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Abstract

This article deals with the optimal design of the individual nanophotonic components of photonic inte-
grated circuits. In the mathematical setting of the three-dimensional, time-harmonic Maxwell equations,
we propose a shape and topology optimization algorithm combining Hadamard’s boundary variation
method with a level set representation of shapes and their evolution. A particular attention is devoted to
the robustness of the optimized devices with respect to small uncertainties over the physical or geometri-
cal data of the problem. In this respect, we rely on a simple multi-objective formulation to deal with the
two main sources of uncertainties plaguing nanophotonic devices, namely uncertainties over the incom-
ing wavelength, and geometric uncertainties entailed by the lithography and etching fabrication process.
Several numerical examples are presented and discussed to assess the efficiency of our methodology.
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1 Introduction
Nanophotonic devices are components used to manipulate light, considered as an electromagnetic field, at
the nanometric scale. They are tailored to accomplish specific tasks such as guiding an incident wave with
negligible loss, splitting it into several output ports, converting a mode from an incoming waveguide into
another mode of an outgoing waveguide, etc. Nanophotonic devices are the basic components of the photonic
integrated circuits (PICs) used, for instance, in fiber optic communications, microscopy, biosensing and even
in the prospective research about photonic computing (see [27] for an overview).

Their non trivial properties are generally obtained as the result of a clever repartition of “core” and
“cladding” materials, in a context where the difficult underlying physics leaves very little room for intuition;
this raises the need for advanced methods stemming from numerical simulation and mathematical program-
ming for the design of nanophotonic devices. While the development of integrated optical functionalities has
historically relied on a dedicated opto-geometrical optimization of each functionality with respect to a re-
stricted number of parameters, modern shape and topology optimization algorithms have naturally emerged
as a unified solution. These techniques have indeed been applied in a wide variety of situations in the pho-
tonic context for about ten to twenty years [46, 11], even though the practical realization of such components
at the micrometric scale has been achieved only very recently [57, 29]. Among the structures considered in
the literature, let us mention photonic crystals which are designed to allow the existence of band gaps (i.e.
ranges of optical frequencies at which waves cannot propagate) [49, 69], or grating couplers, whose shape is
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optimized with respect to the light power transmitted from an optical fiber into a waveguide [66] (see also
[29, 45] for further examples).

In realistic applications, the physical description of nanophotonic devices involves morphological and
environmental parameters whose knowledge is uncertain. For instance, the optical indices of the constituent
materials depend on the ambient temperature which may be fluctuating in time. Likewise, the incoming
wavelength into the device may be subject to variations caused by fabrication issues or by experimental
uncertainties (over e.g. the ambient temperature, or the accuracy of the laser used for light injection). One
last - and critical - source of uncertainty plaguing industrial nanophotonic devices is related to the fabri-
cation process used for their assembly, an issue which deserves a brief comment. Even though a mature
CMOS (Complementary metal oxide semi-conductor) monolithic integration is employed to realize optical
chips, the high volume of device produced on a single wafer (semi-conductor plate) is a well-known cause of
manufacturing dispersion. The main variations and uncertainties plaguing nanophotonic devices are induced
by the lithography and etching stages of the fabrication process, that impact directly their morphology. In a
nutshell, lithography uses a high energy optical (deep UV) or electron-beam flux to pattern a thin resistive
layer with the desired shapes, which are subsequently transferred to the semiconductor underneath with a
selective etching [37]. Fluctuations of the energy during the lithography process, or on the resistive quality
of the layer will modify the shape before it is imprinted on the semiconductor, while the etching process
itself might shrink or enlarge the patterns, depending on multiple factors, such as the density of the pat-
tern, minimum feature sizes, etc. In any event, whatever the uncertainties at play, the performance of the
predicted shapes by optimal design methods strongly depends on the particular set of physical data; hence,
their optimal character may end up completely ruined by even small, unpredicted variations of these. This
raises the need to incorporate into these algorithms a degree of robustness with respect to small variations
of these data.

Most contributions from the literature considering the optimal design of nanophotonic devices rely
on density methods [39, 25, 45]. This popular paradigm, originally introduced in the context of structural
mechanics as a heuristic approximation of mathematical homogenization (and known in this context as the
SIMP method [9]) amounts to trade the conventional “black-and-white” representation of a design - via its
characteristic function, taking only the values 0 or 1 outside and inside the latter - for a so-called “grayscale”
density function, with values in the whole interval [0, 1]. This considerably simplifies the optimization process,
but raises the need for an approximate modelling of the physical equations (which have to be expressed in
terms of the density function), as well as issues about the interpretation of the resulting design, and notably
of its “grayscale” regions, where the density function takes intermediate values in [0, 1]. On the other hand,
more “geometric” methods, featuring a clear representation of the boundary of the optimized shape, have
been considered, relying for instance on the concept of shape or topological derivatives [43, 46, 7, 59]): the
shape is iteratively modified by either deforming its contour or by inserting small holes inside it. Alternatively,
let us mention the use of costly genetic algorithms in the nanophotonic context [63, 71].

Since the first achievements of shape and topology optimization studies in nanophotonics, the robustness
of the produced devices with respect to small variations of the physical parameters has been acknowledged
as a key issue in their realistic utilization [45, Section 4.5]. However, to the best of our knowledge, very few
(and recent) methods have been devised hitherto so as to directly incorporate uncertainty awareness into
the optimization process. In this direction, robustness with respect to the incoming wavelength has been
taken into account by relying on various simulations at multiple wavelengths [57]; robustness with respect to
manufacturing uncertainties (entailed for instance by the lithography and etching process) have been studied
using the SIMP methodology by involving the dilated and eroded versions of a given design; see [64, 69], or
[24] for a probabilistic counterpart to these studies. Let us point out the contribution [58], where the authors
impose fabrication constraints by removing at each iteration of the optimization process the patterns that
would not be manufactured properly.

In the present article, we propose a multi-objective algorithm for the optimization of nanophotonic
devices in a way which is robust to uncertainties over parameters such as the incoming wavelength or the
geometry of the optimized shape itself. To achieve this, we rely on Hadamard’s method for calculating
the sensitivity of shapes with respect to small variations of the boundary of the design, and we use it in a
numerical framework based on the level set method for shape and topology optimization. Doing so enables a
precise geometric representation of shapes, which makes it possible to model and consider uncertainties over
all kinds of parameters, including geometric ones, in a fashion close to their mathematical modeling.

The remainder of this article is organized as follows. Section 2 is a short and formal introduction to
the physics governing nanophotonic devices, and to the associated mathematical setting. Section 3 then
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describes our shape optimization framework for nanophotonic devices: the considered problems are precisely
formulated, and basic notions about shape derivatives are outlined in this context. Section 4 deals with the
modeling and the mathematical formulation of robustness with respect to uncertainties over the wavelength
of the incident wave, or with respect to the imperfections brought about by the lithography and etching
manufacturing processes. Section 5 describes the numerical method used to represent shapes and their
deformations, and the shape optimization algorithm derived from the previous considerations is sketched.
Finally, Section 6 discusses multiple numerical examples in three-dimensional situations reflecting the various
aspects of the article. This article is supplemented with two appendices, devoted to the proof of some
mathematically technical results, including a formal outline of the calculation of the shape derivatives involved
in our investigations.

2 The Maxwell equations for nanophotonic devices
In this section, we present the physical description of the nanophotonic devices considered in this article
and we briefly outline the needed ingredients for their study, without entering too much into the underlying
mathematical theory.

2.1 A brief presentation of nanophotonic devices
The nanophotonic devices of interest pertain to the field of silicon photonics, which features photonic inte-
grated circuits composed of a base wafer, on which semiconductor components are patterned by means of
the CMOS compatible microfabrication techniques.

Silicon On Insulator (SOI) base wafers have recently aroused a tremendous enthusiasm among the
integrated optics community for their relatively simple and cheap production, and for their high efficiency in
terms of energy confinement [42, Chap. 13]. Accordingly, the nanophotonic devices considered in this article
feature a core of silicon (Si) patterned on top of a silica (SiO2) substrate. Moreover, in order to improve the
contrast between optical indices, and thus the light guiding characteristics, the silicon pattern is surrounded
by a cladding of air. Notice that, depending on the application (and on the considered range of wavelength
for the incoming light), different core/cladding couples of materials can be addressed, such as for instance
Si/SiO2 or Ge/SiGe, by relying on the mathematical and numerical frameworks discuss in this article.

The peculiar, targeted properties of such nanophotonic devices are achieved by acting on the geometry of
the repartition of core and cladding materials within a given design space Dopt, shaped as a box, as depicted
in Fig. 1a. The latter is connected to one or several waveguides conveying the incoming and outgoing
electromagnetic waves, and the resulting configuration is placed on a lower layer Dsubs (also referred to as
the substrate), made of insulator - typically silica SiO2; see Fig. 1b. The refractive index ncore of the core
material (silicon) is much larger than those nclad and nsubs of the cladding (air) and subtrate (silica), this
allows for a strong confinement of light inside the core phase.

Let us now make more precise the mathematical and numerical setting of this article, which is illustrated
in Fig. 1. We only rely on the three-dimensional physical description of our nanophotonic devices; even
though approximate two-dimensional approximations exist (see for instance [13, Chapter 5], about the so-
called “effective index method”), our experience suggests that they are not accurate enough for our purpose
as was also pointed out in [25]. We define

• The box D = [−wx, wx] × [−wy, wy] × [−wz, wz] ⊂ R3 is the total computational domain, account-
ing for the whole three-dimensional space - at least the region where it is relevant to consider the
electromagnetic fields surrounding the device.

• Dopt ⊂ D is the fixed design domain; it is typically a box with small thickness h in the y direction,
containing all possible shapes Ω.

• The considered shapes Ω ⊂ Dopt are Lipschitz domains accounting for the region of Dopt filled with core
material, and so the complementary phase Dopt \ Ω is occupied by cladding. Due to their fabrication
by etching, we will look for shapes Ω which are invariant in the y direction, and denote their 2d section
in the (x, z) plane by Ω̂:

Ω =
{

x = (x, y, z) ∈ Dopt, (x, z) ∈ Ω̂, y ∈ (0, h)
}
. (2.1)
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• Dwg ⊂ D is the region occupied by the input and output waveguides.

• Dsubs ⊂ D is the layer supporting Dopt, occupied by the substrate.

• DPML ⊂ D is a “Perfectly Matched Layer”, a region of D filled with absorbing material aimed at
imposing the correct behavior of the electromagnetic fields at infinity; see Section 2.4.2.

• Γin ⊂ ∂D is a region of the boundary of D accounting for the entrance of a waveguide into the device;
see Section 2.4.1.

• Γobj b D is an internal surface in D used for the computation of the optimization objective; see
Section 3.1.

(a) The different regions of the computational domain D:
PML domain DPML in green, design domain Dopt in blue,
input and output waveguides Dwg in grey, input surface
Γin in red and objective surface Γobj in yellow.

(b)Values of the refractive index n inside D:
n = ncore or nclad in the yellow design do-
main, n = nncore in the input and output
waveguides Dwg, n = nsubs in the blue sub-
strate layer, and n = nclad in the remain-
ing areas.

Figure 1 – Schematic representation of the physical setting of Section 2.1.

2.2 The three-dimensional Maxwell equations
In the situation of Section 2.1, the physical behavior of the electric and magnetic fields surrounding the
considered nanophotonic devices is described by the classical Maxwell equations; see for instance [40, Sections
1.2 & 1.4], [32, Section 7.3.3] or [53, Chapter 1].

Our study takes place at fixed optical frequency ω (whence the wavenumber k = ω/c and the wavelength
λ = 2πc/ω are inferred from the velocity of light c = 2.99792458 × 108 m · s−1), and a time dependence of
the form e−iωt is assumed throughout the article. The considered materials (core, cladding and substrate)
are all linear, isotropic, non dispersive and non absorbing, so that the time-harmonic version of the Maxwell
equations reads:

∇×E = iωµH, Maxwell-Faraday (2.2)
∇ · (εE) = 0, Maxwell-Gauss (2.3)
∇×H = −iωεE, Maxwell-Ampère (2.4)
∇ · (µH) = 0, Maxwell-Thomson (2.5)

where the curl ∇×u and divergence ∇ ·u of a three-dimensional vector field u = (ux, uy, uz) are defined by:

∇× u =
(
∂uz
∂y
− ∂uy

∂z
,
∂ux
∂z
− ∂uz

∂x
,
∂uy
∂x
− ∂ux

∂y

)T
, and ∇ · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
.

In (2.2) to (2.5), ε is the dieletric permittivity, and µ is the magnetic permeability.
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As is well-known, the electric and magnetic fields E and H may be equivalently characterized as the
solutions to two decoupled second-order wave-like equations, instead of the first-order system (2.2) to (2.5);
indeed, applying the ∇× operator to (2.2) and using (2.4) yields:

∇×
(

1
µ
∇×E

)
− ω2εE = 0. (2.6)

In the same way, we obtain for the magnetic field:

∇×
(

1
ε
∇×H

)
− ω2µH = 0. (2.7)

Moreover, from the knowledge of E (resp. H), the values of H (resp. E) are easily recovered owing to (2.2)
(resp. (2.4)). For this reason, in the following, we rely on the single equation (2.6) to characterize the behavior
of the electromagnetic fields.

In our applications, the permittivity ε equals a positive real constant inside each phase, characterizing
the physical properties of its constituent material, whereas the permeability µ is constant over the whole
space: µ = µ0 where µ0 = 4π10−7 is the vacuum permeability. Then introducing the refractive index
n2 := ε/ε0, whose definition involves the vacuum permittivity ε0 = 1/(µ0c

2), (2.6) and (2.7) simply rewrite:

∇×∇×E− k2n2E = 0, (2.8)

and
∇×

(
1
n2∇×H

)
− k2H = 0. (2.9)

In the physical situation of Section 2.1, the optical index n featured in (2.8) and (2.9) depends on the geometry
Ω of the repartition of core and cladding materials within the design domain Dopt. We shall denote by nΩ
(resp. EΩ, HΩ) the refractive index (resp. the corresponding electric and magnetic fields) within D when
the core material occupies the region Ω ⊂ Dopt; more precisely:

∀x ∈ D, nΩ(x) =


ncore if x ∈ Ω ∪ Dwg,
nsubs if x ∈ Dsubs,
nclad if x ∈ D \ (Ω ∪ Dwg ∪ Dsubs).

(2.10)

In addition, the mathematical characterization of the considered physical setting demands that (2.8)
and (2.9) be complemented with adequate boundary conditions describing the behavior of E and H at the
entrance port Γin, and its decay at infinity. The mathematical formulation of these boundary conditions is
described in Section 2.4.

2.3 Propagation modes in waveguides
Propagation modes describe the fundamental structure of electromagnetic waves propagating in an infinite
waveguide. As such, they play a central role in the boundary conditions accounting for injection of light at
the entrance ports of nanophotonic devices (see Section 2.4), as well as in the expression of our optimization
objectives in Section 3.1.

The waveguides of interest for our purposes (see Fig. 2) are components of the considered photonic
integrated circuit. Such waveguides are open, i.e. their transverse section is unbounded; see for instance [23,
31, 65] for basics about their study. Let us consider one such waveguide, whose longitudinal direction
(i.e. the direction in which it is infinite) is ẑ, and whose transverse section is denoted by S. In this context,
the refractive index nwg is invariant in the z direction nwg(x) ≡ nwg(x, y).

The electric and magnetic fields E(x) and H(x) inside the waveguide, solution to (2.2) to (2.5), may
be decomposed as follows:

E(x) =
N∑
j=1

ajEj(x)+
N∑
j=1

a−jE−j(x)+Erad(x), and H(x) =
N∑
j=1

ajHj(x)+
N∑
j=1

a−jH−j(x)+Hrad(x), (2.11)

where the coefficients aj ∈ C appearing in both expressions are identical. The expression (2.11) features two
kinds of modes:
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(a) A photonic waveguide (b) Repartition of the refractive index n inside S: n =
ncore in the red core layer, n = nsubs in the blue substrate
layer, and n = nclad in the remaining areas,

Figure 2 – Schematic representation of the photonic waveguides considered in Section 2.3.

• A finite number of bound or guided modes (Ej ,Hj), j = 1, ..., N , whose energy is concentrated in the
vicinity of the core region of the waveguide;

• An infinite collection of radiating modes gathered in the fields (Erad,Hrad), whose energy is unbounded
in the transverse section S of the waveguide.

In the decomposition (2.11), the guided modes arise under the separated form

Ej(x) = ej(x, y)eiβjz, and Hj(x) = hj(x, y)eiβjz, j = −N, ...,−1, and 1, ..., N,

where the βj are real constants. Let us introduce the longitudinal and transverse components of ej , ezj and
eτj := exjx̂ + eyjŷ respectively (and likewise for hj), so that:

ej = eτj + ezj ẑ, and hj = hτj + hzj ẑ.

By convention, the modes corresponding to the indices j = 1, ..., N are propagating in the forward sense of
the waveguide, i.e. βj > 0, and those attached to j = −N, ...,−1 are propagating backward, that is βj < 0.
Both sets of modes are related by:

β−j = −βj , e−j = eτj − ezj ẑ, and h−j = −hτj + hzj ẑ, j = 1, ..., N. (2.12)

Let us now focus on the forward propagating modes; the values βj and the corresponding longitudinal
components (ejz, hjz) of the electric and magnetic fields are found as the (normalized) eigenelements (β, ez, hz)
of the following 2d differential operator, acting on the transverse section S: ∆τez + (k2n2

wg − β2)ez − β2

k2n2
wg−β2∇τez · ∇τ (log(n2

wg)) = −
(
µ0
ε0

)1/2
kβ

k2n2
wg−β2

(
∇τhz ×∇τ (log(n2

wg))
)
· ẑ,

∆τhz + (k2n2
wg − β2)hz −

n2
wgk

2

k2n2
wg−β2∇τez · ∇τ (log(n2

wg)) = −
(
µ0
ε0

)1/2 kn2
wgβ

k2n2
wg−β2

(
∇τez ×∇τ (log(n2

wg))
)
· ẑ,

(2.13)
where ∇τ (resp. ∆τ ) stands for the two-dimensional gradient ∇τu = (∂u∂x ,

∂u
∂y )T (resp. the two-dimensional

Laplacian ∆τu = ∂2u
∂x2 + ∂2u

∂y2 ), and we have introduced the 2d curl operator (ux, uy)T × (vx, vy)T := (uxvy −
uyvx)ẑ. The transverse components eτj and hτj are recovered from ezj and hzj via explicit relations; see
[65, Equation (30-6)].

As regards the radiating modes - gathered in the fields Erad and Hrad featured in (2.11) - they are related
to the essential spectrum of the operator (2.13); since these modes do not retain energy in the vicinity of the
device, they are quite undesirable for our purpose and we do not elaborate further on them.

In practice the eigenvalue problem (2.13) is solved thanks to a numerical solver. Examples of guided
modes are shown in Fig. 3.

Let us finally point out a crucial property of modes, namely their orthogonality (see for example [65,
Section 31-3]); under appropriate normalization, the following relations hold, as a consequence of the so-called
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(a) First TE mode (TE0) (b) First TM mode (TM0) (c) Third TE mode (TE2)

Figure 3 – Some guided mode inside two different waveguides with a silicon core of size 400 × 306 nm and
1000× 306 nm, mounted on a silica layer and surrounded by air at wavelength λ = 1.55 µm.

Reciprocity Theorem and (2.12):

∀j, l = −N, ...,−1, 1, ..., N,∀|j|6= |l|,
∫
S

[Ej ×H∗l ] · ẑ ds =
∫
S

[ej × h∗l ] · ẑ ds =

 0 if |j|6= |l|,
2 if l = |j|,
−2 if l = −|j|.

(2.14)

In particular, when this normalization holds, it is easily seen that the coefficients aj in (2.11) have the
following expression:

∀j = 1, ..., N, aj = 1
4

∫
S

(
E×H∗j + E∗j ×H

)
· ẑ ds and a−j = 1

4

∫
S

(
E×H∗j −E∗j ×H

)
· ẑ ds. (2.15)

Remark 2.1.

• We have been deliberately elusive as far as the mathematical setting behind the eigenvalue problem (2.13)
is concerned. Let us simply mention that it has to be posed in an adapted functional space, and should
be complemented with adequate boundary conditions to simulate the decay of the fields at infinity which
resemble very much those used in Section 2.4.2 below.

• A waveguide supporting only one (resp. several) forward propagating guided mode (i.e. N = 1 in (2.11))
is called mono-mode (resp. multi-mode).

• The guided modes of a waveguide usually carry a label of the form TEj or TMj, where the polarization
of the mode is transverse electric (TE) (resp. transverse magnetic (TM)) if the triplet (Ex, Hy, Ez)
contains more energy than (Hx, Ey, Hz) (resp. if it is the other way around), and where j = 0, ... refers
to the index of the corresponding eigenvalue. For instance, TE0 (resp. TM0) refers to the first forward-
propagating guided mode (i.e. with smallest associated eigenvalue within the βj, j = 1, ..., N) which is
transverse electric (resp. transverse magnetic).

2.4 Boundary conditions
In this section, we describe the mathematical formulation of the boundary conditions imposed on the electric
field E, corresponding to the injection of one particular mode at the entrance boundary Γin and to its decay
at infinity. Although commonly used, these boundary conditions are not so easily found as is in the literature
and we briefly discuss them here for the sake of completeness.
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2.4.1 Injection of a particular mode at the entrance port Γin

In the setting of Section 2.1 (see also Fig. 1), light is injected into the nanophotonic component at the entrance
port Γin ⊂ ∂D under the form of the mth mode Em of the corresponding input waveguide (which is assumed
to be infinite, with axis ẑ and transverse section S). In the literature, a boundary condition accounting for
this effect is usually expressed as an impedance condition:

n×∇×E + γ(E) = n×∇×Em + γ(Em) = Uinc on Γin, (2.16)

where n is the unit normal vector to ∂D, pointing outward D (n = −ẑ on Γin in our context), Uinc is an
appropriate source term and γ is a linear operator; the perhaps simplest choice about γ is:

γ(E) = iα n×E× n,

for some real constant α > 0, a common practice when it comes to imposing absorbing boundary conditions.
Depending on the context, other possibilities include the linear, inhomogeneous and isotropic relation

γ(E) = iωknn×E× n,

as suggested in [39] or the inhomogeneous and anisotropic relation

γ(E) = iωµ0n× (Z−1E× n),

involving a real-valued, symmetric positive definite matrix Z, as in [68].
In our applications, the device in Dopt will inevitably entail reflected waves in the entrance port, and

using the previous type of boundary conditions (which implicitly assume that there are none) would only
account for erroneous incoming fields. For this reason, we rely on a non local boundary condition, which
we briefly describe below, referring to [72, Section 6.3] or [40, Section 11.1.2] for full details. The main idea
is to express the reflected electric field from the device into the waveguide in terms of the (unknown) total
field. Recalling the orthogonal decomposition (2.11) of the electric and magnetic fields E and H inside the
waveguide, we require that the only forward propagating mode present in there be Em, and that the radiated
field Erad vanish, while imposing nothing particular for the backward-propagating modes, i.e.

E(x) = Em(x) +
N∑
j=1

a−jE−j(x). (2.17)

Using the orthogonality relations (2.14), the coefficients a−j ∈ C read:

a−j = −1
2

∫
S

[
(E−Em)×H∗−j

]
· ẑ ds.

Looking back to (2.17), we now obtain:

ẑ×∇×E = ẑ×∇×Em −
1
2

N∑
j=1

ẑ×∇×E−j
∫
S

[
(E−Em)×H∗−j

]
· ẑ ds,

whence, using (2.2) and the orthogonality relations (2.14), it follows:

ẑ×∇×E + iωµ

2 0

N∑
j=1

ẑ×H−j
∫
S

[
E×H∗−j

]
· ẑ ds =

iωµ0ẑ×Hm + iωµ0

2 ẑ×H−m
∫
S

[
Em ×H∗−m

]
· ẑ ds.

Finally, remarking from (2.12) that

ẑ×H−j = −ẑ×Hj , and
[
E×H∗−j

]
· ẑ = −

[
E×H∗j

]
· ẑ, for j = 1, ..., N,

we obtain

ẑ×∇×E + iωµ0

2

N∑
j=1

ẑ×Hj

∫
S

[
E×H∗j

]
· ẑ ds = 2iωµ0ẑ×Hm,
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a relation which is of the form (2.16) with the definitions:

γ(E) = 1
2

N∑
j=1

iωµ0ẑ×Hj

∫
S

[
E×H∗j

]
· ẑ ds, (2.18)

Uinc = 2iωµ0ẑ×Hm. (2.19)
In practice, most of our waveguides will turn out to be mono-mode; then in the sum in (2.18), the sole
fundamental mode j = 1 appears.

2.4.2 Approximation of the decay conditions at infinity using a Perfectly Matched Layer

The natural boundary condition accounting for the behavior of the electric field E at infinity is the so-called
Silver-Müller radiation condition:

lim
|x|→∞

|x|
(
∇×E× x

|x| − iωE
)

= 0. (2.20)

Since numerical calculations take place in the bounded computational domain D, there is the need to impose
artificial boundary conditions on ∂D which mimick (2.20) without inducing too much reflection.

In the following, we rely on the Perfectly Matched Layer (PML) method to tackle this issue, as proposed
initially in [10]. This method does not involve a new type of boundary condition on ∂D so to speak; it rather
relies on a thin, “perfectly matched” layer DPML ⊂ D made of an artificial, absorbing material with the
following properties:

1. Any wave, regardless of its angle of incidence, can penetrate inside DPML without causing reflection
inside D.

2. The amplitude of any wave propagating inside DPML decreases exponentially fast to 0.

If both properties are fulfilled, imposing any type of homogeneous boundary conditions on ∂D for the electric
field E - for instance the usual Dirichlet condition n × E = 0 - ensures a suitable approximation of the
radiation condition (2.20).

Let us now briefly discuss the construction of such a perfectly matched layer, referring to [40, Section
9.6] or [53, Section 13.5.3.1] for details. Recalling that the computational domain D is a box with size
2wx × 2wy × 2wz (see Fig. 1), the perfectly matched layer DPML is defined by:

DPML = D\[−wx + wPML, wx − wPML]× [−wy + wPML, wy − wPML]× [−wz + wPML, wz − wPML],

where wPML is the “small” thickness of the layer. We then define for each component ι = x, y, z:

σι(s) =

 1 if |s| ≤ wι − wPML

1 + iλ

k

1
wι − |s|

if |s| > wι − wPML; (2.21)

and thence the anisotropic tensor Λ by:

Λ(x) =

 σ−1
x (x)σy(y)σz(z) 0 0

0 σx(x)σy(y)−1σz(z) 0
0 0 σx(x)σy(y)σz(z)−1

 , x ∈ D. (2.22)

In particular, Λ(x) coincides with the identity when x /∈ DPML.
Finally, the electric field E is sought as the solution to (2.6), in which ε and µ are replaced by the

tensors fields εΛ and µΛ, respectively; see (2.23) below.

2.5 The complete variational framework
The Maxwell equations, complemented with the mode injection boundary condition of Section 2.4.1, rear-
ranged to take into account the “perfectly matched” layer of Section 2.4.2 lead to the following system: ∇×

(
Λ−1∇×E

)
− k2n2ΛE = 0 in D,

n×∇×E + γ(E) = Uinc on Γin,
n×E = 0 on ∂D\Γin,

(2.23)
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where Uinc is associated via (2.16) to the injection of the mth mode (βm,Em) of the incoming waveguide,
and the matrix Λ is defined in (2.22).

The numerical resolution of this system relies on an associated variational formulation; the latter brings
into play the functional space

V = {E ∈ H(curl,D), n×E = 0 on ∂D}. (2.24)

It reads search for the unique EΩ ∈ V such that:

∀φ ∈ V,
∫
D

(
Λ−1∇×E · ∇ × φ∗ − k2n2ΛE · φ∗

)
dx +

∫
Γin

(Uinc − γ(E)) · (n× φ∗ × n) ds = 0, (2.25)

where the integral on the edge Γin in the above equation makes sense owing to [53, Theorem 3.31]. We refer
to [53] about the well-posedness of (2.25) and about its numerical discretization.

3 Shape optimization of nanophotonic devices
In this section, we introduce the shape and topology optimization problem considered in this article as well
as the ingredients from shape sensitivity analysis required in its treatment.

3.1 Presentation of the shape optimization problem
Our purpose is to optimize the shape of the phase Ω filled with core material within the design domain Dopt;
see Fig. 1. The shape and topology optimization problem under scrutiny is of the form:

max
Ω∈Uad

J(Ω), (3.1)

where J(Ω) is a performance criterion depending on the domain Ω and Uad is a set of admissible shapes;
namely (see (2.1)):

Uad = {Ω ⊂ Dopt, Ω is invariant in the y direction} . (3.2)

Notice that, contrary to the prevailing convention in the shape and topology optimization literature, our goal
is to maximize the considered objective function J(Ω).

We shall consider various objective functions, all related to either the output power of the device, or to
the structure of the electromagnetic field resulting from the action of the device, that is, the fraction of energy
carried by one particular mode; see Section 6 for the precise objectives used in this work. Both quantities
are defined in terms of the Poynting vector

ΠΩ := 1
2Re(EΩ ×H∗Ω), (3.3)

where EΩ and HΩ are the solutions to (2.2) and (2.4) when the core material occupies the region Ω ⊂ Dopt.
The electromagnetic power crossing an arbitrary oriented surface Γobj ⊂ D with unit normal vector n then
reads:

Jp(Ω) =
∫

Γobj

ΠΩ · n ds. (3.4)

In the applications of this article, the surface Γobj stands for the port of an output waveguide connected to
Dopt, whose longitudinal direction is oriented by ẑ = n. This power may then be decomposed onto the modes
of this waveguide, according to (2.11). Introducing the fraction Jo,m(Ω) of this energy which is conveyed by
the m-th mode (β−m,E−m), the following relation holds:

Jp(Ω) =
N∑
m=1

Jo,m(Ω)−
N∑
m=1

Jo,−m(Ω).
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Using the decomposition (2.11) and the orthogonality relation (2.14), Jo,m(Ω) may be written as the following
overlap integral:

Jo,m(Ω) =

∣∣∣∣∣14
∫

Γobj

(EΩ ×H∗m + E∗m ×HΩ) · n ds

∣∣∣∣∣
2

=

∣∣∣∣∣14
∫

Γobj

(
EΩ ×H∗m −

i

ωµ0
E∗m × (∇×EΩ)

)
· n ds

∣∣∣∣∣
2

,

(3.5)

where we have used (2.2) to pass from the first line to the second one.

Remark 3.1. In principle, the problem (3.1) could be complemented with constraints, e.g. on the volume of
the core phase Ω, without much change to the forthcoming developments.

3.2 Differentiation with respect to the domain using Hadamard’s boundary vari-
ation method

The resolution of our shape optimization problems (3.1) relies on a gradient-based algorithm; this raises the
need to calculate the derivatives of the featured objective functions with respect to the domain, a notion
which may be given several different meanings.

In our context, we rely on Hadamard’s boundary variation method; see [34] for the original work, and
[1, 35, 54] for more recent developments and expositions. In a nutshell, variations of a given reference shape
Ω are considered under the form:

Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(R3,R3), ||θ||W 1,∞(R3,R3)< 1. (3.6)

Accordingly, a function J(Ω) of the domain is shape differentiable at a particular shape Ω if the underlying
mapping θ 7→ J(Ωθ), fromW 1,∞(R3,R3) into R, is Fréchet differentiable at θ = 0; the corresponding Fréchet
derivative θ 7→ J ′(Ω)(θ) is the shape derivative of J(Ω) at Ω. In other words, the following expansion holds:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where lim
θ→0

o(θ)
||θ||W 1,∞(R3,R3)

= 0. (3.7)

In the case of a “smooth enough” objective J(Ω), the shape derivative J ′(Ω)(θ) has the particular structure:

J ′(Ω)(θ) =
∫
∂Ω
gΩθ · nΩ ds, (3.8)

where gΩ : ∂Ω → R is a scalar field and nΩ : ∂Ω → S2 is the unit normal vector to ∂Ω, pointing outward
Ω; see [35] for a precise statement of this Structure Theorem. From (3.8), an ascent direction for J(Ω) is
revealed as the gradient associated to the derivative θ 7→ J ′(Ω)(θ) in (3.8) via the L2(∂Ω) inner product,
that is:

θ = gΩnΩ. (3.9)
Unfortunately, this choice may be ill-suited. One reason for this fact is that (3.9) only determines the values of
θ on ∂Ω, while our numerical algorithm for describing evolution of shapes requires that the considered ascent
direction be defined on the whole design domain Dopt (see Section 5). Moreover, the scalar field gΩ may be
quite irregular, thus jeopardizing the accuracy of the numerical process. To circumvent both drawbacks at
the same time, a convenient remedy consists in considering in (3.9) the gradient associated to J ′(Ω) via a
different inner product than that of L2(∂Ω); see [12, 21]. More precisely, we solve the variational problem:

Find ṽ ∈ V s.t. ∀w ∈ V, a(ṽ, w) =
∫
∂Ω
gΩw ds, (3.10)

relying on the following choice of Hilbert space V and inner product a(·, ·):

V = H1(Dopt), a(v, w) =
∫
Dopt

(α∇v · ∇w + vw) dx, (3.11)

where α > 0 is a small parameter; in practice, α is of the order of ∆x2, where ∆x stands for the mesh size.
From (3.7) and (3.10), an ascent direction for J(Ω) is revealed as θ = ṽnΩ, in which the normal vector nΩ
has been extended to Dopt as a whole.
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Remark 3.2.

• As any gradient-based optimization algorithm, the above maximization scheme will inevitably result in
a local optimum of the program (3.1).

• In practice, deformations θ are restricted to a subset Θad ⊂W 1,∞(R3,R3) of admissible deformations,
in such a way that variations Ωθ of admissible shapes stay admissible. In our context, the vector fields
θ ∈ Θad are smooth and invariant in the y direction: ∂yθ = 0; see (3.2).

3.3 Shape derivatives of the considered objective functional
3.3.1 The ‘exact’ shape derivative of J(Ω)

The following theorem provides the shape derivative of the objective function (3.5); see Appendix A for a
sketch of proof.

Theorem 3.1. The functional Jo,m(Ω) defined by (3.5) is shape differentiable at any admissible shape Ω ∈ Uad
and its shape derivative reads:

J ′o,m(Ω)(θ) =
∫
∂Ω
gΩ θ · nΩ ds, (3.12)

where

gΩ = k2Re[(n2
clad − n2

core) (nΩ ×EΩ × nΩ) · (nΩ ×A∗Ω × nΩ)
− (n−2

clad − n
−2
core)

(
(n2

ΩEΩ) · nΩ
) (

(n2
ΩA∗Ω) · nΩ

)
], (3.13)

and the adjoint state AΩ is the unique solution in V to the following variational problem:∫
D

Λ−1∇×A · ∇ × φ∗ − k2n2
ΩΛA · φ∗ dx−

∫
Γ
γ(A) · n× φ∗ × n ds

= −1
8

(∫
Γout

(EΩ ×H∗m + E∗m ×HΩ) · n ds
)∗ ∫

Γout

(
φ×H∗m −

i

ωµ0
E∗m ×∇× φ

)
· n ds. (3.14)

Remark 3.3.

• The expression (3.13) is well-defined since the transmission conditions at the interface ∂Ω between
the two phases with different refractive indices ncore and nclad (which are implicitly comprised in the
variational formulation (2.25)) imply the continuity of the tangential component n×EΩ of EΩ and of
the normal component n2

ΩEΩ ·n of the electric displacement n2
ΩEΩ; see [53] and Appendix A about this

point.

• Taking into account the y-invariance of admissible shapes Ω ∈ Uad (see (2.1)), and the independence of
admissible vector field θ ∈ Θad from the variable y (see Remark 3.2), (3.12) rewrites:

J ′o,m(Ω)(θ) =
∫
∂Ω̂
ĝΩ(x, z)θ(x, z) · nΩ(x, z) dx dz, where ĝΩ(x, z) :=

∫ h

0
gΩ(x, y, z) dy. (3.15)

3.3.2 Numerical approximation of the shape derivative

The shape derivative (3.13) of the functional Jo,m(Ω) is unfortunately difficult to handle in numerical practice.
Indeed, it involves the values of the normal components of n2

ΩEΩ and n2
ΩAΩ on the interface ∂Ω - these

quantities being continuous across ∂Ω; see Remark 3.3. In our numerical framework, however (see Section 5.1
below), the shape Ω is not explicitly discretized at each stage of the optimization process: the interface ∂Ω
does not coincide with faces of the tetrahedral mesh of D. It follows that the discretized version of EΩ
is continuous inside each tetrahedron, so that the discrete counterpart to n2

ΩEΩ (or n2
ΩAΩ) is naturally

discontinuous on ∂Ω; this entails large errors in the numerical evaluation of (3.13).
To alleviate this problem, we rely on the method from our previous work [4] to construct a consistent

approximation Jo,m,η(Ω) of Jo,m(Ω), controlled by a small parameter η > 0, whose shape derivative is easier
to calculate in numerical practice. This method relies on a smoothed version nΩ,η of the exact refractive
index nΩ, which is constructed as follows:

n2
Ω,η(x) = n2

core + (n2
clad − n2

core)hη(dΩ(x)). (3.16)
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In the above formula, dΩ(x) is the signed distance function to Ω, defined by:

∀x ∈ R3, dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ R3 \ Ω,

(3.17)

where d(x, ∂Ω) = minx′∈∂Ω |x− x′| is the usual Euclidean distance between x and ∂Ω. The function hη in
(3.16) is a C2 approximation of the Heaviside function:

∀t ∈ R, hη(t) =


0 if t < −η,

1
2

(
1 + t

η + 1
π sin

(
πt
η

))
if − η ≤ t ≤ η,

1 if t > η,

(3.18)

in which η controls the degree of smoothing.
Since nΩ,η is smooth on the whole design domain Dopt, then so are the solutions EΩ,η,AΩ,η to the

approximate Maxwell systems obtained from (2.23) and (3.14) respectively, by replacing nΩ with nΩ,η; see
[20, Chapter IX]. Extending the conclusions of [4] to the present situation, one may prove that:

1. EΩ,η converges to EΩ and AΩ,η converges to AΩ in V as η → 0

2. For given shape Ω ∈ Uad and deformation θ ∈ Θad, the shape derivative J ′o,m,η(Ω)(θ) converges to
Jo,m,η(Ω)(θ) as η → 0. Since, for η > 0 small enough,

J ′o,m,η(Ω)(θ) ≈
∫
∂Ω
k2(n2

clad − n2
core)Re(EΩ,η ·A∗Ω,η)(θ · nΩ) ds

the latter quantity may be used as a consistent approximation of J ′o,m(Ω), and it is much easier to
calculate in numerical practice.

Notice that such a regularization procedure is quite popular in the literature for accurate electromag-
netism simulations but, to the best of our knowledge, without mathematically rigorous justification. See for
instance [41] or [26], in which an anisotropic counterpart to (3.16) and (3.18) is used.

4 Robustness in the optimization of nanophotonic devices
The physical and geometrical properties of the considered nanophotonic components and its environment are
characterized by data (the incoming wavelength, the refractive indices of the media at play, or the morphology
of shapes itself, to name a few) which are in practice known with some uncertainty. The electromagnetic
fields around nanophotonic devices, and thereby their physical performances, being very sensitive to these
data, it is of utmost importance to optimize their shapes in such a way that their performances be robust
with respect to such uncertainties, i.e. so that they retain an acceptable efficiency in a variety of fabrication
or operating conditions.

Optimization of shapes in a way which is robust to uncertainties has been a burning issue in shape and
topology optimization lately. In the recent review [52], manufacturing uncertainties have been identified as
the main stumbling block preventing the use of nanophotonic components at the industrial level, and studies
towards alleviating these problems have been initiated [69, 24]. Beyond the field of nanophotonics, robustness
issues in shape and topology optimization have been addressed from two fairly different viewpoints:

• When no information is available about the uncertain data but for a bound on their maximum am-
plitude, the worst value of the performance criterion under all possible uncertain data is optimized.
These problems are generally way too difficult to be dealt with in utter generality, since their treatment
inherently involves a bilevel optimization program; yet several particular situations or approximations
have provided quite satisfactory answers [2, 8, 15, 33]. The main drawback of such approaches is that
they are generally too pessimistic: while the worst case scenario is likely never to happen in practice,
the specific optimization of this situation may conduct to shapes with poor nominal performance.

• When more information is available about the statistics of the uncertain data (e.g. about its first- and
second-order moments), probabilistic approaches may be considered for the minimization of the average
value or the standard deviation of the performance criterion; see [48] for an overview. These approaches
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generally rely on very costly sampling strategies, such as Monte-Carlo, or collocation methods, involving
a large number of evaluations of the considered cost function and its derivative; see for instance [47]
and the references therein. Linearized approximations of such problems have been proposed [44, 3].

In this article, we rely on a simple sampling strategy for the robust worst-case optimization when small
uncertainties are expected; this method is particularly well-suited in situations where the uncertain data lie
in a low-dimensional space. Our approach is guided by the large CPU cost of the numerical resolution of
systems of the form (2.23), which makes methods involving a large number of evaluations of the objective
function and its derivative totally impractical in our context. The general principle of the method is presented
in Section 4.1 in an abstract and formal way. Its particular application to deal with robustness with respect
to the incoming wavelength and to the geometry of shapes themselves are discussed in Sections 4.2 and 4.3
respectively,

4.1 A general abstract setting
Our uncertain data are modelled by a parameter δ lying in a set X. In practice we assume that

X is a ball with small radius m > 0 in a low-dimensional vector space. (4.1)

Denoting by Jδ(Ω) the value of the considered objective functional when the physical data δ are observed,
our purpose is to maximize the worst value of Jδ(Ω) when δ runs through X:

max
Ω

min
δ∈X

Jδ(Ω). (4.2)

Taking advantage of the hypothesis (4.1), the previous problem is approximated by

max
Ω

min
i=1,...,N

Ji(Ω), where Ji(Ω) := Jδi(Ω), (4.3)

and the δi, i = 1, ..., N constitute a suitable sampling of X. Hence, the problem (4.2) is reformulated as that
(4.3) of maximizing the minimum value between a finite number of objective functions. In order to find an
ascent direction for (4.3), we linearize each function Ji(Ω) in the neighborhood of the actual shape Ω, so that
(4.3) becomes:

max
θ

min
i=1,...,N

Ji(Ω) + J ′i(Ω)(θ) (4.4)

where θ runs over the set of admissible perturbations (see (3.6) and Remark 3.2). Let us now introduce the
shape gradients θi ∈ V associated to the shape derivatives J ′i(Ω)(θ) via the identification problem (3.10).
We then search for a solution θ to (4.4) in restriction to the convex hull conv {θi} where

conv {θi} :=
{

N∑
i=1

αiθi, 0 ≤ αi ≤ 1,
N∑
i=1

αi = 1
}
.

In other terms, one solution θ to our approximate worst-case optimization problem (4.4) is sought under the

form θ =
N∑
i=1

αiθi, where α ∈ [0, 1]N is the solution to the following linear program:

max
α, r

r

s.t. α ∈ [0, 1]N , r ∈ R,
N∑
i=1

αi = 1,

Ji(Ω) +
N∑
j=1

αja(θi,θj) < r, i = 1, ..., N,

(4.5)

where a(·, ·) is the bilinear form defined in (3.11).
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Remark 4.1. Let us mention a useful variant of (4.5) for finding an ascent direction θ for (4.4): θ is sought

as a convex combination θ =
M∑
j=1

α̃jθij where the set I = {i1, . . . , iM} ⊂ {1, . . . , N} only retains the indices

of the “smallest” values among the Ji(Ω), (i = 1, ..., N), i.e.

I =
{
i = 1, ..., N, Ji(Ω) < min

j=1,...,N
Jj(Ω) + η

}
,

for a small tolerance parameter η > 0. The corresponding optimization program then reads:

max
α̃, r

r

s.t. α̃ ∈ [0, 1]M , r ∈ R,
M∑
j=1

α̃j = 1,

M∑
j=1

α̃ja(θij ,θil) < r, l = 1, ...,M.

(4.6)

Remark 4.2. The above strategy is solely based on a sampling Ji(Ω) = Jδi(Ω) of the perturbed functional
Jδ(Ω) at particular values δ = δi, i = 1, ..., N , and on the derivative of the sampled functionals Ω 7→ Ji(Ω).
In particular, it does not involve the sensitivity of the objective function with respect to the perturbations, that
is, the derivative of the mapping δ 7→ Jδ(Ω), which is a noticeable difference with the linearization method
from our previous work [2, 3].

4.2 Robustness with respect to the wavelength
One of the perhaps most crucial aspects where robustness is desired in nanophotonics is related to the
wavelength λ (or equivalently the frequency ω = 2πc/λ) of the light injected into the component at stake.
Aiming at a performance which is little altered by small variations of the incoming wavelength is indeed a way
to cope with the inaccuracy of the laser realizing the light injection, or simply to construct large bandwidth
devices.

Using the notations of Section 4.1 the considered setX of perturbations is the interval [λ−m,λ+m] ⊂ R,
where λ is the ideal operating wavelength, and m > 0 is a user-defined tolerance for the range of wavelengths
where the optimized design should retain good performances. Let us denote by Jλ(Ω) the value of the
considered objective function at a particular shape Ω ∈ Uad when the operating wavelength equals λ; notice
that λ influences three parameters of the physical model (2.23), namely the wavenumber k = 2π/λ, the
optical index n and the features γ and Uinc used in the expression of the light injection boundary conditions;
see (2.18) and (2.19). The worst-case shape optimization problem reads, when uncertainties of amplitude m
around the value λ are expected about the wavelength:

max
Ω∈Uad

min
λ∈X

Jλ(Ω). (4.7)

Following Section 4.1, the set X is sampled as {λi}i=1,...,N , and (4.7) readily boils down to a program of the
type (4.5), which is solved thanks to the methodology described in Section 4.1.

4.3 Robustness with respect to geometric uncertainties
We now illustrate how the general framework of Section 4.1 may be adapted to impose the robustness of the
optimized designs Ω with respect to uncertainties on their geometry. Uncertainties related to the etching
fabrication process are considered in Section 4.3.1, and an extension of these ideas is used in Section 4.3.2 to
deal with uncertainties caused by lithography.

4.3.1 Robustness with respect to uncertainties caused by the etching process: an approach
using dilation and erosion

As we have mentionned in the introduction, under- or over-etching of the design Ω is likely to occur in the
course of the etching fabrication process. In other terms, the fabricated shape is a uniform dilation or erosion
Ωδ of Ω,

Ωδ := (Id + δnΩ)(Ω), (4.8)
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where δ is a real-valued parameter with small amplitude |δ|< m; see [64, 69] for the use of this modelling in
density-based topology optimization, Remark 4.3 below for an extension, and Fig. 4 for an illustration.

In this context, the robust optimization problem (4.3) of interest brings into play the perturbed func-
tional Jδ(Ω) whose expression reads:

Jδ(Ω) = J(Ωδ) = J((Id + δnΩ)(Ω)).

In particular, (4.3) involves the optimized shape Ω via a modified version Ωδ as for instance in the contribu-
tion [14]. In our way towards converting (4.3) into a linear program of the form (4.5), the shape derivative
of the individual functions Jδ(Ω) is needed; the latter is the purpose of the next proposition, whose proof is
postponed to Appendix B.

Proposition 4.1. Let Ω ∈ Uad, and let δ > 0 be small enough so that (Id + δnΩ) is a diffeomorphism. The
functional Jδ(Ω) is shape differentiable at Ω and its shape derivative reads:

J ′δ(Ω)(θ) =
∫
∂Ω
gΩδ ◦ (Id + δnΩ)H(θ,nΩ) ds, (4.9)

where
H(θ,nΩ) := |det(Id + δ∇nΩ)|

(
((Id + δ∇nΩ)−1nΩ · nΩ)θ · nΩ

)
.

With these results at hand, the abstract framework of Section 4.1 can be readily used to deal with the
robust optimization problem (4.2), when small perturbations taking the form of a uniform dilation or erosion
are expected on shapes.

As is clear from the statement (and the proof) of Proposition 4.1, these considerations are valid provided
the maximum amplitude m of the expected dilations or erosions is small enough so that (Id + δnΩ) is
a diffeomorphism, i.e. Ω and Ωδ share the same topology for all |δ|< m. This restriction may impose
unrealistically small values onm; so as to deal with more concrete situations, we rely on a heuristic adjustment
of the above procedure when (Id + δnΩ) is not a diffeomorphism. The starting point is the observation that
(Id + δnΩ) may fail to be a diffeomorphism because of the existence of points x ∈ ∂Ω such that the segment
with endpoints x and x + δnΩ(x) crosses the skeleton (or sometimes also called medial axis) of the shape Ω,
which is defined by

Sk(Ω) :=
{

x ∈ R3, ∃y1,y2 ∈ ∂Ω, y1 6= y2 and d(x, ∂Ω) = |x− y1|= |x− y2|
}
.

The skeleton Sk(Ω) may alernatively be seen as the set of points x ∈ R3 where the squared distance function
d2

Ω is not differentiable; see for instance [22] about these points, and Fig. 4 for an illustration.

Figure 4 – Two examples of shapes (in grey) with their skeleton. The contours of the dilated and eroded
versions of both shapes are represented in dashed lines, and the interior (resp. exterior) part of the skeleton
Sk(Ω) ∩ Ω (resp. Sk(Ω) ∩ (D \ Ω̄)) appears in blue (resp. red).

When this happens, we simply replace Ωδ by the modified version

Ωs := (Id + s(x)nΩ)(Ω),
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where for x ∈ ∂Ω, |s(x)|< δ is calculated so that so that the segment joining x to x + s(x)nΩ(x) does not
intersect Sk(Ω) - i.e. the considered dilation or erosion of Ω stops when Sk(Ω) is encountered. To achieve this
purpose, we proceed as in [19, 50], relying on the knowledge of the signed distance function dΩ: for every
point x, s(x) is the first value s < 0 (resp. s > 0) such that the function s→ dΩ(x + s∇dΩ(x)) is no longer
monotone in the case of an erosion (resp. dilation).

Remark 4.3. Depending on the particular etching technology, perturbations Ωδ of the optimized shape Ω
may adopt a more complicated structure than that (4.8) featuring a constant parameter δ. For instance, in
some situations, δ could be a function of the depth y; see the survey [38].

4.3.2 Robust shape optimization with respect to defects caused by the lithography process:
a description using Gaussian kernels

In computational lithography, it is commonly accepted [30] that manufacturing a “blueprint”, (y-invariant)
admissible shape

Ω =
{

(x, y, z) ∈ R3, (x, z) ∈ Ω̂, y ∈ (0, h)
}

will result effectively in a smeared version Ωδ ⊂ R3 given by:

Ωδ =
{

(x, y, z) ∈ R3, (χΩ̂ ∗ Gδ)(x, z) >
1
2 , y ∈ (0, h)

}
, (4.10)

where χΩ̂ is the characteristic function of the two-dimensional section Ω̂ ⊂ D̂opt, and Gδ(ξ) is the Gaussian
kernel with mean 0 and standard deviation δ:

∀ξ ∈ R2, Gδ(ξ) = 1
2πδ2 e

− |ξ|2

2δ2 . (4.11)

Intuitively, perturbations of the form (4.10) imply that, if for instance the boundary ∂Ω is flat, ∂Ωδ coincides
with ∂Ω; however, if it has positive or negative curvature, the sharp feature of ∂Ω is smeared; see Fig. 5 for
a two-dimensional illustration. In general, Ωδ depends on global features of Ω, but it is mostly influenced by
the curvature of ∂Ω, in a rather non explicit fashion.

(a) Original shape Ω (b) Perturbed shape Ωδ (c) Local approximation Ω̃δ

(d) Original shape Ω (e) Perturbed shape Ωδ (f) Local approximation Ω̃δ

Figure 5 – Comparison between a shape Ω, its perturbed version Ωδ given by (4.10), and the approximation
Ω̃δ defined by (4.12).

The robust optimization problem (4.3) with respect to uncertainties caused by lithography then involves
the perturbed functional Jδ(Ω) := J(Ωδ). The study of Jδ(Ω), and notably its shape derivative, is quite
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intricate because of the dependence of Ωδ on global features of Ω. To alleviate this difficulty we trade Ωδ for
an approximate counterpart Ω̃δ of the form:

Ω̃δ = (Id + pΩ,δnΩ)(Ω), (4.12)

for a scalar field pΩ,δ : ∂Ω→ R, whose definition we now describe in detail.
For an arbitrary, given point x0 = (x0, y0, z0) ∈ ∂Ω with projection x̂0 := (x0, z0) onto Ω̂, we consider

the local, second-order approximation of the section Ω̂ near x̂0, by means of the half-space PΩ,x0 defined by
(see Fig. 6):

PΩ,x0 =
{

x̂0 + z ∈ R2, zn < κ(x̂0)z2
τ

}
.

In the latter formula, we have denoted by zn := z · nΩ̂(x̂0) and zτ := z · τ Ω̂(x̂0), the normal and tangential
components of a vector z ∈ R2 in the local frame (τ Ω̂(x̂0),nΩ̂(x̂0)) at x̂0 obtained by gathering the tangent
τ Ω̂(x̂0) and the normal vector nΩ̂(x̂0) to Ω̂ at x̂0. Finally, κ(x̂0) is the mean curvature of Ω̂ at x̂0.

(a) Curvature κ = 0 (b) Curvature κ > 0 (c) Curvature κ < 0

Figure 6 – Schematic representation of the mapping pΩ,δ involved in the definition (4.12) of the approximate
perturbation Ω̃δ.

For x̂ = (x, z) ∈ R2 close to x̂0, taking advantage of the smallness of δ, we then have:(
χΩ̂ ∗ Gδ

)
(x, z) =

∫
R2
χΩ̂(ŷ)Gδ(x̂− ŷ) dŷ ≈ FΩ,x0(x̂),

where
FΩ,x0(x̂) :=

∫
R2
χPΩ,x0

(ŷ)Gδ(x̂− ŷ) dŷ

is the convolution between the characteristic function of the local second-order approximation of ∂Ω̂ at x̂0
and the Gaussian kernel (4.11). We then define pΩ,δ(x0) as the unique value s ∈ R such that

f(s) := FΩ,x0(x̂0 + snΩ̂(x̂0)) = 1
2 ,

which makes sense since

f(s) =
∫
R

∫ κ(x0)z2
τ−s

−∞
Gδ(zττ Ω̂(x̂0) + tnΩ̂(x̂0)) dtdzτ = 1

2
√

2πδ

∫
R
e−

x2
2δ2 erfc

(
s− κ(x̂0)x2
√

2δ

)
dx

(where erfc(x) = 2/
√
π
∫∞
x

exp(−t2) dt refers to the so-called complementary error function) is a smooth,
decreasing function with

lim
s→−∞

f(s) = 1 and lim
s→+∞

f(s) = 0.

Notice that pΩ,δ(x0) only depends on Ω̂ via its curvature at x̂0 however the dependence is not explicit.
Nevertheless, pΩ,δ is easy to calculate numerically. As is exemplified on Fig. 5 this approximation performs
reasonably well: the approximate perturbation Ω̃δ is close to Ωδ, except that it fails to capture the topological
changes between Ωδ and Ω.
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Returning to our robust optimization problem, the implementation of (4.3) relies on the shape derivative
of the perturbated functional

J̃δ(Ω) := J((Id + pΩ,δnΩ)(Ω)). (4.13)
The rigorous calculation and the practical use of this shape derivative are not simple since pΩ,δ brings into
play the curvature of the interface ∂Ω. To simplify this calculation, we simply neglect the dependence of
pΩ,δ on Ω, so that the shape derivative J ′δ(Ω) is simply given by (4.9) where δ is replaced by pΩ,δ. Although
simplistic, this approximation gives pretty good results as presented in Section 6.4.4 and it has the advantage
of being simple and fast to implement.

5 Numerical representation of shapes and general algorithm
5.1 Level set representation
When it comes to the numerical representation of shapes and their evolution, we rely on the level set method;
see [55] for the pioneering work and [6, 62, 70] for the introduction of this method in the shape optimization
context. In a nutshell, a generic shape Ω ⊂ Dopt is represented as the negative subdomain of a scalar “level
set” function φ : Dopt → R, i.e.

∀x ∈ Dopt,


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω \ ∂Dopt,
φ(x) > 0 if x ∈ Dopt \ Ω.

(5.1)

In this context, if Ω ≡ Ω(t) is a shape evolving over a time period (0, T ) according to a velocity field with
normal component v(t,x), this motion translates in terms of an associated level set function φ(t, ·) (i.e. (5.1)
holds at each time t ∈ (0, T )) into the following Hamilton-Jacobi equation:

∂φ

∂t
(t,x) + v(t,x)|∇φ(t,x)|= 0, t ∈ (0, T ), x ∈ Dopt, (5.2)

an equation for which there exist efficient numerical solvers; see for instance [61, Section 6.4], [51].
In our applications, the normal velocity v(t,x) is the shape gradient of the considered objective func-

tional J(Ω), obtained from its shape derivative via the solution of (3.10). Since the considered shapes are
invariant in the y direction (see Section 3.1 and (3.2)), the numerical resolution of (5.2) is actually performed
in two dimensions, in a computational domain accounting for any horizontal section

D̂opt = {x = (x, y, z) ∈ Dopt, y = cst}

of the design domain Dopt.

Remark 5.1. In practice, for numerical stability reasons, the level set function φ(t, ·) is periodically reinitial-
ized so that it coincides with the signed distance function to the evolving shape Ω(t), at least in a neighborhood
of ∂Ω(t) [16].

5.2 Implementation and algorithm
Our numerical algorithm is composed of several building blocks which are implemented either in Matlab R© [67]
or in COMSOL Multiphysics R© [17].

The optimized shape Ω is represented by means of a level set function φ defined at the vertices of a
Cartesian grid G of the two-dimensional section D̂opt of the design domain; see Section 5.1 and Remark 5.1.
The resolution of the Hamilton-Jacobi equation (5.2) and the reinitialization of the level set function φ - see
Remark 5.1 - rely on an ENO scheme from the ToolboxLS [51] toolbox.

The three-dimensional resolution of the Maxwell system (2.25) is carried out on a tetrahedral mesh T
of the computational domain D; it relies on the finite element method using second-order Nédélec vector
elements [40, Section 8] [53, Section 5.5] implemented in COMSOL Multiphysics R© [17]. Since the nodes of
the grid G do not necessarily coincide with the vertices of the tetrahedral mesh T , we consistently rely on
interpolation operations between these two supports.

The optimization algorithm combining these features is driven by a Matlab R© [67] implementation. A
version is sketched in Algorithm 1, which is dedicated to the maximization of the minimum value between
Nobj objective functions Ji(Ω), i = 1, ..., Nobj, using Nin inputs (associated to different perturbations of the
actual shape or injection boundary conditions).
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Algorithm 1: Numerical algorithm for multi-objective shape and topology optimization using a level set
representation

1 begin
2 φ := Initial level set function φ0 ;
3 for n = 0, ... until convergence do
4 for all inputs j = 1, ..., Nin do
5 φj := (if necessary) modification of φ into one of the perturbed versions of Section 4.3 ;
6 Ej := solution of the Maxwell Equation (2.23) using the shape {x ∈ Dopt, φj(x) < 0} ;
7 for all objectives i = 1, ..., Nobj do
8 Ai := solution of the adjoint system (3.14) ;
9 Ji := objective function (3.4) or (3.5) using the fields {Ej}j=1,...,Nin

;
10 θi := shape gradient (3.15) involving {Ej}j=1,...,Nin

and Ai ;
11 θi := regularization of the shape gradient obtained from the identification problem (3.10) ;
12 θ := solution of the linear program (4.5) for multi-objective optimization ;
13 φ := update of the level set function by solving the Hamilton-Jacobi equation (5.2) ;
14 φ := (if necessary) redistanciation of φ;
15 return Ω = {x ∈ Dopt, φ(x) < 0} ;

6 Numerical examples
In this section, we evaluate the efficiency of our shape and topology optimization algorithm on the design of
various nanophotonic devices.

In all cases, the design domain Dopt is [−dx, dx]× [−h/2, h/2]× [−dz, dz] where dx and dz vary between
1.5 to 3 µm depending on the situation, and h = 306 nm. The computational domain D is then

D = [−dx− l−wPML, dx+ l+wPML]× [−(h+ l)/2−wPML, (h+ l)/2+wPML]× [−dz− l−wPML, dz+ l+wPML],

where l = 1 µm, and the thickness of the perfectly matched layer (see Section 2.4.2) is wPML = 500 nm. The
tetrahedral mesh T associated to the finite element resolution of (2.23) is composed of about 105 elements
with size at most λ/(5n) - as is commonly advised in the practice of such simulations. The 2d Cartesian grid
G of D̂opt dedicated to practice of the level set method has uniform size ∆x = 10 nm.

The values of the wavelength λ considered in this article lie within the typical range used in telecom-
munications, that is around 1.31 µm and 1.55 µm. The values of the refractive indices of the materials at
stake are:

ncore ≈ 3.49, nsubs ≈ 1.44, and nclad = 1. (6.1)

Our numerical examples fall into two categories: at first, in Sections 6.1 and 6.2, the validity of the
shape optimization framework of Sections 3 and 5 is evaluated on fairly classical optimization test case of
nanophotonic devices. The subsequent Sections 6.3 and 6.4 deal more specifically with robustness issues; in
there, we show how the strategy of Section 4 makes it possible to obtain devices that are robust to both
wavelength uncertainties and uncertainties caused by the lithography and etching manufacturing processes.

All the numerical computations are performed on a cluster node with 8 to 20 cores CPU clocked at 3.0
GHz with 128 GB of reserved memory. For each example, we provide a rough estimate of the needed CPU
time; notice that in each case, more than 99 % of this time is devoted to the resolution of the state or adjoint
Maxwell equations (2.25) and (3.14); the effort related to the level set method is negligible by comparison.

6.1 Optimization examples involving a single objective function
6.1.1 Optimization of the shape of a crossing device

Our first numerical example deals with the optimization of the shape of a crossing component, whose purpose
is to limit the coupling losses between two adjacent waveguides with different orientations (see Fig. 7). The
design domain Dopt is connected to two input waveguides via the ports Γin,1 and Γin,2, and two outgoing
waveguides via the surfaces Γout,1 and Γout,2. The fundamental mode TE0 is injected at Γin,1 (resp. Γint,2)
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with a wavelength λ = 1.55 µm and our aim is to maximize the transmitted energy Jo,1(Ω) to the fundamental
mode in Γobj = Γout,1 (resp. Γout,2).

Taking advantage of the symmetry of the situation, we only consider shapes Ω which are symmetric
with respect to the x and z axes; doing so ensures the symmetry between the electromagnetic fields EΩ and
HΩ obtained in the situations where light is injected from Γin,1 and Γin,2. Hence, our shape optimization
problem boils down to that of maximizing the single objective

max
Ω

Jo,1(Ω), (6.2)

where the Maxwell equations (2.23) describing the physics at play involve only injection through the port
Γin,1 and where Γobj = Γout,1. Accordingly, in the practice of the boundary variation method of Hadamard,
we only consider symmetrized vector fields θ of the form

∀(x, z) ∈ D̂opt, θ̃(x, z) = 1
4(θ(x, z) + θ(−x, z) + θ(x,−z) + θ(−x,−z)). (6.3)

TE0

Γin,1 Γout,1

Γout,2TE0

TE0Dopt

2 µm

2 µm

400 nm

z

x

Γin,2TE0

Ω0

Figure 7 – (Left) Setting of the crossing optimization test-case of Section 6.1.1; (right) Initial design.

Starting from an initial shape made of the reunion of two orthogonal, straight waveguides connecting
Γin,1 to Γout,1 and Γin,2 to Γout,2 (see Fig. 7 (right)), 50 iterations of our optimization algorithm are performed,
for a total computational time of roughly 4 hours. The optimized design, convergence history, as well as the
normalized density of electromagnetic energy

EΩ(x) := ε|EΩ(x)|2 + µ|HΩ(x)|2, x ∈ D

stored inside the computational domain are represented on Fig. 8. We notice that more than 95 % of the
electromagnetic energy contained in the incoming field is successfully conveyed to the output ports, while this
ratio equals only 70 % in the case of the initial device of Fig. 7 (right). The shape Ω has changed topology
in the course of the optimization process, which is a well-known benefit from the use of the level set method
for describing the motion of shapes.

(a) Optimized shape (axes in µm)

10 20 30 40
0.7

0.8

0.9

1

(b) Convergence history (c) EΩ in the section {y = 0}

Figure 8 – Optimized shape of the crossing device of Section 6.1.1 and details of the numerical computation.
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6.1.2 Optimization of the shape of a mode converter

Our second example deals with the optimization of the shape of a device whose purpose is to transform the
mode coming from an input waveguide into another mode of the output waveguide. The physical setting is
depicted on Fig. 9, where the output waveguide is wide enough to allow for the existence of multiple guided
modes. In this context, the electromagnetic power is injected via the port Γin, using the fundamental mode
TE0, and we seek to transfer this power to the 3rd mode TE2 of the output waveguide; in other terms, we
solve the problem

max
Ω

Jo,3(Ω), (6.4)

in which the objective surface is Γobj = Γout. Due to symmetry of the situation with respect to the x variable,
only one half of the design domain Dopt is discretized and we use symmetrized deformation fields of the form

∀(x, z) ∈ D̂opt, θ̃(x, z) = 1
2 (θ(x, z) + θ(−x, z)) (6.5)

in the practice of Hadamard’s method.

TE2

Γin Γout

TE0

Dopt

1.5 µm

1.5 µm

800 nm

z

x

400 nm

Figure 9 – (Left) Setting of the mode converter optimization test-case of Section 6.1.2; (right) initial design .

Starting from the initial shape in Fig. 9 (right), 50 iterations of our shape optimization algorithm are
performed, for a total CPU time of approximately 4 hours; the result is displayed on Fig. 10. The optimized
design allows to redirect more than 85 % of the incoming power via the fundamental mode TE0 of the input
waveguide into the third mode TE2 of the output waveguide.

(a) Optimized shape (axes in µm)
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(b) Convergence history (c) Real part of Hy in {y = 0}

Figure 10 – Optimized shape of the mode converter of Section 6.1.2 and details of the numerical computation.

6.1.3 Shape optimization of a power divider

Let us now turn to the optimization of another very useful device in nanophotonics, namely the power
divider. The physical setting is that of Fig. 11: our aim is to divide the electromagnetic power conveyed by
the incoming field through the waveguide figured by Γin in an equal way between both output waveguides
Γout,1 and Γout,2. As in the previous example, the symmetry of the problem allows to discretize only one
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half of the design domain Dopt and to restrict the set of the considered deformation fields θ considered in the
practice of Hadamard’s method to vector fields of the form (6.5). This allows to formulate our optimization
problem as

max
Ω

Jo,1(Ω), (6.6)

that (6.2) in which the objective surface Γobj is Γout,1.

TE0

Γin

Γout,1

Γout,2

TE0

TE0

Dopt

800 nm

2 µm

2 µm

400 nm

z

x

Figure 11 – Setting of the power divider optimization problem of Section 6.1.3.

Starting from the initial shape of Fig. 11 (right), 50 iterations of our optimization algorithm are per-
formed, for a total computational time of roughly 3 hours. Details of the numerical computation are reported
on Fig. 12; the optimized device achieves approximately 49 % transmission into each output waveguides.

(a) Optimized shape (axes in µm)
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(b) Convergence history (c) EΩ in the section {y = 0}

Figure 12 – Optimized shape of the power divider of Section 6.1.3 and details of the numerical computation.

6.1.4 Optimization of the shape of a polarization converter

Let us finally consider a slightly more involved device, namely a polarization converter. In the physical
situation of Fig. 13, our goal is to convert an injected Transverse Electric mode (whose electromagnetic energy
is mostly concentrated in the electric field E) into a Transverse Magnetic output mode, which concentrates
most of its energy in the magnetic field H. More precisely, we solve the optimization problem

max
Ω

Jo,2(Ω)

in which the objective surface Γobj is Γout, where the first guided mode of the incoming waveguide is TE and
is injected through Γin, and where the second guided mode of the outgoing waveguide is TM.
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TM0
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TE0 Dopt
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Figure 13 – Schematic representation of the polarization converter optimization problem of Section 6.1.4.

In this situation, there is no natural initial shape, and so we initiate the optimization process with a
shape containing multiple regularly spaced holes. At first, we consider an initial shape perforated with 4× 2
holes, and we perform 200 iterations of our algorithm. The results are presented on Fig. 14. The optimized
shape has a poor performance since it is only able to transmit ∼ 25% of the incoming power to the TM mode
of the output waveguide.

(a) Optimized shape (axes in µm)
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(b) Convergence history (c) Simulation at λ = 1.55 µm

Figure 14 – Optimized shape of the polarization converter of Section 6.1.4 starting from a design with 4× 2
holes.

Using then an initial shape perforated with 16 × 8 holes yields much better results: after roughly 500
iterations of our algorithm, the resulting optimized shape achieves a conversion of about 73% of the incoming
energy into the desired output mode (Fig. 15).

(a) Optimized shape (axes in µm)
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(b) Convergence history (c) Simulation at λ = 1.55 µm

Figure 15 – Optimized shape of the polarization converter of Section 6.1.4 starting from a design with 16× 8
holes.
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6.2 Optimization examples involving multiple objective functions
In this section we discuss the optimization of nanophotonic components in situations which involve the
joint maximization of several objective functions. To this end, we rely on the multi-objective methodology
described in Section 4.1. In such cases, there is, most of the time, no known “good” initial shape, and we
initialize the optimization process with shapes perforated by arrays of holes.

6.2.1 Optimization of the shape of a duplexer

Our first example concerns the optimization of the shape of a duplexer, as depicted on Fig. 16. This device
aims at redirecting the light injected through the input boundary Γin into one of the two output waveguides
Γout,1, Γout,2 depending on the value of the incident wavelength.

TE0

Γin

Γout,1

Γout,2

TE0

TE0

Dopt

2 µm

2 µm

400 nm

z

x

Figure 16 – Schematic representation of the duplexer shape optimization problem of Section 6.2.1.

In this context, the considered shape optimization problem reads:

max
Ω

min
i=1,2

Ji(Ω), (6.7)

in which Ji(Ω) is the version of Jo,1(Ω) as defined in (3.5), involving the objective surface Γobj = Γout,i, in
the situation where the operating wavelength equals λi with λ1 = 1.55 µm and λ2 = 1.31 µm.

Starting from an initial shape perforated by of an array of 8 × 8 holes, we perform 150 iterations
of our optimization algorithm, for a total computational time of approximately 20 hours. The resulting
optimized design is represented on Fig. 17 (a), and the convergence history for both objective functions -
shown in Fig. 17 (b) - reveals that our algorithm does converge to a local optimum of the problem (6.7). The
numerical simulations realized at both wavelengths λi, i = 1, 2 (see Fig. 17 (c,d,e)) show that the optimized
design achieves approximately 85 % transmission of the power contained in the incoming mode to the desired
mode of the output waveguide in both considered physical settings.
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(a) Optimized shape (axes in µm)
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(d) Simulation at λ = 1.55 µm (e) Simulation at λ = 1.31 µm

Figure 17 – Optimized design and details of the optimization process of the shape of a duplexer in Section 6.2.1.

6.2.2 Optimization of the shape of a power divider with three output waveguides

In this section, we consider a slightly different version of the power divider component considered in Sec-
tion 6.1.3. The setting is that depicted on Fig. 18: light is injected into the device via the entrance port Γin,
and the incoming power has to be equally shared between the three output ports Γout,i, i = 1, 2, 3. Contrary
to the power divider example considered in Section 6.1.3, the present optimization problem cannot be reduced
to one featuring only one objective function; nevertheless, imposing shapes Ω ∈ Uad to be symmetric with
respect to the x axis, and restricting the considered deformations θ in the practice of Hadamard’s method to
fields of the form (6.5), the problem boils down to one involving the maximization of the worst value between
two objective functions:

max
Ω

min
i=1,3

Ji(Ω),

where Ji(Ω) stands for the version of Jo,1 in which Γobj stands for the output port Γout,i.

TE0

Γin

Γout,1

Γout,2

TE0

TE0

z

x

TE0 Γout,3Dopt

3 µm

3 µm

400 nm

Figure 18 – Setting of the three-output power divider shape optimization problem of Section 6.2.2.

Starting from the initial shape of Fig. 18 (right), 100 iterations of our optimization algorithm are
performed, for a total computational time of roughly 20 hours. The results are reported on Fig. 19. The
optimized device is able to transmit approximately 30 % of the incoming electromagnetic power from the
entrance port Γin into each output Γout,i, i = 1, 2, 3.
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(a) Optimized shape (axes in µm)
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(b) Convergence history (c) Simulation at λ = 1.55 µm

Figure 19 – Optimized design and details of the optimization process of the three-output power divider of Sec-
tion 6.2.2.

6.3 Robust shape optimization of a duplexer with respect to uncertainties on
the incoming wavelength

In this section, we revisit the duplexer test-case of Section 6.2.1 with the additionnal concern to obtain a device
whose performance is robust with respect to small perturbations, with maximum amplitude m = 25 nm, of
each of the two incoming wavelengths λ1 = 1.55 µm and λ2 = 1.31 µm.

Applying the methodology of Section 4.2, our robust optimization problem takes the form

max
Ω

min
i=1,2

min
{
J−i (Ω), J+

i (Ω)
}
,

where J±i (Ω) is the function Jo,1(Ω) in (3.5), involving the objective surface Γobj = Γout,i, in the situation
where the operating wavelength equals (λi ±m).

The initial design in this example is the same as that in Section 6.2.1, i.e. it is perforated by 8 × 8
regularly spaced holes. After about 100 iterations of our numerical algorithm and roughly 40 hours of
computation, the resulting shape is that represented on Fig. 20. Comparing the performance of this device
as a function of the actual wavelength Fig. 20c to its non-robust counterpart in Fig. 17c, we observe that the
new duplexer is far more robust to a small perturbation of the input wavelength.

(a) Optimal shape

20 40 60 80
0

0.2

0.4

0.6

0.8

1

(b) Convergence history (c) Spectrum

(d) Sim. at λ = 1.525 µm (e) Sim. at λ = 1.575 µm (f) Sim. at λ = 1.285 µm (g) Sim. at λ = 1.335 µm

Figure 20 – Optimized shape and details of the optimization process in the duplexer test-case considering
wavelength robustness of Section 6.3.
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6.4 Robust shape optimization of nanophotonic devices with respect to geomet-
ric uncertainties

6.4.1 Robust shape optimization of a power divider with respect to uncertainties caused by
etching

In this section we consider a variant of the power divider test-case tackled in Section 6.1.3 in which robustness
of the optimized design is desired with respect to uncertainties entailed by the etching manufacturing process,
as discussed in Section 4.3.1.

The shape Ω∗ resulting from the optimization study in Section 6.1.3 (that is, without taking robustness
issues into account) is not robust with respect to uncertainties related to etching. Indeed, let us consider
Fig. 21b where the variation of the performance criterion Jo,1 is represented when a dilation or an erosion of
at most m = ±30 nm is performed on Ω∗: in particular, if Ω∗ is eroded by 30 nm, the performance of the
shape drops from 49 % down to only 20 %.

To remedy this, starting from Ω∗ as initial shape, we solve the following robust problem which involves
the dilated and eroded versions of the optimized shape:

max
Ω

min {J−m(Ω), J0(Ω), Jm(Ω)} ,

in which we have defined
Jδ(Ω) = Jo,1(Ωδ), Ωδ := (Id + δnΩ)(Ω).

After 150 iterations of our optimization algorithm, we end up with the shape displayed in Fig. 21. The
comparison of Fig. 21b and Fig. 21e suggests that the new power divider is much more robust to manufacturing
uncertainties caused by etching. Moreover, the nominal performance of the device is not significantly degraded
in the process, since it only suffers from a reduction by 1 % when compared to Ω∗.
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(a) Non robust optimized shape Ω∗ (b) Objective sensitivity to dilation
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(c) Convergence graph

(d) Robust optimized shape (e) Objective sensitivity to dilation
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(f) Convergence history

(g) Energy density eroded shape (h) Energy density optimized shape (i) Energy density dilated shape

(j) Field for eroded shape (k) Field for optimized shape (l) Field for dilated shape

Figure 21 – Results of the robust shape optimization of a power divider with respect to uncertainties linked
to etching in Section 6.4.1; the upper row reproduces the features of the non robust optimized shape Ω∗ of
Section 6.1.3.

6.4.2 Robust optimization of a mode converter with respect to uncertainties caused by etching

In quite the same spirit as in the previous section, we now revisit the mode converter test case of Section 6.1.2,
in which the performance (6.4) of the optimized design Ω∗ of Fig. 10 proves to be very sensitive to small
perturbations of the form of a uniform dilation or erosion; see the upper row in Fig. 22.

Starting from Ω∗ as an initial shape, we now solve the robust counterpart to the problem (6.4) involving
the worst-case between the values taken by the objective function Jo,3 on the optimized shape Ω and its dilated
and eroded perturbations by 20 nm. After 200 iterations of our shape and topology optimization algorithm,
the results summarized in Fig. 22 are obtained. The new optimized shape is significantly more robust to the
effect of dilation and erosion; visually, its main difference with that obtained without considering robustness
effects lies in that the central hole has widened to make up for the effects of dilation.
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(a) Non-robust optimized shape (b) Objective sensitivity to dilation
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(c) Convergence history

(d) Robust optimized shape (e) Objective sensitivity to dilation (f) Convergence history

(g) Energy density eroded shape (h) Energy density optimized shape (i) Energy density dilated shape

(j) Field for eroded shape (k) Field for optimized shape (l) Field for dilated shape

Figure 22 – Results of the robust shape optimization of a mode converter with respect to uncertainties linked
to etching in Section 6.4.2; the upper row reproduces the features of the non robust optimized shape Ω∗ of
Section 6.1.2.

6.4.3 Robust optimization of a duplexer with respect to uncertainties caused by etching

Let us now turn again to the duplexer test case of Section 6.2.1, where taking into account robustness issues
turns out to be particularly crucial. Indeed, as the results depicted in Fig. 14 and 15 have revealed, initializing
the design optimization process with a shape perforated by a higher number of holes leads to an optimized
shape with much better performance, as measured by the multi-objective program (6.7). Unfortunately, this
effect is quite problematic from the point of view of manufacturability, since small holes like those featured
by the optimized shape Ω∗ of Fig. 17, whose radii is less than 50 nm, are typically impossible to fabricate in
practice.

So as to remedy this concern, we rely on the ideas of Section 4, and we solve the robust counterpart to
(6.7) with respect to uncertainties over a uniform dilation or erosion of shapes by a value m = 10 nm:

max
Ω

min
i=1,2

min {Ji(Ω−m), Ji(Ω), Ji(Ωm)},
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where we recall from Section 6.2.1 that Ji(Ω) is the amount of power Jo,1(Ω) carried by the first guided mode
of the output waveguide Γout,i when the operating wavelength is λi.

Performing 150 iterations of our shape optimization algorithm then results in the shape represented on
Fig. 23, whose performance is much more robust to dilation or erosion effects than Ω∗.

(a) Erosion by t = −10 nm (b) Optimized shape (c) Dilation by t = +10 nm

(d) λ = 1.55 µm, t = −10 nm (e) λ = 1.55 µm, t = 0 nm (f) λ = 1.55 µm, t = +10 nm

(g) λ = 1.31 µm, t = −10 nm (h) λ = 1.31 µm, t = 0 nm (i) λ = 1.31 µm, t = +10 nm

(j) Convergence history (k) Objective sensitivity to dilation / erosion

Figure 23 – Results of the robust shape optimization of a duplexer with respect to uncertainties linked to
etching in Section 6.4.3.

6.4.4 Robust optimization of a mode converter with respect to uncertainties caused by lithog-
raphy

In this last subsection we finally turn to the procedure proposed in Section 4.3.2 for imposing robustness
of shapes with respect to the lithography manufacturing process. The physical setting is that of the mode
converter example, as discussed in Sections 6.1.2 and 6.4.2.

We consider the robust optimization program with respect to uncertainties caused by lithography

max
Ω

min
{
Jo,3(Ω), Jo,3(Ω̃δ)

}
, (6.8)
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where we recall that the approximate perturbation Ω̃δ of Ω is defined by (4.12), and with a value δ = 30 nm
for the parameter representing the standard deviation in the Gaussian kernel (4.11).

Starting from the initial shape in Fig. 9 (right) and performing 120 iterations of our optimization
algorithm yields the optimized design represented on Fig. 24.

(a) Robust optimized shape with re-
spect to lithography uncertainties

(b) Convergence history (c) Objective sensitivity to uncer-
tainties caused by the lithography
process for the non robust optimized
shape in Fig. 10 and the robust one.

Figure 24 – Three dimensional lithography robust optimization of a 1.5× 1.5 µm mode converter.

For a simple visual comparison, the three designs obtained in this article for the mode converter test-case
(non robust, robust with respect to etching uncertainties, and robust with respect to lithography uncertain-
ties) are reproduced in Fig. 25.

(a) Non robust (see Fig. 10) (b) Etching robust (see Fig. 22) (c) Lithography robust (see Fig. 26)

Figure 25 – Optimized shapes for the mode converter example without taking robustness effects into account,
and considering robustness with respect to etching and lithography uncertainties.

We also perform another optimization, using this time an initial design perforated by 8× 8 holes. The
results obtained in the case of the non robust optimization problem (6.4) and for its robust counterpart (6.8)
are summarized in Fig. 26. As expected, for small values of δ the results are better than the one in Fig. 24
but the shapes are also more sensitive to values of δ larger than ∼ 40 nm.
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(a) Convergence history (b) Robustness to lithography (c) Convergence history (d) Robustness to lithography

(e) Robust shape
(δ = 0 nm)

(f) Field for the robust shape
(δ = 0 nm)

(g) Non robust shape
(δ = 0 nm)

(h) Field for the non robust
shape (δ = 0 nm)

(i) Dilated robust shape
(δ = 30 nm)

(j) Field for the dilated robust
shape (δ = 30 nm)

(k) Dilated non robust
shape (δ = 30 nm)

(l) Field for the dilated non
robust shape (δ = 30 nm)

(m) Dilated robust shape
(δ = 60 nm)

(n) Field for the dilated
robust shape (δ = 60 nm)

(o) Dilated non robust
shape (δ = 60 nm)

(p) Field for the dilated non
robust shape (δ = 60 nm)

Figure 26 –Optimization of the mode-converter with an initial shape of 8×8 holes, with and without lithography
robustness.

Conclusions and perspectives
In this article, we have described a mathematical and numerical setting dedicated to the optimization of the
shape and topology of nanophotonic components. In the context of the time-harmonic three-dimensional
Maxwell equations, our framework combines Hadamard’s boundary variation method when it comes to eval-
uating the sensitivity of a user-defined performance criterion on the shape of the arrangement of core and
cladding materials within the design domain, and the level set method for tracking shapes and their defor-
mations.

A particular attention has been paid to incorporate robustness issues in the formulation of the con-
sidered shape optimization problems. By relying on a multi-objective strategy, we have proposed a simple
strategy and convenient numerical approximations to ensure that the optimized designs supplied by our al-
gorithm have robust performances with respect to uncertainties on the incoming wavelength, or with respect
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to perturbations of their geometry in the course of the manufacturing process. The efficiency of our meth-
ods has been demonstrated on several three-dimensional examples emanating from practical applications in
nanophotonics.

Several extensions of the work presented in this paper are possible. The perhaps most natural of
them is about the fabrication of some of the devices optimized in Section 6, a task which has already been
initiated. Another natural continuation of this work is to improve the accuracy of our numerical simulations
by relying on a body-fitted mesh of shapes Ω at each stage of the optimization process. One way to achieve
this goal would be to rely on the level set based mesh evolution method proposed in [5]. Eventually, from
the optimization point of a view, the concurrent use of the shape derivative attached to Hadamard’s method
with the notion of topological derivative would make our algorithm less sensitive to the initial design.
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Université Grenoble-Alpes. The third author was supported by the ”Geometry and Spectral Optimization”
research programme LabEx PERSYVAL-Lab GeoSpec (ANR-11-LABX-0025-01) and the ANR Comedic
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Appendices
A Sketch of proof of Theorem 3.1
Consider the functional

J(Ω) =

∣∣∣∣∣14
∫

Γobj

j(EΩ) ds

∣∣∣∣∣
2

, j(EΩ) :=
(

EΩ ×H∗m −
i

ωµ0
E∗m × (∇×EΩ)

)
· n, (A.1)

where EΩ belongs to the Hilbert space

V := {E ∈ H(curl,D), n×E = 0 on ∂D} ,

and is the unique solution in this space to the following variational problem:

∀φ ∈ V,
∫
D

(
Λ−1∇×EΩ · ∇ × φ∗ − k2n2

ΩΛEΩ · φ∗
)
dx+

∫
Γin

(Uinc − γ(EΩ)) · (n× φ∗ × n) ds = 0; (A.2)

see Section 2.5. In (A.2), the refractive index is given by (2.10); however, in order to simplify notations,
without loss of generality judging from the way we intend to use the information contained in the shape
derivative of J(Ω) (see Sections 3.1 and 3.2), we may as well assume that nΩ equals the constant ncore inside
Ω and nclad outside Ω.

The shape derivative of functionals of the form (A.1) has already been quite extensively studied in
the literature (see for instance [36, 41, 60]); since the context (and so the resulting formulas) always differs
slightly from one contribution to the other, we hereafter provide a rigorous sketch of proof for Theorem 3.1.
In particular, one well-known difficulty in this calculation comes from the fact the electric field EΩ is not
continuous at the interface ∂Ω; the use of the formal Céa’s method in this context without paying care to
regularity issues is a well-known source of mistakes; see e.g. [56] about this point.

Before proceeding to the calculation of J ′(Ω)(θ), so to speak, let us list a number of useful facts about
the regularity of the electric field EΩ and its restrictions E0 and E1 to Ω and D \ Ω, respectively; see for
instance [53, 36] and [20, Chapter IX], about these points.

1. The restrictions E0 and E1 satisfy additionnal smoothness to that encoded in the spaces H(curl,Ω)
and H(curl,D \Ω); this is a classical issue in the theory of elliptic partial differential equations, which
follows from the smoothness of Ω; typically, in our context: E0 ∈ H2(Ω) and E1 ∈ H2(D);

2. E0 and E1 satisfy the following transmission conditions:

n×E0 = n×E1; n×∇×E0 = n×∇×E1, and so n2
coreE0 · n = n2

cladE1 · n, (A.3)

where the normal vector n to ∂Ω is oriented from Ω to D \ Ω.
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3. The additional transmission condition holds:

∇×E0 · n = ∇×E1 · n on ∂Ω;

in a nutshell, E0 and E1 are smooth inside Ω and D \Ω respectively, the tangential traces n×∇×E0
and n×∇×E1 coincide on ∂Ω (see (A.3)) and the normal traces (∇×E0) ·n and (∇×E1) ·n are easily
seen to be continuous across ∂Ω (they involve only tangential derivatives of the tangential components
of EΩ and AΩ on ∂Ω). As a result, the quantity ∇×EΩ belongs to H1(D).

Let us eventually mention that the exact counterparts to these relations hold for the adjoint state AΩ.

In order to prove the shape differentiability of J(Ω), we first calculate the “Lagrangian” derivative of the
mapping Ω 7→ EΩ; namely, for θ ∈ Θad, let us introduce the transported field

Eθ := (I +∇θT )EΩθ
◦ (Id + θ).

Then, EΩθ
belongs to V if and only if Eθ belongs to V and:

(∇×EΩθ
) ◦ (Id + θ) = 1

|det(I +∇θ)| (I +∇θ)(∇×Eθ); (A.4)

see for instance [53, Corollary 3.58]. Let us now perform a change of variables in the variational formulation
(A.2) for EΩθ

; taking into account (A.4), the relation

nΩ = nΩθ
◦ (Id + θ),

and the fact that θ ≡ 0 on DPML and Γin, we obtain:

∀φ ∈ V,
∫
D

(
Λ−1 (A(θ)∇×Eθ

)
· ∇ × φ∗θ

)
dx−

∫
D
k2C(θ)Λn2

ΩEθ · φ
∗
θ dx

+
∫

Γin

(Uinc − γ(Eθ)) · n× φ∗θ × n ds = 0,

in which we have used the shortcut

φθ := (I +∇θT )φ ◦ (Id + θ),

and where the matrices A(θ) and C(θ) are defined by:

A(θ) = C(θ)−1 = 1
|det(I +∇θ)| (I +∇θT )(I +∇θ).

Note that since φ ∈ V is arbitrary in (A.2), then so is φθ ∈ V, and so:

∀φ ∈ V,
∫
D

(
Λ−1 (A(θ)∇×Eθ

)
· ∇ × φ∗

)
dx−

∫
D
k2C(θ)Λn2

ΩEθ · φ∗ dx

+
∫

Γin

(Uinc − γ(Eθ)) · n× φ∗ × n ds = 0, (A.5)

Now, a classical use of the implicit function theorem, as in e.g. [35, 54], reveals that the mapping θ 7→ Eθ is
Fréchet differentiable from Θad into V. Its derivative E̊Ω(θ) ∈ V - the Lagrangian derivative of Ω 7→ EΩ - is
the unique solution to the following variational problem: for all φ ∈ V,∫

D

(
Λ−1

(
∇× E̊Ω(θ)

)
· ∇ × φ∗

)
dx−

∫
D
k2Λn2

ΩE̊Ω(θ) · φ∗ dx−
∫

Γin

γ(E̊Ω(θ)) · n× φ∗ × n ds =∫
D

(
Λ−1 (C ′(0)(θ)∇×EΩ) · ∇ × φ∗

)
dx+

∫
D
k2ΛC ′(0)(θ)n2

ΩEΩ · φ∗ dx. (A.6)

In the calculation of (A.6), we have used the derivative

A′(0)(θ) = −C ′(0)(θ) = −(divθ) I +∇θ +∇θT .
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Let us now use this information to calculate the shape derivative of J(Ω). A change of variables
combined with the fact that θ ≡ 0 on Γobj yields:

J(Ωθ) = 1
16

(∫
Γobj

j(Eθ) ds
)(∫

Γobj

j(Eθ) ds
)∗

.

Differentiating with respect to θ in the above expression results in:

J ′(Ω)(θ) = 1
8Re

[(∫
Γobj

j(E̊Ω(θ)) ds
)(∫

Γobj

j(EΩ) ds
)∗]

, (A.7)

where we recall that the mapping E 7→ j(E) is linear. Now let us introduce the adjoint state AΩ, unique
solution in V to the following system∫

D

(
Λ−1 (∇×AΩ) · ∇ × φ∗

)
dx−

∫
D
k2Λn2

ΩAΩ · φ∗ dx−
∫

Γin

γ(AΩ) · n× φ∗ × n ds =

− 1
8

(∫
Γobj

j(φ) ds
)(∫

Γobj

j(EΩ) ds
)∗

. (A.8)

Then using (A.6) with φ = AΩ and (A.8) with φ = E̊Ω(θ), the expression (A.7) of the shape derivative of
J(Ω) rewrites:

J ′(Ω)(θ) = −Re
[∫
D

(
Λ−1 (C ′(0)(θ)∇×EΩ) · ∇ ×A∗Ω

)
dx+

∫
D
k2ΛC ′(0)(θ)n2

ΩEΩ ·A∗Ω dx
]
. (A.9)

Formula (A.9) is the so-called volumetric expression of the shape derivative J ′(Ω)(θ). We now simplify this
expression to achieve a more convenient surfacic expression, obeying the structure theorem. To this end, we
follow the strategy of [28]: we perform integration by parts to obtain an expression of J ′(Ω)(θ) of the form

J ′(Ω)(θ) =
∫
∂Ω
g(EΩ,AΩ) θ · n ds+

∫
D
r(EΩ,AΩ) · θ dx,

for some functions g(EΩ,AΩ) ∈ L1(∂Ω) and r(EΩ,AΩ) ∈ L1(D) depending on EΩ and AΩ. Relying on the
structure theorem, we then identify that the second integral in the above right-hand side must vanish. In
the following, we denote by r(EΩ,AΩ) any function in L1(D) (possibly changing from one line to the other)
which depends on EΩ and AΩ.

We rely on the following integration by parts formulas, valid for smooth enough vector fields θ,u,v:∫
Ω

(divθ) u · v dx =
∫
∂Ω

u · v (θ · n) ds−
∫

Ω
∇(u · v) · θ dx; (A.10)

∫
Ω

(∇θu) · v dx =
∫
∂Ω

(θ · v) (u · n) ds−
∫

Ω
(divu) θ · v dx−

∫
Ω

(∇vu) · θ dx; (A.11)∫
Ω

(∇θTu) · v dx =
∫
∂Ω

(θ · u) (v · n) ds−
∫

Ω
(divv) θ · u dx−

∫
Ω

(∇uv) · θ dx. (A.12)

At first, using the fact that ∇×EΩ and ∇×AΩ belongs to H1(D), an integration by parts based on (A.10)
to (A.12) and the fact that θ ≡ 0 on ∂D yields:∫

D

(
Λ−1 (C ′(0)(θ)∇×EΩ) · ∇ ×A∗Ω

)
dx =

∫
D
θ · r(EΩ,AΩ) dx,

for some r(EΩ,AΩ) ∈ L1(D). Then,∫
D
k2ΛC ′(0)(θ)n2

ΩEΩ ·A∗Ω dx =∫
Ω
k2(divθI−∇θ −∇θT )n2

coreE0 ·A∗0 dx+
∫
D\Ω

k2Λ(divθI−∇θ −∇θT )n2
cladE1 ·A∗1 dx, (A.13)
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whence since E0,A0 (resp. E1,A1) are smooth on Ω (resp. D \ Ω) and an integration by parts yields∫
Ω
k2n2

core(divθ)E0 ·A∗0 dx+
∫
D\Ω

k2n2
cladΛ(divθ)E1 ·A∗1 dx

=
∫
∂Ω
k2(n2

coreE0 ·A∗0 − n2
cladE1 ·A∗1)(θ · n) ds+

∫
∂Ω
θ · r(EΩ,AΩ) dx

=
∫
∂Ω

(
k2(n2

core − n2
clad)(n×EΩ × n) · (n×A∗Ω × n) + k2

(
1

n2
core
− 1
n2

clad

)
(n2

ΩEΩ · n)(n2
ΩA∗Ω · n)

)
(θ · n) ds

+
∫
D
θ · r(EΩ,AΩ) dx,

(A.14)
where we have used the continuity (A.3) of the tangential components of EΩ and AΩ, and that of the normal
component n2

ΩEΩ · n of the electric displacement.
In a similar fashion, we calculate:∫

Ω
k2n2

core(∇θE0) ·A∗0 dx+
∫
D\Ω

k2n2
cladΛ(∇θE1) ·A∗1 dx =∫

∂Ω
k2 (n2

core(E0 · n)(A∗0 · θ)− n2
clad(E1 · n)(A∗1 · θ)

)
ds+

∫
D
θ · r(EΩ,AΩ) dx.

Using (A.3), this rewrites:∫
Ω
k2n2

core(∇θE0) ·A∗0 dx+
∫
D\Ω

k2n2
clad(∇θE1) ·A∗1 dx =∫

∂Ω
k2
(

1
n2

core
− 1
n2

clad

)
(n2

ΩEΩ · n)(n2
ΩA∗Ω · n)(θ · n) ds+

∫
D
θ · r(EΩ,AΩ) dx. (A.15)

In the same way, we obtain:∫
Ω
k2n2

core(∇θTE0) ·A∗0 dx+
∫
D\Ω

k2n2
clad(∇θTE1) ·A∗1 dx =∫

∂Ω
k2
(

1
n2

core
− 1
n2

clad

)
(n2

ΩEΩ · n)(n2
ΩA∗Ω · n)(θ · n) ds+

∫
D
θ · r(EΩ,AΩ) dx. (A.16)

Combining (A.13) to (A.16), we obtain:∫
D
k2ΛC ′(0)(θ)n2

ΩEΩ ·A∗Ω dx =∫
∂Ω

(
k2(n2

core − n2
clad)(n×EΩ × n) · (n×A∗Ω × n)− k2

(
1

n2
core
− 1
n2

clad

)
(n2

ΩEΩ · n)(n2
ΩA∗Ω · n)

)
(θ · n) ds

+
∫
D
θ · r(EΩ,AΩ) dx,

and so, finally,

J ′(Ω)(θ) =∫
∂Ω
k2Re

[
(n2

clad − n2
core)(n×EΩ × n) · (n×A∗Ω × n)−

(
1

n2
clad
− 1
n2

core

)
(n2

ΩEΩ · n)(n2
ΩA∗Ω · n)

]
(θ · n) ds

since the integral on D must vanish. Hence, the desired result follows.

B Proof of Proposition 4.1
Let δ > 0 be sufficiently small for (Id + δnΩ) to be a diffeomorphism from R3 into itself - where, again nΩ
stands for a smooth extension of the unit normal vector to Ω to R3. Our purpose is to calculate the shape
derivative of the functional

Jδ(Ωθ) = J((Id + δnΩθ
) ◦ (Id + θ)(Ω)).
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A straightforward calculation yields:
Jδ(Ωθ) = J((Id + θ + δnΩθ

◦ (Id + θ))(Ω)),
= J((Id + δnΩ + θ + δ (nΩθ

◦ (Id + θ)− nΩ))(Ω)),
= J((Id + ξ1(θ) + δξ2(θ)) ◦ (Id + δnΩ)(Ω)),
= J((Id + ξ1(θ) + δξ2(θ))(Ωδ)),

where we have defined

ξ1(θ) := θ ◦ (Id + δnΩ)−1
, and ξ2(θ) := (nΩθ

◦ (Id + θ)− nΩ) ◦ (Id + δnΩ)−1
,

considering that δ > 0 is small enough so that (Id + δnΩ) is a diffeomorphism. Using the classical formula
for the transformation of the normal vector

nΩθ
◦ (Id + θ) = 1

|com(I +∇θ)nΩ|
com(I +∇θ)nΩ, (B.1)

whence the “Lagrangian” derivative of the normal vector field Ω 7→ nΩ is calculated, ξ2 expands on ∂Ω as
(see [54] and [18, Chapter 2]):

ξ2(θ) ◦ (Id + δnΩ) =
(

(∇θTnΩ) · nΩ

)
nΩ −∇θTnΩ + o(θ).

Hence, using the definition (3.7) of the shape derivative of Ω 7→ J(Ω) at Ωδ, it follows that

Jδ(Ωθ) = Jδ(Ω) + J ′(Ωδ)(ξ1(θ) + δξ2(θ)) + o(θ), (B.2)

and we are now left with the calculation of the last quantity in the right-hand side of (B.2); to this end, using
Theorem 3.1 yields:

J ′(Ωδ)(ξ1(θ) + δξ2(θ)) =
∫
∂Ωδ

gΩδ (ξ1(θ) + δξ2(θ)) · nΩδ ds,

where gΩ : ∂Ω → R is given by (3.13). Changing variables in the integral in the above right-hand side, we
finally obtain:

J ′(Ωδ)(ξ1(θ) + δξ2(θ)) =
∫
∂Ω
|com(I + δ∇nΩ)nΩ|(gΩδ (ξ1(θ) + δξ2(θ)) · nΩδ) ◦ (Id + δnΩ) ds,

=
∫
∂Ω
gΩδ ◦ (Id + δnΩ)H̃(θ,nΩ) ds+ o(θ).

(B.3)

with
H̃(θ,nΩ) :=

(
θ + δ

(
(∇θTnΩ · nΩ)nΩ −∇θTnΩ

))
· (com(I + δ∇nΩ)nΩ).

where we have used again (B.1). The derivative (B.3) may now be given the convenient structure (3.8) owing
to a little calculation. Indeed, let τ 1, τ 2 be a local orthonormal basis of the tangent plane of ∂Ω around
a fixed, arbitrary point x0 ∈ ∂Ω, so that (τ 1(x), τ 2(x),nΩ(x)) is an orthonormal basis of R3 for any point
x ∈ ∂Ω close to x0. Then the Jacobian matrix of nΩ reads in this frame:

∇nΩ =

 κ1 0 0
0 κ2 0
0 0 0

 ,

where κi is the principal curvature in direction τ i. Hence,(
(∇θTnΩ) · nΩ

)
nΩ −∇θTnΩ = −

2∑
i=1
∇θTnΩ · τ i,

= −
2∑
i=1
∇(θ · nΩ) · τ i +

2∑
i=1

(∇nTΩθ) · τ i,

= −∇∂Ω(θ · nΩ) +
2∑
i=1

κi(θ · τ i)τ i,

(B.4)

where ∇∂Ωf := ∇f − (∇f · nΩ)nΩ is the tangential gradient of a smooth enough function f : ∂Ω → R. It
follows after a little more algebra that

H̃(θ,nΩ) = |det(Id + δ∇nΩ)|
(
((Id + δ∇nΩ)−1nΩ · nΩ)θ · nΩ

)
,

which is just the factor H(θ,nΩ) in (4.9); this completes the proof.
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