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Abstract

The Mα energy which is usually minimized in branched transport
problems among singular 1-dimensional rectifiable vector measures is ap-
proximated by means of a sequence of elliptic energies defined on more
regular vector fields. The procedure recalls the one of Modica-Mortola
related to the approximation of the perimeter. In our context, the double-
well potential is replaced by a concave term. The paper contains a proof
of Γ−convergence and numerical simulations of optimal networks based
on that previous result.

1 Introduction

The name “branched transport” is often used to address transport problems
where the cost of transportation of a moving mass m along a distance l is
proportional to l and sub-additive with respect to m (like for instance mα with
0 < α < 1). The mass distributions of sources and destinations are given and
one looks for the paths followed by the particles that are optimal for the total
cost

∑
i lim

α
i . The adjective “branched” stands for one of the main features of

optimal solutions: they gather mass together, masses tend to move jointly as
long as possible and then branch towards different destinations. This behavior
gives rise to tree-shaped structures.

In the case of finite graphs this kind of problems dates back to the ‘60 in the
community of operational research (the first paper on the subject is [17]). More
recently, several different approaches and results concerning the generalization
to continuous frameworks have been introduced by the community of optimal
transport. The first paper in this direction is the one by Q. Xia ([27]), which
will be our main reference. Other approaches have been proposed by Bernot,
Caselles, Maddalena, Morel and Solimini (see [19, 6]). The equivalences between
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the different models as well as a survey of the whole theory are presented in a
recent book by Bernot, Caselles and Morel, [7], who are responsible for most of
the results therein.

All the different approaches that have been proposed have their own advan-
tages. In this paper we stick to the divergence-constrained formulation proposed
by Q. Xia. In this model, an optimal branched transport is obtained in mini-
mizing the energy Mα(u) among vector measures u satisfying ∇ · u = f , where
f = f+−f− is the difference of two given probability measures representing the
sources and the destinations of the transport. The Mα energy is defined (see (3)
for a more precise formulation) as Mα(u) =

∫
M
θαdH1 for all measures which

are concentrated on a rectifiable set M and having a vector density of modulus
θ w.r.t. the Hausdorff measure H1 on M (and +∞ on the other measures).
The sources and destinations, which were finite combination of Dirac masses
in the discrete case, are replaced here by generic probability measures and the
rectifiable sets M generalize the framework of finite graphs. See Section 2 where
the model by Xia is quickly sketched.

A satisfactory numerical treatment of these issues (even in the discrete case)
is far from being obtained. This fact motivates the need of reliable approxima-
tion strategies. This paper presents a precise approximation result, in terms of
Γ−convergence (see [13]), and an efficient numerical method based on it. Ac-
tually, since the continuous formulation of branched transport problems passes
through a divergence-constrained formulation, it is natural to approximate it
by means of problems which concern more regular vector fields (i.e. which are
not measures concentrated on one-dimensional graphs, but have a density that
is at least weakly differentiable).

We propose an approximation based on functionals with a concave and a
Dirichlet term whose coefficients increase the weight of the first term and vanish
on the latter as far the approximation parameter ε goes to 0. In a very imprecise
way, we could say that we consider the minimization of a functional of the kind

min
1

ε

∫
|u|α + ε

∫
|∇u|2 (1)

under constraints or penalization on∇·u. We will define an energy Mα
ε , which is

similar to (1) after some suitable rescaling, and prove that Mα
ε converges in the

sense of Γ−convergence to Mα. We will recall the definition and properties of
this type of convergence (introduced in [14]) in Section 3, and we only insist here
on the fact that it is the good notion of convergence for variational problems
which provides convergence of minimizers. In this framework, we think that
this Γ−convergence result has at least two important points of interest, from
a theoretical and from a numerical point of view. The theoretical aspects,
the main results, the difficulties and open questions that arise as well as some
suggestions to overcome them are also presented (with no proofs), in the brief
note [25] published by the second author.

Elliptic approximation of singular energies First, let us spend some
words on the theoretical aspects of this kind of approximation. Actually, the
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interest of this Γ−convergence result does not only rely in its direct numerical
application but also on its comparison with previous elliptic approximation of
Modica and Mortola ([20]) at the very beginning of Γ−convergence time. We
explain their result in more details in Section 4. Let us here recall that in their
case the variable u was a scalar function and the approximating functionals were
defined by

1

ε

∫
F (u) + ε

∫
|∇u|2,

F being a double-well potential, enforcing at the limit u to take values in
{0, 1}. With this sequence of functionals the optimal energy concentrates on
low-dimensional set which is the interface between the two phases u = 0 and
u = 1. The same happens in our situation: the concave power F plays the
role of a double well at u = 0 and |u| = ∞ and the energy concentrates on a
one-dimensional graph.

Being u a vector field in our problem, one could also evoke Ginzburg-Landau
theory with its approximation (see [8, 9] where the problem of the convergence
of the minimizers of

min
1

ε

∫
(1− |u|)2 + ε

∫
|∇u|2

is first addressed). Nevertheless, due to the divergence which is a bounded
measure, our problem is essentially scalar since asymptotically only one direction
is locally relevant. Actually a singular vector measure concentrated on a lower-
dimensional object is always oriented along a tangent direction if its divergence
is a measure (otherwise it would be a first-order distribution). Moreover, in
dimension two it is possible to take advantage of the usual decomposition of
a vector field into a gradient plus a rotated gradient so that the information
on the divergence “fixes” the gradient part. In this way one would arrive to
consider limits of functionals like

min

∫
F (∇u) + ε

∫
|D2u|2

which are of the form of those studied by Aviles and Giga (Modica-Mortola
results for higher order energies, see [4, 5] where the second order term only
contains the Laplacian, and lately [1] with the whole Hessian).

Probably the main goal of this paper, from the theoretical point of view, is
creating a bridge between two different topics in Calculus of Variations: the ap-
proximation of free discontinuity problems on the one hand and the optimization
of transport networks. The first one, much linked with elliptic PDEs has already
been object of high-quality researches for decades and is studied in relation with
its applications in material sciences and image segmentation. The second is, in
its continuous version, more recent and linked to the theory of optimal trans-
port by Monge and Kantorovitch with applications ranging from economics to
biology and geophysics (see [23]). This topic also involves lots of questions
from Elliptic PDEs, dimensional reduction and geometric measure theory. See
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[3, 2, 12, 20] for the whole theory and the main examples of Γ−convergence
applied to free discontinuity problems: notice that here, the discontinuities (or
“jumps”) are replaced by a bilateral singularity. More precisely, the measures
solutions of the limit problem vanish almost everywhere and are concentrated on
one-dimensional sets. They have a double jump, whose “intensity” (measured
with respect to H1 instead of Ld) enters the limit functional.

There is another class of variational models which is worth mentioning in
connection with this study : in a paper devoted to different applications, see [10]
Bouchitté et al., the authors give an approximation result which is very similar
for some energies defined on atomic measures. We could say that in our paper
the 1D networks play the same role in a 2D ambient space as the points played
in 1D in [10]. Moreover, the same authors are currently studying, by slicing -
but quite different from ours -techniques, the extension to branched transport
problems in 2D (also taking advantage of the reformulation in terms of rotated
gradients, so as to get to a BV problem). Even if the techniques are different
than those which are used here, the difficulties are almost the same.

Numerical applications From the beginning, one of our motivation was to
develop some approximation results also for numerical purposes. Actually, this is
not a minor point if we consider the fact (see [29]) that the exact identification
of global optimal networks, in the combinatorial context, is NP hard (with
respect to the number of sources and targets). In order to tackle this difficulty
we introduce in this paper a continuous and relaxed framework based on our
relaxation.

The main difficulties related to the numerical optimization of problem (4)
are related both to the approximation of irregular functions and to the strongly
non-convex cost functional.

Theorem (5.1) makes it possible to replace the problem on singular mea-
sures by a sequence of optimization problems addressed on smooth functions
spaces. Moreover, we observe that for ε >> 1 the functional Mα

ε is close from
being convex, since the Dirichlet part is the most important one. We base our
optimization strategy on this last observation. Solving the relaxed problems
where Mα

ε replaces Mα, for ε large, we expect to identify by a standard descent
method a good approximation of the solution uε. Then, decreasing the value
of ε step by step, and solving the associated sequence of optimization problems
starting from the previous optimal uε, we can expect to avoid a great number
of local minimizers. The same kind of strategy, based on Γ−convergence and on
this choice of starting from huge values of ε to decrease them later, has already
been used by the first author for different problems (see [22]).

Notice that our strategy does not give any warranty to identify at the end
of the process a global optimum of the original problem. As a matter of fact,
branching in wrong directions may occur when ε tends to 0. Nevertheless, we
observe in our experiments that this approach is surprisingly efficient on the
tests cases that we considered.

After the success of the numerical procedures based on Theorem 5.1 which
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only deals with the case α larger than 1
2 (in R2), we decided to try to attack

the case α = 0 which corresponds to Steiner problem. The minimal connection
problem by Steiner is very classical in computational geometry and amounts to
finding the smallest connected set S (in the sense of its length, i.e. we want to
minimizeH1(S)) containing a given finite set of points (xi)i=0,...,n. This problem
may be seen as a particular case of branched transport, when one takes α = 0
and takes as a source measure f+ = δx0 and as a destination f− =

∑n
i=1

1
nδxi .

The need to reach α = 0 imposed to extend the Γ−convergence result, thus
obtaining Theorem 6.1. Notice that this new result concerns the exponents
α > 0, and not α = 0. Numerically speaking, this leads us to obtain solutions
if Steiner’s as a limit of irrigation problems where α→ 0.

Structure of the paper Section 2 recalls Xia’s formulation of branched
transport problems. The section 3 is a short introduction to Γ−convergence.
Section 4 is related to the form of our relaxed functionals. Mainly we concen-
trate our attention to the choice of right exponents which are not obvious at
all (in particular, the function F in (1) will be of the form F (|u|) = |u|β with
β 6= α). Section 5 presents the detailed proof of our main result (Γ−convergence
of the energies, in dimension two only, under no divergence conditions). Section
6 provides the modifications to be performed on the proofs of Section 5 to cover
the case α ≤ 1− 1

d (which is needed in order to approximate Steiner problem).
In Section 7, before passing to numerics, we discuss the completeness of the
theoretical results we prove and we provide some open questions. In particu-
lar, we insist on the fact that we do not know how to deal with the divergence
constraint and that we are not able to prove compactness of the minimizers of
the approximated problems. Anyway, for the sake of numerical simulations, we
ignore them: as we previously said we are not able to prove that the numerical
procedure we establish converge to a global minimizer of the limit problem, and
we only use it to select a candidate “well-selected” local minimizer. For more
detailed discussions about these open problems and the way to overcome their
difficulties, we will refer to [25].

The numerical issues for branched transport and Steiner problems are dis-
cussed in Sections 8-9. Section 8 describes briefly the dicretization process of
vector measure on staggered grid. Then algorithms deduced to the projection
on the divergence constraints and on our optimization strategy are given. Fi-
nally, four numerical experiments are carried out in section 9 to illustrate the
performance of the method.

2 Branched transport via divergence-constrained
optimization

We present here the framework of the optimization problem proposed by Xia in
[27, 28] which received the attention of many authors (see for instance [7] for a
whole presentation of the theory).

5



Let Ω ⊂ Rd be an open set with compact closure Ω and M(Ω) the set of
finite vector measures on Ω with values in Rd and such that their divergence is
a finite scalar measure, i.e. such that

sup

{∫
∇φ · du : φ ∈ C1(Ω), ||φ||L∞ ≤ 1

}
< +∞ (2)

(as you can see, we do not ask for φ to vanish at the boundary i.e. we take into
account possible parts of ∇ · u on ∂Ω as well). The value of the supremum in
(2) will be denoted by |∇ ·u|(Ω) i.e. the “total variation of the divergence” of u.
On this space we consider the convergence uε → u⇔ uε ⇀ u and ∇·uε ⇀ ∇·u
as measures. When a function is considered as an element of this space, or a
functional space as a subset of it, we always think it as the absolutely continuous
measures (with respect to the Lebesgue measure on Ω) which density is that
function.

When we take u ∈ M(Ω) and we write u = U(M, θ, ξ) we mean that u
is a rectifiable vector measure (it is the translation in the language of vector
measures of the concept of rectifiable currents) u = θξ ·H1

|M whose density with

respect to the H1−Hausdorff measure on M is given by the real multiplicity
θ : M → R+ times the orientation ξ : M → Rd, ξ being a measurable vector
field of unit vectors belonging to the (approximate) tangent space to M at
H1−almost any point.

For 0 < α < 1, we consider the energy

Mα(u) =

{∫
M
θαdH1 if u = U(M, θ, ξ),

+∞ otherwise.
(3)

The problem of branched transport amounts to minimizing Mα under a diver-
gence constraint:

min
{
Mα(u) : ∇ · u = f := f+ − f−

}
. (4)

The divergence constraint is given in weak form and means∫
∇φ · du =

∫
φ d(f−−f+) for all φ ∈ C0(Ω),

which actually corresponds to Neumann boundary conditions

∇ · u = f in Ω and u · n = 0 on ∂Ω.

From now on, we will always think of Neumann boundary conditions when
speaking about divergences, so that ∇ · u is the linear functional associating to
every φ ∈ C1(Ω) (independently of the values on ∂Ω) the value

∫
∇φ ·du: if u is

a regular function this corresponds to a measure which is absolutely continuous
inside Ω with density given by the true divergence, and which has a H1−part
on the boundary with density given by u · n.
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Remark 1. Notice that this is not the original definition by Xia of the Energy
Mα: Xia proposed it in [27] as a relaxation of the case of finite graphs, but (3)
can be seen as a representation formula for the relaxed energy

Mα(u) = inf
{

lim inf
n

Eα(Gn) : Gn finite graph, uGn → u
}
,

where
Eα(G) :=

∑
h

wαhH1(eh), (5)

for a weighted oriented graph G = (eh, êh, wh)h (where eh are the edges, êh
their orientations, wh the weights), and uG is the associated vector measure
given by

uG :=
∑
h

whêhH1
|eh ,

(and the convergence is in the sense ofM(Ω)). For the proof of the equivalences
between the two definition, look at [28] or at Chapter 9 in [7].

Notice that in general Problem (4) admits a solution with finite energy for
any pair of probability measures (f+, f−) (or more generally, for any pair of
equal mass of finite positive measures), provided α > 1 − 1

d (this is proven in
[27] by means of an explicit construction).

3 Variational approximation, preliminaries

The main theoretical result of the paper will be a Γ−convergence result for
a sequence of energies approximating Mα. We will see in Section 6 that for a
complete approximation of the problem, one would need to insert the “boundary
conditions” given by the divergence constraints and prove compactness for a
suitable sequence of minimizers uε of the approximating problems.

For precising what we mean by “approximating the energy” and how to use
the result, let us sketch briefly the main outlines of Γ−convergence’s theory, as
introduced by De Giorgi (see [14] and [13]).

Definition 3.1. On a metric space X let Fn : X → R ∪ {+∞} be a sequence
of functions. We define the two lower-semicontinuous functions F− and F+

(called Γ− lim infand Γ− lim sup F+ of this sequence, respectively) by

F−(x) := inf{lim inf
n→∞

Fn(xn) : xn → x},

F+(x) := inf{lim sup
n→∞

Fn(xn) : xn → x}.

Should F− and F+ coincide, then we say that Fn actually Γ−converges to the
common value F = F− = F+.

This means that, when one wants to prove Γ−convergence of Fn towards
a given functional F , one has actually to prove two distinct facts: first we
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need F− ≥ F (i.e. we need to prove lim infn Fn(xn) ≥ F (x) for any approxi-
mating sequence xn → x; not only, it is sufficient to prove it when Fn(xn) is
bounded) and then F+ ≤ F (i.e. we need to find a sequence xn → x such that
lim supn Fn(xn) ≤ F (x)). The definition of Γ−convergence for a continuous
parameter ε → 0 obviously passes through the convergence to the same limit
for any subsequence εn → 0.

Among the properties of Γ−convergence we have the following:

• if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any
n, then F attains its minimum and inf Fn → minF ,

• if (xn)n is a sequence of minimizers for Fn admitting a subsequence con-
verging to x, then x minimizes F ,

• if Fn is a sequence Γ−converging to F , then Fn + G will Γ−converge to
F +G for any continuous function G : X → R ∪ {+∞}.

4 Elliptic approximation, heuristics

As we partially mentioned, the result we will present in Section 5 is somehow
inspired by, or at least recalls most of the results in the elliptic approximation
of free discontinuity problems (Modica-Mortola, Ginzburg-Landau or Aviles-
Giga). We will only mention the following (see [20] and [12]) because of its
simplicity, even if it is probably not the closest one in this two-dimensional
setting where Aviles-Giga seems closer.

Theorem 4.1. Define the functional Fε on L1(Ω) through

Fε(u) =

{
1
ε

∫
W (u(x))dx+ ε

∫
|∇u(x)|2dx if u ∈ H1(Ω);

+∞ otherwise.

Then, if W (0) = W (1) = 0 and W (t) > 0 for any t 6= 0, 1, the functionals Fε
Γ−converge towards the functional F given by

F (u) =

{
cPer(S) if u = 1 on S, u = 0 on Sc and S is a finite-perimeter set;

+∞ otherwise,

where the constant c is given by c = 2
∫ 1

0

√
W (t)dt.

We precised the value of the constant so that the reader will notice that
similar constants are involved in our case as well. For the same reason (the
analogy with the present paper) we precise also the key-ingredient in the proof
of the above Theorem which is the inequality

1

ε
W (u(x)) + ε|∇u(x)|2 ≥ 2

√
W (u(x)||∇u(x)| = 2|∇(H ◦ u)|,
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where H is the primitive of
√
W (so that one has Fε(u) ≥ 2TV (H ◦ u) where

TV denotes the total variation).
In our study we will consider functionals of the form

Eε(u) = εγ1
∫

Ω

|u(x)|βdx+ εγ2
∫

Ω

|∇u(x)|2dx, (6)

defined on u ∈ H1(Ω;R2) and set to +∞ outside H1 ⊂ M(Ω), for well-chosen
exponents γ1 < 0 < γ2 and 0 < β < 1.

As one can see our functional recalls Modica-Mortola’s functional to recover
the perimeter as a limit, where the double-well potential is replaced with a
concave power. Notice that when minimizing concave powers of a function u of
fixed average value (which is in some sense the meaning of weak convergence,
i.e. the convergence we use on M(Ω)), it is suitable to have either u = 0 or |u|
as large as possible. In that sense the concave potential plays the role of double
well on zero and infinity. We give below an heuristic argument to determine the
right exponents β, γ1 and γ2.

Suppose you want to approximate a measure u concentrated on a segment S,
with multiplicity m, and directed towards one of the direction of the segment,
via a measure uA whose density is smooth and concentrated on a strip of width
A around S. The values of uA will hence be of the order of m/Ad−1 and the
values of its gradient of the order of m/Ad. This gives a functional value of the
order of

Eε ≈ εγ1Ad−1
( m

Ad−1

)β
+ εγ2Ad−1

( m
Ad

)2

.

Minimizing the previous cost with respect to the width A, we get

A ≈ ε
γ2−γ1

2d−β(d−1)m
2−β

2d−β(d−1) ; Eε ≈ εγ2−(γ2−γ1) d+1
2d−β(d−1)m2−(2−β) d+1

2d−β(d−1) .

The correct choice for a possible convergence result towards the energy (3) which
is proportional to mα is obtained by imposing

β =
2− 2d+ 2αd

3− d+ α(d− 1)
;

γ1

γ2
=

(d− 1)(α− 1)

3− d+ α(d− 1)
.

Notice that γ1 and γ2 may not both be determined since one can always replace
ε with a power of ε which change single exponents but not their ratio. Notice
also that the exponent β is positive and less than 1 as soon as α ∈]1 − 1

d , 1[,
which is the usual condition for having a well posed problem.

Finally, it is worthwhile to remark that for this choice of exponents the
dependence of A with respect to ε is of the form A ≈ εγ2/(d+1) (and γ2 > 0).
This implies limε→0A = 0, which gives weak convergence of the approximation
we chose (enlarging u on a strip of width A without changing its mass) to u.
It doesn’t prove anything but it is coherent with the our expected convergence
result.

We conclude by underlining the case of the dimension 2 since it is the only
one we will be able to solve. In that case one has β = 4α−2

α+1 and γ1/γ2 =
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(α − 1)/(α + 1). This allows us to precise our choice for the approximating
energies Mα

ε :

Mα
ε (u) =

{
εα−1

∫
Ω
|u(x)|βdx+ εα+1

∫
Ω
|∇u(x)|2dx if u ∈ H1(Ω),

+∞ otherwise,
(7)

with β = 4α−2
α+1 .

Remark 2. From this heuristics and from the proof that we will present in the
following, the reader may see that the construction only works for α > 1 − 1

d .
This is quite astonishing if one thinks that, also for α ≤ 1− 1

d , there are measures
f± which admit possible solution with finite energy (in particular when both
measures are supported on a same lower-dimensional set). Yet, the problem
lies in the kind of approximation we require, which uses measures uε which are
more regular and in particular which are absolutely continuous with respect to
Ld and may not be concentrated on lower-dimensional sets. Section 6 explains
how to deal with the case where α is smaller than the threshold 1− 1

d and how
to adapt the arguments we will give in next section to the case α ∈]0, 1

2 ] for
d = 2.

5 Our main Γ−convergence result

This Section will be devoted to the proof of the following theorem:

Theorem 5.1. Suppose d = 2 and α ∈]1/2, 1[: then we have Γ−convergence
of the functionals Mα

ε to cMα, with respect to the convergence of M(Ω), as
ε → 0, where c is a finite and positive constant (the value of c is actually

c = α−1 (4c0α/(1− α))
1−α

, being c0 =
∫ 1

0

√
tβ − tdt).

As usual in several Γ−convergence proofs, we will work separately on the
two inequalities we need.

5.1 Γ− lim inf inequality

In this part we will consider an arbitrary sequence uε → u and we will suppose
that Mα

ε (uε) is bounded. This implies at first that all the uε are H1 functions,
and that ∫

|uε|β ≤ Cε1−α and

∫
|∇uε|2 ≤ Cε−1−α. (8)

Not only they are H1 functions, but we can actually assume, for this part of
the proof, that they are more regular, say C1, since we could otherwise replace
them with other more regular functions, still denoted by uε, with the same limit
inM(Ω), and the same energies Mα

ε up to negligible remainder (this is possible
thanks to the fact that C1 is dense in H1).

Step 1 Sliced lower bounds on Mα
ε : We are going to establish below for each
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x a lower bound for the integral
∫
εα−1|uε(x, y)|β + εα+1|∇uε(x, y)|2 dy which

involves a term of the form |
∫
uε(x, y) dy|α up to some technical details (cut off

functions, negligible remainders, . . . )
Consider a rectangle R ⊂ Ω. Suppose for simplicity that it is oriented

according to the x and y axes, i.e. R = [a, b] × [c, d] set vε := [(uε)x]+ (the
positive part of the x−component of uε) and v′ε := ∂vε/∂y. Consider also two
C1 functions φ1, φ2 : R → [0, 1] such that: ∂φ1/∂x = ∂φ2/∂x = 0, φ1 = 1 on
[a, b]×[c+δ, d−δ], φ1(x, y) = 0 for y ∈ {c, d} and φ2 = 1 on [a, b]×[c+2δ, d−2δ]
and φ2(y) = 0 for y ∈ [c, c + δ] ∪ [d − δ, d]. For every x, set Rx := {x} × [c, d]
and R̂x := {x} × [c+ δ, d− δ]. Finally we define mε,δ(x) =

∫
Rx

(uε)xφ2 dy. The
precise estimate that is proved in this step is∫

Rx

(
εα−1|uε(x, y)|β + εα+1|∇uε(x, y)|2

)
φ1(y) dy ≥ c|mε,δ(x)|α − rε,δ(x),

for some constant c and a function rε,δ which will be proved to be negligible

in step 2. Fix x ∈ [a, b] and let Aε be the maximal value of vε on R̂x and

Lε = Aβ−1
ε , fε(t) =

√
(tβ − Lεt)+ and Fε(t) =

∫ t
0
fε(s)ds. One can write

vβε = f2
ε (vε)+Lεvε−(vβε − Lεvε)− ≥ f

2
ε (vε)+Lεvε−LεvεIRx\R̂x = f2

ε (vε)+LεvεIR̂x

where the second inequality comes from the fact that vε ≤ Aε implies vβε−Lεvε ≥
0 and Aε = maxR̂x vε. Considering the other term as well one has

εα−1vβε + εα+1(v′ε)
2 ≥ εα−1LεvεIR̂x + εα−1f2

ε (vε) + εα+1(v′ε)
2

≥ εα−1LεvεIR̂x + 2εαfε(vε)|v′ε| = εα−1LεvεIR̂x + 2εα|Fε(vε)′|.

By multiplying times φ1 and integrating on Rx with respect to y, one has∫
Rx

(
εα−1vβε + εα+1(v′ε)

2
)
φ1(y)dy

≥ εα−1Lε

∫
R̂x

vεdy + 2εαTV (Fε(vε)φ1)− 2εα
∫
Rx\R̂x

Fε(vε)|φ′1|dy, (9)

where TV stands again for the total variation. Since vεφ1 vanishes at both
boundaries and reaches the value Fε(Aε) inside R̂x, the total variation TV (Fε(vε)φ1)

is at least 2Fε(Aε) = 2c0A
1+β/2
ε . This value may be computed by a change of

variable (t = Aεs):

Fε(Aε) =

∫ Aε

0

√
(tβ − Lεt)+dt =

∫ 1

0

√
Aβε sβ − LεAεsAεds = A1+β/2

ε c0

(we used Lε = Aβ−1
ε and tβ ≥ Lεt for t ≤ Aε).

Notice that the last term in (9) is bounded by rε,δ(x) := cδε
α
∫
Rx
|uε|1+β/2

since φ′1 is bounded by a constant depending of δ, Fε(t) ≤
∫ t

0
sβ/2ds = ct1+β/2

and |vε| ≤ |uε|.
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Since we will prove in step 2 that rε,x(x) tends to zero as ε → 0, after
integration with respect to x (see Lemma 5.2 below), we will ignore this term.
For every x, we look at the quantity

εα−1Aβ−1
ε m̂ε(x) + 4c0ε

αA1+β/2
ε ,

where m̂ε(x) :=
∫
R̂x
vεdy. To estimate it from below, we will minimize over

possible values of Aε. We have

min
A∈]0,+∞[

εα−1Aβ−1m+ 4c0ε
αA1+β/2 = c2m

α, (10)

the minimum being realized by

A =

(
m(1− β)

ε2c0(2 + β)

)2/(4−β)

. (11)

We do not precise here the coefficient c2 appearing in the minimal value but the
correct computation is the one in the statement of the theorem. Notice that the
exponent 2/(4 − β) equals (α + 1)/3. For computing the last equality in (10)
we need to use the relations between β and α. By collecting all this estimates
and assuming mε,δ(x) ≥ 0, we obtain∫

Rx

(
εα−1|uε(x, y)|β + εα+1|∇uε(x, y)|2

)
φ1(y) dy

≥
∫
Rx

(
εα−1|vε(x, y)|β + εα+1|v′ε(x, y)|2

)
φ1(y) dy

≥ c2|m̂ε(x)|α − rε,δ(x)

≥ c2|
∫
Rx

vεφ2dy|α − rε,δ(x) ≥ c2|mε,δ(x)|α − rε,δ(x)

If mε,δ(x) < 0, we can reproduce the same strategy considering the negative
parts instead of the positive parts to obtain the same estimate.

Step 2 Lower bounds pass to the limit : In this step we integrate the previous
lower bound with respect to x and consider the limit when ε tends to zero. After
getting rid off the term rε,δ, we establish a strong compactness result which is
necessary to pass to the limit in the none-convex term

∫
|mε,δ(x)|α dx. Secondly

we let δ go to zero and obtain an estimate without cutoff function.
One can call µε the positive measure

(
εα−1|uε|β + εα+1|∇uε|2

)
· L2. Since∫

Ω
dµε = Mα

ε (uε), the measures µε stay bounded in the set of positive Radon
measures on Ω. Hence we can suppose µε ⇀ µ.

As we did previously, take a rectangle R and keep the same notations. We
have got from step 1:∫

R

φ1(y)dµε ≥ c2
∫ b

a

[mε,δ(x)]αdx−
∫ b

a

rε,δ(x) dx. (12)

The following lemma allows to handle the last term in (12) proving that it is
negligible as ε tends to zero.
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Lemma 5.2. For any bounded energy sequence uε we have

lim
ε→0

εα
∫
R

|uε|1+β/2 = 0.

Proof. First of all write |uε| ≤ 1 + wε, where wε = (|uε| − 1)+ and then∫
R

|uε|1+β/2 ≤ C + C

∫
R

w1+β/2
ε .

Notice than that |{|uε| > 1}| ≤
∫
R
|uε|β ≤ Cε1−α → 0, thus wε vanishes on

a large part of R. This allows to apply standard Sobolev-Poincaré inequalities
||wε||Lr ≤ C||wε||H1 (in dimension two any exponent r < +∞ is admitted).
Remember wε ≤ |uε| and |∇wε| ≤ |∇uε|.

Now, for any pair of conjugate exponents p and q greater than 1, we have

∫
R

w1+β/2
ε ≤

(∫
Ω

|wε|β
) 1
p
(∫

Ω

|wε|(1+β/2−β/p)q
) 1
q

≤ Cε(1−α)/p||uε||1+β/2−β/p
L(1+β/2−β/p)q ≤ Cε(1−α)/p||uε||1+β/2−β/p

H1

≤ Cε(1−α)/p−(1+β/2−β/p)(α+1)/2.

Hence we have

εα
∫
R

|uε|1+β/2 ≤ Cεα + Cεγp ,

where the exponent γp, from the previous computations, is given by

γp = α+
1− α
p
− (2p+ β(p− 2))(α+ 1)

4p
=
α(2− p)

2p
.

It goes to zero provided γp > 0, and it is sufficient to choose p < 2 in order to
get the result.

Remark 3. Notice that the proof would have been easier if one supposed that
uε · n = 0 (since one could have directly applied Sobolev-Poincaré to uε) on
∂Ω, which is quite natural. Yet, for the sake of generality, we admitted possible
divergences concentrated on the boundary, i.e.non vanishing values of the normal
component. Actually, in this H1 setting, the divergence of uε is seen as a
measure on Ω with an L2 part in Ω and a boundary part corresponding to
uε · n.

We know consider the limit of the term
∫ b
a

[mε,δ(x)]αdx when ε tends to zero.
The measures mε,δ(x)dx are the projections on [a, b] of φ2·(uε)x. They obviously
weakly converge to the projection of φ2ux. Yet, this weak convergence is not
sufficient for getting the convergence (nor for lower semicontinuity) of this term.
This is due to the non-convex behavior of the function m 7→ |m|α. To prove
this convergence we need more compactness (and hence a stronger convergence
of (πx)#(φ2(uε)x)).
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What we may prove is that the functions x 7→ mε,δ(x) are uniformly BV in
x and this will allow for L1 and pointwise convergence. We recall that uε → u
inM(Ω) which means by definition that uε and its divergence weakly converge
as measures. In particular both |∇ · uε|(Ω) and ||uε||L1 are bounded. Take a
function ψ : [a, b]→ R with ψ(a) = ψ(b) = 0. Consider∫ b

a

mε,δ(x)ψ′(x)dx =

∫
R

(uε)x(x, y)φ2(y)ψ′(x) dydx

=

∫
R

uε(x, y) · ∇(φ2(y)ψ(x))dydx−
∫
R

(uε)y(x, y)φ′2(y)ψ(x) dydx

≤ |∇ · uε|(Ω)||ψ||L∞(a,b) + ||uε||L1 ||φ′2||L∞(a,b)||ψ||L∞(a,b) ≤ C||ψ||L∞(a,b).

This proves the BV bound we needed and implies that (πx)#(φ2ux) is a
measure on [a, b] “belonging to BV” (i.e. is absolutely continuous and has a BV
density). Let us call mδ(x) its density. Moreover, one has mε,δ(x)→ mδ(x) for
almost any x. Passing to the limit one gets, by Fatou’s Lemma,∫

R

φ1(y)dµ ≥
∫ b

a

|mδ(x)|αdx.

It is quite straightforward that one can let δ go to 0 and get rid of the functions
φ1 and φ2 (which actually depend on δ). In fact, in the limit as δ tends to
zero the measures φ2ux converges strongly to the measure 1[a,b]×]c,d[ · ux. This
implies strong convergence for mδ to (πx)#(1[a,b]×]c,d[ ·ux). Notice that this last
measure is also absolutely continuous since all the mδ are in L1. Hence if we
denote by m(x) its density, it satisfies

µ([a, b]×]c, d[) ≥
∫ b

a

|m(x)|αdx. (13)

Step 3 Rectifiability and comparison with Mα : In this step we prove that
the estimate of step 2 implies that u, simply because of its attainability as a
limit of uε with bounded Mα

ε energies, is a rectifiable measure. Finally, this
point is used to obtain µ(Ω̄) ≥Mα(u).

The proof of the rectifiability is contained in the two following Lemmas 5.3,
5.4.

Lemma 5.3. Suppose uε → u in M(Ω) and Mα
ε (uε) ≤ C. Then u is a one-

dimensional rectifiable vector measure, i.e. it is of the form u = U(M, θ, ξ).

Proof. We will use the rectifiability theorem proved through different techniques
by Federer and White (see [15, 26]) and already used to prove rectifiability of
measures with finite Mα−mass (see also [28]). This theorem roughly states that
u is rectifiable if and only if almost all its (d − 1)−dimensional slices parallel
to the coordinate axes are countable collections of Dirac masses. Take the
coordinate axes and disintegrate ux with respect to the projection on the variable
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x of |ux| (that we will call for simplicity m(x)dx on the variable x, even if before
this denoted the projection of a signed measure). In this way we get some signed
measures νx. For every n, divide Ω into 2n horizontal strips of equal width and
call fi,n(x) the integral of νx on the i-th interval strip (without its boundary).
The estimate (13) that we already established easily gives

µ(Ω) ≥
∫
m(x)α

∑
i

fi,n(x)αdx.

Up to choosing the levels where to put the boundary of the strips, we can ensure
that for almost any x no mass is given to the boundaries by |u| (if this is not
the case, simply translate a little bit the strips, and this will happen again for
a countable set of choices only). Hence, when we pass from n to n + 1, the
mass of the previous strip is exactly the sum of the mass of the two new strips.
Notice that, due to |a + b|α ≤ |a|α + |b|α, the sequence n 7→

∑
i fi,n(x)α is

increasing. Call G(x) its limit: we have
∫
m(x)αG(x)dx < +∞. This implies

that G is finite almost everywhere. Thanks to Lemma 5.4, almost every νx is
purely atomic, and the same may be performed on the direction y. This allows
to apply the White’s criterion and proves that u is rectifiable.

Lemma 5.4. For α < 1 and a measure ν on a interval (say [0, 1[), set

G(sup)
α (ν) = sup

{
2n−1∑
i=0

|ν (Ii,n)|α ; n ∈ N Ii,n =

[
i

2n
,
i+ 1

2n

[}
and

Gα(ν) =

{∑
k∈N(ak)α if ν =

∑
k∈N akδxk

+∞ otherwise
.

Then we have G
(sup)
α (ν) = Gα(ν), and in particular if G

(sup)
α (ν) < +∞ then ν

is purely atomic.

Proof. Let us start from proving G
(sup)
α (ν) ≥ Gα(ν): for any n, build a measure

νn which is purely atomic, with one atom at each point i2−n and choose the
mass of such an atom equal to that of ν on Ii,n. These measures converge weakly
to ν, hence we have

Gα(ν) ≤ lim inf Gα(νn) ≤ G(sup)
α (ν).

Then, we prove the opposite inequality. We can suppose Gα(ν) < +∞.
Hence ν =

∑
k∈N akδxk is purely atomic and for every pair (i, n) we have,

thanks to subadditivity,

|ν (Ii,n)|α ≤
∑

k : xk∈Ii,n

aαk .

Summing up, we get
2n−1∑
i=0

|ν (Ii,n)|α ≤ Gα(ν)
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and the proof is obtained by taking the sup over n.

Once we know about u being rectifiable, one can choose rectangles R shrink-
ing around a tangent segment to the set M at a point x0 (this works for
H1−almost any point x0) and get µ ≥ θα · H1

|M , which implies the thesis.
This kind of proofs follow a standard scheme, i.e. considering measures µε

whose mass gives the value of the approximating energy, and providing estimates
on the limit measure µ. This estimates are obtained through local inequality on∫
R
dµ, so that shrinking R around a point one gets information on the density

of µ (here it is the density w.r.t. H1). Similar proofs (typically comparing µ to
Ld instead of H1), are quite used in Γ−convergence problems in the setting of
transport and location: see for instance [11] and [21]

5.2 Γ− lim sup inequality

Step 4 The case of a single segment with constant multiplicity : In this step
we produce a recovery sequence for the case of u = θ0 · H1

|S , being S a segment

and θ0 a constant positive multiplicity on it (for simplicity, S = [0, 1]× {0}).
For this construction we will consider the inequalities obtained in the lower

band proof and try to obtain equalities instead. We look for a profile uε having
the following properties:

• the x−component only of uε must be present and must have everywhere
the same sign, so that uε = vεe1;

• ∇vε = v′εe2 (i.e. vε only depends on y);

• the Cauchy-Schwartz inequality used in (9) must be an equality, i.e. one
needs

v′ε = ±1

ε

√
vβε − Lεvε;

• the total variation must actually be given by twice the maximum (i.e. vε
must be monotone on the two separate intervals before and after reaching
the maximum: we will realize it by taking a maximal value at y = 0 and
symmetric monotone profiles around 0);

• vε must vanish at the boundary of a certain rectangle, so that one can
avoid using the function φ1;

• the maximum value Aε must be optimal in (10);

• as ε→ 0 weak convergence to the measure u = θ0 · H1
|S is needed: we will

realize it by taking different rescaling of the same profile z (say, vε(y) =
Aεz(Aεy)), so that Aε →∞ and

∫
R z(t)dt = θ0 will be sufficient.

Look at the conditions that the profile z must satisfy: we need z(0) = 1 and
z′(t)t ≤ 0, so that the maximum of vε will be Aε, realized at zero, and the
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monotonicity conditions as well will be satisfied. Moreover, on t ≥ 0 (for t ≤ 0
just symmetrize), z must satisfy

z′(t) = −A
β/2
ε

εA2
ε

√
zβ − z.

Thanks to (11), the ratio A
β/2
ε /(εA2

ε) equals 2c0(2 + β)/((1− β)θ0). This is
very good since there is no more ε.

Notice that this equation has a strong non-uniqueness, since the function
z 7→

√
zβ − z is non-Lipschitz. For instance the constant one is a solution, but

a solution going from 1 to 0 exists as well (just get it by starting from a different
starting point and see that it has to reach both 0 and 1 in finite time). We will
cal z0 the only solution with no flat part z = 1 around t = 0. This solution is
also the only one to be injective on each of the two segments where it is positive
and monotone. We claim that if we take the profile z0 the last property we
needed (i.e. weak convergence) is satisfied. This only requires that θ0 equals
the integral of z0, i.e. we need

θ0

2
=

∫ ∞
0

z0(t)dt =

∫ 1

0

z (1− β) θ0√
zβ − z (2 + β) 2c0

dz

(the integral has been computed by change of variables z = z0(t), which is
possible for the solution since z0 is injective on [0,+∞[∩{z0 > 0}). This means

that we must compare C0 :=
∫ 1

0
z√
zβ−z

dz and c0 =
∫ 1

0

√
zβ − zdz and prove

C0 = c0(2 + β)/(1− β).
Compute c0 by integrating by part:

c0 =

∫ 1

0

1 ·
√
zβ − zdz = −

∫ 1

0

z
βzβ−1 − 1

2
√
zβ − z

dz =
(1− β)

2
C0 −

β

2
c0,

which implies c0 = C0
1−β
2+β and gives the desired equality.

Obviously, one needs after that to perform a correction of uε near x =
0 and x = 1 so that the function actually belongs to H1 (in order to avoid
discontinuities at the two ends of the segment), and to control the extra energy
one pays, as well as the divergence.

One possibility for the case of the single segment is the following: the profile
we got for vε is of the form Aεz(Aεt) and one can simply replicate it radially on
a half disk, so as to ensure regularity. Denote for simplicity by fε(r) the radial
profile one performs and by Bε the half ball where it is non-null. We need to
estimate

εα−1

∫
Bε

|fε|β + εα+1

∫
Bε

|f ′ε|2,
∫
Bε

|f ′ε|, and

∫
Bε

|fε|

Just use |fε| ≤ Aε, |fε| ≤ CA2
ε and |Bε| ≤ CA−2

ε (and the value of Aε which
is of the order of ε−2/(4−β)): both terms in the energy will be of the order of
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ε(α+1)/3, the second term to be estimated (the divergence) will be bounded and
the last will be of the order of ε(α+1)/3 as well.

In this way we have produced a sequence uε that converges to u (weak
convergence is ensured by construction, weak convergence of ∇ · uε comes from
the bound we just proved).
Step 5 Conclusion by density Thanks to general properties of Γ−convergence,
it is sufficient to build a recovery sequence for a class of limit measures u which
are “dense in energy”. In this step we use the results of the previous step
established for single segments to show that we can build these sequences for
every u concentrated on a finite graph, i.e. u = uG, and then conclude.

As we pointed out in Section 2, it is well known from the works by Q. Xia
on (see [27]) that the energy Mα is obtained as a relaxation of the same energy
defined on finite graphs. This implies that the class of finite graphs is dense in
energy (w.r.t. the energy Mα) in the space M(Ω) and Γ−convergence theory
guarantees that it is enough to build recovery sequences for such a class (see
[13]). One can also impose the condition G ∩ ∂Ω = ∅, so to avoid problems at
the boundary.

For dealing with u = uG, where G is a finite graph, one can simply consider
separately the segments composing G and apply the previous construction of the
previous step. Possible superpositions of the part of uε coming from different
segments will happen only on regions whose size is of the order of A−1

ε and hence
negligible in the limit (and on such a region, one can use |u1+u2|β ≤ |u2|β+|u2|β
and |∇(u1 + u2)|2 ≤ 2|∇u1|2 + 2|∇u1|2). Not only, the number of nodes will be
finite and hence the bound on the divergence will stay valid.

Improvement Better connections at the junctions
The construction for the Γ−lim sup that we just detailed provides a sequence

uε converging to u inM(Ω) which works very well in the case of a single segment
but which could be improved in general. Actually, in the case of a single segment
the divergence of uε has the same mass as that of u, since it replaces two Dirac
masses at the two extremal points with two diffuse masses, concentrated on half-
balls of radius cA−1

ε around the points. The mass of uε itself is only slightly
larger of the mass of u, due to the part we added at the extremities.

This changes a lot when one considers more than one segment, since the
divergence of uε at the nodes will be given by the superposition of different
densities, each corresponding to a segment: the integral will vanish due to
compensations, but ||∇ · uε||L1 could have increased a lot.

This may be corrected thanks to the following lemma.

Lemma 5.5. If g ∈ C1(BR) is a function with zero mean on a ball of radius R
in two dimensions, then there exists a vector field in C1(BR) such that ∇·v = g,
v = 0 on ∂BR and

||v||L∞ ≤ C
(
R||g||L∞ +R2||∇g||L∞

)
; ||∇v||2L2 ≤ C

(
R2||g||2L∞ +R4||∇g||2L∞

)
,

where C is a universal constant.
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Proof. Take w the solution of the elliptic problem{
∆w = g in BR,

w = 0 on ∂BR.

Thanks to
∫
g = 0 one has

∫
∂BR

∂w/∂n = 0. This allows to define a function

φ : ∂BR → R with φ′ = ∂u/∂n. Take then a cut-off function χ(r) such that
χ(r) = 1 if r ∈ [2R/3, R] and χ(r) = 0 if r ∈ [0, R/3], |χ| ≤ 1, |χ′| ≤ C/R,
|χ′′| ≤ C/R2 and define ψ(x) = χ(|x|)φ(Rx/|x|).

Now take v = ∇w + Rot(∇ψ), where Rot denotes a 90◦ clockwise rotation.
In this way ∇·v = ∇·∇w = g, since the rotated gradient part is divergence-free,
and both the normal and the tangential component of v on the boundary vanish
(since the tangential component of ∇ψ compensates the normal one of ∇w and
the tangential component of ∇w and the normal of ∇ψ are zero).

We only need to check the bounds on the norms. These bounds come from
standard elliptic regularity theory (see for instance [16]), since one has

||∇w||L∞ ≤ C
(
R||g||L∞ +R2||∇g||L∞

)
,

||φ||L∞ ≤ CR||∇φ||L∞ ≤ CR||∇w||L∞ ,
||D2w||2L2 ≤ C||∆w||2L2 = C||g||2L2 ,

||D2φ||2L2 ≤ CR||D2w||2L2(∂BR) ≤ CR
2||D3w||2L2 + C||D2w||2L2

≤ CR2||∇g||2L2 + C||g||2L2 .

The last line of inequalities come from the combination of a trace inequality
in Sobolev spaces applied to D2w (where the two coefficients of the gradient
and the function part have different scaling with respect to R) with a regularity
estimate for Dirichlet problems (estimating the Hk+2 norm of the solution with
the Hk norm of the datum). Combining all the ingredients give the desired
estimate (we pass to the L∞ norms for the sake of simplicity).

With this lemma in mind, we can notice that at every node, the divergence
of the function uε we gave before is composed by the zero-mean sum of some
functions gi of the form f ′(r)(x · ei)/r (this is the divergence of the vector field
directed as ei with radial intensity we used above), where ei is the direction
of the corresponding segment. Each function is supported on a half ball whose
simmetry axes follows ei and the radius is of the order of A−1

ε ≈ ε2/(4−β).
Setting for each node g =

∑
i gi one has

∫
g = 0, the support of g is included in

BR with R ≈ ε2/(4−β) and ||g||L∞ ≤ CR−2 and ||∇g||L∞ ≤ CR−3.
Hence, one can add at every node a vector field v as in Lemma 5.5 so as

to erase the extra divergence. This would cost no more than a quantity of the
order of

εα−1R2||v||βL∞ + εα+1||∇v||2L2 ≤ Cεα−1R2−β + Cεα+1 1

R2
= Cε(α+1)/3.

Also the mass of the vector field is not that changed, since we only added
R2||v||L∞ ≤ Cε(α+1)/3.
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6 The case 0 < α ≤ 1/2 in dimension 2

In Section 4 we provided an heuristic computation for the exponent β to choose
in order to prove the Γ−convergence result we look for, and, even in the simplest
case d = 2 we found a value for β which is negative for α ≤ 1

2 . This prevented
us to go on with such a case since we do not want to minimize terms involving∫
|u|β for β < 0. Yet, it is possible to overcome this difficulty, if we want to

approximate the enregy Mα and we accept to define the energies Mα
ε in a less

homogeneous way. Even if this paper does not follow the strategy of [10], the
fact that [10] proves the result for costs which are not exactly power functions,
but asymptotically equivalent to a power, suggests that is possible to prove the
following:

Theorem 6.1. Suppose d = 2 and α ∈]0, 1/2[; let B : [0,+∞[→ [0,+∞[ a
continuous function such that

B(0) = 0, B > 0 on ]0,+∞[ lim
t→∞

B(t)

tβ
= 1, B′(0) > 0, β =

2α− 1

α+ 1
∈]− 2, 0[.

Define MB
ε through

MB
ε (u) = εα−1

∫
Ω

B(|u(x)|)dx+ εα+1

∫
Ω

|∇u(x)|2dx,

if u ∈ H1
0 (Ω;R2). Set MB

ε (u) = +∞ if u /∈ H1
0 ⊂ M(Ω). Then we have

Γ−convergence of the functionals MB
ε to cMα, with respect to the convergence

of M(Ω), as ε → 0, where c is a finite and positive constant (the value of c

being again c = α−1 (4c0α/(1− α))
1−α

, being c0 =
∫ 1

0

√
tβ − tdt, where c0 ∈ R

is a consequence of β ∈]− 2, 0[).

Remark 4. Notice that the assumption u = 0 on ∂Ω was not present in the case
α > 1

2 . It has been added for technical reasons, to get a bound on |u| which was
guaranteed, in the case α > 1

2 , by the fact that β was positive and large values
of |u| were already penalized. Here this fact is replaced by an homogeneous
boundary condition. Anyway, this is not a problem, since this only means
that the flow must vanish and no divergence is permitted on ∂Ω (i.e. f+ and
f− may not give mass to the boundary). This is not restrictive as soon as one
considers measures f± whose support is far from ∂Ω: since this section is mainly
written for applications purposes, we consider that this is always possible, up
to enlarging the domain Ω.

The proof may be obtained from the arguments in Section 5 under the some
modifications.

Γ− lim inf part:

Modifications to step 1: Define fε through f2
ε (t) = (B(t) − Lεt)+, where

the constant Lε is defined from Aε := maxR̂x vε in the follwing way: Lε :=
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min{B(t)/t : t ∈]0, Aε]}, so that B(vε)− Lεvε ≥ 0 in R̂x. From the behaviour
of the function B, we see that for large Aε the minimum above is realized at
t = Aε and LεAε = B(Aε) (but anyway we have LεAε ≤ B(Aε)). The function
Fε is defined as before as the primitive of fε and it satisfies Fε(t) ≤ Ct1+β/2.
On the other hand, when computing Fε(Aε) we get

Fε(Aε) =

∫ Aε

0

√
B(t)− Lεt dt = A1+β/2

ε

∫ 1

0

√
B(Aεt)

Aβε
− LεAε

Aβε
t dt

≥ A1+β/2
ε

∫ 1

0

√
B(Aεt)

Aβε
− B(Aε)

Aβε
t dt := c0(Aε)A

1+β/2
ε ,

where c0(Aε) converges to c0 if Aε → +∞.

Modifications to Lemma 5.2: We define wε from uε but, since β < 0, we
can no more guarantee that wε vanishes on a large zone of Ω. Hence we need
boundary conditions to guarantee the Sobolev-Poincaré inequality ||wε||Lr ≤
||∇wε||L2 . Then, we use Hölder inequality to estimate the L1+β/2 norm of uε:∫

R

u1+β/2
ε 1{|uε|≥1} ≤

(∫
Ω

|uε|β1{|uε|≥1}

) 1
p
(∫

Ω

(1 + |wε|)(1+β/2−β/p)q
) 1
q

.

Then we go on by saying that, for t ≥ 1, we have tβ ≤ CB(t), which allows
to estimate the first factor by ε(1−α)/p and using Sobolev-Poincaré on wε. The
thesis is obtained in the same way as in Lemma 5.2, for p < 2

Modifications to Equation (10): The minimization that we need to con-
sider now is

min
A∈]0,+∞[

εα−1Aβ−1m+ 4c0(A)εαA1+β/2.

Here we can prove that the minimal value is given by a quantity c2(m/ε)mα, for
an increasing function c2(t) ≤ c2, satisfying limt→∞ c2(t) = c2. This is possible
if one notices that, either we have A1−β ≤ (m/ε)1−α/c2, and in this case we
get εα−1Aβ−1m ≥ c2m

α ≥ c2(m/ε)mα, or we have A1−β > (m/ε)1−α/c2.
In this last case one can replace the value c0(A) in the left hand side with
c(m/ε) := c0

(
((m/ε)1−α/c2)1/(1−β)

)
, which is a quantity depending on m/ε

only, and no more on A. The same computation as in Section 5 gives the result.
The constant in the optimal value is obtained from c(m/ε) exactly as it was
obtained before from c0, and since limt c(t) = c0 our aim is achieved.

Other modifications to step 2: No special attention is needed, since the
only difference is that we get, in (12), the term

∫
c2(mε,δ(x)/ε)|mε,δ(x)|αdx.

This term is not exactly the integral of the α−th power, but it converges to,
and Fatou’s Lemma may be applied as well. From that point on, including
lemma 5.3, the proof stays unchanged.
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Γ− lim sup part:

To produce a a recovery sequence uε the strategy is the same as in the case
β > 0: first define it in the case of a single segment, than glue the sequence
on finite unions of segments and go on by density. In order to guarantee the
additional constraint u = 0 on ∂Ω, one just needs to restrict his attention
to segments which are far from the boundary, but graphs composed of these
segments are anyway a dense class. The sequence that will be chosen will be
exactly the one described in the previous section, i.e. we will use profiles z
solving z′ = ±

√
zβ − z (and not z′ = ±

√
B(z)− z). By solving this differential

equation (which has non-uniqueness and, again, we take the solution with no
flat part around z = 1) we get a profile z0 which arrives to z = 0 with infinite
slope. The same profile will be extended to zero. It is not evident that these
functions belong to the space H1 and the main estimate to prove it is∫

|z′0(t)|2dt =

∫
|z′0(t)|

√
z0(t)β − z0(t)dt = 2

∫ 1

0

√
zβ − z dz < +∞,

where the same change of variable z = z0(t) has been used and the integral is
finite since β > −2.

This sequence uε, based on the profile z0, has the property that the energy
εα−1

∫
B̃(|uε|) + εα+1

∫
|∇uε|2 converges to Mα(u). Here we introduced the

function B̃ given by B̃(t) = tβ1{t>0}, which is asymptotically equivalent to B
for t → ∞ but completely different for t → 0. Notice that this energy is not
finite on every H1 vector field (as it would be with B instead of B̃), due to
the degeneracy at t = 0. Yet, for this particular sequence of functions, which
take the value 0 but soon leave the degeneracy zone (the profile has infinite
slope close to its vanishing region), this energy turns out to be finite. Moreover,
notice that B̃(0) = B(0) and limt→∞B(t)/B̃(t) = 1 and that, due to rescaling,
the sequence uε has the property that, for every fixed M > 0, the measure
|{x ∈ Ω : |uε|(x) ∈]0,M [}| tends to zero. In this way one gets that the energy
defined with B and with B̃ have the same limit as ε → 0 and that uε is a
recovery sequence for this energy as well.

7 Open questions and perspectives

Besides the interesting comparison aspects of this result with respect to the
similar ones in the approximation of free discontinuity problems, one of the
main goal of this study concerned possible numerical applications. To that
purpose we want to replace the problem of minimizing Mα under divergence
constraints with a simpler problem, i.e. minimizing Mα

ε .
The idea would be to prove that the minimizers of

min {Mα
ε (u) : ∇ · u = fε} , (14)

fε being a suitable approximation of f = f+ − f−, converge to the minimizers
of (4).
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Theorem 5.1 proves a Γ−convergence result which should give the conver-
gence of the minimizers but the problem is that we never addressed the condition
∇·u = fε, nor we discussed the choice of fε. We will come back to this question,
which is still open, later.

In [25] some suggestions to replace this divergence constraint with a penaliza-
tion method are proposed. It is also possible to choose a penalization such that
the penalized problem is also equivalent to the constrained one. Moreover the
Γ−convergence result that we proosed in the space M(Ω) without addressing
the divergence constraintstays useful for a lot of problems where the divergence
is not prescribed but enters the optimization (think at minµ dα(µ, ν) + F (µ)).
Some of this problems are addressed in [24], for instance for urban planning or
biological shape optimization.

Yet, we will not enter these issues into details here, but we find interesting
to ask the following question:

Open question 1. Given f , is it possible to find a suitable sequence fε ⇀ f
so that one can prove Γ−convergence of the functionals u 7→ Mα

ε (u) + I∇·u=fε

to u 7→ Mα(u) + I∇·u=f (being I the indicator function in the convex analysis
sense, i.e. +∞ if the condition is not verified or zero if it is)? is it possible to
find fε explicitly, for instance as a convolution of f with a given kernel?

The second issue we want to address, after the one concerning divergence
constraints, deals with the convergence of the minimizers. Γ−convergence is
quite useless if we cannot deduce that the minimizers uε converge, at least up
to subsequences, to a minimizer u. Yet, this requires a little bit of compactness.
The compactness we need is compactness inM(Ω), i.e. we want bounds on the
mass of ∇ ·uε and of uε. The first bound, has been guaranteed by the fact that
we decided to stick to the case of difference of probability measures. On the
contrary, the bound on |uε|(Ω) has to be proven.

Notice that Mα
ε (uε) ≤ C is not sufficient to obtain such a bound, as one

can guess looking at the limit functional: think at a finite graph with a circle
of length l and mass m on it, its energy is mαl which provides no bound on
ml (its mass), if m is allowed to be large. Actually, what happens on the limit
functional is that “bounded energy configuration have not necessarily bounded
mass, but optimal configuration do”. This is due to the fact that, if f+ and
f− are probabilities, then m ≤ 1 on optimal configurations (and no cycles are
possible, by the way). Notice that this statement does not depend on m 7→ mα

being concave, but simply increasing in m.
Again, a naive suggestion (i.e. adding a mass constraint) to overcome this

difficulty is presented in [25], but the following question seems open and impor-
tant :

Open question 2. Prove a bound on the L1 norm of the minimizers uε (or on
suitable minimizers uε, if needed). If possible, prove it for minimizers uε which
minimize Mα

ε under a divergence constraint ∇ · uε = fε (so that it will be true
even if we add penalizations on the divergence).

For finishing this questioning section, here is the last natural one:
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Open question 3. Prove the same results as in this paper or investigate what
happens in Rd, for d ≥ 3.

Notice that our proofs almost never used (up to the last improvement in
Section 5) any gradient decomposition of vector fields in R2 such as u = ∇φ+
Rot∇ψ. Yet, this would have been a typical trick for managing divergences in
two dimensions. In our opinion the point where we used the most the fact that
we are in R2 is when we disintegrate with respect to x and we estimate the total
variation in y by the oscillation (which is a typical one-dimensional argument).

8 A numerical algorithm based on Γ-convergence
regularization

Based on the ideas presented in the introduction, and on the Γ−convergence
results proven in previous sections, we describe our optimization algorithm. In
order to simplify the notations we restrict our description to the dimension d = 2
and we look for an optimal vector measure supported in C = [0, 1]2. It would
be straightforward to adapt our method to other domains or even to the case
d = 3 (but in dimension larger than two, no theoretical result is available for
Γ−convergence). We decompose the domain C into a M2 cells grid with spacing
h = 1/M . As it is standard in computational fluid dynamic, we discretized the
unknown vector field on a staggered grid. More precisely, the first component
U1 of the vector field is placed on the midpoints of the vertical cells interfaces
whereas the second components U2 on the horizontal ones. Consequently the
field U1 is described by (M + 1) × M unknowns whereas U2 is described by
M × (M + 1) parameters.

We approximate the gradient at the centers of the cells of a function U
defined on a staggered grid by standard second order finite difference operators
δx and δy, defined for any discrete vector field U by:

[δxU ]k,l =
Uk+1,l − Uk,l

h
, (15)

[δyU ]k,l =
Uk,l+1 − Uk,l

h
. (16)

Notice that we keep the same notation for indexes k, l which correspond to the
midpoints of horizontal segments and the midpoints of vertical segments of the
grid. If the index (k, l) stands for a boundary point or to a point which is out of
the grid, we assume that Uk,l = 0. The discrete cost functional Md

ε is directly
deduced from (15) and (16) and a first order discretization of the integrals :

Md
ε ((Ui)k,l) =

1

M2

∑
k,l

2∑
i=1

εγ1
(

[δxUi]
2
k,l + [δyUi]

2
k,l

)
+ εγ2B(|(Ui)k,l|) (17)

where B(r) = rβ when α > 1
2 and a non negative function having the required

properties of theorem 6.1 if 1
2 > α > 0. Practicality, we used a piecewise
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defined C1 function B which is equal to rβ for r > r0 and a polynomial of
degree 2 for r ∈ [0, r0]. Additionally the divergence constraint, which is not
involved in our Γ-convergence result, requires a careful numerical treatment.
By the classical Helmholtz’s decomposition, computing the projection on that
constraint is equivalent to solve a problem of Poisson. In order to compute
the solution of Poisson’s problem efficiently, we implemented a Fast Fourier
approach which has an almost linear complexity with respect to the number
of points of the grid. Starting from an admissible vector field, we preserve
the divergence constraint during the optimization process by the projection of
the descent directions on the space of incompressible flows. To complete our
description we give below the projection steps on the zero divergence constraint
which will be apply to the gradient of the cost functional:

Algorithm 1 Projection on a zero divergence constraint

Require: (Ui)k,l
1: Define the divergence scalar field on the centers of the cells by Fk,l :=
∇.(Ui)k,l using (15) and (16).

2: Solve Poisson equation ∆Pk,l = Fk,l with Neumann’s boundary conditions
by Fast Fourier’s Transform.

3: Update the vector field (Ui)k,l = (Ui)k,l −∇Pk,l

Finally, we give the successive steps of our Algorithm (we refer to [18] for
technical details on the conjugated gradient algorithm and the choice of the line
search methods).

Algorithm 2 Numerical optimization by Γ-convergence

Require: εinitial, εfinal, (Uεinitiali ) satisfying the divergence constraint and par-
allel to ∂C, ω > 1, δ (tolerance)

1: ε := εinitial, (Uεi ) := (Uεinitiali )
2: repeat
3: Compute up to a tolerance δ, (V εi ) the solution of minMd

ε ((Vi)) among
discrete vector fields (Vi) which satisfy the boundary constraints and the
divergence constraint. This step is carried out by a standard projected
conjugated gradient algorithm (based on the previous projection steps)
starting from (Uεi ).

4: (U
ε/ω
i ) := (V εi ), ε:=ε/ω

5: until ε > εfinal

9 Implementation and numerical results

We were able to run a series of computations on a grid of dimension 400× 400
starting from randomly generated initial fields. In our experiments, we used
the following parameters : εinitial = 1, εfinal = 1e − 2, ω = 1.1 and δ = 1e − 6.
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Notice that it has been possible to reach that fine tolerance criterion using an
exact computation (up to round-off error) of the discrete gradient. Due to the
irregularity of the vector field we want to approximate, a small error in the
computation of the derivative may lead to a very unstable algorithm. Finally,
let us point out the fact that the case 1

2 > α > 0 is dramatically more difficult
from a numerical point of view than the case α > 1

2 . The difference of behavior
comes from the non-monotonicity of the potential B which is involved. In this
situation, the number of expected local minima is larger than in the monotone
cases. To tackle this difficult, we introduce at each iteration of algorithm 8 a
rescaling of the potential B. Since asymptotically we expect that the modulus of
the unknown vector field takes values close to 0 or in the range where B(|U |) is
equal to |U |β (i.e. for |U | ≥ r0) we force that aspect by the following procedure.
At each iteration we update after step 5. our potential B by setting B(r) ←
B( r0rQ1

) where Q1 stands for the lower quartile of the values (|Uεi |). This means
that we change, through a dilation, our potential B at every step. It is not
difficult to convince ourselves that this corresponds to a change in the value of
the parameter ε : actually, the convergence being quite slow w.r.t. ε, we try to
speed up it by selecting “well-chosen” pairs of potentials and initial conditions
for the gradient descent.

We present below the results obtained with our simple approach. The fol-
lowing figures are the results of four different experiments with three different
values of the parameter α. On the first column of the figures, we represent two
views of the graph of the given density f+ − f−. The other columns represent
two views of the graph of the norm of the optimal vector field for each value of
α. As expected, “Kirchhoff’s law is approximatively satisfied” by the support of
the vector field which converges to a one dimensional set. Moreover we observe
that two different values of α may lead to very different optimal structures.

We notice that “Steiner cases” which correspond to very small α satisfy
more or less the angle condition for large multiplicity values whereas it happens
that branches related to small values of the multiplicity are not completely
satisfactory. This fact is due to the limitation of the method induced by the
correlation between the grid size and the parameter ε. As a matter of fact, ε
can not be taken smaller than the square root of the spatial discretization to
comply with the discretization error of the integrals.
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Figure 1: Optimal irrigation of two discrete measures by one single source for
α = 0.1, 0.6 and 0.95

Figure 2: Optimal irrigation of four discrete measures by one single source for
α = 0.1, 0.6 and 0.95
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Figure 3: Optimal irrigation of four discrete measures by two sources for α =
0.1, 0.6 and 0.95

Figure 4: Optimal irrigation of a measure supported on a circle by one single
source for α = 0.6, 0.75 and 0.95
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