An introduction to the Level Set Method

Charles Dapogny, Emmanuel Maitre
Laboratoire Jean Kuntzmann, Université Joseph Fourier, Grenoble, France.

Fall, 2019
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellanies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
Part I

Introduction
This course is devoted to the study of the motion of a domain (or a phase) $\Omega(t)$, with boundary $\Gamma(t) := \partial \Omega(t)$, along a velocity field $V(t, x)$.

Since its inception by Osher and Sethian, in the article [OSeth], the Level Set method has been one very convenient framework from both theoretical and numerical viewpoints.

It allows to describe dramatic changes in domains (including topological changes) in a very robust way.

Other (either theoretical or numerical) methods for the study of moving domains include:

- Arbitrary Lagrangian-Eulerian (ALE) methods,
- Phase-field methods,
- Volume of Fluid (VOF) methods,
- etc.
Example: bifluid flows (I)

A domain $D \subset \mathbb{R}^d$ is filled with two immiscible fluids, occupying complementary phases Ω_0, Ω_1, with different dynamical viscosities ν_0, ν_1 and densities ρ_0, ρ_1.

Model situation for a bifluid problem.
Example: bifluid flows (II)

• The velocity \(u(t, x) \) and pressure \(p(t, x) \) of the mixture solve the Navier-Stokes equations:

\[
\begin{aligned}
\rho_i \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nu_i \Delta u + \nabla p &= f_i \quad \text{for } (t, x) \in (0, T) \times \Omega_i(t), \\
\text{div}(u_i) &= 0 \quad \text{for } (t, x) \in (0, T) \times \Omega_i(t), \\
u_i(t, x) &= 0 \quad \text{for } (t, x) \in (0, T) \times \partial D, \\
u_0(t, \cdot) &= u_1(t, \cdot) \\
(\sigma_0 - \sigma_1) \cdot n_t &= -\gamma \kappa_t n_t \\
u_i(t = 0, \cdot) &= u_i,0(\cdot) \\
\end{aligned}
\]

• At every time \(t \), the interface \(\Gamma(t) \) between the fluids moves according to the velocity of the fluid:

\[
u_0(t, x) = u_1(t, x), \quad t \geq 0, \ x \in \Gamma(t).\]
Example: bifluid flows (III)

Evolution of two fluid bubbles immersed in a fluid with larger density
[Credits: P. Frey & T. Ma]
• **Structural optimization** aims at improving the performance of the initial design Ω^0 of a structure (e.g. a beam, a mechanical actuator,...) with respect to a prescribed mechanical criterion.

• The problem arises under the form:

$$\min_{\Omega \in \mathcal{U}_{ad}} J(\Omega),$$

where

• $J(\Omega)$ is a **cost functional**, depending on the domain in a possibly very complicated way; for instance, $J(\Omega)$ may be the work of external forces on Ω, a vibration frequency, etc.

• \mathcal{U}_{ad} is a set of **admissible designs**, which encompasses, e.g. volume, or manufacturability constraints.
Techniques from shape optimization make it possible to calculate a shape gradient at a shape \(\Omega \), i.e. a vector field \(V_\Omega : \mathbb{R}^d \to \mathbb{R}^d \) such that:

\[
J((\text{Id} + \tau V_\Omega)(\Omega)) < J(\Omega), \text{ for } \tau > 0 \text{ small enough.}
\]

Starting from an initial design \(\Omega^0 \), the sequence of shapes

\[
\Omega^{n+1} := (\text{Id} + \tau^n V_{\Omega^n})(\Omega^n), \text{ where } \tau^n \text{ is a pseudo-time step,}
\]

evolves by decreasing the criterion \(J(\Omega) \).
Example: structural optimization (III)
Example: structural optimization (IV)
Example: image segmentation (I)

- A greyscale image is described by an intensity function $I : [0, 1]^2 \rightarrow \mathbb{R}$.

- The image is composed of several objects, i.e. regions with different values of I. One of them, Ω_T, identified by the intensity I_T is to be accurately separated from the others.

- The idea of active contour methods is to track the evolution of a domain $\Omega(t)$, starting from an arbitrary ‘initial guess’ Ω^0, according to a velocity field of the form:

 $$V(t, x) = (f_0(x) + f_1(\kappa_t(x)))n_t(x),$$

where f_0 and f_1 are two scalar functions:

 - f_0 ‘attracts’ the domain $\Omega(t)$ towards Ω_T,
 - $f_1(\kappa_t(x))$ compels $\Omega(t)$ to stay ‘smooth enough’.
Three examples of segmentation in biomedical imaging [Credits: WHL].
In general, the motion of $\Omega(t)$ may be classified into three categories depending on the nature of the underlying velocity field $V(t, x)$.

1. $\Omega(t)$ is passively transported by the velocity field $V(t, x)$: $V(t, x)$ is externally prescribed, i.e. it does not depend on $\Omega(t)$.

2. The velocity $V(t, x)$ depends on local features of $\Omega(t)$ or $\Gamma(t)$, such as:
 - the normal vector $n_t(x)$ at $x \in \Gamma(t)$
 - the mean curvature $\kappa_t(x)$ of $\Gamma(t)$.
Three classes of domain motions

Example 1 The flame propagation model.

\[V(t, x) = c \, n_t(x), \text{ where } c > 0 \text{ is a constant.} \]

For instance, \(\Omega(t) \) represents a burnt region, whose front expands with constant, normal velocity \(c \).

An example of the dynamics in the flame propagation model.
Example 2 The Mean Curvature Flow.

\[V(t, x) = -\kappa_t(x) n_t(x), \]

that is, \(\Omega(t) \) evolves by ‘resorption of its bumps’, and ‘filling of its creases’.

An example of the dynamics of the Mean Curvature Flow: Grayson’s result [Grayson].
The field $V(t, x)$ depends on global features of the domain $\Omega(t)$, e.g. it is obtained by solving one (or several) PDE posed on $\Omega(t)$:

- If $\Omega(t)$ is a phase filled with a fluid, $V(t, x)$ is the solution of the Stokes, or the Navier-Stokes equations posed on $\Omega(t)$,

- If $\Omega(t)$ is a structure, to be optimized with respect to an objective function $J(\Omega)$, $V(t, x)$ is the corresponding shape gradient; its calculation involves the solution to one, or several linear elasticity equations on $\Omega(t)$.

Remark: In practice, motions of the last class prove far too complicated; they are approximated by a series of motions of one of the first two kinds.
Disclaimer

- This course is an introduction, and is only devoted to the basic features of the Level Set method.

- It is oriented towards applications, and difficult mathematical details are only hinted at. See the monograph [Giga] around these points.
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneities
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
Part II

Presentation of the Level Set Method
1 Introduction

2 Presentation of the level set method
 • Implicit geometries
 • Informal derivation of the Level Set equations
 • A glimpse at the mathematical framework
 • Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellanea
 • Operations within the Level Set framework
 • Level Set redistancing
 • A look at velocity extension
 • The Narrow Band paradigm
A paradigm: the motion of an evolving domain is best described in an implicit way.

A domain $\Omega \subset \mathbb{R}^d$ is equivalently defined by a function $\phi : \mathbb{R}^d \to \mathbb{R}$ such that:

$$
\phi(x) < 0 \quad \text{if} \quad x \in \Omega ; \quad \phi(x) = 0 \quad \text{if} \quad x \in \Gamma ; \quad \phi(x) > 0 \quad \text{if} \quad x \in \overline{\Omega}
$$

(Left) a domain $\Omega \subset \mathbb{R}^2$; (right) the graph of an associated Level Set function.
Let \(\Omega \subset \mathbb{R}^d \) be a domain, \(\phi : \mathbb{R}^d \to \mathbb{R} \) be a Level Set function of class \(C^2 \) for \(\Omega \), such that \(\nabla \phi(x) \neq 0 \) on a neighborhood of \(\Gamma \).

- The normal vector \(n \) to \(\Gamma \) pointing outward \(\Omega \) reads:

\[
\forall x \in \Gamma, \quad n(x) = \frac{\nabla \phi(x)}{|\nabla \phi(x)|}.
\]

Normal vector to a domain \(\Omega \); some isolines of the function \(\phi \) are dotted.
• The second fundamental form Π of Γ is:

$$\forall x \in \Gamma, \quad \Pi(x) = \nabla \left(\frac{\nabla \phi(x)}{|\nabla \phi(x)|} \right).$$

• The mean curvature κ of Γ is:

$$\forall x \in \Gamma, \quad \kappa(x) = \text{div} \left(\frac{\nabla \phi(x)}{|\nabla \phi(x)|} \right).$$

$\Pi_x(v, v)$ is the curvature of a curve drawn on Γ with tangent vector v at x.
Introduction

Presentation of the level set method
- Implicit geometries
- Informal derivation of the Level Set equations
- A glimpse at the mathematical framework
- Initial value problems

The Level Set evolution equation

Initializing Level Set functions

Miscellanies
- Operations within the Level Set framework
- Level Set redistancing
- A look at velocity extension
- The Narrow Band paradigm
Definition 1.

Let $V(t, x)$ be a smooth velocity field. The characteristic curve emerging from a point $x \in \mathbb{R}^d$ at time $t = t_0$ is the curve $t \mapsto \chi(x, t, t_0)$ defined by the ODE:

$$\left\{ \begin{array}{l}
\frac{d}{dt}(\chi(x, t, t_0)) = V(t, \chi(x, t, t_0)), \quad \text{for } t \in (0, T) \\
\chi(x, t_0, t_0) = x
\end{array} \right.$$

Three characteristic curves of the velocity field V issued at $t = t_0$ from different points x_0, x_1, x_2.

Evolving domains (I)
‘Intuitive’ notion of an evolving domain

A domain $\Omega(t)$ evolves according to a velocity field $V(t,x)$ from an initial position $\Omega(t_0)$ if it is obtained by transporting its points along V:

$$\Omega(t) = \{\chi(x_0, t, t_0), \ x_0 \in \Omega(t_0)\}.$$
• Let $\Omega(t)$ be a (smooth) domain, moving over $(0, T)$ along the (smooth) velocity field $V(t, x)$. Let $\phi(t, x)$ be a smooth Level Set function, i.e:

$$
\forall t \in (0, T), \ x \in \mathbb{R}^d, \ \left\{ \begin{array}{ll}
\phi(t, x) < 0 & \text{if } x \in \Omega(t), \\
\phi(t, x) = 0 & \text{if } x \in \Gamma(t), \\
\phi(t, x) > 0 & \text{if } x \in c\Omega(t),
\end{array} \right.
$$

• Let $x_0 \in \Gamma(0)$ be fixed. By the intuitive definition of an evolving domain, it comes:

$$
\forall t \in (0, T), \ \phi(t, \chi(x_0, t, 0)) = 0.
$$

• Differentiating and using the chain rule yields:

$$
\frac{\partial \phi}{\partial t}(t, \chi(x_0, t, 0)) + \frac{d}{dt}(\chi(x_0, t, 0)) \cdot \nabla \phi(t, \chi(x_0, t, 0)) = 0.
$$
Evolving domains (IV)

- Since this holds for any point $x_0 \in \Gamma(0)$, we obtain the Level Set advection equation:

 $$\forall t \in (0, T), \forall x \in \mathbb{R}^d, \frac{\partial \phi}{\partial t} + V(t, x) \cdot \nabla \phi = 0.$$

- If, in addition, the velocity is consistently oriented along the normal vector $n_t(x)$ to $\Omega(t)$:

 $$V(t, x) = v(t, x)\frac{\nabla \phi(t, x)}{|\nabla \phi(t, x)|},$$

 for some scalar $v(t, x)$, the equation rewrites as the Level Set Hamilton-Jacobi equation:

 $$\forall t \in (0, T), \forall x \in \mathbb{R}^d, \frac{\partial \phi}{\partial t} + v(t, x)|\nabla \phi| = 0.$$
• Strictly speaking, both equations only hold for pairs \((t, x)\) with \(x \in \Gamma(t)\). However, the previous analysis can be applied to any level set of \(\phi\):

\[
\Gamma_c(t) := \{x \in \mathbb{R}^d, \phi(t, x) = c\}.
\]

Hence, the equation:

\[
\forall t \in (0, T), \forall x \in \mathbb{R}^d, \frac{\partial \phi}{\partial t}(t, x) + V(t, x) \cdot \nabla \phi(t, x) = 0
\]

actually accounts for the fact that all the level sets of \(\phi\) (and not only its 0 level set) move according to \(V(t, x)\).

• In many applications, the velocity field \(V(t, x)\) makes sense only for \(x \in \Gamma(t)\). In the above derivation, we have implicitly assumed that \(V(t, x)\) has been extended to the whole space \(\mathbb{R}^d\).
Question

How is it possible to account for the evolution of $\Omega(t)$ when either the domain $\Omega(t)$, or the velocity field $V(t, x)$ has developed a singularity?

This problem is not a pure mathematicality: even in the simplest models, $\Omega(t)$ and $V(t, x)$ (thus $\phi(t, x)$) become singular in finite time.
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
• In the **flame propagation model**, a domain $\Omega(t)$, whose initial boundary $\Gamma(0)$ is (locally) described by the curve:

$$\gamma(s) = \left(1 - s, \frac{1 + \cos(2\pi s)}{2}\right), \quad s \in [0, 1],$$

evolves according to the velocity field $V(t, x) = n_t(x)$.

Some positions of the interface $\Gamma(t)$; at a critical time $t = t_c$, $\Gamma(t)$ develops a **singularity** (blue dot).
In the context of the Mean curvature flow, consider a ‘dumbbell’-shaped initial domain $\Omega(0)$ which evolves according to the velocity:

$$V(t, x) = -\kappa_t(x)n_t(x).$$

Evolution of a three-dimensional dumbbell under the mean curvature flow. The central part of the bar ends up pinching.
In the flame propagation example (and in general), there are several ways of giving a sense to the evolution of the front once a singularity has appeared.

(Left) Evolution of $\Omega(t)$ obtained by ‘going on moving’ all the points of $\Gamma(t)$ where the normal is defined; (right) Evolution of $\Omega(t)$ obtained by imposing an ‘entropy criterion’: “a burnt point stays burnt”.
Singularities are inevitable, even for a ‘very smooth’ motion, starting from a ‘very smooth’ initial domain.

The corresponding fact, in terms of Level Set functions, is that the Level Set equations have ‘too many’ solutions.

What happens after the onset of singularities is actually a matter of defining what is the motion of a domain.

Mathematical definition of an evolving domain

1. Devise a ‘good’, generalized notion of solutions to the Level Set evolution equations, which enforces the ‘good’ physical behavior.

2. Define the domain \(\Omega(t) \), for any time \(t \) as:

\[
\Omega(t) = \{ x \in \mathbb{R}^d, \ \phi(t, x) < 0 \}.
\]
Definition 2.

Let $U \subset \mathbb{R}^d$ be open, and $H : \mathbb{R}_x^d \times \mathbb{R}_u \times \mathbb{R}_p^d \times \mathcal{S}_d(\mathbb{R})$ be a continuous function (the Hamiltonian). Consider the second-order Hamilton-Jacobi equation:

$$
\frac{\partial \phi}{\partial t}(t, x) + H(x, \phi, \nabla \phi, \nabla^2 \phi)(t, x) = 0, \quad \text{on } (0, T) \times U.
$$

(HJ)

- A function ϕ is a **viscosity subsolution** of (HJ) if:

 1. it is upper semicontinuous on U,

 2. for any function φ of class \mathcal{C}^2 on U such that $\phi - \varphi$ reaches a local maximum at x,

$$
\frac{\partial \phi}{\partial t}(t, x) + H(x, \phi(x), \nabla \varphi(x), \nabla^2 \varphi(x)) \leq 0.
$$
Definition 2.

- A function ϕ is a **viscosity supersolution** of (HJ) if:
 1. It is lower semicontinuous on U,
 2. for any function φ of class C^2 on U such that $\phi - \varphi$ reaches a local minimum at x,
 \[
 \frac{\partial \phi}{\partial t}(t, x) + H(x, \phi(x), \nabla \varphi(x), \nabla^2 \varphi(x)) \geq 0.
 \]

- A function ϕ is a **viscosity solution** of (HJ) if:
 1. (It is continuous on U)
 2. it is both a viscosity subsolution and a viscosity supersolution.
Example: Affine functions of the form $\phi(x) = ax + b$ are viscosity solutions to the equation $-\phi'' = 0$ in $(0, 1)$:

- **Subsolution inequality:** If $\phi - \varphi$ has a local maximum at x_0 (situation on the left), φ is locally above ϕ around x_0, and
 $$-\varphi''(x_0) \leq 0.$$

- **Supersolution inequality:** If $\phi - \varphi$ has a local minimum at x_0 (situation on the right), φ is locally below ϕ around x_0, and
 $$-\varphi''(x_0) \geq 0.$$
What are the motivations for this definition?

- It leaves the room for solutions ϕ which are not differentiable: the gradient and Hessian of ϕ in (HJ) are replaced by those of any smooth function which locally ‘looks like’ ϕ.

- The two comparison criteria take into account important monotonicity properties of Hamilton-Jacobi equations.

- Viscosity solutions enjoy many ‘physical’ properties...

(Left) $\phi - \varphi$ has a local minimum at x_0; (right) $\phi - \varphi$ has a local maximum at x_0.

Under ‘reasonable assumptions’ on the Hamiltonian function H,

- **Existence and uniqueness.** For a given initial data ϕ_0, the viscosity solution ϕ of (HJ) exists and is unique.

- **Generalization of classical solutions.** If the viscosity solution ϕ of (HJ) is of class C^2, then it is also a solution of this equation in the classical sense.

- **Vanishing viscosity limit of solutions to ‘regular’ equations.** For small $\varepsilon > 0$, let $\phi_\varepsilon(t, x)$ be the (smooth) solution to the equation:

$$
\begin{aligned}
\frac{\partial \phi_\varepsilon}{\partial t}(t, x) - \varepsilon \Delta \phi_\varepsilon(t, x) + H(x, \phi_\varepsilon, \nabla \phi_\varepsilon, \nabla^2 \phi_\varepsilon)(t, x) &= 0, \\
\phi_\varepsilon(t = 0, \cdot) &= \phi(t = 0, \cdot)
\end{aligned}
$$

obtained by adding to (HJ) the regularizing viscosity term $-\varepsilon \Delta \phi_\varepsilon$.

Then, $\phi_\varepsilon \xrightarrow{\varepsilon \rightarrow 0} \phi$, uniformly on every compact subset of $[0, T] \times \mathbb{R}^d$.

Properties of viscosity solutions (II)

• **Independence from the initial Level Set function.** Let \(\phi_0, \psi_0 \) be two Level Set functions for an initial domain \(\Omega_0 \), and \(\phi(t, \cdot), \psi(t, \cdot) \) be the corresponding solutions of \((\text{HJ})\). Then, \(\phi \) and \(\psi \) define the same domain:

\[
\forall t \in (0, T), \quad \{ x \in \mathbb{R}^d, \, \phi(t, x) < 0 \} = \{ x \in \mathbb{R}^d, \, \psi(t, x) < 0 \}.
\]

• **Monotonicity.** Let \(\Omega_0 \subset \tilde{\Omega}_0 \) be domains in \(\mathbb{R}^d \), \(\phi_0 \) and \(\tilde{\phi}_0 \) be corresponding Level Set functions. Define:

\[
\Omega(t) = \{ x \in \mathbb{R}^d, \, \phi(t, x) < 0 \},
\]

where \(\phi(t, \cdot) \) solves \((\text{HJ})\) with initial data \(\phi_0 \), and likewise for \(\tilde{\Omega}(t) \). Then, \(\Omega(t) \subset \tilde{\Omega}(t) \).
Example 1: In the case of the flame propagation model, the evolution of $\Omega(t)$ selected by this process coincides with that obtained by imposing the ‘entropy criterion’.

Domain $\Omega(t) := \{ x \in \mathbb{R}^d, \phi(t, x) < 0 \}$, where ϕ is the viscosity solution to the Hamilton-Jacobi equation $\frac{\partial \phi}{\partial t} + |\nabla \phi| = 0$.
Example 2: As for the Mean Curvature Flow, initialized by the ‘dumbbell’, the evolution of $\Omega(t)$ selected by (an adaptation of) the notion of viscosity solutions looks as follows:

Domain $\Omega(t) := \{x \in \mathbb{R}^d, \phi(t, x) < 0\}$, where ϕ is the ‘viscosity solution’ to the Mean Curvature Flow $\frac{\partial \phi}{\partial t} - \text{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) |\nabla \phi| = 0$ (Time is increasing from left to right, top to bottom).
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellanea
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
• A convenient, equivalent point of view arises in the particular case where the domain $\Omega(t)$ expands (resp. retracts) along its normal vector,

$$V(t, x) = c(x)n_t(x), \text{ where } c(x) > 0 \text{ (resp. } c(x) < 0).$$

• A stationary PDE can be derived in terms of the time function $T(x)$:

$$T(x) = \inf \{ t \geq 0, x \in \Omega(t) \}.$$

• The derivation of this PDE follows the same trail as that of the Level Set equations:

1. At first, it is rigorously established in the regions of space where $\Omega(t)$, $V(t, x)$ and T are smooth,

2. Then, a generalized notion of solutions is introduced for this PDE to impose a ‘physical’ behavior where they are not smooth.
We rely again on the intuitive notion of an evolving domain.

Let \(x_0 \in \Gamma(0) \), and \(t \mapsto x(t) \) be the characteristic curve of \(V(t, x) \), emerging from \(x_0 \) at \(t = 0 \):

\[
x(0) = x_0, \ \text{and} \ x'(t) = c(x(t))n_t(x(t)).
\]

By definition of the time function,

\[
\Omega(t) = \{ x \in \mathbb{R}^d, \ T(x) < t \}, \ \text{and} \ \Gamma(t) = \{ x \in \mathbb{R}^d, \ T(x) = t \}.
\]

In particular, \(\phi(x) := T(x) - t \) is one Level Set function for \(\Omega(t) \). Hence,

\[
\forall t \geq 0, \ \forall x \in \Gamma(t), \ n_t(x) = \frac{\nabla T(x)}{|\nabla T(x)|}.
\]
On the other hand, differentiating the relation
\(T(x(t)) = t \) yields:

\[\forall t > 0, \ x'(t) \cdot \nabla T(x(t)) = 1; \]

it follows that \(T \) is solution to the Eikonal equation:

\[
\begin{aligned}
c(x) |\nabla T(x)| &= 1 \quad \text{for} \ x \in \mathbb{R}^d \setminus \overline{\Omega(0)}, \\
T(x) &= 0 \quad \text{for} \ x \in \Gamma(0).
\end{aligned}
\]

Some isolines of the time function \(T \) in the particular case where \(c \equiv 1 \).
A similar analysis holds in the case where $\Omega(t)$ constantly retracts in the normal direction:

$$V(t, x) = -c(x)n_t(x), \text{ where } c(x) > 0.$$

The time function $T : \Omega(0) \to \mathbb{R}$ is then defined by:

$$T(x) = \inf \left\{ t \geq 0, \ x \in \mathbb{R}^d \setminus \Omega(t) \right\}.$$

It turns out that T is solution to the Eikonal equation:

$$\begin{cases}
 c(x)|\nabla T(x)| = 1 & \text{for } x \in \Omega(0), \\
 T(x) = 0 & \text{for } x \in \Gamma(0).
\end{cases}$$

Some isolines of the time function T in the particular case where $c \equiv 1.$
Definition 3.

Let $H : \mathbb{R}^d_x \times \mathbb{R}^d_p \to \mathbb{R}$ be a continuous, Hamiltonian function; consider the stationary Hamilton-Jacobi equation:

$$\begin{cases} H(x, \nabla u(x)) = 0 & \text{in } \Omega, \\ u(x) = 0 & \text{on } \Gamma \end{cases} \quad \text{(S-HJ)}$$

A continuous function u on $\overline{\Omega}$ is a viscosity solution to (S-HJ) if:

- **Subsolution inequality:** For any point $x_0 \in \Omega$, and any function φ of class C^2 such that $(u - \varphi)$ has a local maximum at x_0:
 $$H(x_0, \nabla \varphi(x_0)) \leq 0.$$

- **Supersolution inequality:** For any point $x_0 \in \Omega$, and any function φ of class C^2 such that $(u - \varphi)$ has a local minimum at x_0:
 $$H(x_0, \nabla \varphi(x_0)) \geq 0.$$
Assume that \(c(x) > 0 \) is continuous; the Eikonal equation

\[
\begin{align*}
\left\{ \begin{array}{l}
c(x)|\nabla u(x)| = 1 \quad \text{in } \Omega, \\
u(x) = 0 \quad \text{on } \Gamma.
\end{array} \right.
\end{align*}
\]

has a unique viscosity solution \(u \in C(\overline{\Omega}) \).

In the particular case \(c(x) \equiv 1 \), \(u \) is the Euclidean distance function:

\[
u(x) = d(x, \Gamma) = \inf_{y \in \Gamma} d(x, y).
\]

(Left) graph of the distance function \(u = d(\cdot, \Gamma) \), (right) graph of a function satisfying \(|u'(x)| = 1 \) a.e. which is not a viscosity solution of the equation \(|u'| = 1 \).
Viscosity solutions for the Eikonal equation (III)

Intuitive idea of the proof (in the case $\Omega = (0, 1) \subset \mathbb{R}$):

- We only prove that $u = d(x, \Gamma)$ is one viscosity solution (the uniqueness is admitted).
- At any point $x_0 \neq \frac{1}{2}$, u is differentiable, with derivative $|u'(x)| = 1$.
- *Supersolution inequality*: there exists no function φ of class C^2 such that $(u - \varphi)$ has a local minimum (say 0) at x_0.

![Diagram showing no smooth function φ has its graph under that of u around x_0.](image)

No smooth function φ has its graph under that of u around x_0.
• **Subsolution inequality:** let φ be a function of class C^2 such that $(u - \varphi)$ has a local maximum (say 0) at x_0.

Then it is easily seen that $|\varphi'(x_0)| \leq 1$.

*Graph of a smooth function φ such that $(u - \varphi)$ has local maximum 0 at x_0.***
Part III
The Level Set evolution equation
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
Solving the Level Set equations (I)

A general velocity $V(t, x)$ is too complicated for simulating the exact model:

\[
\begin{aligned}
\frac{\partial \phi}{\partial t}(t, x) + V(t, x) \cdot \nabla \phi(t, x) &= 0 \quad \text{for } (t, x) \in (0, T) \times \mathbb{R}^d, \\
\phi(t = 0, x) &= \phi_0(x) \quad \text{for } x \in \mathbb{R}^d.
\end{aligned}
\]

(\text{LS})

The time interval $(0, T)$ is split into a series of (small) subintervals (t^n, t^{n+1}), where $0 = t^0 < t^1 < \ldots < t^N = T$; there are two possibilities for approximating (LS) on each (t^n, t^{n+1}):

1. The whole velocity field $V(t, x)$ is frozen over (t^n, t^{n+1}):

 \[
 \forall t \in (t^n, t^{n+1}), \quad V(t, x) \approx V^n(x) := V(t^n, x),
 \]

 and over each interval, a standard advection equation is solved:

 \[
 \begin{aligned}
 \frac{\partial \phi}{\partial t}(t, x) + V^n(x) \cdot \nabla \phi(t, x) &= 0 \quad \text{on } (t^n, t^{n+1}) \times \mathbb{R}^d, \\
\phi(t = t^n, x) &\text{ given} \quad \text{for } x \in \mathbb{R}^d.
 \end{aligned}
 \]

(\text{ADV})
Only the normal component of \(V(t, x) = v(t, x)n_t(x) \) is frozen:

\[
\forall t \in (t^n, t^{n+1}), \quad V(t, x) \approx v^n(x)n_t(x), \quad \text{where } v^n(x) = v(t^n, x).
\]

Over each interval, a ‘classical’ Hamilton-Jacobi equation is solved:

\[
\left\{ \begin{array}{ll}
\frac{\partial \phi}{\partial t}(t, x) + v^n(x)|\nabla \phi(t, x)| = 0 & \text{on } (t^n, t^{n+1}) \times \mathbb{R}^d, \\
\phi(t = t^n, x) \text{ given} & \text{for } x \in \mathbb{R}^d.
\end{array} \right. \tag{HJ}
\]

Remarks:

- Advection equations of the form (ADV) are quite well-known, and very efficient numerical schemes exist for their resolution.

- The Hamilton-Jacobi formulation (HJ) preserves the information that the velocity field is constantly oriented along the normal vector \(n_t(x) \) to \(\Omega(t) \), and is thus very appealing in many cases.
Solving the Level Set equations (III)

- We focus on the resolution of the Level Set Hamilton-Jacobi equation over a generic time period $(0, T)$:

\[
\begin{align*}
\frac{\partial \phi}{\partial t} + v(x)|\nabla \phi| &= 0 \quad \text{on } (0, T) \times \mathbb{R}^d \\
\phi(0, .) &= \phi_0 \quad \text{on } \mathbb{R}^d
\end{align*}
\]

for given normal velocity field $v(x)$, and initial function ϕ_0.

- The device of efficient algorithms for solving this equation relies on the theory of numerical schemes for first order Hamilton-Jacobi equations:

\[
\begin{align*}
\frac{\partial \phi}{\partial t} + H(x, \nabla \phi) &= 0 \quad \text{on } (0, T) \times \mathbb{R}^d \\
\phi(0, .) &= \phi_0 \quad \text{on } \mathbb{R}^d
\end{align*}
\]

(HJ)

in the particular case where $H(x, p) = v(x)|p|$.
Numerical setting

- We focus on the 2d situation.
- The time interval \((0, T)\) is split into \(N = \frac{T}{\Delta t}\) subintervals: \((t^n, t^{n+1})\), where \(t^n = n\Delta t\), \(n = 0, ..., N\), and \(\Delta t\) is a time step.
- The space is discretized by a Cartesian grid with steps \(\Delta x, \Delta y\).
For $i, j \in \mathbb{Z}$, we denote the finite difference quantities:

$$D_{ij}^{+x} \phi = \frac{\phi_{i+1,j} - \phi_{ij}}{\Delta x} ; \quad D_{ij}^{-x} \phi = \frac{\phi_{ij} - \phi_{i-1,j}}{\Delta x},$$

and:

$$D_{ij}^{+y} \phi = \frac{\phi_{ij+1} - \phi_{ij}}{\Delta y} ; \quad D_{ij}^{-y} \phi = \frac{\phi_{ij} - \phi_{ij-1}}{\Delta y}.$$

An explicit, first-order scheme for the Hamilton-Jacobi equation reads:

$$\left\{ \begin{array}{l}
\forall i, j \in \mathbb{Z}, \quad \phi_{ij}^0 = \phi_0(i \Delta x, j \Delta y), \\
\forall n \in \mathbb{N}, i, j \in \mathbb{Z}, \quad \phi_{ij}^{n+1} = \phi_{ij}^n - \Delta t \mathcal{H} \left(x_{ij}, D_{ij}^{-x} \phi^n, D_{ij}^{+x} \phi^n, D_{ij}^{-y} \phi^n, D_{ij}^{+y} \phi^n \right),
\end{array} \right.$$

where the numerical Hamiltonian

$$\mathcal{H} \left(x_{ij}, D_{ij}^{-x} \phi^n, D_{ij}^{+x} \phi^n, D_{ij}^{-y} \phi^n, D_{ij}^{+y} \phi^n \right)$$

is intended as an approximation of $H(x_{ij}, \nabla \phi(x_{ij}))$.

Definition 5.

A numerical scheme of the above form is said to be:

- **consistent** if, for any \(x \in \mathbb{R}^2 \) and \(p \in \mathbb{R}^2 \), \(\mathcal{H}(x, p_x, p_x, p_y, p_y) = H(x, p) \).
- **monotone** if, for any \(x \in \mathbb{R}^2 \), and any \(i, j \in \mathbb{Z} \), the update function

 \[
 \{\phi_{kl}\}_{k,l \in \mathbb{Z}} \mapsto \phi_{ij} - \Delta t \mathcal{H} \left(x, D_{ij}^{-x} \phi, D_{ij}^{+x} \phi, D_{ij}^{-y} \phi, D_{ij}^{+y} \phi \right)
 \]

 is increasing with respect to each of its arguments.

Theorem 6.

Under mild, technical hypotheses on \(H \) and \(\phi_0 \), first-order consistent and monotone numerical schemes converge to the viscosity solution to \((HJ)\).
In the particular case of interest, \(H(x, p) = v(x)|p| \) and (HJ) reads:

\[
\left\{ \begin{array}{l}
\frac{\partial \phi}{\partial t} + v(x)|\nabla \phi| = 0 \quad \text{on } (0, T) \times \mathbb{R}^d \\
\phi(0, .) = \phi_0 \quad \text{on } \mathbb{R}^d
\end{array} \right.
\]

Consider the numerical scheme:

\[
\left\{ \begin{array}{l}
\forall n \in \mathbb{N}, i, j \in \mathbb{Z}, \quad \phi_{ij}^{n+1} = \phi_{ij}^n - \Delta t \left(\max(v_{ij}, 0)\nabla_{ij}^+ \phi^n + \min(v_{ij}, 0)\nabla_{ij}^- \phi^n \right) \\
\forall i, j \in \mathbb{Z}, \quad \phi_{ij}^0 = \phi_0(i\Delta x, j\Delta y)
\end{array} \right.
\]

with the discretizations \(\nabla_{ij}^+ \phi \) and \(\nabla_{ij}^- \phi \) of \(|\nabla \phi| \) defined by:

\[
\nabla_{ij}^+ \phi = \left(\max\left(\max(D_{ij}^{-x} \phi, 0), -\min(D_{ij}^{+x} \phi, 0) \right)^2 + \max\left(\max(D_{ij}^{-y} \phi, 0), -\min(D_{ij}^{+y} \phi, 0) \right)^2 \right)^{1/2},
\]

and

\[
\nabla_{ij}^- \phi = \left(\max\left(\max(D_{ij}^{+x} \phi, 0), -\min(D_{ij}^{-x} \phi, 0) \right)^2 + \max\left(\max(D_{ij}^{+y} \phi, 0), -\min(D_{ij}^{-y} \phi, 0) \right)^2 \right)^{1/2}.
\]
Sethian's first-order scheme (II)

- The quantity $\nabla_{ij}^+ \phi$ (resp. $\nabla_{ij}^- \phi$) is upwind (resp. downwind): it is a finite difference approximation of $|\nabla \phi|$ at x_{ij} based only on the values among $\{\phi_{i-1j}, \phi_{i+1j}, \phi_{ij-1}, \phi_{ij+1}\}$ which are smaller (resp. larger) than ϕ_{ij}.

- The discretization of the (exact) Hamiltonian $H(x, p) = v(x)|p|$ by the numerical one:

$$H(x_{ij}, \nabla \phi(x_{ij})) \approx \mathcal{H}_{ij}(\{\phi_{kl}^n\}_{k,l \in \mathbb{Z}}) := \max(v_{ij}, 0)\nabla_{ij}^+ \phi^n + \min(v_{ij}, 0)\nabla_{ij}^- \phi^n$$

is upwind: for given i, j, n, the update $\phi_{ij}^n \to \phi_{ij}^{n+1}$ is only carried out using information coming from smaller values than ϕ_{ij}^n if v_{ij} is positive, and larger values than ϕ_{ij}^n if it is negative.
Sethian’s first-order scheme (III)

- Sethian’s first-order scheme is consistent:

\[\forall x \in \mathbb{R}^d, \forall p = (p_x, p_y) \in \mathbb{R}^2, \quad \mathcal{H}(x, p_x, p_x, p_y, p_y) = v(x)|p|. \]

- It is monotone, provided the following CFL-like condition is fulfilled:

\[
\left(\sup_{i,j} v_{ij} \right) \frac{\Delta t}{\min(\Delta x, \Delta y)} \leq 1, \text{ i.e.}
\]

‘The information cannot travel more than one cell during one time step’.

- It is therefore convergent (under the CFL condition).

- In addition, the following error estimate can be proved between the numerical result \(\{\phi_{ij}\} \) of Sethian’s scheme, and the exact viscosity solution \(\phi(t, x) \):

\[\forall i, j \in \mathbb{Z}, \forall n \leq N, \quad |\phi_{ij}^n - \phi(t^n, x_{ij})| \leq C \sqrt{\Delta t} \]
Towards increased time accuracy

The time accuracy can be increased thanks to Runge-Kutta methodology, applied below, for simplicity, to the device of a second-order in time scheme.

1. An attempt step $\phi_{ij}^n \rightarrow \tilde{\phi}_{ij}^{n+1}$ is performed for the value of ϕ at time t^{n+1}, using the previous first-order scheme:

$$\tilde{\phi}_{ij}^{n+1} = \phi_{ij}^n - \Delta t \left(\max(v_{ij}, 0) \nabla^+_ij \phi^n + \min(v_{ij}, 0) \nabla^-_ij \phi^n \right).$$

2. Another attempt step $\tilde{\phi}_{ij}^{n+1} \rightarrow \tilde{\phi}_{ij}^{n+2}$ is performed for an approximation of the value of ϕ at t^{n+2}:

$$\tilde{\phi}_{ij}^{n+2} = \tilde{\phi}_{ij}^{n+1} - \Delta t \left(\max(v_{ij}, 0) \nabla^+_ij \tilde{\phi}_{ij}^{n+1} + \min(v_{ij}, 0) \nabla^-_ij \tilde{\phi}_{ij}^{n+1} \right).$$

3. The actual update $\phi_{ij}^n \rightarrow \phi_{ij}^{n+1}$ is obtained by averaging:

$$\phi_{ij}^{n+1} = \frac{1}{2} \phi_{ij}^n + \frac{1}{2} \tilde{\phi}_{ij}^{n+2}.$$
Towards increased space accuracy

- The space accuracy can be enhanced by using a higher order discretization of the derivatives of ϕ instead of the previous first-order formulae

\[
D_{ij}^{+x}\phi = \frac{\phi_{i+1j} - \phi_{ij}}{\Delta x} ; \quad D_{ij}^{-x}\phi = \frac{\phi_{ij} - \phi_{i-1j}}{\Delta x},
\]

and $D_{ij}^{-y}\phi$, $D_{ij}^{+y}\phi$.

- This discretization should take great care of the fact that ϕ may be singular in some regions of space.

- To achieve this, the idea of Essentially Non Oscillatory (ENO) finite differences consists in:

1. Constructing a (second-, third-order) polynomial approximation P of ϕ around the considered node x_{ij}, by using only information from the nodes around x_{ij} where ϕ is ‘smooth enough’.

2. Calculating $D_{ij}^{\pm x}\phi$, $D_{ij}^{\pm y}\phi$ as the derivatives of P.
• **Setting:** The real line \mathbb{R} is subdivided with a set of nodes $x_i = i\Delta x$, $i \in \mathbb{Z}$, and a numerical quantity $\{\phi_i\}_{i \in \mathbb{Z}}$ is defined at these nodes.

• Information about the derivatives of ϕ is approximated at several nodes around that of interest; for instance:

1st divided differences: $D_{i-1/2}^1 \phi = \frac{\phi_i - \phi_{i-1}}{\Delta x}$, $D_{i+1/2}^1 \phi = \frac{\phi_{i+1} - \phi_i}{\Delta x}$,

2nd divided differences: $D_i^2 \phi = \frac{D_{i+1/2}^1 \phi - D_{i-1/2}^1 \phi}{2\Delta x}$.
A polynomial $P(x)$ of degree e.g. 3 or 4 is fitted to the data by selecting some of these derivatives, so that $P(x)$ does not present too steep variations (which could account for a region of discontinuity of ϕ).

Different reconstructions of the data ϕ (black points) using different stencils; the blue reconstruction is polluted by the presence of a shock.
• Taking the derivative of P at x_i results in an explicit, high order formula for the derivative of the numerical quantity $\{\phi_i\}_{i \in \mathbb{Z}}$, with adaptive stencil.

• That the stencil may change from one evaluation of the derivatives of ϕ to another is undesirable:
 • The convergence analysis of ENO schemes is difficult,
 • This ‘lack of smoothness’ in the stencil selection procedure causes trouble in applications to hyperbolic PDE,
 • In practice, the stencil could change just because of round-off errors.

As a remedy, **Weighted ENO schemes (WENO)** feature a convex combination of several reconstruction formulae of the previous form (with different stencils), the weights of each particular reconstruction depending on the local smoothness of ϕ.
Other numerical methods

• Different techniques are needed when the computational support is a triangulation instead of a Cartesian grid, e.g.:

 • A generalization of the above concepts of consistency and monotonicity, paving the way for new rules for devising convergent schemes - see [Abgrall],

 • Stabilized (Petrov-Galerkin) Finite Element formulations for the Hamilton-Jacobi equations, where some quadratic terms are added to their variational formulation to penalize oscillations; see [Barth].

• Semi-Lagrangian schemes (see [Strain]) use the direction along which the information is conveyed by Hamilton-Jacobi equations, grossly speaking by backtracking the corresponding characteristic curves of the equation. This idea can be worked out whatever the computational support.
Part IV

Initializing Level Set functions
Introduction

Presentation of the level set method
- Implicit geometries
- Informal derivation of the Level Set equations
- A glimpse at the mathematical framework
- Initial value problems

The Level Set evolution equation

Initializing Level Set functions

Miscellaneities
- Operations within the Level Set framework
- Level Set redistancing
- A look at velocity extension
- The Narrow Band paradigm
Let $\Omega \subset \mathbb{R}^d$ be a (smooth, bounded) domain. We seek to construct an associated **Level Set function** $\phi : \mathbb{R}^d \to \mathbb{R}$.

There are ‘a lot’ of Level Set functions associated to a given domain Ω.

**Two Level Set functions for the domain $\Omega = (0, 1) \subset \mathbb{R}$.

The theoretical framework of the Level Set method is independent of which particular Level Set function is used.
Definition 7.

Let $\Omega \subset \mathbb{R}^d$ be a domain. The signed distance function d_Ω to Ω is defined as:

$$d_\Omega(x) = \begin{cases}
-d(x, \Gamma) & \text{if } x \in \Omega, \\
0 & \text{if } x \in \Gamma, \\
d(x, \Gamma) & \text{if } x \in c\Omega.
\end{cases}$$

where $d(\cdot, \Gamma)$ is the usual Euclidean distance function to Γ:

$$d(x, \Gamma) = \inf_{y \in \Gamma} |x - y|.$$

Remarks:

- d_Ω is Lipschitz continuous (easy exercise).
- From Rademacher’s theorem, it is almost everywhere differentiable.
- Wherever it makes sense, its gradient has unit norm:

$$|\nabla d_\Omega(x)| = 1 \text{ a.e. on } \mathbb{R}^d.$$
Initializing Level Set functions: the signed distance function (III)

Graphs of (left) one very steep Level Set function associated to a disk, (right) the signed distance function to the disk.
The Fast Marching algorithm

- The most celebrated method to calculate (signed) distance functions is the Fast Marching Method, introduced by Sethian in [SethianFMM].

- **Setting:**
 - Ω is a 2d domain, and the (unsigned) distance function $d(\cdot, \Gamma)$ is calculated on the outer domain $\mathbb{R}^d \setminus \overline{\Omega}$.
 - The plane is again equipped with a Cartesian grid, whose nodes are denoted $x_{ij} = (i\Delta x, j\Delta y)$, for $i, j \in \mathbb{Z}$.
 - The Fast Marching method produces, at each iteration $n = 0, \ldots$ a numerical quantity $\{T^n_{ij}\}_{i,j \in \mathbb{Z}}$, intended as an increasingly accurate approximation of $d(\cdot, \Gamma)$.

- The Fast Marching Method is a combination of two ingredients:
 - A numerical discretization of the Eikonal equation $|\nabla T| = 1$.
 - A marching procedure, giving an order for accepting values.
The marching procedure (I)

- The nodes x_{ij} of the grid are consistently parted into 3 categories:
 - The **accepted** nodes x_{ij} are those ‘where the front has already passed’. The value T^n_{ij} is assumed to have converged and is no longer updated.
 - The **active** nodes x_{ij} are those ‘on the front’. One of their 4 neighbors $x_{i-1j}, x_{i+1j}, x_{ij-1}$ or x_{ij+1} is accepted, and a first trial value T^n_{ij} has been computed, but may still be subject to updates.
 - The **far** nodes are those x_{ij} for which no trial value is available: $T^n_{ij} = \infty$.

- At each iteration $n \rightarrow n + 1$, the algorithm
 1. accepts one active node, that with the smallest trial value,
 2. redefines the set of active nodes (i.e. tags active those who are neighbor to the newly accepted node),
 3. calculates new trial values where need be, using the update procedure.
The marching procedure (II)

Setting of the Fast Marching Method

- accepted nodes
- active nodes
- far nodes
The local update

- At an iteration \(n \to n + 1 \), a temporary value \(\widetilde{T}^n_{ij} \) is calculated at each active node \(x_{ij} \), thanks to a discretization of the Eikonal equation:

\[
|\nabla T(x)| = 1.
\]

- The discretization is:

\[
\sqrt{\max \left(\max \left(\frac{\widetilde{T}^n_{ij} - T^n_{i-1j}}{\Delta x}, 0 \right), -\min \left(\frac{T^n_{i+1j} - \widetilde{T}^n_{ij}}{\Delta x}, 0 \right) \right)^2 + \max \left(\max \left(\frac{\widetilde{T}^n_{ij} - T^n_{ij-1}}{\Delta y}, 0 \right), -\min \left(\frac{T^n_{ij+1} - \widetilde{T}^n_{ij}}{\Delta y}, 0 \right) \right)^2} = 1.
\]

- This rule is upwind: only the accepted values within the set \(\{ T^n_{i-1j}, T^n_{i+1j}, T^n_{ij-1}, T^n_{ij+1} \} \) are used in the above formula.

- In the end, the new trial value \(T^{n+1}_{ij} \) is obtained as:

\[
T^{n+1}_{ij} = \min \left(\widetilde{T}^n_{ij}, T^n_{ij} \right).
\]
The Fast Marching algorithm

- **Initialization:**
 1. Compute the exact distance function at the nodes of the cells which intersect Γ, and mark them as accepted.
 2. Use the local update procedure to compute a trial value at the neighbor of the accepted points which are not accepted, and mark them as active.
 3. Mark all the remaining nodes as far, and assign them the value ∞.

- **Loop (while the set of active nodes is non empty):**
 1. Travel the set of active nodes, and identify the one with minimum trial value. This node becomes accepted.
 2. Identify the new set of active nodes, and compute a new trial value for each one of them, using the local update solver for the Eikonal equation.
• The method extends straightforwardly to general Eikonal equations:

\[c(x)|\nabla T(x)| = 1, \text{ where } c(x) > 0. \]

• *Computational cost:* The Fast Marching method requires \(O(M \log(M)) \) operations, where \(M \) is the number of nodes in the grid:

 • During every iteration, one value is accepted.
 • The only costly operation within one iteration consists in searching in the list of trial values which is the smallest.
 • In practice, a *heapsort algorithm* is used to make this search efficient - in \(O(\log(\tilde{M})) \), where \(\tilde{M} \) is the number of trial values.

• Under mild hypotheses, one may prove that the Fast Marching algorithm converges to the solution to the Eikonal equation.
The Fast Marching method extends fairly straightforwardly to the case of a Cartesian grid in $3d$.

It can also be extended (with some adjustments) to the cases of:

- A triangular mesh of the computational domain in \mathbb{R}^2,
- A triangulated surface embedded in \mathbb{R}^3,
- A tetrahedral mesh in \mathbb{R}^3.

Other algorithms are available to calculate (signed) distance functions, e.g. the Fast Sweeping method [Zhao].
Part V

Miscellanies
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
• We have just seen how well-adapted the Level Set framework is when it comes to describing the evolution of a domain $\Omega(t)$, however dramatic (even if it involves topological changes).

• On the other hand, several operations to be performed on $\Omega(t)$ may be difficult to carry out in this implicit framework, since $\Omega(t)$ is not explicitly discretized.
 ⇒ Need for numerical tricks to perform these operations.

• In addition, several complementary features make it possible to substantially improve the performance of the Level Set method.
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneaies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
Operations within the Level Set framework (I)

Evaluation of the normal vector, or the curvature of a domain.

Let $\Omega \subset \mathbb{R}^d$ be a domain, ϕ be an associated Level Set function.

- The normal vector $n(x)$ to Γ, pointing outward Ω, is approximated as:

 $$ n(x) \approx \frac{\nabla \phi(x)}{\sqrt{|\nabla \phi(x)|^2 + \varepsilon^2}}, \text{ for some } \varepsilon \ll 1. $$

This formula is discretized depending on the computational support, e.g.:

- using standard first-order finite differences, or a higher-order ENO approximation on a Cartesian grid,
- using \mathbb{P}^1 interpolation on a triangular mesh.

- The mean curvature κ of Γ is approximated as:

 $$ \kappa(x) \approx \text{div} \left(\frac{\nabla \phi(x)}{\sqrt{|\nabla \phi(x)|^2 + \varepsilon^2}} \right). $$
Evaluation of integrals on Ω or Γ.

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a smooth function; we aim to calculate $I = \int_{\Omega} f(x) \, dx$.

- We first devise an approximate characteristic function of Ω:
 \[\forall x \in \mathbb{R}^d, \quad \chi_\Omega(x) \approx H_\varepsilon(\phi(x)), \text{ where } H_\varepsilon(t) := \frac{1}{2} \left(1 - \frac{t}{\sqrt{t^2 + \varepsilon^2}} \right). \]

- The resulting approximation of I reads:
 \[I \approx \int_{\mathbb{R}^d} f(x) H_\varepsilon(\phi(x)) \, dx. \]

Approximation H_ε (in red) of the characteristic function of $(-\infty, 0)$ (in blue).
Let $g : \mathbb{R}^d \to \mathbb{R}$ be a smooth function; we aim to calculate $J = \int_{\Gamma} g(x) \, ds$.

- We rely on an approximation of the surface measure distribution δ_{Γ} on Γ:

$$\forall \varphi \in C_c^\infty(\mathbb{R}^d), \quad \langle \delta_{\Gamma}, \varphi \rangle = \int_{\Gamma} \varphi \, ds.$$

- A use of Green’s formula reveals that, in the sense of distributions:

$$\delta_{\Gamma} = - \frac{\partial \chi_{\Omega}}{\partial n} \approx - \frac{\partial}{\partial n}(H_\varepsilon(\phi)).$$

- The resulting formula for the calculation of J is:

$$J \approx - \int_{\mathbb{R}^d} \frac{\partial}{\partial n}(H_\varepsilon(\phi(x))) \ g(x) \, dx.$$
Algebraic operations over sets.

Let $\Omega, \Omega_1, \Omega_2 \subset \mathbb{R}^d$ be domains, and ϕ, ϕ_1, ϕ_2 be associated Level Set functions.

- A Level Set function ϕ_c for the complement $c\Omega$ of Ω is:
 \[\phi_c = -\phi. \]

- A Level Set function ϕ_u for the union $\Omega_1 \cup \Omega_2$ is:
 \[\phi_u = \min(\phi_1, \phi_2). \]

- A Level Set function ϕ_i for the intersection $\Omega_1 \cap \Omega_2$ is:
 \[\phi_u = \max(\phi_1, \phi_2). \]
Solving PDE on the domain Ω.

Consider the typical situation:

- A domain Ω lies in a computational box D, which is equipped with a mesh \mathcal{T}.
- Ω is solely known via a Level Set function ϕ defined on \mathcal{T}.
- Our aim is to solve the PDE:

\[
\begin{cases}
-\text{div}(a\nabla u) + u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial n} = 0 & \text{on } \Gamma.
\end{cases}
\]

A domain Ω, included in the computational box D, equipped with a Cartesian grid.

No mesh of Ω is available.
Solving PDE on the domain Ω (continued).

- **Idea:** Approximate u with a function u_ε, solution to a PDE posed on D.
- For instance, let $u_\varepsilon \in H^1(D)$ be the solution to the system:

\[
\begin{cases}
-\text{div}(c_\varepsilon a \nabla u) + c_\varepsilon u = c_\varepsilon f & \text{in } D, \\
\frac{\partial u}{\partial n} = 0 & \text{on } \partial D,
\end{cases}
\]

where $c_\varepsilon(x) = \begin{cases} 1 & \text{for } x \in \Omega, \\ \varepsilon & \text{for } x \in D \setminus \Omega \end{cases}$.

In other words,

*The void $D \setminus \overline{\Omega}$ is filled with a material of very small conductivity $\varepsilon \ll 1$."

- It is possible to prove that:

\[
\|u - u_\varepsilon\|_{H^1(\Omega)} \xrightarrow{\varepsilon \to 0} 0.
\]

- The function u_ε can be calculated as an approximation of u by solving the corresponding PDE on D.
Introduction

Presentation of the level set method
- Implicit geometries
- Informal derivation of the Level Set equations
- A glimpse at the mathematical framework
- Initial value problems

The Level Set evolution equation

Initializing Level Set functions

Miscellaneies
- Operations within the Level Set framework
- Level Set redistancing
- A look at velocity extension
- The Narrow Band paradigm
We have highlighted the importance, in practice, that the Level Set function $\phi(t, \cdot)$ of $\Omega(t)$ stay 'close' to a signed distance function for $t \geq 0$.

Unfortunately, even if the initial Level Set function ϕ_0 is a signed distance function, $\phi(t, \cdot)$ is bound not to stay so.

In practice, it is a very important feature to restore periodically ϕ to a signed distance function.

One could simply generate the signed distance function, e.g. by using the Fast Marching Method.

However, the situation is pretty different from that of the initialization: we have one Level Set function at hand; it would be a shame not to exploit this fact.
• Let $\Omega \subset \mathbb{R}^d$ be a domain, ϕ_0 be an associated Level Set function (with possibly very steep, or flat variations).

• ϕ_0 is used as the initial state of the redistancing equation:

$$\left\{ \begin{array}{l}
\frac{\partial \psi}{\partial t}(t, x) + \text{sgn}(\phi_0(x)) \left(|\nabla \psi| - 1 \right) = 0 \quad \text{for } (t, x) \in (0, \infty) \times \mathbb{R}^d \\
\psi(0, x) = \phi_0(x) \quad \text{for } x \in \mathbb{R}^d
\end{array} \right..$$

• Formally, the steady state $\tilde{\psi}$ of this equation satisfies

$$|\nabla \tilde{\psi}| - 1 = 0, \text{ and } \tilde{\psi}(x) = 0 \text{ on } \Gamma.$$

• A study of this equation reveals that ϕ_0 is steadily ‘regularized’ into the signed distance function d_Ω, starting from Γ, to the region far from Γ.
Level Set redistancing (III)
Practical use:

- In the numerical resolution of the Level Set equation

\[
\begin{align*}
\frac{\partial \phi}{\partial t} + v |\nabla \phi| &= 0 \quad \text{on } (0, T) \times \mathbb{R}^d, \\
\phi(t = 0, \cdot) &= \phi_0 \quad \text{on } \mathbb{R}^d,
\end{align*}
\]

periodically interrupt the process (say, every 4-5 iterations).

- At a corresponding time \(t^n \), solve the redistancing equation:

\[
\begin{align*}
\frac{\partial \psi}{\partial t} (t, x) + \text{sgn}(\phi(t^n, x)) (|\nabla \psi| - 1) &= 0 \quad \text{for } (t, x) \in (0, \infty) \times \mathbb{R}^d \\
\psi(0, x) &= \phi(t^n, x) \quad \text{for } x \in \mathbb{R}^d
\end{align*}
\]

over a short period of time \((0, t^*)\), using a numerical scheme in the spirit of those presented above.

- Trade \(\phi(t^n, \cdot) \) for \(\psi(t^*, \cdot) \), and resume the resolution of the Level Set equation.
1 Introduction

2 Presentation of the level set method
 - Implicit geometries
 - Informal derivation of the Level Set equations
 - A glimpse at the mathematical framework
 - Initial value problems

3 The Level Set evolution equation

4 Initializing Level Set functions

5 Miscellaneies
 - Operations within the Level Set framework
 - Level Set redistancing
 - A look at velocity extension
 - The Narrow Band paradigm
• The Level Set method requires $V(t, x)$ to be defined on the whole ambient space \mathbb{R}^d (actually, a narrow band around $\Gamma(t)$ is enough).

• Unfortunately, in many applications, $V(t, x)$ only makes sense for $x \in \Gamma(t)$, e.g. when it involves the normal vector $n_t(x)$, the mean curvature $\kappa_t(x)$, etc.

• Actually, even when $V(t, x)$ can be ‘naturally’ extended outside $\Gamma(t)$, this extension is often ill-suited, e.g. it anticipates the stretching of the Level Set function $\phi(t, x)$.

• On the contrary, there is a great latitude on how to extend $V(t, x)$ for $x \notin \Gamma(t)$; the only strong requirement is that it should coincide with $V(t, x)$ on $\Gamma(t)$.

• We present two possibilities to achieve this velocity extension, with competing assets.
Normal extension of the velocity field (I)

- This extension ‘alleviates’ the need for redistancing the Level Set function.
- **Heuristic motivation:** Assume that, for all $t \geq 0$, the solution $\phi(t, \cdot)$ to the equation with a (everywhere defined) normal velocity v

$$\frac{\partial \phi}{\partial t}(t, x) + v(t, x)|\nabla \phi(t, x)| = 0$$

is the signed distance function to $\Omega(t)$; a formal calculation yields:

$$0 = \frac{\partial}{\partial t} (|\nabla \phi|^2) = -2|\nabla \phi|\nabla \phi \cdot \nabla v - 2v \nabla \phi \cdot \nabla (|\nabla \phi|) = -2 \nabla \phi \cdot \nabla v \text{ on } \mathbb{R}^d.$$

- Hence, a necessary condition for $\phi(t, \cdot)$ to stay a signed distance function when the extension v_{ext} of a field v defined only for $x \in \Gamma(t)$ is used reads:

$$\nabla v_{\text{ext}}(t, x) \cdot \nabla \phi(t, x) = 0,$$

i.e. at any $t \geq 0$, $v_{\text{ext}}(t, \cdot)$ is constant along the (extended) normal n_t.
• **Numerical setting:**

1. The time interval \((0, T)\) is divided into subintervals \((t^n, t^{n+1})\), where \(t^n = n\Delta t\),

2. The Level Set equation is solved on each interval \((t^n, t^{n+1})\) with initial data \(\phi^n := \phi(t^n, \cdot)\), and velocity field \(v^n := v(t^n, \cdot)\).

• One method to stick with the previous observations is the following, at every stage \(t^n\) of the Level Set process:

1. Calculate the signed distance function \(d_{\Omega}^n\) to \(\Omega^n\).

2. Calculate \(v_{\text{ext}}^n\) as the solution to:

\[
\begin{cases}
\nabla v_{\text{ext}}^n \cdot \nabla d_{\Omega}^n = 0 & \text{in } \mathbb{R}^d \setminus \Gamma(t^n) \\
 v_{\text{ext}}^n = v^n & \text{on } \Gamma(t^n).
\end{cases}
\]
PDE-based extension of the velocity field

- Let Ω be a domain, $v : \Gamma \rightarrow \mathbb{R}$ be a (scalar) velocity field, to be extended into v_{ext}, defined on a larger computational domain D.

- **One possibility:** Search for the solution $v_{\text{ext}} \in H^1(D)$ to the equation:

$$
\begin{cases}
-\alpha \Delta v_{\text{ext}} + v_{\text{ext}} = 0 & \text{in } D, \\
v_{\text{ext}} = v & \text{on } \partial \Omega.
\end{cases}
$$

- α is a ‘small’ diffusion parameter, controlling the degree of smoothing in v_{ext} which is intrinsically ‘regular’ ($v_{\text{ext}} \in H^1(D)$).

- **Other possibilities:** the constraint $v_{\text{ext}} = v$ on Γ may be dropped. This could be unacceptable in some situations, but prove very useful in others.
Introduction

Presentation of the level set method
- Implicit geometries
- Informal derivation of the Level Set equations
- A glimpse at the mathematical framework
- Initial value problems

The Level Set evolution equation

Initializing Level Set functions

Miscellaneies
- Operations within the Level Set framework
- Level Set redistancing
- A look at velocity extension
- The Narrow Band paradigm
The Narrow Band paradigm (I)

- In capturing the evolution of a domain $\Omega(t)$ by that of an associated Level Set function $\phi(t, x)$, only the region of space which is near the 0 level set $\Gamma(t)$ is of interest.

- Hence, all the operations associated to the practice of the Level Set method, namely:
 - The initialization of a Level Set function for the domain $\Omega(0)$,
 - The occasional redistancing of the Level Set function $\phi(t, \cdot)$ when it has become too ‘steep’,
 - The resolution of the Level Set evolution equation,
 - The velocity extension procedure,

 can be restricted to a narrow band around $\Gamma(t)$.

- This allows to substantially decrease the CPU time of the process.
The Narrow Band setting: a tube of ‘close’ points is maintained around $\Gamma(t)$.
The Narrow Band paradigm (III)

In practice,

- A narrow band B of close points is initialized around the boundary $\Gamma(0)$, e.g. as a tube of k elements around $\Gamma(0)$.

- At every iteration $n \rightarrow n + 1$, an attempt step is carried out:

 $$\forall i, j \in \mathbb{Z} \text{ s.t. } x_{ij} \in B, \quad \{\phi^n_{ij}\} \mapsto \{\phi^{n+1}_{ij,\text{temp}}\},$$

 i.e. the Level Set evolution equation is solved only at the close points, (special attention must be paid to the calculation of derivatives at the points near the border of B).

- If the new front $\Gamma(t^{n+1})$ is still inside B, accept the iteration; this can be checked from the signs of the ϕ_{ij}, for nodes x_{ij} near the border of B.

- Else, return to step n, reinitialize a narrow band B around $\Gamma(t^n)$, and retry the iteration $n \rightarrow n + 1$.

References

Numerical references

