
ERRATUM TO THE ARTICLE: HOMOGENIZATION OF THE EIGENVALUES OF

THE NEUMANN-POINCARÉ OPERATOR

An annoying mistake was found in the proof of Theorem 4.4 by L. Chesnel (INRIA DEFI, Centre de

Mathématiques Appliquées École Polytechnique), whose careful reading is gratefully acknowledged. This
note presents a revised, correct version of the proof.

Theorem 0.1. Under the assumptions (4.1), there exists ε0 such that, for 0 < ε < ε0,

(λ ∈ σ(Tε), λ /∈ {0, 1}) ⇒ m ≤ λ ≤M,

where 0 < m < M < 1 are two constants, independent of ε, which only depend on the geometry of the
rescaled inclusion ω b Y .

Proof. Let us denote by λ−ε (resp. λ+
ε ) the lowest (resp. largest) eigenvalue of Tε which is different from 0

(resp. different from 1).
Exploiting the min-max principle of Proposition 3.4 in combination with the characterization of Ker(Tε)

given in Proposition 3.2, it comes:

(0.1) λ−ε = min
u∈hε
u 6=0

ˆ
ωε

|∇u|2 dx
ˆ

Ω

|∇u|2 dx
, and λ+

ε = max
u∈hε
u6=0

ˆ
ωε

|∇u|2 dx
ˆ

Ω

|∇u|2 dx
,

where the space hε is defined by (see (3.7)):

hε =

{
u ∈ H1

0 (Ω), ∆u = 0 on ωε ∪ (Ω \ ωε), and

ˆ
∂ωξε

∂u+

∂n
ds = 0, ξ ∈ Ξε

}
.

Our purpose is to prove that

(0.2) m ≤ λ−ε , and λ+
ε ≤M,

for some constants 0 < m ≤M < 1 depending only on the geometry of the inclusion ω b Y .

Proof of the right-hand inequality in (0.2): Let u ∈ hε, u 6= 0 be arbitrary. For any ξ ∈ Ξε, define the
rescaled function uξε(y) := u(εξ + εy) in H1(Y ). A simple change of variables yields:

(0.3)

ˆ
ωε

|∇u|2 dx = εd−2
∑
ξ∈Ξε

ˆ
ω

|∇yuξε|2 dy,

and similarly:

(0.4)

ˆ
Ω

|∇u|2 dx =

ˆ
Bε
|∇u|2 dx+ εd−2

∑
ξ∈Ξε

ˆ
Y

|∇yuξε|2 dy.

We then obtain:

(0.5)

ˆ
ωε

|∇u|2 dx
ˆ

Ω

|∇u|2 dx
=

εd−2
∑
ξ∈Ξε

ˆ
ω

|∇yuξε|2 dy

ˆ
Bε
|∇u|2 dx+ εd−2

∑
ξ∈Ξε

ˆ
Y

|∇yuξε|2 dy
≤ max

ξ∈Ξε

ˆ
ω

|∇yuξε|2 dyˆ
Y

|∇yuξε|2 dy
,

where we have used the easy algebraic identity:

(0.6) min

(
p1

q1
,
p2

q2

)
≤ p1 + p2

q1 + q2
≤ max

(
p1

q1
,
p2

q2

)
, p1, p2, q1, q2 ≥ 0, q1q2 6= 0.
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Now, since u ∈ hε, it follows that for every ξ ∈ Ξε, u
ξ
ε ∈ H1(Y ) satisfies:

(0.7) −∆yu
ξ
ε = 0 on ω, and so

ˆ
∂ω

∂uξ−ε
∂n

ds = 0.

Hence, an integration by parts yields:ˆ
ω

|∇yuξε|2 dy = −
ˆ
∂ω

uξε
∂uξ−ε
∂n

ds

= −
ˆ
∂ω

(
uξε −

1

|∂ω|

ˆ
∂ω

uξε ds

)
∂uξ−ε
∂n

ds,

where the last line follows from (0.7). Using now the definition of the norm in H−1/2(∂ω) (together with
(0.7) again) and combining the trace theorem with the Poincaré-Wirtinger inequality in Y \ ω, we obtain:ˆ

ω

|∇yuξε|2 dy ≤
∣∣∣∣∣∣∣∣∂uξ−ε∂n

∣∣∣∣∣∣∣∣
H−1/2(∂ω)

∣∣∣∣∣∣∣∣uξε − 1

|∂ω|

ˆ
∂ω

uξε ds

∣∣∣∣∣∣∣∣
H1/2(∂ω)

= C

(ˆ
ω

|∇yuξε|2 dy
) 1

2

(ˆ
Y \ω
|∇yuξε|2 dy

) 1
2

,

where the constant C depends only on the geometry of ω b Y . It follows that, for the same constant C,

(0.8) ||∇uξε||L2(ω)d ≤ C||∇uξε||L2(Y \ω)d .

Finally, combining (0.5) with (0.8) yields the desired inequality.

Proof of the left-hand inequality in (0.2): It is enough to prove that there exists a constant C > 0, which
depends only on the geometry of ω b Y and is independent of ε such that:

∀u ∈ hε,

ˆ
Ω\ωε

|∇u|2 dx ≤ C
ˆ
ωε

|∇u|2 dx.

To achieve this, let u ∈ hε be arbitrary; an integration by parts yields:ˆ
Ω\ωε

|∇u|2 dx =

ˆ
∂ωε

u
∂u+

∂n
ds,

=
∑
ξ∈Ξε

ˆ
∂ωξε

u
∂u+

∂n
ds,

where we recall that n stands for the unit normal vector to ∂ωε, pointing outward ωε. Now, for a given
ξ ∈ Ξε, define the function v(y) := u(εξ + εy) ∈ H1(Y ). Using a change of variables, and taking advantage

of the fact that
´
∂ω

∂v+

∂n ds = 0, one has:ˆ
∂ωξε

u
∂u+

∂n
ds = εd−2

ˆ
∂ω

v
∂v+

∂n
ds = εd−2

ˆ
∂ω

(
v − 1

|∂ω|

ˆ
∂ω

v ds

)
∂v+

∂n
ds.

Now using the trace theorem and the Poincaré-Wirtinger inequality inside ω,∣∣∣∣ˆ
∂ωξε

u
∂u+

∂n
ds

∣∣∣∣ ≤ Cεd−2||∇v||L2(ω)d

∣∣∣∣∣∣∣∣∂v+

∂n

∣∣∣∣∣∣∣∣
H−1/2(∂ω)

.

Since ω b Y , and using the fact that ∆v = 0 on Y \ω together with usual estimates for the Laplace equation,
it holds: ∣∣∣∣∣∣∣∣∂v+

∂n

∣∣∣∣∣∣∣∣
H−1/2(∂ω)

≤ C||∇v||L2(Y \ω)d .

As a consequence, we obtain:∣∣∣∣ˆ
∂ωξε

u
∂u+

∂n
ds

∣∣∣∣ ≤ Cεd−2||∇v||L2(ω)d ||∇v||L2(Y \ω)d ;

then, rescaling (i.e. expressing the right-hand side of the above inequality in terms of u) yields:∣∣∣∣ˆ
∂ωξε

u
∂u+

∂n
ds

∣∣∣∣ ≤ C||∇u||L2(ωξε)d ||∇u||L2(Y ξε \ωξε)d
.
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Eventually, summing over ξ ∈ Ξε and using the Cauchy-Schwarz inequality yields:

ˆ
Ω\ωε

|∇u|2 dx =

∣∣∣∣∣∣
∑
ξ∈Ξε

ˆ
∂ωξε

u
∂u+

∂n
ds

∣∣∣∣∣∣ ≤ C
∑
ξ∈Ξε

||∇u||L2(ωξε)d ||∇u||L2(Y ξε \ωξε)d

≤ C||∇u||L2(ωε)d ||∇u||L2(Ω\ωε)d ,

whence the expected result. �
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