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Abstract

Starting from the work by Brenier [10], where a dynamic formula-
tion of mass transportation problems was given, we consider a more
general framework, where different kind of cost functions are allowed.
This seems relevant in some problems presenting congestion effects as
for instance traffic on a highway, crowds moving in domains with ob-
stacles, and in general in all cases where the transportation does not
behave as in the classical Monge setting. We show some numerical
computations obtained by generalizing to our framework the approx-
imation scheme introduced in Benamou and Brenier [2].
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1 Introduction

Mass transportation theory received much attention in the mathematical
community in the last years. Starting from the initial setting by Monge
where, given two mass densities ρ0 and ρ1, a transport map T : R

d → R
d
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was searched among the admissible maps transporting ρ0 onto ρ1 in order to
minimize the total transportation cost

∫

Rd

|x− T (x)| dρ0(x) ,

several other equivalent formulations have been provided (see for instance
[23], [18], [5]). In particular, the formulation given in [10] is the one which mo-
tivated our study: the goal in [10] was to introduce a “dynamic” formulation
of the mass transportation problem providing a map ρ : [0, 1] → P(Ω) which
describes the motion of ρ0 onto ρ1 as a function of a parameter t ∈ [0, 1],
where Ω is the space constraint that all the densities ρ(t, ·) have to fulfill.

The set of applications of mass transportation theory is also very rich:
many urban planning models have been studied, searching e.g. for the best
design of public transportation networks (see [9], [11]), for the optimal pricing
policies of their use (see [12]), for the best distribution of residential and
working areas in a city (see [13]). We also mention the strict link between
mass transportation theory and shape optimization in elasticity, as was shown
in [7], [5].

The general framework we consider is the one of functionals defined on the
space of measures acting on a time-space domainQ ⊂ R

1+d; the minimization
problem we are interested in is then written in the form

min
{

Ψ(σ) : −divσ = f in Q, σ · ν = 0 on ∂Q
}

(1.1)

where Ψ is an integral functional on the R
1+d-valued measures defined on

Q. Writing σ = (ρ, E) the classical Monge case is then related to the cost
function

Ψ(σ) =

∫

Q

d|E| ,

while the case considered by Brenier in [10] is represented by the cost function

Ψ(σ) =

∫

Q

∣

∣

∣

dE

dρ

∣

∣

∣

2

dρ .

As shown in [10], [2], [21] all these cases are related to the Wasserstein dis-
tances Wp(ρ0, ρ1), where each particle x in the source ρ0 moves to its final
point T (x) in the target ρ1 following a line segment, or a geodesic line in case
the space constraint Ω is not convex. However, in many problems where a
high number of particles (or a probability density) is involved, other effects
are present which may deviate the trajectories from straight lines: in partic-
ular we are interested in the congestion effects that occur when the density
ρ(t, x) is high, slowing the ideal mass transportation and increasing the cost.

2



Modelling the congestion effects has been considered by several authors
(see for instance [15], [22]); here we simply consider the Brenier formulation
(1.1) assuming that the functional Ψ has a term which has a superlinear
growth with respect to ρ.

In Sections 2 and 3 we discuss the general formulation (1.1) and its dual
problem, with the primal-dual optimality conditions. In Section 4 we provide
a numerical scheme to treat this kind of problems: the scheme is based on the
one by Benamou and Brenier [2], adapted to include the congestion terms.
In the cases we present the domain Ω is always nonconvex, having some
obstacles at its interior, and the mass moves from ρ0 onto ρ1 according to:

• the Wasserstein distance W2, so minimizing the cost
∫

Q

∣

∣

∣

dE
dρ

∣

∣

∣

2

dρ;

• the Wasserstein distance W2 with the addition of the congestion term
∫

Q
ρ2 dt dx;

• the Wasserstein distance W2 with the addition of the constraint
{ρ ≤M} which for instance occurs when a crowd of individuals moves
and two different individuals cannot stay too close.

2 The general setting

In this section we consider an open bounded subset Q of R
d+1 (d ≥ 1). We

assume Q has a Lipschitz boundary and denote by ν(x) the outward pointing
normal vector to x in the boundary ∂Q of Q, defined almost everywhere. Let
Mb(Q,R

d+1) be the space of vectorial Borel measures supported on Q.
We also consider a functional Ψ on Mb(Q,R

d+1) and we assume Ψ is lower
semicontinuous for the weak* convergence of measures.
Let f ∈ M(Q) be a Borel measure of zero total mass that is

∫

Q
df = 0. We

deal with the following optimization problem:

inf
σ∈Mb(Q,Rd+1)

Ψ(σ) (2.1)

with the constraint:
{

−div σ = f in Q
σ · ν = 0 on ∂Q.

(2.2)

The condition (2.2) is intended in the weak sense i.e. for every ϕ ∈ C1(Q):
∫

Q

Dϕ · dσ(x) =

∫

Q

ϕ(y) df(y). (2.3)

The following general existence result holds:
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Theorem 2.1. Let Ψ : Mb(Q,R
d+1) → [0,+∞] be lower semicontinuous for

the weak* convergence and such that:

Ψ(σ) ≥ C|σ|(Q) −
1

C
∀σ ∈ Mb(Q,R

d+1) (2.4)

for a suitable constant C > 0, where |σ| denotes the total variation of σ. We
assume that Ψ(σ0) < +∞ for at least one measure σ0 satisfying (2.2). Then
the problem

min
{

Ψ(σ) : −div σ = f in Q, σ · ν = 0 on ∂Q
}

(2.5)

admits a solution. Moreover if Ψ is strictly convex, this solution is unique.

Proof. Let (σn)n∈N be a minimizing sequence for problem (2.5). By assump-
tion (2.4), this sequence is bounded and by consequence it admits a subse-
quence (σnk

)k∈N which converges weakly* to a measure σ ∈ Mb(Q,R
d+1). By

writing the constraint (2.3) for any σnk
and passing to the limit as k → +∞,

we get the admissibility of σ. Then, by the lower semicontinuity of Ψ, we get

inf(2.5) = lim
k→+∞

Ψ(σnk
) ≥ Ψ(σ)

which shows that σ is a solution of (2.5).

In case Ψ is convex, problem (2.5) also admits a dual formulation. Indeed,
if A : C(Q) → C(Q,Rd+1) denotes the operator given by:

A(ϕ) = Dϕ for all ϕ in its domain C1(Q),

we have the convex analysis formula for the dual formulation of (2.5) (see
[6]):

(Ψ∗ ◦ A)∗(f) = min
σ

{

Ψ(σ) : −div σ = f in Q, σ · ν = 0 on ∂Q
}

= sup

{
∫

Q

ϕ(x) df(x) − Ψ∗(Dϕ) : ϕ ∈ C1(Q)

}

. (2.6)

This formula holds if Ψ∗ is continuous at least at a point of the image of A.
For any set C, we denote by χC the function which is 0 inside C and +∞
outside. The primal-dual optimality condition then reads as

min Ψ(σ) + χn

−divσ = f in Q

σ · ν = 0 on ∂Q

o = max

∫

ϕ df(x) − Ψ∗(Dϕ)
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which, if a solution ϕopt of (2.6) exists, yields

∫

Dϕopt · dσopt = Ψ(σopt) + Ψ∗(Dϕopt) (2.7)

where σopt is any solution of (2.5). The point is that, in general, the maxi-
mizers ϕopt in (2.6) are not in C1(Q). As we will see in the next section, for
a large class of cost functions Ψ, (2.6) can be relaxed so that the primal-dual
optimality condition will be explicitly identified.

3 The Transportation model

In order to introduce a model for the description of the dynamics of a crowd
in a given domain, it is convenient to particularize the framework above as
follows:

Q = ]0, 1[×Ω where Ω is a bounded Lipschitz open subset of R
d with outward

normal vector denoted by νΩ. The set Ω represents the domain the
crowd is constrained to stay inside, including possible obstacles that
cannot be crossed. The current variable in Q will be denoted by (t, x)
(t ∈]0, 1[, x ∈ Ω).

σ = (ρ, E) where ρ(t, x) represents the mass density at position x and time
t and E is the flux at (t, x). In the usual mass transportation cases we
have E ≪ ρ so that E = ρv being v(t, x) the velocity field at (t, x). We
assume the constraint ρ ≥ 0 so that the set of admissible variables is:

D := {(ρ, E) : ρ ∈ Mb(Q,R
+), E ∈ Mb(Q,R

d)}.

f = δ1(t)⊗ρ1(x)−δ0(t)⊗ρ0(x) where ρ0(x), ρ1(x) represent the crowd den-
sities at t = 0 and t = 1 respectively, both prescribed as probabilities
on Ω. Then equation (2.2) reads as:







−∂tρ− divxE = 0 in Q
ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x),
E · νΩ = 0 on ]0, 1[×∂Ω

(3.1)

as it is easy to see using the weak formulation (2.3). Note that (3.1) is
the continuity equation of our mass transportation model.

Our problem is then

min{Ψ(ρ, E) : (ρ, E) verifies (3.1)}
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and we denote by WΨ(ρ0, ρ1) its minimal value.
We may deduce from (3.1) that for a.e. t ∈]0, 1[, ρ(t, ·) is a probability on Ω.
Indeed, disintegrating the measure ρ on Q we obtain

ρ(t, x) = m(t) ⊗ ρt(x)

where m is the marginal of ρ with respect to t and ρt(·) is a probability for
m−a.e. t ∈ [0, 1]. Taking in (3.1) a test function α(t) ∈ C1

c (Q) depending
only on t we have

0 =

∫

Q

α′(t) dρ(t, x) =

∫ 1

0

α′(t) dm(t)

which gives m = cdt for a suitable constant c. Using the conservation of the
mass gives that c = 1.

We now discuss the choice of Ψ. We may take for Ψ any local lower
semicontinuous function on Mb(Q,R

d+1). By the results that can be found
in [3] and [4], these functions can be represented in the following form:

Ψ(σ) =

∫

Q

ψ

(

dσ

dm

)

dm+

∫

Q\Aσ

ψ∞

(

dσs

d|σs|

)

d|σs| +

∫

Aσ

g(σ(x)) d♯(x)

where

• m is a positive non-atomic Borel measure on Q;

• dσ/dm is the Radon-Nikodym derivative of σ with respect to m;

• ψ : R
d+1 → [0,+∞] is convex, lower semicontinuous and proper;

• ψ∞ is the recession function ψ∞(z) := limt→+∞
ψ(z0+tz)

t
(the limit is

independent of the choice of z0 in the domain of ψ);

• Aσ is the set of atoms of σ i.e. Aσ := {x : σ(x) := σ({x}) 6= 0};

• g : R
d+1 → [0,+∞] is a lower semicontinuous subadditive function such

that g(0) = 0 and g0(z) := supt>0
g(tz)
t

= ψ∞(z);

• ♯ is the counting measure.

In the sequel we assume the convexity of Ψ i.e. g is asked to be positively
1-homogeneous.
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An interesting choice is the one of Benamou and Brenier (see [2], [10]):

ψ(r, e) =







|e|2

r
if (r, e) ∈]0,+∞[×R

d,
0 if (r, e) = (0, 0),

+∞ otherwise.

This is a positively 1-homogeneous function so ψ∞ = ψ = g and Ψ does not
depend on the choice of the measure m so that

Ψ(ρ, E) =







∫

[0,1]×Ω

ψ(dρ/dm, dE/dm) dm(t, x) if ρ ≥ 0

+∞ otherwise.

Note that since ψ(0, e) is infinite for any e 6= 0, it holds:

Ψ(ρ, E) < +∞ ⇒ E ≪ ρ (3.2)

so for any (ρ, E) in the domain of Ψ, we may write:

E(t, x) = v(t, x)ρ(t, x), with ρ(t, x) ∈ Mb(Q,R
+) and v(t, x) ∈ L1

ρ(Q,R
d).

The measure ρ(t, x) can be viewed as the quantity of mass in time and space
whereas v(t, x) is the velocity of the mass transiting at x at time t. Moreover
Ψ can be written in the simpler form:

Ψ(ρ, E) =







∫

[0,1]×Ω

|E|2

ρ
:=

∫

[0,1]×Ω

|v|2 dρ(t, x) if ρ ≥ 0 and E = vρ,

+∞ otherwise.

As shown in [10], in this case we have:

WΨ(ρ0, ρ1) = (W2(ρ0, ρ1))
2

where W2 is the classical 2-Wasserstein distance (see for instance [24]). In-
deed, in the formula above, the Wasserstein distance is intended as:

(W2(ρ0, ρ1))
2 = min

{
∫

Ω×Ω

|x1 − x2|
2 dγ(x1, x2) : γ has marginals ρ0, ρ1

}

when Ω is convex, while the Euclidean distance has to be replaced by the
geodesic distance when Ω is not convex.

It has been proved in [21] that the same result can be reached with any
p-Wasserstein distance (p > 1) by choosing the function:

ψp(r, e) =







|e|p

rp−1 if (r, e) ∈]0,+∞[×R
d,

0 if (r, e) = (0, 0),
+∞ otherwise.

(3.3)
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In the case p = 1 we simply take ψ(r, e) = |e|.
As in the previous case (3.2) is satisfied, whenever p ≥ 1, together with

WΨ(ρ0, ρ1) = (Wp(ρ0, ρ1))
p

where Wp is the p-th Wasserstein distance:

(Wp(ρ0, ρ1))
p = min

{
∫

Ω×Ω

|x1 − x2|
p dγ(x1, x2) : γ has marginals ρ0, ρ1

}

.

An important remark is that, in this setting, a solution of problem (1.1)
can be built using the idea that masses should move along straight lines when
Ω is convex and along geodesic curves when Ω is not convex. More precisely,

if we denote by γ ∈ Mb(Ω
2
,R+) an optimal transport plan for Wp and by

ξx1,x2
a geodesic curve parametrized by t ∈ [0, 1] joining x1 to x2 for γ-almost

every (x1, x2), then, an optimal σ = (ρ, E) is given by:
∫

ϕ dρ =

∫

Ω
2

∫ 1

0

ϕ(t, ξx1,x2
(t)) dt dγ(x1, x2) ∀ϕ ∈ C(Q)

∫

φ · dσ =

∫

Ω
2

∫ 1

0

φ(t, ξx1,x2
(t)) · (1, ξ̇x1,x2

(t)) dt dγ(x1, x2) ∀φ ∈ C(Q)d+1.

(3.4)
Indeed, for this choice of σ, the decomposition E = vρ holds and we have:

∫

Q

|E|p

ρp−1
=

∫

Q

|v|p dρ =

∫

Ω
2

∫ 1

0

|ξ̇x,y(t)|
p dt dγ(x, y) = (Wp(ρ0, ρ1))

p .

Even if this is not the purpose of the paper, we notice that in general the
condition f0 ≪ dx does not imply in the case of p-Wasserstein distance (3.3)
that the optimal σ is unique as the following example shows.

Example 3.1. Take Ω be the complement of a disc K, f0 = dx S and
f1 = 1

2
δA + 1

2
δB as in figure 1; where S is a disc of area 1 and A, B are two

points at the same geodesic distance form P . It is clear that all geodesics
joining a point of S to either A or B must pass through P. We denote by Γ a
line whose points are at the same distance from P , which separates S in two
parts S+ and S− with the same area. There are infinitely many transport
plans γ between f0 and f1; in particular γ1 which sends S− to A and S+ to B,
and γ2 which does the opposite. Formula (3.4) provides σ1 and σ2 associated
to γ1 and γ2. Since every particle of S travels with constant speed and since
they are at different distances form P , it is easy to see that the corresponding
ρ1 and ρ2 cannot coincide. For instance there exists a time t̄ such that the
corresponding ρ1 loads the geodesic from P to B but not the geodesic from
P to A, while at the same time t̄, the density ρ2 does the opposite.
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K
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B

A

S

Figure 1: An example of non-uniqueness.

When Ω is convex, p > 1 and f0 ≪ dx, there is only one optimal transport
plan γ̄ and the unique σ̄ associated to γ̄ by use of (3.4) is the only solution of
problem (1.1). Let us give a quick scheme of a proof of this uniqueness. Take
σ = (ρ, vρ) another solution. Using a result by Ambrosio, Gigli and Savaré
(see [1], Theorem 8.2.1.), we can write σ as a superposition of generalized
curves. More precisely, it exists some probability measure Γ on the set of
absolutely continuous curves G := W 1,1([0, 1],RN) such that:

∫

ϕ dρ =

∫

G

∫ 1

0

ϕ(t, α(t)) dt dΓ(α) ∀ϕ ∈ C(Q)
∫

φ · dσ =

∫

G

∫ 1

0

φ(t, α(t)) · (1, α̇(t)) dt dΓ(α) ∀φ ∈ C(Q)N+1

v(t, α(t)) = α̇(t) a.e. t ∈ [0, 1].

The measure Γ is associated to a transport plan π by the following formula:

∫

Ω
2
ϕ(x, y)dπ(x, y) :=

∫

G

ϕ(α(0), α(1))dΓ(α).

Now, it can easily be seen that the optimality of σ implies the optimality of π
and that, Γ-almost everywhere, α([0, 1]) is the straight line [α(0), α(1)]. By
uniqueness of the optimal transport plan we have π = γ̄ which yields that σ
and σ coincides.

This does not remain true for p = 1. In this case the uniqueness of the
optimal transport plan is not insured. Moreover, not all the solutions of
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problem (1.1) are of the type (3.4). Actually the following measure (tele-
transport) happens to be optimal too:

ρ(t, x) = (1 − t)ρ0 + tρ1,

∫

Φ·dE =

∫ 1

0

∫

Ω
2

∫

[x0,x1]

Φ(t, x)·
x1 − x0

|x1 − x0|
dL1(x)dγ(x0, x1)dt, ∀Φ ∈ C(Ω)d+1.

However, the choice of Benamou and Brenier does not take into account
congestion effects which are crucial in problems of crowd dynamics. Indeed
there is a wide choice (see also [17]) for the cost function Ψ, the congestion
effect being due to the superlinear terms. For instance the following are
prototypical examples:

• ψ(r, e) = |e|p

prp−1 + kr2 (k > 0) which gives the cost

Ψ(ρ, E) =

∫ 1

0

∫

Ω

[

|E|p

pρp−1
+ kρ2

]

dt dx

intending that Ψ(ρ, E) = +∞ if ρ is not absolutely continuous with
respect to dt⊗ dx or ρ is not positive. In this case the high concentra-
tions of ρ are penalized providing a lower congestion during the mass
transportation from ρ0 to ρ1. Note that, in this case, as ψ is strictly
convex in r, the optimal ρ is unique without any other assumption. If,
in addition, we have p > 1, then E is of the form E = vρ and, the
functional being also strictly convex in v, we have the uniqueness of
the optimal measure (E, ρ).

• ψ(r, e) = |e|p

prp−1 + χ{0≤r≤M}(r) which gives the cost:

Ψ(ρ, E) =







∫ 1

0

∫

Ω

|E|p

pρp−1
dt dx if 0 ≤ ρ ≤M,

+∞ otherwise,

In this case the density ρ is constrained to remain below M , which
is for instance the case when the model takes into account that two
different individuals of the crowd cannot get too close.

We now study the dual problem (2.6) for general functionals Ψ(σ) of the
form above.
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For the computation of Ψ∗ we use a result by Bouchitté and Valadier
(Theorem 1 of [8]) on the interchange between sup and integral; we get:

Ψ∗(φ) =







∫

Q

ψ∗(φ) dm if (ψ∞)∗(φ(t, x)) + g∗(φ(t, x)) = 0 ∀(t, x) ∈ Q,

+∞ otherwise,

for all φ ∈ C(Q,Rd+1), so that (2.6) writes as:

sup
ϕ∈C1(Q)

{
∫

ϕ df −

∫

Q

ψ∗(Dϕ) dm : (ψ∞)∗(Dϕ) + g∗(Dϕ) = 0

}

. (3.5)

Note that, as g and Ψ∞ are positively 1-homogeneous, the constraint of (3.5)
can be reformulated saying that Dϕ(t, x) belongs to a convex set K:

K := {u ∈ R
d+1 : u · z ≤ min(g(z), ψ∞(z)) ∀z ∈ R

d+1 such that |z| = 1}.

As we have already said, Problem (3.5) has to be relaxed in order to make
the primal-dual optimality condition meaningful.

To that aim, we need to choose an appropriate space for the dual variable
ϕ and give a sense to the gradient Dϕ appearing in (3.5) and in (2.7) which
will write as:

∫

Dϕopt · dσopt =

∫

Q

ψ

(

dσopt

dm

)

dm+

∫

Q\Aσ

ψ∞

(

σsopt

|σsopt|

)

d|σsopt|

+

∫

Aσ

g(σopt(x)) d♯(x) +

∫

Q

ψ∗(Dϕopt)dm

with the constraint (ψ∞)∗ (Dϕopt) + g∗(Dϕopt) = 0.
(3.6)

The space X of the dual variables ϕ and its topology must be chosen accord-
ing to the properties of ψ. Then the idea will be to approach ϕ by a sequence
of regular functions (ϕn)n tending to ϕ. The problem is that the vectorial
function η obtained as the limit – in a weak sense – of the sequence (Dϕn)n is
not unique in the sense that it depends on the choice of the sequence (ϕn)n.
Uniqueness can be recovered by making locally the projection of Dψn(t, x) on
an appropriate tangent space to a measure µ at (t, x) (see [6] and [7]) which
has to be chosen in a proper way. In the following, we give some references
for some particular cases.

• In [6] a relaxation result is given in case ψ satisfies the following as-
sumption for some p ∈]1,+∞[:

c1|(r, e)|
p −

1

c1
≤ ψ(r, e) ≤ c2(|(r, e)|

p + 1) ∀(r, e) ∈ R
d+1
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for suitable c1, c2 > 0. Therefore for a fixed measure m ∈ Mb(Q,R
+)

the functionals Ψ and Ψ∗ are:

Ψ(σ) =







∫

Q

ψ

(

dσ

dm

)

dm if σ ≪ m

+∞ otherwise,

Ψ∗(φ) =

∫

Q

ψ∗ (φ) dm,

where in the definition of Ψ, we have taken g ≡ +∞. The dual variable
ϕ then belongs to the Sobolev space W 1,p′

m (Q) with 1/p + 1/p′ = 1
made with respect to the measure m (see [6]). Following [6] and [7],
the gradient Dmϕ(t, x) has to be intended as an element of the tangent
space T p

′

m (t, x) for m-almost every (t, x). Then, as shown in [6], the
relaxed dual problem can be expressed as:

sup
ϕ∈W 1,p′

m (Q)

{
∫

ϕdf −

∫

Q

ψ∗
m(Dmϕ) dm

}

where
ψ∗
m(r, e) = inf{ψ∗(r, e+ η) : η ∈ (T p

′

m (r, e))⊥}.

Finally the primal-dual optimality condition reads as:







∫

Dmϕopt · dσopt =

∫

Q

ψ

(

dσopt

dm

)

dm+

∫

Q

ψ∗
m(Dmϕopt)dm

σopt ≪ m.

• In case ψ(r, e) = |e|p

prp−1 with p ≥ 1 (see [21]), the functional Ψ∗ becomes:

Ψ∗(φ) =

{

0 if φ1 +
|(φ2,...φd+1)|

p′

p′
≤ 0 a.e.

+∞ otherwise

where p′ is such that 1/p + 1/p′ = 1. For p = 1,
|(φ2,...φd+1)|

p′

p′
has

to be intended as χ{|(φ2,...φd+1)|≤1}. The dual variable then is Lipschitz
continuous and the relaxed dual problem becomes:

sup
ϕ Lipschitz

{
∫

ϕ df : ∂tϕ(t, x) +
|∇xϕ(t, x)|p

′

p′
≤ 0 a.e. (t, x)

}

.
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In case p > 1, the primal-dual optimality condition can be written as:











∫

Dρopt
ϕopt · (1, vopt(t, x))dρopt =

∫

Q

|vopt(t, x)|
p

p
dρopt(t, x),

∂tϕopt(t, x) + |∇xϕopt(t,x)|p
′

p′
≤ 0 a.e. (t, x),

(3.7)

where the gradient Dρopt
ϕ(t, x) = (∂(ρopt ,t)ϕ(t, x),∇(ρopt,x)ϕ(t, x)) is an

element of the tangent space T∞
ρopt

(t, x) for ρopt-almost every (t, x). As
it can be seen in [21], we have

Dρopt
ϕopt(t, x) −Dϕopt(t, x) ∈ T⊥

ρopt
(t, x) ρopt − a.e.

and thanks to (3.1):

(1, vopt(t, x)) ∈ Tρopt
(t, x) ρopt − a.e.

so that the inequality (3.7) gives:

Dρopt
ϕopt · (1, vopt) = Dϕopt · (1, vopt)

≤ −
|∇(ρopt,x)ϕopt|

p′

p′
+ vopt(t, x) · ∇(ρopt,x)ϕopt

≤ sup
ω∈Rd

{

vopt(t, x) · ω −
|ω|p

′

p′

}

=
|vopt|

p

p
.

Then, the equality in (3.7) gives that all the previous inequalities hap-
pen to be equalities that is to say

∂(ρopt ,t)ϕopt = −
|∇(ρopt,x)ϕopt|

p′

p′
,

∇(ρopt,x)ϕopt(x, t) ∈ argmax

{

ω 7→ vopt(t, x) · ω −
|ω|p

′

p′

}

.

(3.8)

By making an easy computation, we get:

∇(ρopt,x)ϕopt = |vopt|
p−2vopt,

∂(ρopt ,t)ϕopt =
−|vopt|

p

p′
.

(3.9)

If p = 1, we make the computation in the similar way by writing
(ρopt, Eopt) as

(ρopt(t, x), Eopt(t, x)) = (hopt(t, x), vopt(t, x))dµopt
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where µopt ∈ Mb(Q,R
+) and (hopt, vopt) ∈ L1

µopt
(Q) × L1

µopt
(Q,Rd).

Then the primal-dual optimality condition writes as:







∫

Dµopt
ϕopt · (hopt(t, x), vopt(t, x))dµopt =

∫

Q

|vopt(t, x)| dµopt(t, x),

∂tϕopt(t, x) ≤ 0 and |∇xϕopt(t, x)| ≤ 1 a.e. (t, x),
(3.10)

which leads to:
∇(ρopt,x)ϕopt =

vopt

|vopt|
,

∂(ρopt,t)ϕopt = 0.
(3.11)

4 Numerical computation

We describe in the present section an algorithm to approximate problem
(1.1). This method is directly adapted from the augmented Lagrangian
method presented in [2]. For the reader convenience, we recall below in
our formalism the main steps of this algorithm.

First, solving problem (1.1) is equivalent to solve the saddle point prob-
lem:

min
σ

max
ϕ∈C(Q)

L(σ, ϕ) (4.1)

where L(σ, ϕ) is the Lagrangian defined by:

L(σ, ϕ) = Ψ(σ) −

∫

Dϕ · dσ +

∫

ϕ df.

Following [2], for all r > 0, we introduce the augmented Lagrangian

Lr(σ, σ
∗, ϕ) := Ψ∗(σ∗) +

∫

(Dϕ− σ∗) · dσ −

∫

ϕ df +
r

2

∫

|Dϕ− σ∗|2dy.

Using the identity Ψ∗(σ∗)+Ψ(σ) =
∫

σ∗ ·dσ it can easily be established that
the saddle point problem (4.1) is equivalent to the new problem:

max
σ

min
σ∗,ϕ

Lr(σ, σ
∗, ϕ). (4.2)

As reported in [2], the simple algorithm ALG2 (see [19]), which is a classical
relaxation of Uzawa’s method, can be used to approximate problem (4.2).
Let us recall with our notation this iterative process:

• let (σn, σ
∗
n−1, ϕn−1) be given;
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• Step A: find ϕn such that:

Lr(σn, σ
∗
n−1, ϕn) ≤ Lr(σn, σ

∗
n−1, ϕ), ∀ϕ ∈ C1(Q);

• Step B: find σ∗
n such that:

Lr(σn, σ
∗
n, ϕn) ≤ Lr(σn, σ

∗, ϕn), ∀σ∗ ∈ C(Q,Rd+1);

• Step C: set σn+1 = σn + r(Dϕn − σ∗
n);

• go back to Step A.

Note that the variables (ν, q) in [2] are renamed (σ, σ∗) in the previous de-
scription of the algorithm. Let us now underline the two main differences of
our approach.
First, Step A consists in solving the Euler-Lagrange equation:

∫

Dϕ · dσn −

∫

ϕ df + r

∫

Dϕ(−σ∗
n−1 +Dϕn) dy = 0, ∀ϕ ∈ C1(Q).

This variational formulation is nothing else than the weak form of the partial
differential equation:







−r∆ϕn = div(σn − rσ∗
n−1) + f in Q

r ∂ϕn

∂n
= (σn − rσ∗) · ν on ∂Q.

The resolution of the previous PDE has been achieved with the very efficient
software freeFEM3D (see [20] and [16]) provided by S. Del Pino and O.
Pironneau. As in [2], for computational stability, we perturbed the previous
Laplace equation in:

−r∆ϕn + rεϕn = div(σn − rσ∗
n−1) + f

with ε = 10−4.
Second, since in our general framework, Ψ∗ is not always a characteristic
function, step B consists in minimizing the following quantity with respect
to σ∗:

Ψ∗(σ∗) +

∫

(Dϕn − σ∗) · dσn +
r

2

∫

|Dϕn − σ∗|2dy.

In all the test cases presented below, it has been possible to solve this problem
analytically. Indeed, this pointwise optimization problem reduces to the
numerical computation of the roots of a polynomial with real coefficients.
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Example 4.1. We consider here a transportation domain Ω = [−1, 1]2 in
which there are spatial obstacles that the mass cannot cross. This is for
instance the case of a subway gate that a mass of individuals has to cross to
reach a final destination. In this first example, the transportation is described
simply by the Wasserstein distance W2 whichturns out, setting σ = (ρ, E),
to consider the convex function

Ψ(σ) =

∫

Q

|E|2

2ρ

in the sense precised in Section 3. The Fenchel transform Ψ∗ can be easily
computed and we have:

Ψ∗(Φ) =

{

0 if Φ1 + |(Φ2,Φ3)|2

2
≤ 0 a.e.

+∞ otherwise.

Notice that, since Ψ is homogeneous of degree 1, the function Ψ∗ is the in-
dicator of a convex set. Here below, we plot the mass density ρt at various
instants of time. The initial configuration ρ0 is taken as a Gaussian distri-
bution centered at the point (−0.65, 0) and the final measure ρ1 is taken as
ρ1(x1, x2) = ρ0(x1 −1.3, x2). Notice that without the obstacle gate, the mass
density ρ(t, ·) would simply be the translation ρ(t, x1, x2) = ρ0(x1 − 1.3t, x2).
In general, in presence of obstacles, the mass density ρ will follow the geodesic
paths and by consequence the supports of all ρ(t, ·) have to be contained in the
geodesic envelope of ρ0 and ρ1; this is why most of the mass passes through
the central gate. Our computation done on a regular grid of 70×70×70 (from
which cells corresponding to the obstacles have been removed) and presented
in Figure 2 is in agreement with that observation. Convergence with respect
to the criterium proposed in [2] has been achieved in 150 iterations.

Example 4.2. We consider the same geometrical configuration as in the
previous example. In this case, we add a diffusion term in order to penalize
mass congestion which is described in our case by high values of ρ. The
function Ψ we consider is:

∫ 1

0

∫

Ω

|E|2

2ρ
+ cρ2 dt dx

with c = 0.1. The Fenchel transform is given by:

Ψ∗(Φ) =
1

2c

∫

Q

(

(

Φ1 +
|(Φ2,Φ3)|

2

2

)+)2

(y) dy.
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Notice that, due to the addition of the diffusion term, the dual function Ψ∗

is now finite everywhere. This fact could explain the improvement in the
convergence of the iteration scheme: in that example, convergence is reached
in only 50 iterations.
As expected (see Figure 3), the mass crosses the obstacle by using several
gates.

Example 4.3. In our last example we consider again the same geometrical
configuration and a new term which takes congestion into account. More
precisely, we consider the cost functional

∫ 1

0

∫

Ω

|E|2

2ρ
+ χρ≤1.

The Fenchel transform is given by:

Ψ∗(Φ) =

∫

Q

(

Φ1 +
|(Φ2,Φ3)|

2

2

)+

(y) dy.

At a first glance (see Figure 4 where level lines are plotted), the result seems
to be very similar to our first situation where the congestion effect was not
considered. Again, most of the mass passes through the central gate, but
contrary to the first case the density in the front gate is spread all over the
channel and not only near the boundaries of the obstacles.
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[6] G. Bouchitté, G. Buttazzo, P. Seppecher: Energies with respect to a
measure and applications to low dimensional structures. Calc. Var., 5

(1997), 37–54.
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[8] G. Bouchitté, M. Valadier: Integral representation of convex functionals
on a space of measures. J. Funct. Anal. 80 (1988), no. 2, 398–420.

[9] A. Brancolini, G. Buttazzo: Optimal networks for mass transportation
problems. ESAIM Control Optim. Calc. Var., 11 (1) (2005), 88–101.

[10] Y. Brenier: Extended Monge-Kantorovich theory. In “Optimal Trans-
portation and Applications” (Martina Franca 2001), Lecture Notes in
Math. 1813, Springer-Verlag, Berlin (2003), 91–121.

[11] G. Buttazzo, A. Pratelli, S. Solimini, E. Stepanov: Optimal urban net-
works via mass transportation. Lecture Notes in Math. 1961, Springer-
Verlag, (in print).

[12] G. Buttazzo, A. Pratelli, E. Stepanov: Optimal pricing policies for
public transportation networks. SIAM J. Optim., 16 (3) (2006), 826–
853.

[13] G. Buttazzo, F. Santambrogio: A model for the optimal planning of an
urban area. SIAM J. Math. Anal., 37 (2) (2005), 514–530.

[14] G. Carlier, P. Cardaliaguet, C. Jimenez: Optimal transport with convex
constraints. Work in progress.

18



[15] G. Carlier, C. Jimenez, F. Santambrogio: Optimal transportation with
traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47
(2008), no. 3, 1330–1350.

[16] S. Del Pino, O. Pironneau: A Fictitious domain based general
PDE solver. In “Numerical Methods for Scientific Computing”, conf.
METSO-ECCOMAS, E. Heikkola ed., CIMNE, Barcelona (2003).

[17] J. Dolbeault, B. Nazaret, G. Savaré: A new class of transport distances
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Figure 2: Plot of ρ(t, ·) for 9 values of t.
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Figure 3: Plot of ρ(t, ·) for 9 values of t.
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Figure 4: Plot of ρ(t, ·) for 9 values of t.
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