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GENERAL DESCRIPTION

Introduction. In mathematics it is often convenient to consider whole classes
of objects instead of single objects. This point of view is justified by the exis-
tence of transformation groups, which carry different objects into one another
and define equivalence relations between them. If we are able to find a simple
canonical object in each orbit and to investigate the properties of these concrete
objects, then we can describe also any other object on the corresponding orbits.
The search for canonical forms and their classification is a problem that is very
often encountered in mathematics.

The group of transformations in optimal control is the feedback group. Finding
canonical forms with respect to the feedback group and their classification is a
problem that has been investigated by many authors.

Brunovský [1] has classified the class of linear systems with respect to the
feedback group and introduced a corresponding canonical form, the Brunovský
form. Later this problem was investigated by many authors (see e.g. [2],[3]), and
was reduced to a purely algebraic finite-dimensional problem.

The feedback group of nonlinear systems is infinite-dimensional, which makes
a classification considerably more difficult (see e.g. [4] or the survey [5]). A
related problem is the stabilization of equilibrium points by dynamic feedback
(see e.g. the survey [6]). An important problem is the identification of the orbits
of linear systems, i.e. the description of those systems which can be linearized by
a feedback transformation. A local linearizability criterion is given by an infinite
number of algebraic conditions on the Lie brackets of the involved vector fields
(see e.g. [7]).

1Brunovský P. A classification of linear controllable systems. Kybernetika (Praha) 6 (1970), 173-187.
2Brockett R.W. Some geometric questions in the theory of linear systems. IEEE Trans. Aut. Contr., AC-21

(1976), no.4, 449-455.
3Wang S.H., Davison E.J. Canonical forms of linear multivariable systems. SIAM J. Control Optimization 14

(1976),no.2, 236-250.
4Tchoń K. On normal forms of affine systems under feedback. New Trends in Nonlinear Control Theory. Proc.

Conf., Nantes 1988, Lecture notes in Control and Information Sciences 122, Springer, Berlin, 1989, 23-32.
5Jakubczyk B. Equivalence and invariants of nonlinear control systems. Nonlinear controllability and optimal

control, 177-218. Monographs and Textbooks Pure Appl. Math. 133, Dekker, NY, 1990.
6Sontag E.D. Feedback stabilization of nonlinear systems. Progress in Systems and Control Theory 4, Robust

Control of Linear Systems and Nonlinear Control, Proceedings of the International Symposium MTNS-89, Vol.
II, ed. Kaashoek M.A., van Schuupen J.H., Ran A.C.M., Birkhäuser, 1990, 61-82.

7Krener A.J. On the equivalence of control systems and the linearization of nonlinear systems. SIAM Journal
on Control 11 (1973), 670-676.
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In order to avoid checking an infinite number of conditions the notion of ap-
proximate feedback group was introduced. This is a transformation group which
takes nonlinear systems into one another while neglecting terms of orders higher
than a specified number. Equivalence criteria with respect to the approximate
feedback group were found by Krener (see e.g. survey [8]). These criteria amount
to a finite number of conditions on the jets of order equal to the order of the
feedback group.

The action of the approximate feedback group on the space of jets was inves-
tigated by Tchoń (see e.g. [9]). He showed that it boils down to the action of
a finite-dimensional Lie group. Kang and Krener investigated normal forms of
systems with respect to the action on second order jets [10].

If the set of admissible controls is a polyhedron, then the set of admissible
phase velocities is the convex hull of a finite number of vector fields. Hence the
subgroup of the feedback group which preserves the set of admissible controls acts
in the same way as the group of diffeomorphisms acts on finite families of vector
fields. This issue was investigated by many authors. Bogdanov (see [11],[12])
investigated the action of diffeomorphism groups of different smoothness classes
on a vector field in the plane. A thorough classification of pairs of vector fields in
the plane was done by Davydov in [13]. The case of more than two vector fields
is considered as well. A related problem is the classification of distributions,
which was investigated e.g. in [14].

Many authors obtained classifications of different classes of optimal control
systems in the plane. Baitman [15] investigated time-optimal control systems.

Recently Bressan and Piccoli obtained a complete topological classification
of optimal syntheses of such systems in the vicinity of a singular point of the
drift vector field [16]. Jacubczyk and Respondek classified planar systems with
unrestricted control with respect to the action of the feedback group and the
weak feedback group [17]. The weak feedback group includes diffeomorphisms

8Krener A.J. Feedback linearization. Mathematical control theory, 66-98, Springer, NY, 1999.
9Tchoń K. On approximate feedback equivalence of affine control systems. Internat. J. Contr. 44 (1986), no.1,

259-266.
10Kang W., Krener A.J. Extended quadratic controller normal form and dynamic state feedback linearization

of nonlinear systems. SIAM Journal on Control and Optimization 30 (1992), no.6, 1319-1337.
11Bogdanov R.I. On the singularities of vector fields on the plane. Functional analysis and applications 11

(1977), no. 4, 72-73 (in Russian).
12Bogdanov R.I. Singularities of vector fields on the plane with pointed direction. Invent. Math. 54 (1979),

no.3, 247-259.
13Davydov A.A. Qualitative theory of Control Systems. Providence, RI, 1991. (Translations of Mathematical

Monographs, Vol. 141).
14Zhitomirskii M.Ya., Respondek W. Simple germs of corank one affine distributions. Singularities Symposium

—  Lojasiewicz 70 (Kraków, 1996; Warsaw, 1996), 269-276, Banach center Publ. 44, Polish Acad. Sci., Warsaw,
1998.

15Baitman M.M. Switching curves on the plane. Differential equations 14 (1978), no.9, 1539-1551 (in Russian).
16Bressan A., Piccoli B. Structural stability for time-optimal planar syntheses. Dynam. Contin. Discr. Impuls.

Syst. 3 (1997), no.3, 335-371.
17Jakubczyk B., Respondek W. Feedback classification of analytic control systems in the plane. Analysis of
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of the phase space and feedback transformations as well as monotonic changes
of the time scale.

Such systems occur e.g. in population dynamics. The uncontrolled system is of
Volterra-Lottka type, while the control is unilateral. Systems with drift vector
fields containing singularities of focus type and with integral cost functionals
were considered in [18],[19]. In [18] we considered a mathematical pendulum
which had to be brought to rest by application of a unilateral bounded force,
while the mean-squared deviation from the equilibrium had to be minimized. In
this work we considered Volterra-Lottka systems as well. In [19] systems from
population dynamics with time-dependent cost were considered. In this thesis
we investigate generic autonomous systems.

In §2.3 of this thesis we prove an assertion on the structure of a homeomor-
phism in the neighbourhood of a hyperbolic fixed point. Although it plays an
auxiliary role in this thesis, it is itself an independent result.

In the literature there are basically three approaches to the problem of de-
scribing hyperbolic fixed points of diffeomorphisms. A classical result due to
Poincaré [20] establishes sufficient linearizability conditions on the eigenvalues
of the linear part of an analytic system of ODE. His idea was to compute the
Taylor series expansion of the linearizing diffeomorphism in dependence of the
Taylor series expansion of the vector field on the right-hand side of the ODE. The
above-mentioned conditions guarantee convergence of this series. As a special
case Poincaré proved that a planar system of ODE has a stable and an unstable
invariant submanifold in the neighbourhood of a hyperbolic singular point, and
that these submanifolds are analytic.

Hadamard [21] proposed another approach. He considered the stable and
the unstable submanifolds as graphs of functions, which are fixed points with
respect to the graph transformation induced by the diffeomorphism in question.
It appears that this graph transformation is contracting in a suitably chosen
metric space. This allows to apply Banach’s fixed point theorem to prove the
existence of these submanifolds. On one hand, Hadamard’s approach allowed to
treat also diffeomorphisms of finite smoothness classes. On the other hand, it
only guaranteed that the submanifolds are Lipschitzian.

A third approach was proposed by Perron [22]. He constructed an functional

controlled dynamical systems (Lyon, 1990), 263-273. Progr. Systems Control Theory 8, Birkhäuser Boston,
Boston, MA, 1991.

18Zelikin M.I., Zelikina L.F., Hildebrand R. Asymptotics of optimal synthesis for one class of extremal problems.

Proceedings of Steklov Mathematical Institute, 233 (2001), 87-115.
19Mesterton-Gibbons M. On the optimal policy for combining harvesting of predator and prey. Natur. Resource

Model. 3 (1988), 63-90.
20Poincaré H. Œvres, Vol. I, 1928, 202-204
21Hadamard J.S. Sur l’itération et les solutions asymptotiques des équations différentielles. Bulletin de la

Sociéte mathématique de France, 1901
22Perron O. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen.

Mathematische Zeitschrift 29 (1929), 129-160 (in German)
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identity for the functions defining the invariant submanifolds.
In the thirties Petrovsky [23] proved that continuous differentiability of the

systems’s right-hand side implies continuous differentiability of the invariant
submanifolds in the neighbourhood of a hyperbolic point.

In the fifties Sternberg [24] showed the existence of invariant submanifolds
for homeomorphisms in the plane which are differerentiable in the hyperbolic
singular point but only satisfying a certain Lipschitz condition elsewhere. For
the case of diffeomorphisms he showed that the invariant submanifolds will be of
the same smoothness class as the diffeomorphism. The proof of existence used
the method of Hadamard, while the proof of smoothness used the method of
Poincaré. Moreover, he developed a method [25] which allowed to reduce the
investigation of a system of ODE to the case of a diffeomorphism.

In §2.3 of this thesis we consider homeomorphisms on the plane, which derive
from a system of ODE with asymptotics |ẋ| = O(|x| ln |x|) as x approaches the
origin. Thus the right-hand side of the system is not differentiable in the singular
point. We show that certain conditions, which in some sense are hyperbolicity
conditions on the singular point, imply the existence of invariant manifolds.
Moreover, these manifolds possess the same smoothness class as the right-hand
side of the system in a punctured neighbourhood of the singular point. this
was accomplished using the method of Hadamard. We show also that if we
can transform the homeomorphism to an analytic mapping by a (non-smooth)
coordinate transformation of a certain kind, then the invariant manifolds will be
analytic in the original system of coordinates. To prove this we used the method
of Poincaré.

Main results. The main results of the thesis include the following.

i) We solved the planar optimal control problem in the neighbourhood of a
singularity of focus type for autonomous systems which are affine in a scalar
bounded unilateral control.

ii) We described the transformation group for this class of systems, defined
a canonical form for each orbit and classified these canonical forms with
respect to the topological structure of the optimal synthesis.

iii) We found the critical parameter values where bifurcations of the system
occur.

23Petrovsky I.G. On the behaviour of integral curves of a system of differential equations in the neighbourhood

of a singular point. Mat. Sb. (new series) 41 (1934)
24Sternberg S. On the behaviour of invariant curves near a hyperbolic point of a surface transformation. Amer-

ican Journal of Mathematics 77 (1955), 526-534
25Sternberg S. Local contractions and a theorem of Poincaré. American Journal of Mathematics 79 (1957),

809-824
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iv) We proved a theorem on the existence and smoothness of invariant submani-
folds of a homeomorphism in the neighbourhood of a degenerated hyperbolic
fixed point.

Item i) helps also to clarify the occurrence of chattering in systems where the
singular control assumes values on the boundary of the admissible set.

Structure. The thesis consists of an introduction and 4 chapters.

CONTENTS

In the introduction we give on overview over the literature and define the
class of systems that are investigated in the thesis. We consider planar systems
given by

ẋ = A(x) + B(x)u; x ∈ U ⊂ R2, u ∈ [0, 1], lim
t→+∞

x(t) = x̃. (1)

The control u(t) is to be chosen as a measurable function in order to minimize
the cost functional

J =
∫ ∞

0
(F (x) + uG(x)) dt → min . (2)

The point x̃ is the terminal manifold, while U is a neighbourhood of x̃. A, B

are vector fields and F, G are scalar functions. We consider two cases, namely
when these objects belong to the smoothness classes C3 and Cω, respectively.
The drift vector field A is singular in x̃, A(x̃) = 0. The singularity is of focus
or centre type, i.e. the Jacobian ∂A

∂x
(x̃) has complex conjugated eigenvalues. The

vector field B is non-zero in the neighbourhood of x̃. The scalar function F and
its gradient vanish at x̃. The function G also vanishes at x̃. The admissible
trajectories x(t) are supposed not to leave the neighbourhood U .

The first chapter deals with the symmetry group of the class of systems
defined by (1),(2). We show that this group, let us denote it by G, is generated
by four subgroups ∆, Ξ, Λ, R. Here ∆ is the group of diffeomorphisms in the
plane. Ξ is the group of canonical (with respect to the Hamiltonian structure)
transformations of the extended phase space which leave the projection on the
phase space and the affine structure with respect to the control invariant. The
subgroup Λ includes monotonic changes of the time scale, while R corresponds
to multiplication of the cost function by positive constants.

Proposition: Any element g ∈ G possesses a unique decomposition g =
D ◦ ξ ◦ λ ◦ r, where D ∈ ∆, ξ ∈ Ξ, λ ∈ Λ, r ∈ R.

The action of the group G on the jet space at x̃ of the 4-tuple of functions
A, B, F, G was investigated.

Proposition: The action of G on the 11-dimensional jet space P = J1A ×

J0B × J2F × J1G induces the action of a 9-dimensional Lie group.
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We identified canonical forms in the orbits of the symmetry group for the
smoothness classes C3 and Cω. Let a = ∂A

∂x
(x̃), b = B(x̃), f = ∂2F

∂x2 (x̃), g = ∂G
∂x

(x̃)
be coordinates on the jet space P . Then the canonical forms are described by
the following proposition.

Proposition: Let q = (a, b, f, g) ∈ P . Then there exists an element g ∈ G

such that the point g(q) = q̂ = (â, b̂, f̂ , ĝ) ∈ P satisfies the conditions

â =





∗ 1
−1 0



 ; b̂ =





1
0



 ; f̂12 = 0, f̂ 2
11 + f̂ 2

22 ∈ {0, 1}; ĝ = 0. (3)

The value of â11 depends only on the matrix a and lies in the interval (−2, 2).
Let us denote by Q∗ the set of orbits in P which satisfy f̂ 2

11 + f̂ 2
22 = 1.

Proposition: Q∗ is homeomorphic to the product R × S1.
We found a complete set of invariants, denoted by α, φ, which parameterize

Q∗. If the values of these parameters pass through certain critical values, then
bifurcations of the optimal synthesis occur.

The second chapter deals with the classification of systems of smoothness
class C3. The set Q∗ appears to contain three open sets Q1, Q2, Q3, whose union
is dense in Q∗. There exist two different topological types of optimal synthesis
which correspond to the sets Q1, Q2. If (α, φ) lies in Q3 then no optimal synthesis
exists.

In §2.1 we derive necessary and sufficient conditions for the existence of an
optimal synthesis for system (1),(2).

Proposition: Suppose there exists a number T∗ > 0, a point x∗ ∈ U and a
measurable function u∗ : [0, T∗] → [0, 1] such that the trajectories of the system

ẋ(t) = A(x(t)) + B(x(t))u∗(t), x(0) = x∗

do not leave the neighbourhood U . Suppose further that x(T∗) = x(0) = x∗ and
∫ T∗
0 (F + u∗G) dt < 0. Then the optimal control problem (1),(2) has no solution.

The inverse is also true.
Proposition: Suppose that for some point x0 ∈ U (and thus for any point

in U) there exist a sequence of controls {un(t)} and numbers {Tn} such that the
corresponding trajectories xn(t) with initial value xn(0) = x0 satisfy

xn(Tn) = x̃, lim
n→∞

∫ Tn

0
(F (xn(t)) + un(t)G(xn(t))) dt = −∞.

Then there exists a closed trajectory l, either homeomorphic to S1 or to a single
point, and a corresponding admissible control u∗(t) such that the travel time of
the system with control u∗(t) along l is finite and

∮

l (F + uG) dt < 0.
In §2.2 we prove a number of auxiliary lemmas, which facilitate further cal-

culations.

6



In §2.3 we prove several assertions on the existence and smoothness of invari-
ant submanifolds in the neighbourhood of a degenerated hyperbolic fixed point
of a diffeomorphism in the plane.

Theorem: Let M = {(x, y) |x ∈ (0, c], y ∈ [a, b]} ⊂ R2 be a rectangular
subset of the plane, where c > 0, a < b are real numbers. Suppose f = (fx, f y) :
M → R+ × [a, b] is differentiable and that

lim
x→0

fx(x, y) = 0 ∀ y ∈ [a, b].

Assume further that there exists a constant L > 0 such that

fx
x ≥ 1 + L‖fx

y ‖,
|f y

x |

fx
x

< L(1 − L‖fx
y ‖ − ‖f y

y ‖).

Here the norm is the C0-norm. Upper indices denote the components of f ,
lower indices denote partial derivatives. Then there exists a unique continuously
differentiable function γ : (0, c] → [a, b] which is Lipschitzian with constant L,
such that its graph Γ(γ) = {(x, γ(x)) |x ∈ (0, c]} ⊂ M is invariant under the
mapping f .

In §2.4 the singular trajectories of the system are investigated. The critical
values of the parameters α, φ, where bifurcations of the optimal synthesis occur,
are computed.

In §2.5 we investigate the smooth Hamiltonian systems in extended phase
space which correspond to the extremal control values 0 and 1, in particular
their variational equations.

In §2.6 the optimal synthesis for parameter values in the set Q1 is described.
It contains a one-dimensional singular trajectory.

Theorem: Let (α, φ) ∈ Q1 and suppose conditions (3) hold. Without loss
of generality suppose x̃ = 0. Then the optimal synthesis for the optimal control
problem (1),(2) exists in the neighbourhood of x̃ and has the following structure.
In the 3-rd orthant there exists a singular trajectory of order 1, in the 1-st orthant
there exists a switching curve from control u = 1 to control u = 0. Both curves
are transversal to the coordinate axes and join at the point x̃. This point is also
a singular trajectory of order 1. There exists a unique trajectory γ− that reaches
x̃ in finite time. Any other trajectory reaches the singular trajectory in finite
time and then follow this trajectory. The latter approaches x̃ asymptotically in
infinite time.

In §2.7 the optimal synthesis for parameter values in the set Q2 is described.
It can be characterized as chattering stretched to an infinite time interval. The
(nontrivial) critical parameter values on the common boundary of the sets Q2

and Q3 are computed.
Theorem: Let (α, φ) ∈ Q2 and suppose conditions (3) hold. Without loss

of generality suppose x̃ = 0. Then the optimal synthesis for the optimal control
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problem (1),(2) exists in the neighbourhood of x̃ and has the following structure.
In the second orthant there exists a switching curve from u = 0 to u = 1, in the
first orthant a switching curve from u = 1 to u = 0. Both curves are transversal
to the coordinate axes and join at the point x̃. This point is also a singular
trajectory of order 1. The trajectories of the system turn around x̃, alternately
intersecting the switching curves and changing control. The distance to x̃ and the
duration of time intervals with optimal control u = 1 decrease exponentially with
each turn, approaching asymptotically a geometric progression. The duration of
time intervals with optimal control u = 0 tends to a positive constant.

The third chapter deals with the bifurcation of the optimal synthesis corre-
sponding to the common boundary of the sets Q1 and Q2. All analytic systems
with parameter values α, φ on this boundary are classified. It was established
that there exists an intermediate type of optimal synthesis, which contains a
dispersion curve. Necessary and sufficient conditions on the functions A, B, F, G

are found for the realization of the different types of optimal synthesis which
occur on this boundary.

In §3.1 a number of auxiliary lemmas is proven.
In §3.2 we investigate the region in parameter space which corresponds to an

optimal synthesis with a one-dimensional singular trajectory. In this case the
optimal synthesis has the following structure.

In the third orthant there exists a singular trajectory γ, which reaches x̃ in
finite time. The axis Ox1 is tangent to γ. In the first orthant there exists a
switching curve ρ10 from u = 1 to u = 0. This curve is located transversally to
the axes and joins with γ at x̃. Any trajectory that leaves ρ10 reaches γ in finite
time. The remaining part of the neighbourhood U is filled with trajectories where
the control u = 1 is optimal. These trajectories reach either ρ10 or γ in finite
time, except one, which reaches directly the terminal point x̃.

In §3.3 we investigate the region in parameter space that corresponds to
the chattering stretched to an infinite time interval. In this case the optimal
synthesis has the following structure.

In the second orthant there exists a switching curve ρ01 from u = 0 to u = 1.
In the first orthant there exists a switching curve ρ10 from u = 1 to u = 0.
Both curves join at the origin x̃. The curve ρ10 is transversal to the axes, while
ρ01 is tangential to the axis Ox1. The trajectories of the system turn around x̃,
alternately intersecting the switching curves and changing control. The distance
to x̃ and the duration of time intervals with optimal control u = 1 decrease to
zero. The duration of time intervals with optimal control u = 0 tends to a positive
constant.

In §3.4 we show the existence of an intermediate type of optimal synthesis,
which contains a dispersion curve. In this case the optimal synthesis has the
following structure.
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In the third orthant there exists a singular trajectory γ. In the second orthant
there exists a switching curve ρ01 from u = 0 to u = 1. In the third orthant there
exists a dispersion curve ρd, which is located between the ray {x1 < 0, x2 = 0}
and the singular trajectory γ. In the first orthant there exists a switching curve
ρ10 from u = 1 to u = 0. All these 4 curves join in the point x̃. The first three
of them are tangential to the axis Ox1, while ρ10 is transversal to the coordinate
axes.

Two families of optimal trajectories, with controls u = 0 and u = 1 respec-
tively, originate at the dispersion curve ρd. The trajectories with control u = 1
reach the singular trajectory γ, while the trajectories of the other family first
reach the switching curve ρ01, then ρ10, changing the control accordingly, and
then also reach γ. Along γ the trajectories reach x̃ in finite time.

In the fourth chapter we summarize the results of the previous chapters.
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