstruction a convex surface from its Gaussian curvature measure.
The reconstructed surface has been characterized in [23, 5] in term
of optimal transport potentials, and we show how our method can
be used to practically solve this inverse problem. We illustrate this
reconstruction procedure on the very degenerated case (in the sense
of the concentration of the measures) of the icosahedron and on the
reconstruction of a convex body with singular edges.

2. Background on optimal transport

2.1. Discrete optimal transport and assignment problem. Suppose
we are given two probability measures µ and ν supported on two �nite sets
X,Y , and can be written µ =

∑
x∈X µxδx and ν =

∑
y∈Y νyδy for some

non-negative set of masses (µx) and (νy). In this setting, a transport plan
between µ and ν is described by a matrix (πxy)(x,y)∈X×Y with non-negative
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entries that satis�es the two following set of constaints

∀x ∈ X,
∑
y∈Y

πxy = µx and ∀y ∈ Y,
∑
x∈X

πxy = νy.

The set of transport plans between µ and ν is denoted by Γ(µ, ν).
We are given a cost function c : X×Y → R on the product space, i.e. the

value c(x, y) measures how costly it is to move mass from x to y. The optimal
transport problem between µ and ν is the following optimization problem

min

{∑
x∈X

c(x, y)πxy; π ∈ Γ(µ, ν)

}
. (P1)

Note that the set of transport plans is a polyhedron and the optimized func-
tion linear thus implying that the optimal transport problem is a linear
programming problem. The following theorem of Kantorovich characterizes
the dual of this linear program.

Theorem 2.1 (Kantorovich duality). The dual of the linear programming
problem (P1) is given by

max
v,w

∑
x∈X

v(x)µx −
∑
y∈Y

w(y)νy

where v : X → R, w : Y → R are s.t.

∀(x, y) ∈ X × Y, v(x)− w(y) 6 c(x, y).

(P2)

Moreover, this linear program is equivalent to the following unconstrained
concave maximization problem maxw Φ(w) where

Φ(w) :=
∑
x∈X

[
min
y∈Y

w(y) + c(x, y)

]
µx −

∑
y∈Y

wyνy, (P3)

and the supremum is taken on any weight function w : Y → R.

Linear assignment problem. When X and Y have the same cardinality N
and the two measures µ and ν are uniform on the sets X and Y , the optimal
transport problem is equivalent to the (linear) assignment problem, which is
well-known in combinatorial optimization. It consists in �nding a bijection
σ : X → Y which realizes the minimum

min
σ

∑
x∈X

c(x, σ(x)) where σ ∈ is a bijection between X and Y . (PA)

While the theoretical results below apply to the general transport problem
as well as to the linear assignment problem, in the applications of Section 5
we only make use our algorithm in the special case of the linear assignment
problem. We make no claim on the e�ciency of the local linearization algo-
rithm presented below for the general discrete optimal transport problem.

3. Linear assignment through local linearizations

Given a weight vector w and a positive number ε, we describe in this sec-
tion a simple linear program whose solution allows to recover the maximum
of the concave function Φ de�ned in (P3) over the hypercube w+ [0, ε]N . In
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order to de�ne this linear program, we consider the following subset of the
product set X × Y

Gε(w) = {(x, y) ∈ X × Y ;w(y) + c(x, y) 6 min
z∈Y

w(z) + c(x, z) + ε}.

For instance, when c is the squared Euclidean distance on Rd and w vanishes,
Gε(w) coincides to the more usual ε-nearest neighbor graph. Following this
terminology, one could call the generalization to non-vanishing weights the
weighted ε-nearest neighbor graph.

3.1. De�nition of the local linearization. The local linearization of prob-
lem (P2) around a weight vector w and at a certain scale ε > 0 is de�ned by
the following linear programming problem:

max
v,δ

∑
x∈X

v(x)µx −
∑
y∈Y

(w(y) + δ(y))νy (P2εw)

where v : X → R and δ : Y → R are functions satisfying the two following
sets of contraints

∀(x, y) ∈ Gε(w), v(x)− (w(y) + δ(y)) 6 c(x, y)

∀y ∈ Y, 0 6 δ(y) 6 ε

Note that this local linearization tries to make a trade-o� between the num-
ber of constraints, which grows to |X| · |Y | as ε grows, and the size of the

hypercube [0, ε]|X| to which the o�set weight vector vector δ belongs.
The following easy lemma shows that (P2εw) is indeed a local linearization

of (P2)

Lemma 3.1. Any pair of vectors (v, w + δ) which satis�es the constraints of
the local linearization (P2εw) also satisfy the constraints of (P2).

Proof. Fix a point x in X, and order the points in Y by increasing values of
be an ordering w(y) + c(x, y), i.e.

w(y1) + c(x, y1) 6 w(y2) + c(x, y2) 6 . . .

Now, consider now a point y such that (x, y) does not belong to Gε(w), i.e.
such that

w(y) + c(x, y) > ϕY,w(x) + ε = c(x, y1) + w(y1) + ε.

Using this inequality, we have:

v(x)− (w(y) + δ(y)) < v(x) + c(x, y)− (c(x, y1) + w(y1) + ε+ δ(y))

Since the pair of vectors (v, w+δ) satis�es the constraints of (P2εw), we know
that v(x)− w(y1)− c(x, y1) 6 δ(y1) and

v(x)− (w(y) + δ(y)) 6 c(x, y) + δ(y1)− δ(y)− ε.

Using the fact that δ(y1) and δ(y) belong to [0, ε], we see that the pair
(v, w + δ) also satis�es all the constraints of (P2). �

The following Corollary characterizes the cases where the maximum of
(P2εw) yields a global maximizer of (P2), thus providing a stopping criterion
for our algorithm.
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Corollary 3.2. Suppose the maximum of (P2εw) is attained at an admis-
sible pair (v, w + δ) such that for every point y in Y , δ(y) belongs to (0, ε).
Then, the weight vector w is a global maximizer of (P3).

Proof. By the previous lemma, any maximizer (v, w+ δ) of (P2εw) is admis-
sible for the problem (P3). If for every point y the value of δ(y) belongs to
(0, ε), this pair satis�es the same optimality conditions as optimal vectors of
Problem (P3). Thus, w it is a global maximizer of (P3) by concavity. �

Remark 3.1. In [10], Bu² and Tvrdík describe a heuristic to increase the
speed of the Berstekas' auction algorithm, which exploits the fact that the
weight vectors do not change much between two successive steps of the auc-
tion algorithm. This heuristic is quite close to the local linearisation proposed
here. It is therefore likely that the theoritecal results below on the size of
Gε(w) in the squared distance case could be used to explain the practical
e�ciency of this heuristic.

3.2. Algorithm. This local linearization can be applied iteratively in order
to construct a solution of the optimal transport problem (Algorithm 1). The
following Lemma asserts that the algorithm terminates in a �nite number of
steps.

Algorithm 1 Discrete optimal transport through local linearizations.

Input: A cost matrix (Cxy), a parameter ε > 0.
Initialization: w0 ← 0
Repeat: wi+1 ← wi + δi, where δi is a solution of (P2εwi

)
until δi meets the stopping criterion of Corollary 3.2.

Output: An optimal weight vector w := wi.

Lemma 3.3. For any �xed positive ε, and any starting point w0, the sequence
(wi) de�ned as above converges to a global maximizer of (P3) in a �nite
number of steps.

Proof. Thanks to Corollary 3.2, we know that if wi+1 = wi + δi is not the
global maximum, then δi belongs to the boundary of the box [0, ε]M , and
there exists no constant c such that w + c belongs to the interior (0, ε)M .
This implies that there exists two points y, y′ in Y such that δi(y) = ε and
δi(y

′) = 0, thus ensuring that the distance between wi and wi+1 is uniformly
bounded from below by ε/2. One concludes by using the fact that the graph
of the function optimized in (P3) is made of a �nite number of linear pieces,
implying a (uniform) minimum increase in Φ(wi+1) − Φ(wi) at each step
before convergence, where Φ is the function de�ned in (P3). �

3.3. Implementation details. Our implementation follows the approach
described in the previous paragraph, with two important di�erences in the
choice of the initial weight vector, and in the practical construction of the
local linearization.
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Initialization through convex optimization. The dual form of our optimiza-
tion problem can be seen as a large scale non-smooth concave maximization
problem. A surprisingly e�cient method for minimizing non-smooth func-
tions is the use of quasi Newton methods. Indeed, di�erent authors pointed
out recently [15, 18, 17] that variable metric algorithms may produce in some
cases sequences which converge to an optimal point in the sense of Clarke.
The mathematical analysis of this good behavior has just been initiated in
recent papers of Overton [18, 17].

A detailed study of the application of quasi-Newton methods to optimal
transportation would be out of the scope of that paper. However, we point
out that L-BFGS (low memory version of Broyden-Fletcher-Goldfarb-Shanno
algorithm), in the context of optimal transportation, gives a rather e�cient
way to obtain a good starting weight vector for the local linearizations ap-
proach.

Construction of the local linearization. Instead of relying on an ε parameter,
we use a �budget� on the number of linear constraints to be used in the linear
program. More precisely, at every local linearization step, we start with a
weight vector w : Y → R. We let M be the number of points in Y . For
every point x in X, we compute a map σx : {1, . . . ,M} → Y ordering the
points of Y by increasing values of c(x, y) + w(y), i.e.

c(x, σx(1)) + w(σx(1)) 6 . . . 6 c(x, σx(M)) + w(σx(M)). (3.1)

In the full linear program (P2), each couple (x, y) in X × Y yields a linear
constraint on the dual variables. For the purpose of our local linearisation,
we choose the number of constraint Ix for each point x so as to maximize:

ε := min
x∈X

(c(x, σx(Ix))− c(x, σx(1))) (3.2)

under the budget constraint
∑

x∈X Ix 6 B, where B is the maximum number
of constraints in the linear program. This is e�ciently done using a priority

queue. In practice setting B = |X| |Y |1/2 o�ers a good trade-o� between the
cost of solving the number of linear constraints versus maximizing the value
of ε. Note that if ε vanishes, one would have to increase the value of B �
however, we never encountered that case in practice.

4. Complexity of a local linearization for the quadratic cost

In this paragraph, we study the complexity of the local linearization, as
measured by the number of constraints in the linear program (P2εw). Said
otherwise, we want to upper bound the cardinality of the set Gε(w). The
theorem below concerns the case where the two point sets X,Y are �nite
subsets of the Euclidean space Rd, and when the transport cost is given by
the squared Euclidean distance c(x, y) := 1

2 ‖x− y‖
2.

Before stating the theorem, let us present two examples of point distribu-
tions that can cause the set of constraints Gε(w) to be equal to the whole
product X × Y , even when w vanishes:

(i) A very simple case is when the target point cloud is highly concen-
trated. Consider X ⊆ Rd, y0 a point and r the maximum distance
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between X and y0. Consider ε < r and let Y be a point cloud con-
tained in the ball B(y0,

ε
3). Then, for a vanishing weight vector w,

one has Gε(w) = X × Y .
(ii) The second, less trivial example, occurs when X and Y belong to two

orthogonal a�ne subspaces. For instance, let X,Y be two subsets
of R3 such that (i) X is contained in the �rst coordinate axis (0x)
and (ii) Y is contained in the circle obtained by intersecting the unit
sphere with the yz-plane. Then, even for ε equal to 0 and a vanishing
weight vector, one has Gε(w) = X × Y .

These two phenomena are captured by the constants that appear in the
following upper bound on the cardinal of Gε(w). The term (mn)3/2 mea-
sures the concentration of the point sets X and Y . The term involving the
Minkowski sum of Ω and Ω′, de�ned by Ω + Ω′ = {x + y; (x, y) ∈ Ω × Ω′},
measures the �approximate orthogonality� of the two supports.

Theorem 4.1. Let Ω and Ω′ be two open subsets of Rd, and X ⊆ Ω, Y ⊆ Ω′

two sets of cardinal N . Assume moreover that X and Y are evenly distributed
in Ω and Ω′ in the following sense:

∀x ∈ Ω, 1 6
∣∣B(x,

√
ε) ∩X

∣∣ 6 n
∀y ∈ Ω′, 1 6

∣∣B(y,
√
ε) ∩ Y

∣∣ 6 m
Then, for any weight vector w : Y → R, we have the following upper bound
on the number of constraints appearing in the local linearization:

|Gε(w)| 6 const(d)

(
Hd(Ω + Ω′)

(Hd(Ω)Hd(Ω))1/2

)
(nm)3/2N.

The proof of this theorem is postponed to the end of the section.

4.1. Relation to ε-subdi�erentials. We start by two Lemmas, which con-
stitute the continuous version of Theorem 4.1. Recall that the ε-subdi�erential
of a convex function ψ : Rd → R can be de�ned in the following way [8]:

∂εψ(x) := {y ∈ Rd; ∀h ∈ Rd, 〈x|y〉+ ψ(x) 6 ψ(x+ h) + ε}

When ε vanishes, this set is called the subdi�erential of ψ at x and is simply
denoted by ∂ψ(x). The following Lemma makes explicit the relation between
the set Gε(w) introduced for the local linearization and the graph of the ε-
subdi�erential.

Lemma 4.2. Given a weight vector w : Y → R, consider the function

ψ : x 7→ 1

2
‖x‖2 −min

y∈Y

(
1

2
‖x− y‖2 + w(y)

)
.

Then the function ψ is convex and we have the following inclusion

Gε(w) ⊆ Graph(∂εψ) := {(x, y) ∈ X × Y ; y ∈ ∂εψ(x)}.

Proof. The convexity of the function ψ is easy to check. By de�nition a
couple (x, y) of belongs to Gε(w) if

w(y) +
1

2
‖x− y‖2 6 min

y∈Y

1

2
‖x− y‖2 + w(y) + ε,
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thus implying

ψ(x+ h) =
1

2
‖x+ h‖2 − ϕY,w(x+ h)

>
1

2
‖x+ h‖2 −

(
1

2
‖x+ h− y‖2 + w(y)

)
>

1

2
‖x‖2 − ϕY,w(x)− ε+ 〈x|h〉 = ψ(x)− ε+ 〈x|h〉.

This shows the desired inclusion. �

The proof of the second Lemma relies on the following theorem of Bronsted
and Rockafellar [8]: Consider a convex function ϕ : Ω ⊆ Rd → R and a couple
(x, y) such that y belongs to ∂εϕ(x). Then, for every positive ε, there exists
(xε, yε) with yε ∈ ∂ϕ(xε) and such that ‖x− xε‖ 6

√
ε and ‖yε − y‖ 6

√
ε.

Lemma 4.3. Let ψ : Ω→ R be a convex function such that the subdi�erential
of any point x in Ω is contained in Ω′. Then, for any positive number ε,

Hd ⊗Hd(Graph(∂εψ)) 6 const(d)Hd(Ω + Ω′)εd/2.

Proof. Consider the graph of the ε-subdi�erential Hε := Graph(∂εψ), the
graph of the subdi�erential H = H0, and the tubular neighborhood

Hε := {(x, y) ∈ Rd × Rd; ∃(x′, y′) ∈ H s. t.
∥∥(x, y)− (x′, y′)

∥∥ 6 ε}.
The theorem of Bronsted and Rockafellar asserts that Hε is included in the

tubular neighborhood H
√
2ε, and our goal is then to bound the volume of

this latter set.
Consider the map Σ : Rd × Rd → Rd de�ned by Σ(x, y) = x+ y. For any

two pair of points (x, y) and (x′, y′) in H, the convexity of ψ implies that
〈x− x′|y − y′〉 > 0. Consequently,∥∥Σ(x, y)− Σ(x′, y′)

∥∥2 =
∥∥x− x′∥∥2 +

∥∥y − y′∥∥2 + 2〈x− x′|y − y′〉

>
∥∥(x, y)− (x′, y′)

∥∥2 . (4.3)

In other words, the restriction of the map Σ on the graph H is one-to-one
and its reciprocal is 1-Lipschitz. Denoting by N (X, η) the minimum number
of balls of radius η needed to cover X, Eq. (4.3) yields

N (H, ε) 6 N (Σ(H), ε) 6 N (Ω + Ω′, ε).

From this bound with η =
√

2ε follows the following upper bound on the
volume of Hε:

Hd ×Hd(Hε) 6 Hd ×Hd(H
√
2ε)

6 const(d)N (Ω + Ω′,
√
ε)εd

6 const(d)Hd(Ω + Ω′)εd/2

The last inequality follows from the usual comparison between covering and
packing numbers. �

Note that there are simple examples for which the exponent of ε in the
Lemma is sharp. Consider Ω = Ω′ = B(0, 1) and ψ(x) = 1

2 ‖x‖
2. A simple
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computation shows that the ε-subdi�erential of the function ψ at x is the
ball B(x,

√
2ε). Hence,

Graph(∂εψ) = {(x, y);x ∈ Ω, y ∈ B(x,
√

2ε)}.
This implies that the Hausdor� measure H2d(Graph(∂εψ)) is lower bounded

by a constant depending on the dimension multiplied by εd/2.

4.2. Proof of Theorem 4.1. We consider the convex function

ψ : x 7→ 1

2
‖x‖2 −min

y∈Y

(
1

2
‖x− y‖2 + w(y)

)
.

As a consequence of Lemma 4.2, we only need to bound the cardinal of the
intersection Graph(∂εψ) ∩ (X × Y ). Denote by χηx the uniform probability
measure on the ball of radius η :=

√
ε centered at x, and µη = 1

N

∑
x∈X χ

η
x,

νη = 1
N

∑
y∈Y χ

η
y. The density µη is upper bounded by n

Nβdηd
on Ω, where

βd denotes the d-volume of the unit ball. Morever, by the lower bound on
the cardinal of the intersection |B(x, η) ∩X|, we know that Nβdη

d is larger
than the volume of Ω. Similar bounds hold for ν. Hence, denoting by Gε
the set Graph(∂εψ), we have

1

N2
|Gε ∩ (X × Y )| 6 [µη × νη](G2η

ε )

6
nm

Hd(Ω)Hd(Ω′)
[Hd ×Hd](G

√
ε+2η

0 )

6 const(d)nm
Hd(Ω + Ω′)

Hd(Ω)Hd(Ω′)
εd/2

We conclude using Nβdη
d 6 nHd(Ω) and Nβdη

d 6 mHd(Ω′).

5. Two applications in geometry

5.1. Discretization of optimal transport. The discrete optimal trans-
port problem can be generalized as follows. Given two probability measures
µ and ν on two compact metric spaces A and B, a transport plan between µ
and ν is a probability measure π on the product space X×Y whose marginal
on A and B is respectively µ and ν, or said otherwise,

∀R ⊆ A, π(R×B) = µ(A) and ∀S ⊆ B, π(A× S) = ν(B)

Again, the set of optimal transport plans is denoted by Γ(µ, ν). Given a cost
function c : X × Y → R, the optimal transport problem between µ and ν
consists in the following optimization problem:

min

{∫
X×Y

c(x, y)dπ(x, y); π ∈ Γ(µ, ν)

}
.

In the following, we will approximate µ and ν by two discrete measures
µ and ν that can be written as �nite sums of unit Dirac masses. This
discretization is meaningful because of the stability of optimal transport
plans [27, Theorem 5.20]. This theorem asserts that, as µ and ν weakly
converge to µ and ν, the optimal transport plan π between µ and ν weakly
converges to a solution of the optimal transport problem between µ and ν.
It should be noted, however, that there is no known quantitative versions of
this stability results even in simple cases.
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5.2. Quantization of a measure on a convex surface. In the applica-
tions that we consider below, we need to discretize a probability measure
with density on a convex surface by a sum of unit Dirac masses. In this
paragraph, we describe a simple approach that constructs relevant approxi-
mation of a given probability measure with density by an average of k unit
Dirac masses, which converges weakly to the target measure when the size
of the sampling goes to in�nity.

Optimal quantization. Given a probability measure with density f : ∂K → R
on the boundary of a convex set K, and a point set P ⊆ ∂P , the minimum
quadratic Wasserstein distance (with respect to the intrinsic distance on ∂P )
between f and a discrete probability measure supported on P is measured
by the quantization error :

Ef (P ) =

∫
∂K

d∂K(x,pP (x))2f(x)dx (5.4)

where d∂K is the geodesic distance on ∂K and pP (x) denotes (one of) the
nearest point to x in P . The following theorem [14, 16] shows that optimal
quantization can be used to construct approximations of a measure by �nite
sums of unit Dirac masses:

Theorem 5.1. Consider a probability density f : ∂K → [ε, ε−1] (ε > 0), on
the boundary of a smooth convex set, with dim(∂K) = `. For any k > 0, let

Pk ∈ arg min{Ef (P ); Card(P ) = k}
and let µk = 1

k

∑
p∈Pk

δp. Then, µk weakly converges to the probability mea-

sure with density αf `/(`+2), where α is a suitable scaling constant.

Lloyd's algorithm. The non-convexity of the quantization error makes it im-
possible in practice to �nd the best point sampling P with a �xed number
of points k, even for modest values of this parameter. Lloyd's algorithm[20],
which is a standard technique in geometry and image processing, is an easy
to implement �xed point strategy that �nds a reasonable critical point of
this quantization error. This algorithm is described in Algorithm 2.

Algorithm 2 Continuous Lloyd's algorithm

Step 0: Construct P by sampling k distinct random points from µ.
Step 1: Compute the Voronoi diagram of P , move every point p of P

to the centroid of the Voronoi cell with respect to f , i.e.

p← arg min
q

∫
VorP (p)

d(x, q)2f(x)dx, where VorP (p) = p−1P ({p}).

If the mass of the Voronoi cell vanishes, the point p does not move.
Step 2: Continue while all points move by less than a threshold in

Step 1.

In practice, one can replace the computation of the surface Voronoi cell
for the intrinsic metric VorP (p) by the intersection of the 3D Voronoi cell
with the tangent plane to ∂K at p, and similarly for the construction of the
weighted centroid. The centroid then needs to be projected back on the sur-
face. Note that it would be possible to replace the linearly-converging Lloyd
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algorithm by a quasi-Newton algorithm, with almost quadratic convergence
speed, following [19].

5.3. Regularity of optimal transport on oblate ellipsoids. The ques-
tion of regularity of optimal transport plans has received a lot of attention.
Examples of discontinuous transport plans have been found by Ca�arelli,
between probability densities on the plane with non-convex support, and
by Loeper on compact manifolds with negative curvature even for densities
lower bounded by a positive constant (see e.g. Chapter 12 in [27]). An
even more striking recent result is that even on simple convex surfaces, it is
possible to �nd examples of pairs of non-vanishing probability densities such
that the optimal transport map is discontinuous. In this section we study
numerically by our optimization method the case of oblate ellipsoids, which
is one of the simplest cases where discontinuity can occur [7, 13].

The family of ellipsoids (Sµ) we will consider is de�ned by

Sµ :=

{
(x, y, z) ∈ R3; x2 + y2 +

(
z

µ

)2

= 1

}
(5.5)

Bonnard, Caillau and Ri�ord [7] have shown that for µ smaller than 1/
√

3,
there exists a point on the equator {z = 0} whose injectivity domain is non-
convex. By [13], this fact implies the existence of two absolutely continuous
probability measure µ, ν with densities in [C−1, C] such that the optimal
transport plan between µ and ν is discontinuous.

Figure 1. Quantization by 104 Dirac masses of the initial
and the target measures on the sphere (�rst row) and on the
oblate ellipsoid S0.3 (second row)
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To obtain a qualitative description of this phenomena, we introduce two
non-vanishing densities with equal total mass on S1, whose formula in Carte-
sian coordinates is given by:

f(x, y, z) = 0.05 + 4 exp
(
−c(1− x)2

)
and

g(x, y, z) = 0.05 + 2 exp

(
−c(1−

√
2

2
(z + y))2

)
+ 2 exp

(
−c(1−

√
2

2
(z − y))2

)
with c = 500. Previous parameters have been selected to de�ne non-vanishing
densities which are not too concentrated. Even in this regular situation, we
will see that optimal transport maps may have very di�erent qualitative
behaviors depending on the eccentricity of the ellipsoid.

We construct a quantization by a sum of 104 unit Dirac masses of the two
measures of densities f and g with respect to the two dimensional Hausdor�
measure on S1 using Lloyd's algorithm, as described in �5.2. Our samplings
are reported in �gure 1. Our goal is to compare the optimal transport
between the two discrete measures on the sphere and between two analogous
measures de�ned on the oblate ellipsoid Sµ, with µ = 0.3. By analogous
we mean that we deduce our two measures on Sµ by the naive bi-Lipschitz
transformation

(x, y, z)→ (x, y, µz).

Implementation. There is no known analytical formula to compute the geo-
desic distance between two points on an ellipsoid which is not a sphere. In
order to compute a precise approximation of the cost matrix we used a soft-
ware library developed by Krisanov, which is based on a continuous version
of Djikstra's algorithm described in [26]. Let us point out that this algorithm
is exact on a triangular surface and has a complexity of N2 logN where N
stands for the number of points on the surface. The optimal transport plans
between both pair of measures are then obtained simply by applying the
algorithm described in �3 to the matrix of squared geodesic distances. This
takes a few minutes on a standard computer.

To illustrate the di�erence between the two optimal transports, we com-
puted for every sampling point of the source densities the geodesic distance
between its image and the center of the Gaussian part of the source density,
i.e. the point c := (1, 0, 0). More formally, this is equivalent to compute the
pullback of the geodesic distance function to (1, 0, 0) by the optimal trans-
port. These functions are rescaled to have the same in�nity norm, and their
values are reported in Figure 2, with the same color map. One can observe
that the function is smooth along the equator in the spherical case (µ = 1)
whereas in the oblate case (µ = 0.3) some points close to the equator can
be transported to points whose geodesic distance to c is very di�erent. This
qualitative behavior, observed here at a discrete level, is the �rst numeri-
cal illustration of the discontinuity of optimal transport plans between two
non-vanishing densities supported on a convex manifold.

5.4. Alexandrov's reconstruction problem. In this section, we propose
an method to reconstruct a 3D convex body from its Gaussian curvature
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Figure 2. Pullback of the geodesic distance function to
(1, 0, 0) by the optimal transports on the sphere and on the
oblate ellipsoid respectively.

measure based on a variational characterisation of [23, 5] and on our discrete
optimal transport algorithm.

Optimal transport formulation of Alexandrov's theorem. Let K ⊆ Rd be a
convex body in Rd, containing the origin in its interior. Any convex set
admits an exterior unit normal vector �eld nK : ∂K → Sd−1, which is
uniquely de�ned almost everywhere. Let σ be the probability measure on
the unit sphere, obtained by rescaling the (d − 1)-dimensional Hausdor�
measure. The Gaussian measure GK of K is by de�nition the pullback of σ,
by the Gauss map nK . More explicitely,

∀B ⊆ ∂K, GK(B) := σ(nK(B))

Since K contains the origin in its interior, its boundary can be parame-
terized by a radial map ρK : Sd−1 → ∂K. For every direction u in Sd−1,
ρK(u) lies in the intersection of ∂K with the ray {tu; t > 0}. We can again
pull-back the measure GK by the map ρK , thus de�ning a measure on the
unit sphere G0K , which we will call Alexandrov measure.

∀B ⊆ Sd−1, G0K(B) := σ(nK ◦ ρK(B)).

Alexandrov addressed in [1] the question of the existence and uniqueness
(up to homotethy) of a convex body with prescribed Alexandrov measure
µ, under some conditions on µ. The relationship between this reconstruc-
tion problem and a problem of optimal transport on the unit sphere for the
cost c(u, v) = − log(max(〈u|v〉, 0)) has been �rst remarked by Oliker [23],
and then used by Bertrand to give a direct variational proof of Alexandrov
theorem [5]. Bertrand's version of Alexandrov's theorem says the following:

Theorem 5.2. Given a probability measure µ on the unit sphere, there exists
a convex body K such that G0K = µ if and only the following optimal transport
problem between σ and µ for the cost function c(u, v) := − log(max(〈u|v〉, 0))
admits a solution with �nite cost:

sup
ϕ,ψ

∫
Sd−1

ϕ(u)dσ −
∫
Sd−1

ψ(v)dµ = inf
π

∫
Sd−1×Sd−1

c(u, v)dπ(u, v) (5.6)
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where the maximum is taken over functions ϕ,ψ satisfying the relation ϕ(u)−
ψ(v) 6 c(u, v), and the in�mum is taken over transport plans between u
and v.

Moreover, from Section 2.2 of [5], one can see that if from a pair ϕ,ψ
maximizing the left-hand side, one can reconstruct the radial function of a
convex set solving Alexandrov's problem by ρK(u) = exp(−ψ(u))u. Note
that one could also reconstruct the support function of K from ϕ.

Example: Perturbed icosahedron. Theorem 4.1 suggests that concentrated
measures can be a source of numerical di�culties. In order to evaluate
the reconstruction procedure and the e�ciency of our algorithm in highly
concentrated situations we consider the following test case. Let (Vi) be the
vertices of one of the �ve Platonic solid inscribed in the unit sphere. Since
these polytopes are regular, the associated Gaussian curvature is a sum of
Dirac masses at each Vi with mass equal to 4π over the number of vertices.
To create an concentrated measure we sample several points from each Vi
and perturb them randomly. More explicitely, we consider the measure

µ = c
n∑
i

m∑
j

δRj(Vi,s),

where R1(Vi, s), . . . , R
m(Vi, s) are obtained by taking m independent sam-

ples of the isotropic Gaussian vector centered at Vi with variance σ, and
projecting them on the unit sphere. The constant c is adjusted in order to
give a total mass of 4π. We carried out this experiment in the case of the
icosahedron so that n = 12 and we �xed m = 50 and s = 10−4. We used a
quantization of the uniform measure σ on the unit sphere by a sum of nm
Dirac masses using Lloyd's algorithm, as described in �5.2.

The algorithm stops after 33 steps of the local linearization. The recon-
structed polytope and a zoom at a vertex are displayed in Figure 4.

Figure 3. Reconstruction of a random perturbed icosahe-
dron by its Gauss curvature measure
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Example: Convex set with 1-dimensional Gaussian measure. Finally to il-
lustrate the reconstruction of a convex body which is not a polytope, we
consider the following Gaussian measure

µ = c
3∑
i=1

H1
|Ci
,

where H|Ci
stands for the restriction of the one-dimensional uniform Haus-

dor� measure to a circular arc Ci. We �xed C1 and C2 to be to circles of
same radius contained in horizontal plans at altitude z = 0.5 and z = −0.5
respectively, and we de�ned C3 to be the great circle contained in the plane
x = 0. As in the previous example, we adjust the constant c so as to give a
total mass of 4π. To obtain a discrete optimal transport problem problem,
we discretize the measure µ by sampling 300 uniform points on each circle.
Only two local linearization are needed to reach convergence.

The resulting points on the boundary of the convex body and the convex
hull of those vertices are shown in Figure 4.

Figure 4. Reconstruction of a convex body described by its
Gaussian curvature
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