Modélisation asymptotique de la diffraction d'ondes élastiques par des petits défauts débouchant à la surface.

$\frac{Marc \ Bonnet^1}{en \ collaboration \ avec \ Marc \ Deschamps^2, \ Eric \ Ducasse^2}$

¹POEMS, Appl. Math. Dept., ENSTA Paris, Palaiseau, France, *mbonnet@ensta.fr*²Institute of Mechanics and Engineering (I2M), Physical acoustics group (APy), Univ. of Bordeaux, France

Séminaire Mathériaux, Université Grenoble Alpes, 14 décembre 2020

Motivation

Asymptotic approximations for (acoustic, elastic, EM) fields perturbed by small objects

- > Abundantly studied for objects embedded in (bounded or unbounded) media
 - e.g. [Cedyo-Fengya, Moskow, Vogelius 99; Ammari, Kang 04; Claeys 08; Cassier, Hazard 12, Bendali, Cocquet, Tordeux 16 and many more]
- Comparatively few studies on asymptotic models involving small surface-breaking defects (SBDs): indentations, emerging cracks, corrosion pits...
 - e.g. [Dambrine, Vial 07] on 2D Laplace and elastostatics

[Silva, Geubelle, Tortorelli 11] on 2D elastostatics with emerging cracks

 Such models potentially useful for e.g. moderate-cost simulations of NDT experiments involving SBDs;

Present motivation:

 Develop asymptotic models for ultrasound NDT on e.g. plates or tubes with small SBDs; Exploit availability at I2M of (semi-analytical) elastodynamic Green's tensors for such media;

[PhD A. Krishna, I2M, 2020]

▷ Obtain mathematical results on asymptotic models for wave scattering by small SBDs;

Setting

Elastodynamic incident field *u*:

$\mathcal{L}_{\omega}[oldsymbol{u}]=oldsymbol{0}$	in Ω	(with	$\mathcal{L}_{\omega}[\boldsymbol{w}] := - \mathrm{div}\left[\boldsymbol{\mathcal{C}} : \boldsymbol{ abla}^{\mathrm{s}} \boldsymbol{w} ight] - ho \omega^{2} \boldsymbol{w} ight)$
$\boldsymbol{t}[\boldsymbol{u}] = \boldsymbol{t}^{\scriptscriptstyle D}$	on S _T	(with	$t[w] := n \cdot \sigma[w] = n \cdot \mathcal{C} : \nabla^{\mathrm{s}} w$)
t[u] = 0	on $S \setminus S_{T}$		

 $\begin{array}{l} \text{Scattering of (given) incident field } (\boldsymbol{u}, \boldsymbol{t} := \boldsymbol{t}[\boldsymbol{u}]) \text{ by small indentation:} \\ \hline \boldsymbol{u}_{\varepsilon} = \boldsymbol{u} + \boldsymbol{v}_{\varepsilon} \end{array} \quad \text{with} \quad \mathcal{L}_{\omega}[\boldsymbol{v}_{\varepsilon}] = \boldsymbol{0} \quad \text{in } \Omega_{\varepsilon,z}, \quad \boldsymbol{t}[\boldsymbol{v}_{\varepsilon}] = -\boldsymbol{t}[\boldsymbol{u}] \quad \text{on } \boldsymbol{s}_{\varepsilon,z}, \quad \boldsymbol{t}[\boldsymbol{v}_{\varepsilon}] = \boldsymbol{0} \quad \text{on } \boldsymbol{S} \setminus \boldsymbol{s}_{\varepsilon,z} \end{array}$

Marc Bonnet et al.

Governing integral equation

 $\triangleright \text{ Elastodymanic Green's tensor } \boldsymbol{G}_{\omega} = [\boldsymbol{G}_{\omega}^1 \ \boldsymbol{G}_{\omega}^2 \ \boldsymbol{G}_{\omega}^3]$

$$\mathcal{L}_{\omega} \boldsymbol{G}_{\omega}^{k}(\cdot, \boldsymbol{x}) = \delta(\cdot - \boldsymbol{x})\boldsymbol{e}_{k} \text{ in } \Omega_{\varepsilon}, \qquad \boldsymbol{t} \left[\boldsymbol{G}_{\omega}^{k}(\cdot, \boldsymbol{x}) \right] = \boldsymbol{0} \text{ on } \boldsymbol{S} \qquad (k = 1, 2, 3)$$

 \triangleright Governing boundary integral equation (BIE) for the scattered field v_{ε} :

$$\left(\frac{1}{2}\boldsymbol{I} + \mathcal{H}_{\varepsilon}\right)\boldsymbol{v}_{\varepsilon} = -\mathcal{G}_{\varepsilon}\boldsymbol{t} \qquad \begin{cases} \mathcal{H}_{\varepsilon}\boldsymbol{v}(\boldsymbol{x}) := \text{p.v.}\int_{\boldsymbol{s}_{\varepsilon,z}} \boldsymbol{v}(\boldsymbol{y}) \cdot \boldsymbol{t}[\boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x})] \, \mathrm{d}\boldsymbol{y}, \\ \mathcal{G}_{\varepsilon}\boldsymbol{t}(\boldsymbol{x}) := \int_{\boldsymbol{s}_{\varepsilon,z}} \boldsymbol{t}(\boldsymbol{y}) \cdot \boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) \, \mathrm{d}\boldsymbol{y}, \end{cases}$$
 (x \in s_{\varepsilon,z})

- Other (e.g. Galerkin) BIE formulations possible
- BIE framework useful for problem formulation / analysis
- Choice of actual computational method remains open

Governing integral equation

Governing boundary integral equation (BIE) for the scattered field $v_{\varepsilon,z}$:

$$\left(\frac{1}{2}\mathbf{I}+\mathcal{H}_{\varepsilon}
ight)\mathbf{v}_{\varepsilon}=-\mathcal{G}_{\varepsilon}\mathbf{t}$$

Goal:

- ▷ Find leading-order approximation of \mathbf{v}_{ε} as $\varepsilon \rightarrow 0$;
- ▷ Seek limiting form of BIE.

Expectation: elastostatic problem in half-space with normalized indentation

Local parametrization using rectified coordinates

Marc Bonnet et al.

Indentations of vanishing size

- \triangleright Choose shape \mathcal{V} of limiting indentation (e.g. \mathcal{V} is half the unit sphere);
- ▷ Define family of indentations: $\mathbf{x} = \mathbf{\Phi}(\varepsilon \bar{\mathbf{x}}), \ \bar{\mathbf{x}} \in \mathcal{V}$, i.e. $v_{\varepsilon,z} = \mathbf{\Phi}(\varepsilon \mathcal{V})$
- $\triangleright \text{ We have } \boldsymbol{x} = \boldsymbol{z} + \varepsilon \bar{\boldsymbol{x}} + O(\varepsilon^2) \text{ (since } \boldsymbol{\Phi}(\boldsymbol{0}) = \boldsymbol{z}, \ \boldsymbol{\nabla} \boldsymbol{\Phi}(\boldsymbol{0}) = \boldsymbol{I})$

By contrast to embedded-cavity case, $v_{\varepsilon,z}$ asymptotically self-similar only.

▷ Let $S := E \cap \partial V$, then:

$$\boldsymbol{n}(\boldsymbol{x}) = \bar{\boldsymbol{n}}(\bar{\boldsymbol{x}}) + O(\varepsilon), \quad \mathrm{d}S(\boldsymbol{x}) = \varepsilon^2 (1 + O(\varepsilon)) \,\mathrm{d}S(\bar{\boldsymbol{x}}) \qquad (\boldsymbol{x} \in \boldsymbol{s}_{\varepsilon,z} = \boldsymbol{\Phi}(\varepsilon S))$$

Recall governing BIE

$$\frac{1}{2}\boldsymbol{v}_{\varepsilon}(\boldsymbol{x}) + \int_{S_{\varepsilon,z}} \boldsymbol{v}_{\varepsilon}(\boldsymbol{y}) \cdot \boldsymbol{t}[\boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x})] \, \mathrm{d}\boldsymbol{y} = -\int_{S_{\varepsilon,z}} \boldsymbol{t}[\boldsymbol{u}](\boldsymbol{y}) \cdot \boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) \, \mathrm{d}\boldsymbol{y} \quad \boldsymbol{x} \in S_{\varepsilon,z}$$

- (a) set $y = \Phi(\varepsilon \bar{y})$ and $x = \Phi(\varepsilon \bar{x})$ (BIE with fixed support S);
- (b) seek resulting limiting form
- (c) Interpret (b) in terms of a BVP

Main tool for (b): suitable representation of G_{ω} .

Marc Bonnet et al.

Additive decomposition of Green's tensor

Let $(\tilde{y}, \tilde{x}) \in E \times E \mapsto G_0^E(\tilde{y}, \tilde{x})$: elastostatic Green's tensor with traction-free BC on ∂E . \triangleright Homogeneity (important!): $G_0^E(\lambda \tilde{y}, \lambda \tilde{x}) = \lambda^{-1} G_0^E(\tilde{y}, \tilde{x}) \ (\lambda > 0)$

Proof outline:

- $\triangleright \text{ Evaluate } \mathcal{L}_0[\boldsymbol{G}_0^E(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}})] \ (\mathcal{L}_0 \text{ acting on } \boldsymbol{y})$
- ▷ Define homogeneous singular correction K s.t. $\mathcal{L}_0[G_0^E(\widetilde{y}, \widetilde{x}) + \widetilde{x} \cdot K(\widetilde{y}, \widetilde{x}; \widetilde{x})] = \delta I + ...$ (K governed by PD operator in \widetilde{y} with coefs involving $\Phi(\widetilde{x})$)
- \triangleright Find governing BVP for nonsingular correction H_0 by superposition

 $\boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) = \chi_{U}(\boldsymbol{y}) \big(\boldsymbol{G}_{0}^{E}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}) + \widetilde{\boldsymbol{x}} \cdot \boldsymbol{\mathcal{K}}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}};\widetilde{\boldsymbol{x}}) \big) + \boldsymbol{\mathcal{H}}(\boldsymbol{y},\boldsymbol{x})$

Interpretation of terms:

- $\boldsymbol{G}_{0}^{E}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}})$: main singular part of \boldsymbol{G}_{ω} ;
- $$\begin{split} & \mathcal{K}(\widetilde{y},\widetilde{x};\widetilde{x}): \quad \text{singular (and homogeneous) correction induced by curvature of } S; \\ & \mathcal{K}(\widetilde{y},\widetilde{x};\widetilde{x}) = \mathbf{0} \text{ if } S \text{ flat in } U \end{split}$$
- $\begin{array}{ll} \boldsymbol{H}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}};\widetilde{\boldsymbol{x}}) & \text{nonsingular complementary term.} \\ & \text{includes } \boldsymbol{G}_{\omega} \boldsymbol{G}_{0} \end{array}$

Evaluation at $y, x \in v_{\varepsilon,z}$, i.e. $(y, x) = \Phi(\varepsilon \bar{y}, \varepsilon \bar{x}), \ (\tilde{y}, \tilde{x}) = \varepsilon(\bar{x}, \bar{y})$:

$$\begin{aligned} \boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) &= \varepsilon^{-1}\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}) + \boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}) \\ & \text{with } \boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}) := \bar{\boldsymbol{x}}\cdot\boldsymbol{\mathcal{K}}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}};\varepsilon\bar{\boldsymbol{x}}) + \boldsymbol{\mathcal{H}}(\varepsilon\bar{\boldsymbol{y}},\varepsilon\bar{\boldsymbol{x}}) = O(1) \\ \boldsymbol{t}[\boldsymbol{G}_{\omega}^{k}(\boldsymbol{y},\boldsymbol{x})] &= \varepsilon^{-2}\boldsymbol{t}[\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})] + \varepsilon^{-1}\boldsymbol{t}[\boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})] \\ & \text{with } \boldsymbol{t}[\boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})] := \boldsymbol{t}\left[\bar{\boldsymbol{x}}\cdot\boldsymbol{\mathcal{K}}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}};\varepsilon\bar{\boldsymbol{x}})\right] + \varepsilon\boldsymbol{t}[\boldsymbol{\mathcal{H}}(\varepsilon\bar{\boldsymbol{y}},\varepsilon\bar{\boldsymbol{x}})] = O(1) \end{aligned}$$

Limiting form of governing integral equation

$$\boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) = \varepsilon^{-1} \{ \boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}) + \boldsymbol{O}(\varepsilon) \}, \qquad \boldsymbol{t}[\boldsymbol{G}_{\omega}^{k}(\boldsymbol{y},\boldsymbol{x})] = \varepsilon^{-2} \{ \boldsymbol{t}[\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})] + \boldsymbol{O}(\varepsilon) \}$$

Governing BIE:

$$\frac{1}{2}\boldsymbol{v}_{\varepsilon}(\boldsymbol{x}) + \text{p.v.} \int_{\boldsymbol{s}_{\varepsilon,z}} \boldsymbol{v}_{\varepsilon}(\boldsymbol{y}) \cdot \boldsymbol{t}[\boldsymbol{G}_{\omega}](\boldsymbol{y},\boldsymbol{x}) \, \mathrm{d}\boldsymbol{y} = -\int_{\boldsymbol{s}_{\varepsilon,z}} \boldsymbol{t}[\boldsymbol{u}](\boldsymbol{y}) \cdot \boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) \, \mathrm{d}\boldsymbol{y} \qquad \boldsymbol{x} \in \boldsymbol{s}_{\varepsilon,z}$$

$$\begin{array}{l} \triangleright \ \, \mathsf{Set} \ (\boldsymbol{y}, \boldsymbol{x}) = \boldsymbol{\Phi}(\varepsilon \bar{\boldsymbol{y}}, \varepsilon \bar{\boldsymbol{x}}), \ \, \mathsf{d}\boldsymbol{y} = (1 + O(\varepsilon))\varepsilon^2 \, \mathsf{d}\bar{\boldsymbol{y}}, \\ \mathrm{use} \ \, (\star), \ \, \mathsf{observe} \ \, \boldsymbol{t}[\boldsymbol{u}](\boldsymbol{y}) = \boldsymbol{n}(\bar{\boldsymbol{y}}) \cdot \boldsymbol{\sigma}(\boldsymbol{z}) + O(\varepsilon), \\ \mathrm{define} \ \, \overline{\boldsymbol{v}}_{\varepsilon}(\bar{\boldsymbol{x}}) := \boldsymbol{v}_{\varepsilon} \left(\boldsymbol{\Phi}(\varepsilon \bar{\boldsymbol{x}})\right): \end{array}$$

limiting form (i.e. leading-order part) of BIE:

$$\left(\frac{1}{2}\boldsymbol{I} + \mathcal{H}_{E}\right)\overline{\boldsymbol{v}}_{\varepsilon} = -\varepsilon\mathcal{G}_{E}\left(\boldsymbol{n}\cdot\boldsymbol{\sigma}[\boldsymbol{u}](\boldsymbol{z})\right) + \boldsymbol{o}(\varepsilon) \qquad \begin{cases} \mathcal{H}_{E}\boldsymbol{v}(\bar{\boldsymbol{x}}) := \boldsymbol{p}.\boldsymbol{v}.\int_{\mathcal{S}}\boldsymbol{v}(\bar{\boldsymbol{y}})\cdot\boldsymbol{t}[\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})]\,\mathrm{d}\bar{\boldsymbol{y}}, \\ \\ \mathcal{G}_{E}\boldsymbol{t}(\bar{\boldsymbol{x}}) := \int_{\mathcal{S}}\boldsymbol{v}(\bar{\boldsymbol{y}})\cdot\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})\,\mathrm{d}\bar{\boldsymbol{y}}, \end{cases}$$

Resulting ansatz: $\overline{\boldsymbol{v}}_{\varepsilon}(\overline{\boldsymbol{y}}) = \varepsilon \boldsymbol{V}(\overline{\boldsymbol{y}}) + o(\varepsilon), \ \overline{\boldsymbol{y}} \in \mathcal{S}$

Limiting form of scattered field on indentation surface \mathcal{S}

 $\mathbf{v}_{\varepsilon}(\mathbf{y}) = \varepsilon \, \mathbf{V}(\bar{\mathbf{y}}) + \delta_{\varepsilon}(\mathbf{y}), \qquad \bar{\mathbf{y}} \in \mathcal{S}, \ \mathbf{y} = \mathbf{\Phi}(\varepsilon \bar{\mathbf{y}})$

where $\boldsymbol{V} \in \boldsymbol{H}^{1/2}(\mathcal{S})$ solves the normalized BIE

$$\left(\frac{1}{2}\boldsymbol{I}+\mathcal{H}_{E}\right)\boldsymbol{V}=-\mathcal{G}_{E}\left(\boldsymbol{n}\cdot\boldsymbol{\sigma}[\boldsymbol{u}](\boldsymbol{z})\right)$$

governing the elastostatic BVP

 $\mathcal{L}_0[\boldsymbol{V}] = \boldsymbol{0} \text{ in } E_{\mathcal{V}}, \qquad \boldsymbol{t}[\boldsymbol{V}] = \boldsymbol{0} \text{ on } \Gamma_{\mathcal{V}}, \quad \boldsymbol{t}[\boldsymbol{V}] = -\boldsymbol{n} \cdot \boldsymbol{\sigma}[\boldsymbol{u}](\boldsymbol{z}) \text{ on } \mathcal{S}, \quad |\boldsymbol{V}| \to \boldsymbol{0} \text{ at } \infty$

By linear superposition: $\mathbf{V} = \sigma_{ij}(\mathbf{z})\mathbf{W}^{ij}$ $1 \le i, j \le 2$ (since $\sigma_{i3}(\mathbf{z}) = 0$) with

$$\begin{split} \boldsymbol{\mathcal{L}}_0[\boldsymbol{\mathcal{W}}^{ij}] &= \boldsymbol{0} \text{ in } \boldsymbol{\mathcal{E}}_{\mathcal{V}}, \\ \boldsymbol{t}[\boldsymbol{\mathcal{W}}^{ij}] &= \boldsymbol{0} \text{ on } \boldsymbol{\Gamma}_{\mathcal{V}}, \quad \boldsymbol{t}[\boldsymbol{\mathcal{W}}^{ij}] = -\frac{1}{2} \big(n_i \boldsymbol{e}_j + n_j \boldsymbol{e}_i \big) \text{ on } \mathcal{S}, \quad |\boldsymbol{\mathcal{W}}^{ij}| \to \boldsymbol{0} \text{ at } \infty \end{split}$$

Asymptotic approximation of scattered field

Integral representation:

$$\boldsymbol{v}_{\boldsymbol{\varepsilon}}(\boldsymbol{x}) = -\int_{\boldsymbol{s}_{\boldsymbol{\varepsilon},\boldsymbol{z}}} \boldsymbol{v}_{\boldsymbol{\varepsilon}} \cdot \boldsymbol{t}[\boldsymbol{G}_{\omega}](\cdot,\boldsymbol{x}) \, \mathrm{d}\boldsymbol{S} + \int_{\boldsymbol{v}_{\boldsymbol{\varepsilon},\boldsymbol{z}}} \left[\boldsymbol{\sigma} : \boldsymbol{\nabla}^{\mathrm{s}} \boldsymbol{G}_{\omega}(\cdot,\boldsymbol{x}) - \rho \omega^{2} \boldsymbol{u} \cdot \boldsymbol{G}_{\omega}(\cdot,\boldsymbol{x})\right] \, \mathrm{d}\boldsymbol{V} \qquad \boldsymbol{x} \in \Omega_{\boldsymbol{\varepsilon},\boldsymbol{z}}$$

⊳ Set

▷ use expansions

$$\begin{aligned} (\mathbf{y}, \mathbf{x}) &= \mathbf{\Phi}(\varepsilon \bar{\mathbf{y}}, \varepsilon \bar{\mathbf{x}}), \ \mathrm{d}S = (1 + O(\varepsilon))\varepsilon^2 \ \mathrm{d}\bar{S}, \ \mathrm{d}V = (1 + O(\varepsilon))\varepsilon^3 \ \mathrm{d}V \\ \mathbf{v}_{\varepsilon} &= \varepsilon \sigma_{ij}(\mathbf{z}) \mathbf{W}^{ij}(\bar{\mathbf{y}}) + \mathbf{o}(\varepsilon), \qquad \sigma &= \sigma(\mathbf{z}) + \mathbf{o}(1), \\ \mathbf{G}_{\omega}(\cdot, \mathbf{x}) &= \mathbf{G}_{\omega}(\mathbf{z}, \mathbf{x}) + \mathbf{o}(1), \qquad \nabla^{\mathrm{s}} \mathbf{G}_{\omega}(\cdot, \mathbf{x}) = \nabla^{\mathrm{s}} \mathbf{G}_{\omega}(\mathbf{z}, \mathbf{x}) + \mathbf{o}(1) \end{aligned}$$

Asymptotic approximation of scattered field

$$\boldsymbol{v}_{\varepsilon}(\boldsymbol{x}) = \varepsilon^{3} |\mathcal{V}| \big[\boldsymbol{\sigma}[\boldsymbol{G}_{\omega}](\boldsymbol{z}, \boldsymbol{x}) : \boldsymbol{\mathcal{A}} : \boldsymbol{\sigma}(\boldsymbol{z}) - \rho \omega^{2} \boldsymbol{G}_{\omega}(\boldsymbol{z}, \boldsymbol{x}) \cdot \boldsymbol{u}(\boldsymbol{z}) \big] + o(\varepsilon^{3}),$$

where \mathcal{A} elastic moment tensor (EMT):

$$\boldsymbol{\mathcal{A}} = \boldsymbol{\mathcal{C}}^{-1} - \frac{1}{|\mathcal{V}|} \Big\{ \int_{\mathcal{S}} \boldsymbol{n} \otimes \boldsymbol{W} \, \mathrm{d} \boldsymbol{S} \Big\}.$$

Remarks on found asymptotic representation of v_{ε}

Notable properties of EMT:

- \mathcal{A} depends on n(z), otherwise independent of local geometry of Ω at z;
- A has same (major, minor) symmetries as C;
- Free surface BC implies $\sigma_{i3}(z) = 0$ and $[\Sigma_{\omega}]_{i3}(z, x) = 0$, so $\mathcal{A}_{ijk\ell}$ only nonzero entries of \mathcal{A} ;
- \mathcal{A} depends on \mathcal{S} and \mathcal{C} only, hence same EMT applies (up to rotations) for any Ω and site z once \mathcal{S} chosen.

Notable characteristics of asymptotic representation of v_{ε} :

- structure of formula identical to that for an embedded defect;
- \triangleright depends through \mathcal{A} on \mathcal{C} and indentation limiting shape \mathcal{S} ;
- \triangleright depends through G_{ω} on ω , domain geometry Ω , and material C, ρ ;
- \triangleright depends on curvature of *S* through *G*_{ω} only;
- ▷ approximation of $\mathbf{v}_{\varepsilon}(\mathbf{x})$ combines monopolar and dipolar sources at $\mathbf{z} \in S$ with $O(\varepsilon^3 |\mathcal{V}|)$ strength.
- \triangleright no requirement (beyond C^2 smoothness) on local geometry of S near z (e.g. local convexity not required)

Justification of asymptotic expansion (under construction!)

 $\text{Recall } \boldsymbol{G}_{\omega}(\boldsymbol{y},\boldsymbol{x}) = \varepsilon^{-1}\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}) + \boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}}), \ \boldsymbol{t}[\boldsymbol{G}_{\omega}^{k}(\boldsymbol{y},\boldsymbol{x})] = \varepsilon^{-2}\boldsymbol{t}[\boldsymbol{G}_{0}^{E}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})] + \varepsilon^{-1}\boldsymbol{t}[\boldsymbol{R}_{\varepsilon}(\bar{\boldsymbol{y}},\bar{\boldsymbol{x}})].$

▷ Integral equations (in terms of $H^{1/2}(S) \to H^{1/2}(S)$ integral operators):

 $\begin{aligned} \mathcal{H}_{E}[\bar{\boldsymbol{v}}_{\varepsilon}](\bar{\boldsymbol{x}}) &+ \varepsilon \mathcal{Q}_{\varepsilon}[\bar{\boldsymbol{v}}_{\varepsilon}](\bar{\boldsymbol{x}}) = \varepsilon \mathcal{G}_{E}\big[\boldsymbol{n} \cdot \boldsymbol{\sigma}(\boldsymbol{\Phi}(\varepsilon \cdot))\big](\bar{\boldsymbol{x}}) + \varepsilon^{2} \mathcal{R}_{\varepsilon}\big[\boldsymbol{n} \cdot \boldsymbol{\sigma}(\boldsymbol{\Phi}(\varepsilon \cdot))\big](\bar{\boldsymbol{x}}) \\ \mathcal{H}_{E}[\varepsilon V](\bar{\boldsymbol{x}}) &= \varepsilon \mathcal{G}_{E}\big[\boldsymbol{n} \cdot \boldsymbol{\sigma}(\boldsymbol{z})\big](\bar{\boldsymbol{x}}) \end{aligned}$

▷ Truncation error
$$\overline{\delta}_{\varepsilon} := \overline{\mathbf{v}}_{\varepsilon} - \varepsilon \mathbf{V}$$
 solves

 $(\mathcal{H}_{E} + \mathcal{N}_{\varepsilon})[\overline{\delta}_{\varepsilon}](\bar{\mathbf{x}}) = \mathcal{F}_{\varepsilon}(\bar{\mathbf{x}})$

with $\mathcal{F}_{\varepsilon}(\bar{\mathbf{x}}) := \varepsilon \mathcal{G}_{\varepsilon}[\mathbf{n} \cdot \sigma(\mathbf{\Phi}(\varepsilon \cdot)) - \mathbf{n} \cdot \sigma(\mathbf{z})](\bar{\mathbf{x}}) + \varepsilon^2 \mathcal{R}_{\varepsilon}[\mathbf{n} \cdot \sigma(\mathbf{\Phi}(\varepsilon \cdot))](\bar{\mathbf{x}}) - \varepsilon^2 \mathcal{Q}_{\varepsilon}[\mathbf{V}](\bar{\mathbf{x}})$

- Method of proof (ongoing):
 (a) H_E + εQ_ε = H_E(I + εH_E⁻¹N_ε): H^{1/2}(S) → H^{1/2}(S) boundedly invertible, uniformly in ε for small enough ε;
 (b) ||F_ε||_{H^{1/2}(S)} ≤ Cε²
 (c) Hence ||δ_ε||_{H^{1/2}(S)} ≤ Cε||εV||_{H^{1/2}(S)}
 (d) Invoke behavior of H^{1/2} norm under scaling
- $\triangleright \text{ Results in } \|\delta_{\varepsilon}\|_{\boldsymbol{H}^{1/2}(\boldsymbol{v}_{\varepsilon,z})} \leq C\varepsilon^{1/2} \|\boldsymbol{v}_{\varepsilon}\|_{\boldsymbol{H}^{1/2}(\boldsymbol{v}_{\varepsilon,z})}$

Example

- Asymptotic model implemented for tubular geometries
- Uses existing in-house (I2M Bordeaux) implementation of (semi-analytic) elastodynamic Green's tensor

(plates) P. Mora, E. Ducasse, M.Deschamps (2016), Transient 3D elastodynamic field in an embedded multilayered anisotropic plate, Ultrasonics 69:106-115

(pipes) A. Krishna, Topological imaging of tubular structures using ultrasonic guided waves. PhD Thesis (defense expected fall 2019)

Marc Bonnet et al.

Computation of EMT

- \triangleright FEM computation (Fenics) on truncated half-space (truncation dist. $\approx 5 \times indent.$ radius
- Some meshing issues (local refinement near indentation) still partially unresolved, so EMT accurate to about 3 digits only
- ▷ EMT for several indentation shapes:

half-sphere

half-cube

half-parallelipiped $4\times1\times2$

half-prism

Asymptotic model: scattering by half-spherical indentation, longitudinal (axisymmetric) incident mode

Marc Bonnet et al.

Asymptotic model: scattering by half-cubic indentation, longitudinal (axisymmetric) incident mode

Asymptotic model: scattering by half-parallelipiped indentation, longitudinal (axisymmetric) incident mode

Asymptotic model: scattering by half-sphere or prism indentation, torsional incident mode

Concept of topological derivative

• Objective functional (u_V : total field due to surface defect (void) V):

 $\mathcal{J}(V) = J(\boldsymbol{u}_{V}), \quad \text{e.g. (inversion):} \quad J(\boldsymbol{u}_{V}) = \frac{1}{2} \int_{M} |\boldsymbol{u}_{V} - \boldsymbol{u}_{\text{obs}}|^{2} \, dM \text{ (output least squares)}$

• Consider small indentation $v_{\varepsilon,z} = \Phi(\varepsilon \mathcal{V})$ with surface $s_{\varepsilon,z}$

Definition (topological derivative)

Assume $\eta(\varepsilon) > 0$ with $\lim_{\varepsilon \to 0} \eta(\varepsilon) = 0$ exists such that $J(\mathbf{u}_{\varepsilon}) = J(\mathbf{u}) + \eta(\varepsilon)\mathcal{T}(\mathbf{z}; \mathcal{B}) + o(\eta(\varepsilon))$ (\mathbf{u} : background displacement field) Then $\mathcal{T}(\mathbf{z}; \mathcal{B})$ called topological derivative (TD) of J at $\mathbf{z} \in \Omega$.

• TD: sensitivity analysis tool [Sokolowski, Zochowski 99; Garreau et al 01...] initially proposed for topology optimization [Eschenauer et al 94; Allaire et al 05...]

Formulation of TD using adjoint solution

Cost functional expansion:

$$J(\boldsymbol{u}_{\varepsilon}) = J(\boldsymbol{u}) + (J'(\boldsymbol{u}), \boldsymbol{u}_{\varepsilon} - \boldsymbol{u})_{M} + o(\|\boldsymbol{u}_{\varepsilon} - \boldsymbol{u}\|)$$

 $(J'(\boldsymbol{u}), \boldsymbol{w})_M = \mathsf{Re}(\overline{\boldsymbol{u} - \boldsymbol{u}_{\mathsf{obs}}}, \boldsymbol{w})_M$ for the least-squares case

Goal: find leading form of $(J'(\boldsymbol{u}), \boldsymbol{u}_{\varepsilon} - \boldsymbol{u})_M$ as $\varepsilon \to 0$.

(a) Background (incident) problem for
$$\boldsymbol{u}$$
 (in Ω_{ε}):
 $(\boldsymbol{\sigma}[\boldsymbol{u}], \nabla \hat{\boldsymbol{u}}_{\varepsilon})_{\Omega_{\varepsilon}} - \omega^{2}(\rho\boldsymbol{u}, \hat{\boldsymbol{u}}_{\varepsilon})_{\Omega_{\varepsilon}} = F(\hat{\boldsymbol{u}}_{\varepsilon}) + (\boldsymbol{t}[\boldsymbol{u}], \hat{\boldsymbol{u}}_{\varepsilon})_{s_{\varepsilon,z}}$
(b) Scattering problem for $\boldsymbol{u}_{\varepsilon}$:
 $(\boldsymbol{\sigma}[\boldsymbol{u}_{\varepsilon}], \nabla \hat{\boldsymbol{u}}_{\varepsilon})_{\Omega_{\varepsilon}} - \omega^{2}(\rho\boldsymbol{u}_{\varepsilon}, \hat{\boldsymbol{u}}_{\varepsilon})_{\Omega_{\varepsilon}} = F(\hat{\boldsymbol{u}}_{\varepsilon})$
(c) Adjoint problem:
 $(\boldsymbol{\sigma}[\hat{\boldsymbol{u}}_{\varepsilon}], \nabla(\boldsymbol{u}_{\varepsilon} - \boldsymbol{u}))_{\Omega_{\varepsilon}} - \omega^{2}(\rho\hat{\boldsymbol{u}}_{\varepsilon}, \boldsymbol{u}_{\varepsilon} - \boldsymbol{u})_{\Omega_{\varepsilon}} = -(J'(\boldsymbol{u}), \boldsymbol{u}_{\varepsilon} - \boldsymbol{u})_{M}$
 $(J'(\boldsymbol{u}), \boldsymbol{u}_{\varepsilon} - \boldsymbol{u})_{M} = \operatorname{Re}\left\{(\boldsymbol{t}[\boldsymbol{u}], \hat{\boldsymbol{u}}_{\varepsilon})_{s_{\varepsilon,z}}\right\}$
 $= \varepsilon^{3}|\mathcal{V}|\operatorname{Re}\left\{\boldsymbol{\sigma}[\boldsymbol{u}]:\mathcal{A}:\boldsymbol{\sigma}[\hat{\boldsymbol{u}}] - \omega^{2}\rho\boldsymbol{u}\cdot\hat{\boldsymbol{u}}\right\}(\boldsymbol{z}) + o(\varepsilon^{3})$ (using expansion of $\hat{\boldsymbol{u}}_{\varepsilon} - \hat{\boldsymbol{u}}$ on $\boldsymbol{s}_{\varepsilon,z}$)
Topological derivative of $J(\boldsymbol{u}_{V}) = \mathcal{J}(V)$ at $\boldsymbol{u}_{V} = \boldsymbol{u}$:
 $J(\boldsymbol{u}_{\varepsilon}) = J(\boldsymbol{u}) + \varepsilon^{3}\mathcal{T}(\boldsymbol{z}) + o(\varepsilon^{3})$, $\mathcal{T}(\boldsymbol{z}) = |B_{\varepsilon}| \operatorname{Re}\left(\boldsymbol{\sigma}[\boldsymbol{u}]:\mathcal{A}:\boldsymbol{\sigma}[\hat{\boldsymbol{u}}] - \omega^{2}\rho\boldsymbol{u}\cdot\hat{\boldsymbol{u}}\right)(\boldsymbol{z})$

Conclusion and outlook

- Adaptation of methods previously used to obtain asymptotic expansions for embedded objects;
- ▷ Generic methodology, applies to other contexts (potential, acoustics...)
- \triangleright Asymptotic model allows to formulate topological derivatives on S

Work in progress:

- Justification of solution expansion: ongoing
- ▷ Practical comparisons with (numerical or experimental) reference solutions: to do

Extensions

- ▷ (partially) filled indentations (e.g. material resulting from corrosion)
- Emerging cracks
- \triangleright Higher-order (in ε) asymptotic models
- Transient case

Thank you for your kind attention! Any questions?