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Résumé

Dans cette these nous traitons deux thématiques différentes en optimisation, notamment la géométrie
des barrieres auto-concordantes pour 'optimisation conique et les cones copositifs. La premiere thé-
matique est traitée en Chapitre 1. Celui contient des résultats publiés, mais aussi quelques résultats
nouveaux. L’exposition est détaillée avec preuves completes pour la plupart des résultats présentés. Le
Chapitre 2 sur la deuxieme thématique constitue un survol de mes résultats publiés, obtenus en partie
en collaboration avec des co-auteurs.

Géométrie des barriéres auto-concordantes

Un programme conique est le probleme de minimisation d’une fonction cible linéaire sur ’intersection
d’un sous-espace affine de R™ avec un céne convexe K C R™. A chaque programme conique sur un
comne K on peut associer un programme dual sur le cone dual K* C R,, R, étant I’espace dual a
R™. Tout probleme d’optimisation convexe peut étre formulé sous forme d’un programme conique
par homogénisation de I’ensemble faisable et minimisation sur I’épigraphe de la fonction cible. La
complexité d’un programme conique ne dépend que du céne K. Des classes bien connues de programmes
coniques sont les programmes linéaires (LP), coniques quadratiques (SOCP) et semi-définis (SDP).

Ces programmes sont omniprésent dans la recherche opérationnelle, I'ingénierie [15], ’analyse de
systemes [32], le controle [183], le routage de réseaux [223], l’apprentissage automatique [71, 129],
Panalyse en composantes principales [47], I'acquisition comprimée [46], la reconstruction de signaux
creux [118], la récupération de phase [216], la gamme d’applications s’étandant toujours. Beaucoup
de problemes non-convexes peuvent étre approximés par des problémes convexes ayant une descrip-
tion naturelle sous forme d’un programme conique, notamment des problemes combinatoires comme
MAX-CUT, SAT [75], le probléme de la clique maximum ou d’un stable de taille maximum [5, 89],
kissing number [7], quadratic assignment [49], mais aussi des programmes linéaires mixtes avec con-
traintes entieres [5], des problemes quadratiques avec contraintes quadratiques [164], des problemes
d’optimisation avec contraintes polynomielles [155, 175, 176, 130]. Il existe des solveurs publics ou
commerciaux pour les LP, SOCP, et SDP.

Les programmes coniques ont été développés dans les années 90 comme généralisation des pro-
grammes linéaires, pour lesquels le cone K est donné par 'orthant positif R”. Cela n’est devenu
possible qu’aprés l'invention d’une nouvelle classe d’algorithmes pour la résolution des LP, les al-
gorithmes de point intérieur (API). Les méthodes connues auparavant, notamment ’algorithme du
simplexe, utilisent explicitement la structure polyhedrale de ’ensemble faisable et ne s’adaptent pas a
des ensembles faisables plus généraux.

En 1967 Dikin a construit le premier API pour LP [58]. En 1984 Karmarkar a publié le premier
APT avec une complexité polynomielle [115]. Cette méthode utilise des transformations projectives de
I’ensemble faisable pour "centrer" le point courant & chaque itération. Or, la classe des fonctions cibles
linéaires n’étant pas invariante par rapport a des transformations projectives, la fonction & minimiser
doit étre remplacée par une fonction linéaire fractionnelle. Cet inconvénient a motivé le développement
des modifications de l'algorithme de Karmarkar qui utilisent des transformations affines, ce qui ménait
a la redécouverte de la méthode de Dikin [213, 8]. Les algorithmes peuvent alors étre classifiés en deux
types, affines ou projectifs.

La méthode de Karmarkar peut étre interprétée comme réduisant la somme de la fonction cible
originale et une fonction de pénalité, la barriére, qui croit vers l'infinie si on s’approche du bord



de I'ensemble faisable [115, 205]. La barriere la plus courante sur R’ est la fonction logarithmique
F(x) == loga;.

En 1988 Yu. Nesterov et A. Nemirovski ont généralisé les API pour pouvoir résoudre des problemes
d’optimisation sur des cones arbitraires et ont introduit la notion de programme conique [166, 167].
Cet achevement réposait sur l'invention des barriéres auto-concordantes [168]. Nesterov et Nemirovski
ont aussi construit une théorie de la dualité conique, en généralisant la dualité bien connue des LP
[170]. Deux propriétés des barrieres logarithmiques utilisées pour la programmation linéiare ont été
reconnues d’expliquer la performance des API, la homogénéité logarithmique et ’auto-concordance, qui
est une inégalité entre les deuxiemes et troisiemes dérivées de la barriere. La théorie des barrieres auto-
concordantes est présentée dans l’ouvrage [171]. La plupart des méthodes proposées est de type affine.
Une barriere posseéde un parametre scalaire qui détermine son degré d’homogénéité logarithmique, le
parameétre d’auto-concordance. Plus petit ce parameétre, plus rapide est la convergence des algorithmes.

La classe de cones la plus importante pour ’optimisation est celle des cdnes symétriques, qui inclut
lorthant positif R}, le cone de Lorentz et le cone de matrices semi-définies positives qui sont utilisés
en LP, SOCP et SDP. Pour ces cones des barrieres numériquement accessibles avec un petit parametre
sont connues. En 1994 Nesterov et Todd ont observé que ces barrieres possedent une propriété qui n’est
pas partagée par les barrieres sur des cones arbitraires, notamment d’étre auto-ajustées (self-scaled)
[160].

Faybusovich a remarqué que les cones symétriques sont liés a des algebres de Jordan formellement
réelles [68], ce qui lui a permis d’étendre les API sur ces cones [69, 70]. La propriété d’auto-ajustement
a également été liée aux algebres de Jordan et les barrieres possédant cette propriété ont été classifiés
[84, 83, 85, 189, 87].

Dans [116] la métrique riemannienne définie par le Hessien de la barriere a été considérée pour LP,
bien que sans lien direct avec celle-ci. La variété riemannienne est 'intérieur de ’orthant positif dans le
cas affine et I’ensemble des rayons dans cet intérieur dans le cas projectif. Nesterov and Nemirovski ont
considéré cette métrique dans le cas général et ont montre que la dualité de Legendre est une isométrie
[171, p.45]. Dans [173, 174, 113] il a été reconnu que la métrique hessienne avec les connexions affines sur
I’espace R"™ et son dual forment une variété hessienne, structure connue depuis longtemps en géométrie
de l'information.

Dans cette these nous étudions la géométrie des barrieres auto-concordantes F' : K° — R sur des
cones convexes K C R”™, notamment la relation entre la géométrie affine et la géométrie projective
sur lesquelles sont basées les méthodes de ces deux types correspondants. Le point de départ était la
révélation que la géométrie différentielle affine, une discipline qui a ses origines en début de XXeme
siecle, fournit un formalisme adapté & l’étude des barrieres auto-concordantes. Pour employer ce
formalisme, il faut considérer les surfaces de niveau de la barriere F' comme plongements centro-affines
dans R™. Les objets définis sur les surfaces de niveau sont alors les pendants projectifs des objets
affines définies par la barriere. Or, la géométrie différentielle centro-affine s’applique dans un contexte
beaucoup plus général, notamment sur des ensembles coniques arbitraires, pas nécessairement convexes.
Nous appliquons cette théorie au cas des barrieres auto-concordantes et trouvons des interprétations
géométriques pour des objets apparaissants. En utilisant la machinerie puissante de la géométrie
différentielle affine, nous montrons des résultats nouveaux sur les barrieres auto-concordantes. Ci-
dessous nous donnons un résumé du Chapitre 1.

En section 1.2 nous introduisons des notions géométriques nécessaires. Notamment, nous donnons
en sous-section 1.2.3 une briéve introduction en géométrie différentielle affine.

En section 1.3 nous considérons les barrieres auto-concordantes d’un point de vue de cette théorie.
L’objet principal dans ce contexte n’est pas la barriere F', mais une variété différentiable de dimension
n — 1. Une immersion de M dans R™ comme une surface de niveau de la fonction F' définit sur M
une métrique riemanienne, la métrique centro-affine. En sous-section 1.3.1 nous montrons que cette
métrique est proportionelle 3 la métrique de sous-variété définie par la hessienne F”, le parametre de
la barriere étant la constante de proportionalité. En plus de la métrique, 'immersion génere sur M
une connexion affine. La variété M peut étre plongé de la méme facon dans I'espace dual R,, comme
une surface de niveau de la barriere duale F,. Cette immersion duale génere la méme métrique centro-
affine sur M, mais une connexion affine différente, la connezion duale. La relation de cette dualité avec



la dualité de Legendre sera considérée en sous-section 1.3.2. La différence entre les deux connexions
est appelée la forme cubique de 'immersion. Le cas extréme quand la forme cubique est égale & zéro
sera considéré en sous-section 1.3.3. Les conditions centrales d’auto-concordance et d’auto-ajustement
seront mis en relation avec la forme cubique. L’auto-concordance peut étre interprétée comme une
borne uniforme sur la forme cubique, et le parametre de la barriere comme une fonction de sa norme
| - |lco- Ce résultat est présenté en sous-section 1.3.1.

En section 1.4 nous appliquons le théoreme de Calabi sur les sphéres affines, un des résultats
centraux en géométrie différentielle affine, pour construire la barriére canonique.

Un des plus importants problemes ouverts dans la théorie de ’optimisation conique était ’existence
d’une barriere avec une valeur petite du parametre pour un coéne convexe arbitraire K C R". Il était
connu qu’il existe une barriere F' avec parametre v = C - n, C > 1 indépendent de K, la barriére
universelle. Un désavantage de la barriére universelle est que sa barriere duale F, n’est pas en général
la barriere universelle pour K*, c.-a-d. sa construction ne respecte pas la dualité de Legendre.

Le théoréme de Calabi associe & chaque cone convexe K C R™ une famille de surfaces plongées dans
Iintérieur de K, les sphéres affines. Nous montrons que les spheres affines peuvent étre considérées
comme surfaces de niveau d’une barriere auto-concordante avec parametre v < n. Cette barriere,
désormais nommée canonique, est alors une construction universelle qui réalise la valeur C' = 1 de la
constante C' introduite ci-dessus et montre en méme temps que cette valeur est optimale. De plus, la
barriere canonique respecte la dualité. Ce travail est publié dans les articles [91],[93] et constitue un
résultat d’existence central dans la théorie de barrieres auto-concordantes.

Nous calculons la barriere canonique explicitement pour quelques cones non-homogenes en sous-
section 1.4.4. Ces résultats ont été publiés dans [92].

La section 1.5 est dédiée aux barriéres auto-ajustées, qui n’existent que sur les cones symétriques.
Cette condition est démontrée d’étre équivalente & une propriété géométrique des plongements centro-
affines correspondants, notamment & la disparition de la dérivée covariante de la forme cubique. La
derniere est alors parallele pour les barrieres auto-ajustées. Cette condition peut étre développée sous
forme d’une équation quasi-linéaire de 4eme ordre aux dérivées partielles sur la barriere F. On obtient
une caractérisation locale et une interprétation simple géométrique des barrieres auto-ajustées.

Le lien entre le parallélisme de la forme cubique et la propriété d’auto-ajustement est fait par les
algebres de Jordan. Une description des barrieres auto-ajustées par les algebres de Jordan formellement
réelles est bien connue [189]. Nous donnons une interprétation de ’identité de Jordan comme condition
d’intégrabilité de ladite équation aux dérivées partielles en sous-section 1.5.3. En sous-section 1.5.4
nous faisons un lien entre ’homogénéité logarithmique de la barriere et la présence d’un élément neutre
dans l'algebre de Jordan correspondante. En sous-section 1.5.5 nous montrons que la convexité de la
barriere entraine que l’algebre de Jordan est formellement réelle. Une partie de ces résultats a été
publiée dans [94].

Le lien découvert entre les algebres de Jordan et le parallélisme de la forme cubique nous a aussi
permis de résoudre des problemes ouverts dans la géométrie différentielle affine. En sous-section 1.5.6
nous atteignons la classification des spheres affines avec une forme cubique paralléle, qui était un sujet
de recherche intense depuis la fin des années 80. Cette classification se réduit a la classification bien
connue des algebres de Jordan semi-simples. Ce travail a été publié dans [96].

Cones copositifs

Le cone copositif C* est I’ensemble des matrices réelles symétriques A de taille n x n telles que pour
tout vecteur x € R}, le produit 2T Az soit non-négatif. Une telle matrice est appelée copositive. Le
cone copositif joue un role important dans 'optimisation non-convexe, parce qu’un grand nombre de
tels problemes peuvent étre écrits comme programmes coniques sur ce cone, des programmes copositifs.
Cela concerne un nombre de problémes combinatoires [179, 180, 48, 215, 80, 181], mais des formulations
copositives ont été dérivées également pour des problemes de la programmation quadratique [182, 25,
22] et des programmes linéaires en nombres entieres et mixtes [36]. La connexion entre le cone copositif
et des conditions suffisantes d’optimalité pour la programmation quadratique, c.-a-d. le probleme de
minimisation d’une fonction quadratique sous de contraintes linéaires, a été observée déja dans les



années 70 [109, Theorem 3.2.3]. Les matrices copositives sont aussi utiles pour le calcul de fonctions
de Lyapunov pour des systemes hybrides avec le vecteur d’état contraint dans un coéne polyhedral
[142, 120, 35, 19]. Plus d’applications de la programmation copositive peuvent étre trouvées dans
[63, 23]. Un état de l’art récent peut étre trouvé dans [99, 28], une liste de problemes ouverts dans
[17]. Le cone dual du cone copositif, le cone complétement positif C:, se trouve en dehors de la portée
de cette these. Pour plus d’information sur le cone completement positif voir, e.g., [18, 28, 53].

Par conséquent, on ne peut pas espérer qu’un programme copositif général est facile & résoudre.
En fait, de vérifier la copositivité d’'une matrice donnée est un probleme co-NP-complete [153]. Seul
les programmes copositifs avec contraintes coniques jusqu’a l'ordre 4 pouvaient étre résolus par des
algorithmes courants de 'optimisation convexe, parce que des descriptions semi-définies des cones
copositifs correspondants sont connues. La plus courante approximation semi-définie du cone copositif
C" est celle par la somme du cone S7 des matrices réelles symétriques positives semi-définies et du
come N des matrices réelles symétriques non-négatives élément par élément. Un résultat classique de
Diananda [51, Theorem 2| affirme que pour n < 4 cette approximation est exacte, c.-a-d. C" = ST +N™.
En général, on a seulement l'inclusion S +N™ C C*. A. Horn a montré que cette inclusion est stricte
pour n > 5 [51, p.25]. Les matrices dans la différence C™ \ (S} + N™) sont appelées exceptionnelles
[111].

En 2011 j’ai abordé le theme des cones copositifs, motivé par 'intérét de trouver des descriptions
semi-définies exactes de cones copositifs d’ordre supérieur a 4. Mes études se concentrent sur un sujet
particulier, les rayons extrémes du céone C". Un élément x € K est appelé un élément extrémal d’un
cone convexe K si une décomposition x = x1 + x2 de x en éléments x1, x5 € K entraine que 1 = Az,
22 = (1 — X\)z pour un certain A € [0,1]. L’ensemble des multiples positifs d’un élément extrémal est
appelé rayon extréme de K. L’ensemble des rayons extrémes est une caractéristique importante d’un
cOne convexe, notamment si on veut déterminer si une approximation par l'intérieur du cone K par un
autre cone convexe K’ est exacte. Cela est le cas si et seulement si le cone K’ contient tous les rayons
extrémes de K. Du fait que les rayons extrémes d’un cone K sont en rapport avec les facettes du cone
dual K* de K, les rayons extrémes de C™ sont recherchés aussi pour I’étude du cone complétement
positif [52, 194, 29, 30, 193, 192].

Les rayons extrémes de C" qui sont contenus dans la somme S} + N ont été classifiés dans
[82]. Le premier élément exceptionnel extrémal de C™ a été construit par A. Horn [51, p.25]. Cette
forme de Horn est une matrice circulante de taille 5 x 5 dont les éléments sont contenus dans ’ensemble
{—1,+1}. Diananda a observé qu’on ne peut pas soustraire d’un élément extréme exceptionnel copositif
une matrice non-zéro du céone N, sans perdre la propriété de copositivité [51]. Cela meéne & une
propriété d’irreductibilité qui est plus faible que l'extrémalité. On appelle une matrice copositive
A € C" irreductible par rapport & N™ s'il n’existe pas une décomposition non-triviale A = C + N avec
C e(C™et N € N [11]. Cette propriété est plus facile & traiter que lextrémalité. On la peut définir
d’une fagon similaire aussi par rapport & d’autres cones que N™.

Les conditions d’irreductibilité peuvent étre décrites en termes de présence ou d’absence de zéros
avec certaines propriétés. L’importance des zéros a été reconnue déja par Diananda qui les a introduit
dans [51]. Un zéro d’une matrice copositive A est un vecteur non-nul z € R tel que z7Az = 0.
L’ensemble d’index i € {1,...,n} tel que I’élément x; d’un zéro = est strictement positif est appelé
le support du zéro. Les ensembles des zéros et de leurs supports constituent des caractéristiques
importantes d’une matrice copositive et sont un outil performant dans leur étude. Dans [51, 82, 10,
11, 12] un nombre de conditions nécessaires sur I’ensemble des supports d’une matrice extréme ou
irreductible ont été élaborées, et des propriétés des matrices ont été formulées qui dépendent de leur
ensemble de supports.

Ci-dessous nous fournissons un résumé de nos travaux sur les matrices copositives extrémes décrits
dans le chapitre 2 de cette these.

La section 2.2 est dédiée & ’étude du cobne copositif d’ordre 5 et comporte des résultats publiés
dans [90, 54, 55]. Nous fournissons une classification complete des rayons extrémes du cone C°, un
probleme qui est resté ouvert depuis les années 60. Notre stratégie suit celle proposée par Baumert
[10], en remplagant la condition d’extrémalité par la condition plus faible d’irreductibilité par rapport
a N™. Néanmoins, quelques nouvelles idées ont été nécessaires. Notamment, nous développons une
approche trigonométrique, qui s’est avérée aussi tres utile pour ’étude des cones copositifs en général.



Celle-ci permet de décrire les rayons extrémes exceptionnels de C® sous forme analytique. L’approche
trigonométrique fournira des résultats similaires pour toute famille de rayons extrémes de C™ qui n’a
que des zéros avec des supports de cardinalité au plus 3. En section 2.4 nous appliquons cette méthode
aux rayons extrémes du coéne C6.

La seconde nouveauté était, en collaboration avec M. DUR, P. DICKINSON et L. GIJBEN, d’élaborer
une condition nécessaire et suffisante sur une matrice copositive d’étre irreductible par rapport & N™.
Celle-ci nous a permis de compléter la classification de Baumert [12] des matrices irreductibles dans C®.
La connaissance des ces matrices a permis de trouver une description semi-définie exacte d’une certaine
section affine de C°. Ce résultat étend I'ordre maximal des cones dans des programmes copositifs qui
peuvent étre résolus par la programmation semi-définie jusqu’a 5.

La section 2.3 est dédiée a Papproche des zéros minimauz, publié dans larticle [95]. Un zéro
minimal » d’une matrice copositive A est un zéro tel qu’il n’existe pas d’autres zéros de A avec un
support strictement inclus dans le support de u. L’ensemble des supports de ses zéros minimaux est une
caractéristique combinatoire d’une matrice copositive. Son utilité est issu du fait qu’elle est accessible a
un traitement algorithmique. Les conditions d’irreductibilité par rapport aux cones N et ST peuvent
étre décrites en termes des zéros minimaux, ce qui mene a des conditions nécessaires supplémentaires
sur ’ensemble des supports des zéros minimaux d’une matrice copositive exceptionnelle extrémale. Ces
conditions sont assez fortes pour réduire le nombre des supports potentiels dans le cas du cone C% a 44,
un nombre raisonable pour pouvoir atteindre la classification des rayons extrémes de C°. Des résultats
sur C% sont décrits dans la section 2.4.

La section 2.5 porte sur une étude locale du cone copositif. En collaboration avec P. DICKINSON j’ai
entrepris une étude de la structure du bord du céne copositif. Notamment nous avons déterminé quand
une matrice copositive est irreductible par rapport & une autre matrice copositive, en fonction des zéros
minimaux. Entre autre nous avons devéloppé un algorithme pour déterminer si une matrice copositive
donnée est située sur un rayon extréme, une question qui auparavant été tres difficile & décider. Ces
résultats ont été publiés dans [57].

En section 2.6 nous considérons des matrices copositives dont I’ensemble de supports a une certaine
structure circulante. Il s’est avéré que de telles matrices peuvent étre décrites & ’aide de systemes dy-
namiques linéaires avec coefficients périodiques, un lien & priori assez surprenant. Nous avons construit
de larges classes de matrices extrémales exceptionnelles pour d’ordres arbitraires n > 5. Ces matri-
ces peuvent étre vues comme généralisations de la forme de Horn et des autres matrices extrémales
exceptionnelles de C°. Ce résultat a été publié dans [97].



Chapter 1

Geometry of self-concordant barriers

1.1 Introduction

1.1.1 Conic programs and interior-point methods

A regular convex cone is a closed convex cone in a real vector space, with non-empty interior, and
containing no lines. A conic program over a regular convex cone K C R"” is an optimization problem
of the form

min (e,z) Az =b. (1.1)
Here the objective function is linear homogeneous, and the feasible set of the problem is the intersection
of the cone with an affine subspace. It is easily seen that every convex optimization problem can be cast
as a conic program by homogenization of the feasible set and minimization of the objective function
value over the epigraph of the objective function. The computational complexity of a conic program
depends on the cone K. To any conic program over a cone K € R” one can associate a dual program,
which is a conic program over the dual cone K* = {s € R, |(z,s) > 0V z € K}. Here R, is the
dual space to R™. Well-known classes of conic programs are linear programs (LP), second-order cone
programs (SOCP), and semi-definite programs (SDP).

These programs are ubiquitous in operations research, engineering [15], systems analysis [32], control
[183], network routing [223], machine learning [71, 129], principal component analysis [47], compressed
sensing [46], sparse signal reconstruction [118], phase recovery [216], with a constantly widening scope
of applications. Many non-convex problems can be approximated by convex problems having a nat-
ural description as a conic program, in particular combinatorial problems such as MAX-CUT, SAT
[75], clique number, stable set [5, 89], kissing number [7], quadratic assignment [49], but also general
mixed-integer linear programs [5], quadratically constrained quadratic problems [164], and polynomi-
ally constrained optimization problems [155, 175, 176, 130]. A number of public and commercial LP,
SOCP, and SDP solvers is available.

Conic programs have been initially developed as a generalization of LPs. In a LP the cone K is given
by the nonnegative orthant R’} , and efficient solution methods for this class of optimization problems
are known for decades. The first such method was the simplex method [45], which makes explicit use
of the polyhedral structure of the feasible set. It is an iterative method which jumps along the edges
of the feasible set between its vertices, until it reaches the optimal solution or detects infeasibility or
unboundedness of the LP. Despite its excellent performance in practice the simplex method has an
exponential worst-case behaviour [119].

Parallel to the evolution of the simplex method there appeared methods for the solution of general
non-smooth convex optimization problems which were based on the construction of a succession of
increasingly smaller sets containing the optimal solution. In 1965 Levin proposed the method of
centered cuts [134], followed in 1972 by an algorithm of Shor which used ellipsoids [197]. The ellipsoid
algorithm as it is known today has been designed by Yudin and Nemirovski in 1976 [228]. Its behaviour
for LPs with rational data has been analysed by Khachiyan, who proved LP to be polynomial-time



[117]. The ellipsoid algorithm could not compete with the simplex algorithm and its variants in practice,
however.

In 1967 Dikin designed the first interior-point algorithm for LP [58]. This method constructed
a succession of ellipsoids inside the feasible set which converged to the optimal solution. In 1984
Karmarkar designed the first polynomial-time interior-point algorithm [115]. This method applied
projective transformations to the feasible set before constructing the inscribed ellipsoid at each step.
Since the class of linear objective functions is not invariant with respect to projective transformations,
it had to be replaced by the wider class of linear fractional functions. This drawback motivated work
on variants of Karmarkars algorithm which came along with affine transformations, which led to the
rediscovery of Dikins method [213, 8]. These methods could compete with the simplex method in
practice, however, only Karmarkars variant had also good theoretical properties.

Karmarkars paper was the starting point for systematic research on interior-point methods for
LP. It is a primal method, as its iterates are points in the primal feasible set. The method can be
interpreted as a barrier method, i.e., decreasing the sum of the original objective function and a penalty
function, the barrier, which grows to infinity as the argument approaches the boundary of the feasible
set [115, 205]. Barrier methods have been known for decades from non-linear programming. As a barrier
on R’ the function F(x) = — 77, logz; is used, it is called the logarithmic barrier. In the series of
papers [13, 14, 127] the connections between barrier methods and Karmarkars method and its affine
variants are elaborated in detail, see also [144]. In these papers the vector field of descent directions
has been integrated and analyzed for different setups. The vector field for Karmarkars original method
is called the projective scaling vector field [127], that of the variants using affine transformations the
affine scaling vector field [14]. Both fields coincide on a 1-dimensional submanifold, the central path,
which consists of the minimizers of the above-mentioned sums for different weights at the penalty
function. In [184] a method was proposed whose iterates lie close to the central path and follow it
towards the solution. This method needs fewer iterates than Karmarkars method to reach the same
precision, but the iterations themselves are more costly computationally. In [125, 149, 207] primal-dual
methods were proposed, which generated pairs of primal and dual iterates. Mehrotras algorithm [145]
is a primal-dual method using second-order information at the current iterate to compute the next
iterate. In [147] primal-dual methods with an adaptive step size were proposed. In [124, 146] infeasible
primal-dual methods have been proposed, whose pairs of iterates do not necessarily lie on the affine
subspaces defined by the constraints of the LP. In the course of the iterations the initial discrepancy
then decreases exponentially. For surveys of these developments see, e.g., [128, 195, 76, 50, 220].

All the methods considered above used either the standard logarithmic barrier or a weighted sum
of the logarithms of the individual entries and were designed for solving LPs. In 1988 Yu. Nesterov
and A. Nemirovski extended the realm of interior-point methods to optimization problems over general
cones, introducing the notion of conic program and showing that general convex optimization problems
can be recast as conic programs [166, 167]. The main innovation which permitted this generalization
was the invention of the self-concordant barrier [168]. In particular, polynomial-time algorithms could
now be applied to solve SDPs, i.e., conic programs over the cone of positive semi-definite matrices
[169]. Nesterov and Nemirovski also built a theory of conic duality, generalizing the well-known duality
in LP [170].

Primal methods for the solutions of LPs have independently been extended to SDPs by Alizadeh
[3, 4]. Later Alizadeh recognised that the majority of interior-point algorithms, including primal-dual
methods, that have been devised for LP can be generalized in a straightforward manner also to SDP
[5]. However, these methods relied on scaling transformations preserving the cone and could not be
generalized to non-homogeneous cones in principle.

Two properties of the logarithmic barriers used for LP have been recognized by Nesterov and
Nemirovski as being sufficient to explain the performance of interior-point methods, namely logarithmic
homogeneity and self-concordance. This enabled them to employ an axiomatic approach to barriers
in conic programming. In the book [171] a self-contained theory of interior-point methods for conic
programs over arbitrary regular convex cones has been elaborated, which is based on self-concordant
barriers.

Definition 1.1.1. [171, Definition 2.1.1] Let C' C R™ be an open convex set. A convex C® function



F:C — Ris called self-concordant if for all x € C' and all h € R" the relation
|F" (@) h, by h)| < 2(F" ()[R, B))*/ (1.2)
holds.

Here the derivatives of F' are considered as multilinear maps, such that h can be interpreted as a
tangent vector at x. Thus self-concordance of a function means that its third derivative is uniformly
bounded in the local norm defined by its second derivative. Equivalently, the local norm defined at a
given point can be used in a finite neighbourhood of this point while controlling the committed error.

Definition 1.1.2. [171, Definition 2.3.2] Let K’ C R™ be a regular convex cone and let v > 0. A convex
C? function F : int K — R is called a v-logarithmically homogeneous barrier for K if F(x;) — +oo for
every sequence {xy} of points in int K converging to a point in 9K, and for every x € int K and every
t > 0 the relation

F(tx) = F(z) —vlogt (1.3)

holds. The function F' is called v-self-concordant barrier or self-concordant barrier with parameter v if
it is a self-concordant function and a v-logarithmically homogeneous barrier.

The original notion of normal barrier as given in [171] has not become prevalent, instead the notion
of self-concordant barrier is widely used nowadays. The condition of self-concordance arose from a
thorough analysis of the Newton method. In fact, self-concordance allows the Newton method to make
steps of a guaranteed step size safely.

Suppose a conic program of the form (1.1) is given. Let F' be a self-concordant barrier on the cone
K. Then the central path is defined as the curve {o(7)}.>0 given by

olr) —arg_min_ (F(a) + {c.2)).
By convexity and self-concordance of F' the minimum is unique. For every 7 € R, the minimum o(7)
is a feasible point, and for 7 — 400 the point o(7) tends to a solution of the original conic program.

The interior-point methods proposed in [171] are divided in two classes, the path-following methods
and the potential reduction methods. Most of these methods are generalizations of the affine scaling
methods.

In path-following methods the iterates stay in a neighbourhood of the central path while advancing
along it towards the solution. Here the size of the neighbourhood is governed by the barrier parameter
v. The larger this parameter, the smaller is the neighbourhood and the smaller are the steps that
the method can make while staying safely inside the neighbourhood. In fact, the steps taken by the
so-called short-step algorithms are of order 1 in the local norm defined by the second derivative F”
of the barrier. In contrast, long-step methods may take larger steps if the state of the current iterate
allows to do this safely, but their theoretical worst-case behaviour is not better than that of the short-
step variants. A modification of these methods are the predictor-corrector methods, which separate
explicitly the (predictor) step of advancing along the central path and the (corrector) step of decreasing
the accumulated distance to the central path. While in primal methods the distance is measured by
the local norm given by the Hessian " at the current iterate, primal-dual methods differ in the way
they measure proximity to the central path. Prototypes of primal-dual path-following methods have
been presented in [144, 125, 149] for LP, in [209] generalizations to arbitrary cones have been presented.

Potential reduction algorithms are mostly primal-dual. They decrease at each step a potential
function defined on primal-dual pairs of iterates, augmented by an auxiliary variable which serves to
homogenize the product of the primal and dual feasible sets. These methods may feature iterates
which are far from the central path. The potential is unbounded below, and as its value tends to —oo,
the primal-dual pair of iterates tends to the optimal solutions of the respective conic programs. The
method ensures that the potential and along with it the duality gap decreases by a certain amount
at each step, thus yielding a guaranteed speed of convergence. However, the larger the parameter of
the barrier, the smaller the amount by which the duality gap will decrease. Prototypes of potential
reduction algorithms are presented in [203, 207] for LP, and the potentials used in algorithms developed
later, e.g., in [154], are generalizations of the Tanabe-Todd-Ye potential introduced in these papers.
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Karmarkars original method can also be interpreted as a primal potential reduction algorithm, as has
been recognized already by Karmarkar himself [115].

In [154] Nesterov established, however, that the sequence of iterates generated by many potential
reduction algorithms resembles that of long-step path following algorithms.

In order for an interior-point method to be efficient in solving a conic program over a cone K C R",
an efficiently computable self-concordant barrier for the cone K with a low barrier parameter has to
be available. In [171, Section 5.5] a self-concordant barrier, the universal barrier, has been constructed
for an arbitrary cone K, with barrier parameter bounded by above by a function of order n, but its
computation requires the calculation of a multidimensional integral. In [77, 79] this barrier has been
computed for homogeneous cones and it has been shown that its barrier parameter equals the rank of
the homogeneous cone, and is hence bounded from above by its dimension n.

The most important class of cones for which easily computable barriers with small parameters are
available are the symmetric cones, i.e., regular convex cones which are both homogeneous and self-dual.
This class includes the nonnegative orthant R’} , the Lorentz or second order cone L,, and the cone S
of positive semi-definite matrices.

In 1994 Nesterov and Todd observed that the logarithmic barriers on these cones have a property
in common which barriers on general cones do not have, namely that of being self-scaled [160]. In order
to introduce this notion we first have to define the dual barrier.

Definition 1.1.3. Let F be a self-concordant barrier on a cone K with parameter v. The dual barrier
of F is given by Fi(s) = maxecx (—(z,s) — F(x)), s € int K*.

By [171, Theorem 2.4.4] F\ is indeed a self-concordant barrier on the dual cone K* with the same
parameter v as F. In fact, F.(—p), p € —int K*, is the Legendre transformation of F.

Definition 1.1.4. Let K C R" be a regular convex cone, let K* be its dual cone, let F' be a self-
concordant barrier on K, and let F, be the dual barrier on K*. Then F'is called self-scaled if for every
z,w € int K we have

F"(w)x € int K*, F.(F"(w)x) = F(z) — 2F (w) — v.
A cone K admitting a self-scaled barrier is called self-scaled cone.

For every x € int K and s € int K* there actually exists a unique point w € int K such that
F"(w)x = s [161, Theorem 3.1]. The point w is called the scaling point of the pair (z, s). In contrast to
the central path this scaling point is independent of the data of the conic program and is solely a feature
of the barrier. Nesterov and Todd developed a theory of interior-point methods especially for self-scaled
barriers [161, 162]. In this theory the directions of the steps, the so-called Nesterov-Todd directions,
are computed using the local metric at the scaling point. It has a perfect primal-dual symmetry and
compares favorably with other methods in practice [206, 204]. The Nesterov-Todd directions for LP
have been found already in [144, 125, 149].

At about the same time Faybusovich observed that the above-mentioned cones underlying LP,
SOCP, and SDP have another property in common, namely being symmetric, and hence the cone
of squares of a Euclidean Jordan algebra [68]. He extended the interior-point methods for these
special classes of conic programs to conic programs over arbitrary symmetric cones, using explicitly
the structure of the Jordan algebra [69, 70], see also [190].

While the property of being self-scaled is primarily a property of the barrier, the property of being
symmetric is a property of the cone. Nevertheless, these notions turned out to have a close connection.
Several authors proved independently that the symmetric cones and the self-scaled cones form the same
class, and provided a full classification of self-scaled barriers [84, 83, 85, 189, 87], for a history of these
developments see [86].

Interior-point methods for self-scaled barriers became a subject of intense research at this time, see
[148, 151, 201, 202, 208]. For surveys and books on this stage of development of semi-definite and conic
programming see [171, 212, 221, 178, 222, 219, 185].

In [78] methods using self-scaled barriers have been extended to hyperbolic barriers, i.e., logarithms
of polynomials defining hyperbolicity cones. In [43] methods for homogeneous cones have been devel-
oped based on the algebraic representation of these cones by T-algebras. In [156, 165] the notion of
scaling point has been considered for general barriers.
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At the turn of the millennium the evolution of the theory of interior-point algorithms considerably
slowed, and the focus of research shifted to applications. Optimization problems arising in practice
are rarely formulated as standard conic programs over a symmetric cone, and often even cannot be
cast as such in principle, e.g., because they are non-convex. Therefore it is important to be able to
convert optimization problems arising in different areas into symmetric cone programs, or at least
to find symmetric cone relaxations. Accordingly, while in the 90s the focus of research was on the
development and improvement of solution algorithms for these conic programs, later attention shifted
to the problem of formulating various optimization problems as semi-definite programs or finding semi-
definite relaxations, see the literature at the beginning of this paragraph.

In the last years, however, a renewed interest in interior-point methods and self-concordant barriers
can be observed. In particular, new barriers have been constructed, for arbitrary convex sets or cones
[93, 72, 33, 1] as well as for LP [132, Section 6.3],[133]. In [159] a generalization of self-scaled barriers
called barriers of negative curvature has been considered, and the barrier parameter as a measure of
the convergence speed has been complemented by the recession coefficient.

1.1.2 Geometry of self-concordant barriers

In this subsection we review past developments specific to the geometry of self-concordant barriers
and associated objects. Geometry has played a prominent role in the early papers following the
publication of Karmarkars method [115]. As has been mentioned in the previous subsection, this
method is projectively invariant, but subsequently affinely invariant versions appeared [8, 213]. In the
early geometric studies of these methods the affine and projective cases have been pursued in parallel.
Bayer and Lagarias analyzed the vector fields of descent directions in the affine scaling methods [14]
and the projective scaling methods [127]. It was observed that these vector fields can be stratified
into straight lines by non-linear coordinate transformations which can be interpreted as Legendre
transforms.

A comprehensive geometric analysis of LP has been provided in [116]. An important object in this
work is the Riemannian metric defined by the Hessian of the barrier, although at first it has been
introduced on its own without a connection to the barrier. The metric allows to convert gradients
(cotangent vector fields) into directions (tangent vector fields), and hence yields an interpretation
of the interior-point methods as steepest descent algorithms minimizing some potential function. The
Riemannian manifold in the affine case is the interior of the nonnegative orthant, while in the projective
case it is the set of rays in the interior of the nonnegative orthant. In the affine case the metric is flat,
while in the projective case it is not. The vector fields of descent directions have been shown to be
gradients of the objective function in the affine case and of some potential function in the projective
case, although in the original formulation [116, Theorem 1] this is not explicit. One conclusion of the
paper was that the complexity, more precisely the number of steps, grows with the curvature of the
trajectories, because the curvature determines how well the continuous trajectory can be approximated
by discrete steps. Estimates of the iteration complexity by the curvature of the central path have later
been obtained also in [199, 229, 150, 114].

Nesterov and Nemirovski showed that the Legendre transformation which maps the interior of the
primal cone K to the interior of the dual cone K™ is an isometry when these interiors are equipped
with Hessian Riemannian metrics generated by a mutually dual pair of self-concordant barriers F, F
on K and K*, respectively [171, p.45], see also [163] for an explicit statement. Moreover, the third
derivative F'" is mapped to —F!” and the first derivative F’ to —F.

In the sequel the Riemannian metric played an auxiliary role, providing the local Euclidean norms
which were used in the neighbourhoods of the iterates or the scaling points. In the 2000s, however,
the interest in this metric as an independent geometric object renewed when the geodesics and the
Riemannian distance defined by it came under investigation. In [163] the geodesics of the Riemannian
metric have been computed for several sets. The product of the interiors of the primal and dual cones
has also been considered as a Riemannnian manifold, equipped with the corresponding product metric.
It was shown that the primal-dual central path in this product came within a factor of v/2 of being
a geodesic, implying that it was nearly optimal to let the primal-dual iterates follow this path. In
[157, 158] the length of the primal central path was compared to the geodesic distance.

In [173, 174, 113] parallels have been drawn between the geometry of barriers and information
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geometry, and an iteration complexity estimate has been given in terms of the curvature of the central
path. The two theories have the presence of a dually flat structure in common, which is a manifold
carrying a Riemannian metric together with a pair of flat affine connections which are dual to each
other with respect to this metric. Here the primal affine connection is the canonical affine connection of
the primal space R™, while the dual affine connection is the canonical connection of its dual R,,. Such
a structure is also known under the name of Hessian manifold [196]. It has been shown that the affine
scaling vector field is parallel under the dual flat connection, which is an equivalent reformulation of
the result in [14] on the stratification of this vector field by the Legendre transformation.

Let us remark that the viewpoint presented in the previous paragraph bears a conceptual difference
with respect to previous approaches. It considers the interiors of the primal and dual cone K, K* as a
single object, with the primal and dual structure being defined by different flat affine connections, or
loosely speaking, different systems of coordinates on it.

1.1.3 Overview

In this subsection we give an overview over the contents of this chapter in the context presented in the
previous subsections. We consider a self-concordant barrier F' on the interior of a regular convex cone
K C R" and its Legendre transform, the dual barrier F, on the interior of the dual cone K*.

In Section 1.2 we briefly introduce some geometric concepts which will be needed for our exposition.

In Section 1.3 we investigate the relation between the projective and the affine geometry underlying
the projective scaling and affine scaling methods elaborated for LP in the years after Karmarkars
publication. It turns out that a similar relation is well-known and has been studied for decades in
centro-affine differential geometry in a much more general context, i.e., not only for the cone K = R?,
but for general conic sets, which are not necessarily convex. We give a short introduction into affine
differential geometry in Subsection 1.2.3, for a detailed treatment see [172].

We give an affine differential geometric interpretation of many quantities and conditions which
appear in the theory of interior-point methods. In the context of affine differential geometry, the
primary object is not the barrier F' on a cone K C R™, but a differentiable manifold M of dimension
n — 1. A Riemannian metric called centro-affine metric is generated on M by its immersion into
R™ as a level surface of the barrier F. It turns out that this centro-affine metric is proportional
to the submanifold metric induced on the level surface by the Hessian metric F”/ on int K, with the
proportionality constant being the barrier parameter. This result is derived in Subsection 1.3.1. Beside
the metric, the immersion generates also an affine connection on M, the induced connection. This
connection is such that its geodesics, when considered as curves in R”, experience an acceleration which
is proportional to the vector pointing to the origin of R”, with a negative proportionality constant.
In the same way, M can be immersed into the dual space R, as a level surface of the dual barrier
F,. This dual immersion generates the same affine metric on M, but a different affine connection,
the dual connection. The relation of this duality with Legendre duality is considered in Subsection
1.3.2. The difference between the primal and dual connections is called cubic form, it measures the
deviation of the level surfaces of F' and F, from quadrics. In the extreme case when the cubic form
vanishes identically the affine metric turns the level surfaces of F' into a hyperbolic space form. The
corresponding barrier is the hyperbolic barrier on the Lorentz cone. This particular case is considered
in Subsection 1.3.3. The central conditions of self-concordance and self-scaledness are both closely
related to the cubic form. Self-concordance can be interpreted as a uniform bound on the cubic form,
with the barrier parameter measuring its co-norm. This result will be presented in Subsection 1.3.1.

The benefit of considering self-concordant barriers from the viewpoint of affine differential geometry
is not only to gain a transparent geometric interpretation of the former. Affine differential geometry
is a century old branch of mathematics which has developed a powerful apparatus that can be used
to solve problems related to optimization. In particular, the results concerning affine spheres, a class
of hypersurfaces having an especially rich structure, allowed us to construct the canonical barrier, a
primal-dual symmetric self-concordant barrier defined on arbitrary convex cones and having a barrier
parameter bounded from above by the dimension of the cone. This result will be presented in Section
1.4 and has been published in [93], see also [91]. In Subsection 1.4.4 we compute the canonical barrier
on several non-homogeneous cones. These results have been published in
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In Section 1.5 we consider self-scaled barriers. The condition of self-scaledness is shown to be
equivalent to the vanishing of the covariant derivative of the cubic form, or in other words, to the
condition that the cubic form is parallel. This condition can also be rewritten as a 4-th order quasi-
linear partial differential equation (PDE) on the barrier. Part of the results presented in Section 1.5
has been published in [94].

On the other hand, the well-developed theory of symmetric cones and its connection to Jordan
algebras allows us to solve open problems in affine differential geometry, in particular to accomplish
the classification of affine spheres with parallel cubic form. This result is described in Subsection 1.5.6
and has been published in [96].

In the table below we present some objects or conditions appearing in the theory of self-concordant
barriers along with their centro-affine geometric counterparts.

self-concordant barriers centro-affine immersions
Legendre duality conormal map

Hessian metric centro-affine metric
third derivative cubic form

self-concordance condition | bound on cubic form
self-concordance parameter | co-norm of the cubic form
canonical barrier affine hypersphere
self-scaled barrier parallel cubic form

1.2 Mathematical tools

In this section we briefly review some concepts from differential geometry which are necessary for our
exposition later. This includes widely known subjects like Riemannian metrics, curvature, and affine
connections, but also less common matter like affine hypersurface immersions and affine spheres. We
are not able and we do not aim to give a self-contained introduction into these topics. We shall rather
refer the reader to some introductory literature.

1.2.1 Tensor fields

In this subsection we provide basic definitions and define tensor fields on manifolds. Let M be a
differentiable manifold of dimension d and p € M a point. Let z : M D U — R? define a coordinate
chart on M such that p € U, with z',..., 2% : U — R being its components.

The tangent space to M at p consists of all tangent vectors to M at p and is denoted by T, M. It
is isomorphic to R%. In the coordinate chart given by 2 the k-th component of the vector u € T,M is
given by the derivative of the k-th coordinate function z* in the direction of u. We shall denote this
component by u*.

The cotangent space to M at p is the dual space to T, M and is denoted by T; M. Its elements are
called cotangent vectors or covectors. The components of a covector v € Ty M, denoted v1,...,vq, are

defined as the coefficients in the decomposition v = ZZ:1 vpdz®, where da* is the differential of the
coordinate function z* at p.

We shall adopt the Eistein summation convention throughout this chapter, implying summation
over indices which appear in pairs as upper and lower indices. In particular, the value of a covector
v € Ty M on a vector u € T,M is given by the sum u*vy := S ko

A tensor of order (m,n) at p is a multi-linear real-valued map on the direct product (7,;M)™ x
(T,M)"™. The components of a (m,n)-tensor T', denoted by Tg‘;;jim, are the coeflicients of the decom-

position T'(v, ..., y;u,...,2) = T;;;:vll coyi, It 20 where v, ...y € Ty M are m covectors and
u,...,z € TyM are n vectors. In particular, a (0,0)-tensor is a real number, a (1, 0)-tensor is a vector,
and a (0, 1)-tensor is a covector. Upper indices of a tensor are called contravariant, while lower indices

are called covariant.
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A (m,n)-tensor field T assigns a (m,n)-tensor to each point p € M, such that the components
T’l1 ;.m are smooth functions in every chart on M. A (1,0)-tensor field is called a vector field, and a
(O 1)-tensor field a covector field.

If 2:U — R% y:V — R are charts on M such that p € U NV, then a coordinate change from x
to y transforms the coordinates of a tensor T' at p according to the rule

. oy dyim dxh Oxln

Tl1 lm,_>Tk1 L
Okt dxkm Py Oyin’

(1.4)

where the partial derivatives are evaluated at p.
Introductions into tensor calculus can be found, e.g., in [200, 218].

1.2.2 Riemannian manifolds

In this section we provide some basics on Riemannian manifolds and objects on them such as connec-
tions or curvature.

Definition 1.2.1. A Riemannian metric on a connected differentiable manifold M is given a smooth
symmetric positive definite (0,2) tensor field g, the metric tensor.

For a smooth curve [0,7] 5 t — o(t) € M, the metric defines a length by

= /0 * om0 @) dt

The extremals of this length functional are called geodesics and obey the Euler-Lagrange equation

. 1 o
7"+ §gw (ga%ﬁ t 9py,0 — gaﬁ,w) 56F = 0,

also called geodesic equation. A Riemannian manifold is called complete if every geodesic can be
prolonged infinitely. The geodesic equation can be written in compact form as 6+ + Fiﬁﬁo‘dﬁ =0,
where

1
Tas = 59" (9av.8 + 97,0 = Gapn) (1.5)

are the Christoffel symbols, which are symmetric in the lower indices. Here g*” are the components of
the inverse of the metric tensor g, such that the sum ¢*7g,, equals the Kronecker symbol 6;/, which
evaluates to 1 for v = v and to 0 otherwise.

The Christoffel symbols do not define a tensor field, their law of transformation under coordinate
changes from coordinates = to coordinates y is rather given by

8:8” oze . Oy Oy 9*x™
8y AyP P19z T dxm Oy dyP

FV (1.6)
The Christoffel symbols determine an affine connection, i.e., a rule which defines the parallel transport
of tensors along curves, or equivalently, to differentiate tensor fields. The affine connection generated
by the metric is called the Levi-Civita connection and is denoted by V. Let o : [0,T] - M be a
smooth curve, and let u be a tangent vector at o(0). By parallel transport of u along the curve o we
obtain a vector-valued function on [0, T] such that u(t) is a tangent vector at o(t), obeying the parallel
transport equation

W (t) +T7 gu(t)6” (t) = 0. (1.7)

This equation says that the covariant derivative Vu of u along the direction ¢, which is given by
the left-hand side of (1.7), vanishes. In general, the covariant derivative of a (m,n)-tensor field T along
a vector field v is a (m,n + 1)-tensor field given by

1. Zm,

i1eim Ji-- i1 rplia.. im G i1 bm—1l i1odm T i1 im
v le g T oz k +T TJ1 Jn +- +F rfh Jn ijlTlgz Jn ijnle,,.j,,L,ll' (18)
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The covariant derivative of a scalar field is given by its partial derivative.

A tensor field T is called parallel if its covariant derivative VT vanishes identically, i.e., T is
reproduced by parallel transport along any curve. The metric tensor g itself is always parallel.

If a vector w is carried by parallel transport along a closed loop, then the vector at the end-point
will in general be different from the vector at the starting point. The difference is linear in the original
vector and linear up to higher order terms in the area element enclosed by the loop. The proportionality
coefficients are given by the Riemann curvature tensor, the (1, 3)-tensor

ore, oI

po P T P A
Rguu - Ot oxV + FlL)\Fl/O' - FV)\FNO" (19)

By contracting the first with the third index we obtain a symmetric (0, 2)-tensor, the Ricci curvature
tensor
Rs, = RE (1.10)

ouv*

A Riemannian metric g on a domain Q C R" is called Hessian metric if it can be locally expressed as
the Hessian of a real-valued function, g = %dmida@j. The function F is called the (local) potential
of the Hessian metric.

A space form is a Riemannian manifold with Riemann tensor given by

Rguu = K((SZQUU - 6£gau)7 (111)
where K is a constant. If K = 0, then the space form is flat, for K < 0 it is hyperbolic, and for K > 0
it is elliptic.

Let us now consider a Riemannian manifold M with metric G and a smooth submanifold M C M.
The restriction g of G to M defines a metric on M and turns M into a Riemannian manifold too. At any
point y € M, the tangent space Ty M can be decomposed into a G-orthogonal sum T, M © N,M. Here
NyM is defined as the G-orthogonal complement of T;, M in T}, M and is called the normal subspace to
M at y. The submanifold M is called totally geodesic if if every M-geodesic is also an M-geodesic.

An introduction into Riemannian geometry can be found in [65, 200].

1.2.3 Affine hypersurface immersions

Affine hypersurface immersions have first been studied in the pioneering works of Tzitzeica [210] and
Blaschke [20]. This branch of differential geometry deals with properties of submanifolds, in particular,
submanifolds of codimension 1, of affine real space which are invariant with respect to the special linear
group of affine transformations.

In the previous subsection we considered the Levi-Civita connection V generated by a Riemannian
metric. One may also consider affine connections and define notions like parallel transport, geodesics,
or curvature independently of any metric. For a general affine connection V on a manifold M, the
Christoffel symbols I‘fj in the transformation rule (1.6), the parallel transport equation (1.7), the
formula for the covariant derivative (1.8), and the curvature tensors (1.9),(1.10) have to replaced by
the corresponding coefficients of the connection ij. We deal only with torsion-free connections, whose
coefficients are symmetric in the lower indices. The Ricci tensor (1.10) defined by such a connection is
in general no more symmetric, however. From (1.6) it follows that the components of the difference of
any two affine connections transform like a (1, 2)-tensor under coordinate changes. By adding such a
tensor to one connection, we hence obtain another connection.

A classical example of an affine connection is the canonical connection D on R™. In the usual coor-
dinate system on R"™ the coefficients of the connection vanish identically, and the covariant derivative
with respect to D just equals the usual partial derivative 0. The subject of affine differential geometry
are the structures generated by the connection D on smooth hypersurfaces of R"™.

Let M be an (n — 1)-dimensional differentiable manifold and f : M — R™ a smooth hypersurface
immersion. Let £ : M — R”™ be a smooth transversal vector field on M, i.e., such that at any point
y € M, every tangent vector u € Ty,)R™ can be decomposed into a sum of a tangential component
in f,[T,M] and a component parallel to {(y). Then there exists a unique affine connection V and a
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unique symmetric (0, 2)-tensor field h on M such that for every V-geodesic o(t) on M we have

& f(o(t))

g TE(),e(1) E(a(t)) = 0. (1.12)

This can be written equivalently as D —V = —h® ¢, and V can be interpreted as projection of D onto
the tangent space to M along £. The tensor h is called the affine fundamental form, and V is called
the induced connection. If h is non-degenerate everywhere on M, then f is called non-degenerate and
h is called the affine metric.

Given a hypersurface immersion f : M — R™ and a transversal vector field £ : M — R", we may
define another hypersurface immersion v : M — R,, into the dual space of R", as follows. For y € M
we define the image v(y) as the vector v € R,, which is zero on the tangent space f.[T,M] and 1 on
the transversal vector £(y). It turns out that this conormal map defines the same quadratic form h on
M, but a different affine connection V, which is called the dual affine connection. The conormal map
of the immersion v is the original immersion f, so the correspondence f <> v is a duality.

The induced connection V on M does in general not coincide with the Levi-Civita connection v
of the affine metric h. Their difference K, = V] — VY 5 is called the difference tensor. Although

the covariant derivative of h with respect to V vanishes, its covariant derivative with respect to V is
in general not zero. The covariant derivative Cogy = Vo hgy is called the cubic form.

In this thesis we shall deal exclusively with hyperbolic centro-affine hypersurface immersions f :
M — R"™, whose transversal vector field is defined by the relation £ = —f and whose affine metric
is positive definite. This implies that the image of the immersion is convex such that its convex hull
and the origin lie on opposite sides of the surface. Centro-affine immersions have further particular
properties. Their cubic form C' is symmetric and can be expressed by the difference tensor as Cop, =
—2ha K§, , with inverse relation K = —4h*°Cqp,. The curvature tensors (1.9),(1.10) of the induced
connection V are given by

RE.,. = hovd), — hopdy, Ry = (n—2)hgyy

The images under f of the V-geodesics are always contained in 2-dimensional linear subspaces of R™,
which are spanned by £ and the image of the velocity vector.

If the cubic form is symmetric, then there exists a simple relation between the Levi-Civita connection
V of the affine metric, the dual connection V, and the induced connection V. Namely, we have
V= 2(V + V), or equivalently V — V = —2K [172, Section I, Corollary 4.4]. The cubic form hence
measures the difference between the primal and dual connections.

There exist, however, also other choices of the transversal vector field. In the absence of a dis-
tinguished point in R™ which can serve as the origin, i.e., when the target space of the immersion is
merely an affine space, the most natural choice of the transversal vector field is the affine normal. If
the immersion is locally convex, as will be the case with the level surface of barriers, the affine normal
can be interpreted as follows. Choose a point y € M and a neighbourhood U C M of y such that
flU] is a convex surface. Consider the image f.[T,M] of the tangent space at some point y as an
affine hyperplane H which is tangent to the immersion f[M] at the point f(y). Consider a family of
hyperplanes H, which is parallel to H. Then the hyperplane H, intersects the convex hull of f[U] in
some compact convex set C, with center of gravity ~,. The centers of gravity form a curve v with
end-point f(y). The tangent to v at f(y) is the direction of the affine normal & at y, see Fig. 1.1. The
definition of the affine normal assumes the existence of an affinely invariant volume form on R", and
therefore it is defined only up to a multiplicative constant in the absence of such a volume form. Affine
hypersurface immersions equipped with the affine normal as transversal vector field are called Blaschke
1MMETSIons.

A proper affine hypersphere is a hypersurface immersion with all affine normals meeting in a point.
It is convenient to consider this point to be the origin of R™. This definition involves only the direction
of the affine normals and is hence independent of the volume form chosen on R™. Moreover, it turns
out that the affine normal of a proper affine hypersphere is always equal to a constant times the centro-
affine transversal vector field, & = const - f. Only the value of this constant depends on the volume
form.
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f,[T,M]
f(y) /

Figure 1.1: Direction of the affine normal for convex hypersurfaces immersions

An excellent general reference on affine differential geometry is the book [172]. Centro-affine hy-
persurface immersions are treated in detail in the first chapter.

1.2.4 Lie derivative

There exist also derivations which are not defined by affine connections. Let M be a differentiable
manifold and v a vector field on M. Then v defines a flow ®; : M — M on M by the differential
equation 92 = y(z). The Lie derivative £,T of a tensor field T on M is defined by the rate of change
of T along the flow ®;. It is a tensor field of the same type as T. The Lie derivative of T' vanishes if
and only if the flow ®; leaves T invariant.

The coordinate expression of the Lie derivative of a tensor field T;ll;;” along a vector field v* is
given by [226, eq.(1.3.26)]

o oT:tim it pim ok

(LTt = ot St St Stk 2

k
v i1.im
61;Jn Ji---Jn—1k"

i1
ale Tk]2]n + +

If M possesses in addition an affine connection V, then the partial derivatives can be replaced by the
covariant derivatives with respect to V [226, eq.(1.3.27)],

et _ ok 01 .elm _ i1 kiz.. im L im i1 tm_1k
(LT)jy e = vV Ty = Vo Ty Vo' Ty
 kpini iy
+ Vi, 0 T AV 0T

In particular, we have L’Uéj» = 0 for the Lie derivative of the Kronecker symbol. Let now T3 be a
non-degenerate (0,2) tensor field and S*? the inverse (2,0) tensor field, such that 7,35% = §7. Then

we have by the Leibniz rule
SPYLyTup + TapLlyS? =0
and hence £,S*7 = —S““SQ’V[ZUTW. Therefore £,S = 0 if and only if £,7 = 0.
The Lie derivative £, commutes with the covariant derivative with respect to V if and only if the

affine flow @, defined by v leaves the affine connection V invariant [226, Theorem 1.4.2]. In particular,
we have the following result.

Lemma 1.2.2. Let U C R" be a domain and let v be a vector field on U. Let D be the canonical flat
affine connection of R™. Then the Lie derivative L, commutes with D if and only if the vector field v
is linear-affine in affine coordinates on U. O

A treatment of the Lie derivative can be found in many books on differential geometry or general
relativity, e.g., [218]. For a specialized monograph see [226].
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1.3 Barriers from the viewpoint of affine differential geometry

In this section we establish how logarithmically homogeneous barriers, which are functions F' defined
on domains in R™, relate to centro-affine geometry, which deals with hypersurfaces in R™. The key
result which relates these two objects is the splitting of the metric defined by the Hessian F’ into
a trivial 1-dimensional radial part and a non-trivial (n — 1)-dimensional part modelled on the level
surfaces of F', which turns out to be proportional to the centro-affine metric. Then we consider how
the cubic form on the level surface relates to the third derivative F’”. The main result will be the
characterization of self-concordant barriers by the centro-affine geometry of their level surfaces, in
particular, the equivalence between the condition of self-concordance and the uniform boundedness of
the cubic form. This will yield also an interpretation of the barrier parameter as a measure of the
difference between the primal and dual affine connections on the level surface. We shall present this
result in Subsection 1.3.1. In Subsection 1.3.2 we consider the relation between Legendre duality and
the conormal map. In Subsection 1.3.3 we then consider the simplest possible case, namely centro-
affine immersions with vanishing cubic form, for which the primal and dual affine connections coincide
with the Levi-Civita connection of the centro-affine metric. We show that this case corresponds the
hyperbolic barrier on the Lorentz cone.

The viewpoint on barriers as functions on the interior of the cone can be associated to the class
of affine-scaling methods. The viewpoint of centro-affine geometry puts in the focus the level surface
of the barrier, which is canonically isomorphic to the manifold of rays in the interior of the cone, and
can thus be associated to projective-scaling methods. One of the reasons for developing the theory
presented in this chapter is to lay a theoretical foundation onto which one can build projective-scaling
methods for general cones.

Another advantage of the presented connection between affine differential geometry and self-con-
cordant barriers is that results from geometry can be applied to yield new insights in the theory of
barriers. We shall present several applications in the subsequent sections.

1.3.1 Self-concordance and cubic form

The splitting result presented below is not limited to self-concordant barriers, but is valid for arbitrary
logarithmically homogeneous functions. Let F': K° — R be a smooth locally strongly convex function
on the interior of a regular convex cone K satisfying the logarithmic homogeneity condition (1.3) with
some v > 0. Let F, = {x € K°| F(x) = a} be the level surfaces of F. For every o € R, there exists
a diffeomorphism I,, : F, x Ry — K° given by I, : (x,8) — Bz. The following result states that the
Hessian metric defined by F on K° splits into a direct product under the inverse of I,.

Proposition 1.3.1. [139, Theorem 1, p.428] Assume the notations and conditions of the previous
paragraph. Then the Riemannian manifold (K°, F"), consisting of the interior of K equipped with the
Hessian metric generated by F, is isometric under I, to the product (F,,vh) x (R, v372dB?), where
h is the centro-affine metric of the inclusion F, — R"™, considered as centro-affine immersion.

Thus the affine metric on the level surface F, is given by v~! times the restriction of the Hessian
metric F” on this level surface, while the metric on a ray has metric tensor ¥3~2, where 3 is the
natural coordinate on the ray. Since all 1-dimensional Riemannian manifolds are locally isometric to
the Euclidean space R!, all the information contained in the metric F” is concentrated in the non-
trivial (n — 1)-dimensional factor and is encoded by the centro-affine metric h of the level surfaces of
F'. Note also that all level surfaces F,, are mutually isometric.

All the necessary ingredients to prove this result have already been provided in [171, Section 2.3.3].
For the case of homogeneous cones equipped with the universal barrier it has been proven in [187].
However, even convexity and non-degeneracy are not necessary. A proof in this general case can be
found in [96, Theorem 2.2].

The barrier parameter v appears as a proportionality coefficient between the centro-affine metric on
the level surfaces of F' and the Hessian metric F”’. From the viewpoint of centro-affine geometry it is
therefore convenient to consider logarithmically homogeneous functions of homogeneity degree v = 1,
because in this case the centro-affine metric is directly reproduced as the submanifold metric generated
by the Hessian. This yields also a simple means to compute the centro-affine fundamental form on
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an arbitrary smooth hypersurface. To this end one has to construct a 1-logarithmically homogeneous
function F' in a neighbourhood of the hypersurface, such that F' is constant on the surface itself, and
then take the restriction of the Hessian F to the hypersurface.

In the same way the second derivative F” is related to the centro-affine metric on the level surfaces
of F', the third derivative is related to their cubic forms.

Lemma 1.3.2. Assume above notations and conditions. Then for every a € R, the cubic form of
the inclusion F, — R", considered as centro-affine immersion, equals the restriction of the symmetric
(0,3) tensor field v=1F" on F,.

Proof. Let y € I, be an arbitrary point and let v € T, F,, be a tangent vector at y. We shall now
compute the value Clu,u,u] of the cubic form on this vector. Let V be the induced centro-affine
connection on F,, and D the canonical affine connection on D. We then have C = Vh = v~ 'VF" by
the definition of the cubic form and by Proposition 1.3.1.

Let o(t) be the V-geodesic through y = ¢(0) with velocity u. Then by definition u(t) = &(t) is the
vector obtained by V-parallel transport of u from y to o(¢t) along o. Applying (1.12) we get

a(t) — h(u(t), u(t)) - o(t) = 0. (1.13)

Let further v(t) = F"(o(t))[u(t), u(t)] be the value of F” on the vector u(t). On the one hand, we get
by differentiation

Y1) = F"(o(®)[o(t), u(t), u(®)] + 2F" (o (t))[a(t), u(t)]
= F"(o(t)[u(t), u(t), u(t)] + 2h(u(t), u(t)) F" (o (t))[o (), u(t)]
= F"(o(t))[u(t), u(t), u(t)].

e

Here the second equality comes from (1.13), and the third equality holds because the position vector
o(t) and the tangent vector u(t) are orthogonal by virtue of Proposition 1.3.1. On the other hand, we
have

Y(t) = Vuyy(t) = (VE") (o (1) [u(t), u(t), u(t)] = vC (o (t))[u(t), u(t), u(®)].

Here the first equality holds because the covariant derivative of a scalar equals its partial derivative.

The second equality holds by the Leibniz rule, taking into account that the V-derivative of u vanishes

because u(t) is V-parallel. The third equality comes from the definition of the cubic form C.
Equalling the two expressions for §(t) completes the proof. O

By Lemma 1.3.2 self-concordance of F' implies that the cubic form on the level surfaces of I is
uniformly bounded. However, the converse implication is not immediately evident, because the affine
metric and the cubic form on the level surface F, determine the derivatives F”, F"’ only on those
vectors which are tangent to F,,. We can, however, restore the values of these derivatives on arbitrary
vectors from the values on the vectors tangent to F,, only, which allows to obtain the following result.

Lemma 1.3.3. Let F : K° — R be a logarithmically homogeneous convex C® function with homogeneity
degree v on a convex cone K C R™, n > 2, let z € K° be a point, and set o« = F(x). Assume that F"
is positive definite everywhere on K°. Then |F" (x)[u,u,u]| < 2(F" (x)[u,u])*/? holds for all vectors
u € R™ if and only if the cubic form C on the level surface F, at x has co-norm not exceeding 29 with
9= \}’% as measured in the affine metric h at x.

Proof. Differentiating (1.3) with respect to ¢ at t = 1 and with respect to x we obtain F'(z)[z] = —v,
F"(z)[x] = —F'(x), see also [171, egs. (2.3.12-13)]. Differentiating further with respect to =, we get
F"(x)[x] = —2F"(z), see also [163].

Let v € T, F,, be a vector tangent to Fy,, and set u = v 4+ Sx with 5 € R. By Proposition 1.3.1 and
Lemma 1.3.2 we have F"'(z) = vh(x), F"'(xz) = vC(z) on v. Using the above formulas recursively and
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the condition that v is tangent to the level surface of F' we obtain

F"(2)[u, u,u] = F"(x)[v,v,v] + 38F" ()[v,v, z] + 382F" (2)[v, z, 2] + B3F" (z)[z, z, x]
= F"(z)[v,v,v] — 68F" (x)[v,v] + 63°F'(2)[v] — 28%v
= v(C(z)[v,v,v] — 68h(z)[v,v] — 26°), (1.14)
F"(2)[u,u] = F"(2)[v,v] + 2BF" (x)[v, z] + B*F" (z)[x, 2]
= F"(2)[v,v] — 2BF'(x)[v] — B2F'(z)[z] = v(h(z)[v,v] + 7). (1.15)

Therefore we have |F"(x)[u, u,u]| < 2(F"(x)[u,u])3/? for all u € R™ if and only if we have
|C(@)[v, v, v] = 68h(x)[v, v] — 28°| < 201/*(h(x)[v, 0] + 5%)*/?

for all v € T, F, and 8 € R. By squaring the inequality we get the equivalent condition
4v(h(z)[v,v] + %) — (C(2)[v,v,v] — 68h(z)[v,v] — 26%)? > 0. (1.16)

The left-hand side is a polynomial p in 8. We shall now determine the triples
(v, h(x)[v, v], C(x)[v,v,v]) for which p(B8) is nonnegative on the real axis. If v = 0, then p(8) =
4(v —1)B%, and p is nonnegative if and only if v > 1. If v # 0, and such v exist by our assumption

n > 2, then h(z)[v,v] > 0, and we may make the substitution 3 = 3+1/h(z)[v, v]. With 9 = %
we get

p(8) = (h(@)v, v])? [4v(1 + 3)° — (20 - 65 - 25°)] .

The polynomial in brackets is nonnegative if and only if it is a sum of squares of cubic polynomials in
B, which by a standard procedure [175] can equivalently be expressed by the matrix inequality

4(v —1) 0 W 49 + p
0 12(v — 2) — 2u —p T
: -
TP [ —p 120-3) -2 129 | =%
49+ p T 129 4y — 492

By Schur complements this is in turn equivalent to the linear matrix inequality (LMI)

4(v —1) 0 1] 49+p 0
0 12(v —2) — 2 —p T 0
Ju,pr: A= I —p 12(v—=3)—27 129 01| >0,
49 4+ p T 129 v 29
0 0 0 29 1

which is linear in (v,1). Hence the feasible set of this LMI is convex. We shall show that this set equals
the set S = {(v,9)|v >2, || < j% .
Indeed, inserting the values v =2, ¢4 = p =0, u = —4, 7 = —8 into A above yields a block-diagonal

positive semi-definite rank 3 matrix and shows that the point (2,0) is feasible. Let now 3 € (=1,1)\{0}
and set U = 1;52, 9 = —1_;2, = —8ﬁ;_4, T = —4(ﬁ~2 + 1), p = 0. Inserting these values into the

2
matrix A defined above, we obtain the matrix

4 4(1-24?) 40-4%)
4 0 - _d0- 0
52 _ 72 Ch
0 it 0 —41+8) 0
i | 402 0 1B 1By 1205 0
2 2 7 i
_4(1-5%) 41+ B?) _12(1-5%) 4(1458%) _2(1-5%)
B B B2 _ B
0 0 0 —20-5%) 1
B

By computing the determinants of the principal minors in the upper left corner one can check that this
matrix is positive semi-definite of rank 4. It can be checked directly that the kernel of A is generated
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by the vector w = (34,53,52, 5,2(1 — 32))T. Therefore the pair (v,9) = (1252 , —1_632) is feasible for
all 5 € (—1,1)\ {0}. Thus all extremal points of the set S defined above are feasible, and S is contained
in the feasible set of the LMI.

On the other hand, for every positive semi-definite matrix A as above we have
wl Aw = 4(52 + 1)2(2193 + PP+ B —4p? — B+ 1) >0,

leading to the linear inequality 23(9 — 9) + 8%(1 + 3%)(v — ) > 0. It is not hard to check that the set
S equals the intersection of the closed half-planes defined by these inequalities, with the parameter S
running through the set (—1,1) \ {0}. Therefore the feasible set of the LMI is contained in S.

We have shown that (1.16) holds for all v € T,F, and all § € R if and only if v > 2 and
|C(z)[v,v,v]| < 2\}’%(h(9€)[v7 v])3/2 for all v € T, F,,. Clearly the condition v > 2 is redundant, which
completes the proof. O

Corollary 1.3.4. Let F : K° — R be a logarithmically homogeneous convex C°® function with homo-
geneity degree v on a convex cone K C R™, n > 2. Then F is self-concordant if and only if the cubic
form on the level surfaces of F' has co-norm not exceeding 29 with ¢ = % as measured in the affine

metric. O

If we want to perform computations with geometric objects on the level surfaces of a barrier F, we
need to introduce a coordinate system on these level surfaces. While the interior of the cone K can be
conveniently parameterized by any linear coordinate system on R"™, the level surfaces are curved and
such a coordinate system cannot be used directly. We shall map the level surface by a radial bijection
to the interior of a compact proper affine section .S of the cone and then use an affine coordinate system
on this section, as shown in Fig. 1.2. The next result shows how to express the affine metric and the

Figure 1.2: Coordinate system on level surface of F' defined by radial projection onto affine section

cubic form in such a coordinate system.

Lemma 1.3.5. Let F : K° — R be a self-concordant barrier with parameter v on some regular convex
cone K C R™. Let S be a compact proper affine section of K. Let F,, be a level surface of F', equipped
with the centro-affine metric h and the cubic form C. Define a bijection 1 : F, — S° such that for
every point p € F,, the image point 1(p) € S° is a multiple of p. Let y : S° — R"~1 be an affine
coordinate chart on S° and let x = you: F, — R"! be the corresponding coordinate chart on F,. Let
f=Fouv:F, — R be the scalar function defined by the restriction of F to the interior of the section
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S. Then we have

_, O*f _, Of Of
1 2
hap =V 910028 9z 9x8’ (1.17)
c -1 3 f o o*f of 0*f of 0% f 8f)
By 0x*0zP oz 0x*0zP Oz = Oz%0x™ OxP = OxPOzY Oz
. Of Of Of
30 dj O
v Oz 9P dx7’ (1.18)

Proof. Let x € F, be a point on the level surface and y = ¢(x) the projection of x to the affine section
S. Note that homotheties map level surfaces of F' to level surfaces and leave the transversal vector
field invariant. Hence the affine metric and the cubic form on the level surfaces are also mapped to
each other. Moreover, the coordinate charts = defined by the affine section S are also mapped to each
other, i.e., in these coordinates a homothety is the identity map. We may hence assume without loss
of generality that the level surface F,, passes through the point y, and in fact x = y, by applying an
appropriate homothety.

Let now v € T, F,, be a vector tangent to the level surface, and u = ¢, v its image in the tangent space
to S. Then u = v+ Bz for some S € R, because in a neighbourhood of x the surface F, is projected to
S parallel to the vector x, up to terms of higher order. We have F’(x)[u] = F'(z)[v]+ 8F'(x)[x] = —Pv,
giving 8 = —v~'F/(z)[u]. Formulas (1.15),(1.14) then yield

F"()[u, u, u] = vC(x)[v,0,0] + 6F'(2)[ulh(@)[v, v] + 2072 (F' ()[u])°,

F"(2)[u,u] = vh(@)[v, o] + v (F' ()[u])*.

Solving this system for h and C' we obtain

h(@)[v,v] = v F" (@) [u, u] — v (F' () [ul)?,
C(x)[v,v,0] = v F"(2)[u, u,u] — 6072 F"(2) [u] F" () u, u] + 407> (F'(2)[u])°.

Now F'(z)[u] = f'(z)[v], F"(z)[u,u] = f"(z)[v,v], F"(2)[u,u,u] = f"(z)[v,v,v] by definition of f.
The claim of the lemma readily follows. O

The affine metric h and the cubic form C' of a level surface of a barrier F' can be seen as the
projective counterparts of the Hessian metric F”/ and the third derivative F'’. Indeed, in the case
of LP, i.e., when K = R}, the projective metric introduced by Karmarkar [116, Section 2| on the
interior of the standard simplex is proportional to the centro-affine metric on the level surfaces of the
logarithmic barrier F(z) = — 2?21 logz; on R, as can be seen by applying (1.17) to the restriction
of F' to the affine section of R” given by Z?:l zj=1.

Sometimes it is convenient to consider the level surface F,, not as a submanifold of the ambient
space R™ but as an abstract (n — 1)-dimensional manifold equipped with a metric h and a cubic form
C, modelled on the interior of a compact affine section of K, with h and C given by (1.17),(1.18).
These data suffice to recover both the barrier, up to an additive constant and a multiplicative factor
determining the barrier parameter, and the cone K, up to linear isomorphisms of R™. Indeed, by
raising an index of C' by means of h we may reconstruct the difference tensor V — V. The Levi-Civita
connection V = %(V + V) then allows to recover both connections V,V. Uniqueness of the centro-
affine immersion of M as a submanifold of R™ then follows from the fundamental uniqueness result
[172, Theorem 8.1].

In order to be a self-concordant barrier with parameter v for a cone K C R™, it is not sufficient
for a smooth convex v-logariathmically homogeneous function F' : K° — R to be a self-concordant
function. We must also have F(z) — +oo for £ — JK. This condition can also be rewritten in terms
of the level surfaces of F'. We shall need the following definition.

Definition 1.3.6. Let K C R" be a regular convex cone. A hyperbolic centro-affine hypersurface
M C K° is called asymptotic to K if every ray in K° intersects M in exactly one point and for every
compact proper affine section S of K and some Euclidean metric on R™, the distance between the
intersections 0K NS and M N S is positive for all a > 0.

23



Since all Euclidean metrics on R™ are equivalent, we may also replace "some Euclidean metric" by
"every Euclidean metric". Let S be a proper compact affine section of K. For a surface M which is
asymptotic to K, the intersections S, = aM N S° are closed, because every limit point of S, must
also be in S and hence in S, by continuity of M. By convexity of M the convex hull of S, equals the
union S>a = Ugs,, Ss- Hence for decreasing a we have that S>, is an increasing sequence of compact
convex sets whose union equals the interior of S and who have a positive distance from the boundary
0S = 0K N S. This situation is shown on Fig. 1.3. We have the following result.

Figure 1.3: Intersections S, = aM NS¢ for different «

Lemma 1.3.7. Let K C R" be a regular convez cone and F' : K° — R a v-logarithmically homogeneous
smooth convex function for some v > 0. Then the following are equivalent:

(a) the level surfaces of F are hyperbolic centro-affine surfaces which are asymptotic to K ;
(b) for every sequence of points xy, € K° tending to a boundary point x € 0K we have F(xy) — +oo.

Proof. (a) = (b): Let € K be a non-zero point, and let .S be a proper compact affine section of K
containing x. Let z; € K° be a sequence of points tending to x. Project x; radially on S to obtain a
point Zx € S°. Then T = agxy for some ay > 0, and limg_.o a = 1, because the sequence Z tends to
the same point as the sequence z. By logarithmic homogeneity of F' we have F'(zj) = F(x)—v log oy,
and limy_,o v 1og ap = 0. Therefore F(xy) — +oo if and only if F(Z;) — 400 as k — +oo. However,
F (%) — 400, because the level set {z € S°| F(x) < a} has a positive distance from 95 for every
a > 0.

Let now x = 0 and let z; € K° be a sequence of points tending to xz. Choose a proper compact
affine section S of K and an arbitrary point y € S°. Let o) > 0 be the unique number such that
x, € aiS. The level set {x € S°| F(x) < F(y)} is non-empty and has a positive distance from 95. It
is hence closed by continuity of F', because every limit point has to be in S°. It is also bounded and
therefore compact, hence F' attains a global minimum ¢* on S°. It follows that the minimum of F on
the section «S is given by t* — vlog« for every a > 0. In particular, F'(zy) > t* — vlog ay — +oo for
k — 400, because limy_, o, ap = 0. This proves (b).

(b) = (a): Since F'is convex, its level surfaces are convex. By logarithmic homogeneity the function
F is strictly decreasing along the rays of K°, hence the level surfaces intersect every ray in exactly one
point and are curved away from the origin, i.e., hyperbolic. Let S be a proper compact affine section of
K. Then the restriction of F' to S° is convex and tends to +oo along every sequence of points tending
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to some point in 9S. It follows that the level sets {x € S°| F(x) < a} have a positive distance from
0S8 for every a. This shows (a). O

We are now ready to formulate the main result of this subsection.

Theorem 1.3.8. Let M < R"™ be a smooth hyperbolic centro-affine hypersurface immersion which is
asymptotic to some reqular conver cone K C R™. Let C be the cubic form and h the centro-affine

metric of the immersion, and let ||C||c = sup{% |z € M, w € T,M, h(x)[u,u] # 0} be
2(v=2)

the co-norm of C' as measured in the metric h. Then for every v > 0 such that ||C||ec < =1 the

function F : K° — R given by FlaM] = {—vloga} for every a > 0 is a self-concordant logarithmically
homogeneous barrier for K with parameter v.

On the other hand, let F : K° — R be a self-concordant logarithmically homogeneous barrier for
some regular convex cone K C R™ with parameter v. Then every level surface of F is a hyperbolic
centro-affine hypersurface immersion, asymptotic to K, such that the oo-norm of its cubic form, as
measured in its affine metric, does not exceed the value \/”VTQI)

The theorem follows directly from Corollary 1.3.4 and Lemma 1.3.7.

The function v 2(';:21)
oo-norm ||C||e of the cubic form of the level surfaces of a self-concordant barrier F' hence yields a
lower bound 164110115 HlCH‘” V16Ol on the barrier parameter. The relation between the co-norm of
the cubic form and the barrler parameter is somewhat obscured by the fact that the barrier parameter
is defined as the degree of logarithmic homogeneity. For given level surfaces of the barrier this degree
can be chosen in an arbitrary manner, the sole condition to respect is inequality (1.2). Whether this
inequality is tight or not has no influence on the barrier parameter. In order to highlight the role of
the cubic form we shall introduce the following definition.

is monotonic for v > 2 with inverse function ¢ —

2 2
16+c +§\/16+c . The

Definition 1.3.9. For a self-concordant logarithmically homogeneous barrier F', we define the effective
barrier parameter of I as the lowest barrier parameter which can be achieved by dividing F' by a positive
constant o > 1 while maintaining the property of self-concordance.

From Theorem 1.3.8 we then get immediately the following result.

Lemma 1.3.10. Let F be a self-concordant logarithmically homogeneous barrier for some regular
convex cone K C R™, n > 2, and let C be the centro-affine cubic form of any level surface of F. Let
[|Cl|oo be the co-norm of C in the affine metric of the surface. Then the effective barrier parameter of

164|012 +11C1lo0 /16+1C] 12, 0

8

F is given by

As mentioned in Subsection 1.2.3, the cubic form can be obtained by lowering an index of the
difference tensor between the dual connection and the induced connection on the level surface. Hence
[|Cl|s is also the infinity norm of the difference between these connections. The barrier parameter can
therefore be seen as estimating this difference from above.

1.3.2 Legendre duality and the conormal map

As mentioned in Subsection 1.1.1, to every self-concordant barrier F' on a cone K C R™ with parameter
v one can associate a dual barrier F, on the dual cone K* C R,, with the same parameter v. In this
subsection we show that this notion of duality is closely linked to the duality in affine differential
geometry defined by the conormal map.

By applying the first order optimality condition to the maximization problem max,cx(—(z,s) —
F(z)) in Definition 1.1.3 we obtain the condition s = —F’(x). Let us denote the corresponding map
from K° to R,, by ®, ®(x) = —F’'(x). By [171, Theorem 2.4.4] the image of ® is exactly the interior of
the dual cone K*. Positive definiteness of the Hessian F” implies that @ is actually a bijection between
the interiors of K and K*. Moreover, it is an isometry when the interiors of K, K* are equipped with
the Hessian metrics F”, F!'| respectively [171, p.45],[163]. By the Definition 1.1.3 of the dual barrier
we have

F(2) + F.(8(x)) = (2, (2)) = (2, F' () = 1. (1.19)
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and hence ® maps level surfaces of I to level surfaces of Fy. As a consequence, the isometry ® preserves
the product structure in Proposition 1.3.1, but as is easily seen from (1.19), the orientation of the rays
is reversed: a ray pointing away from the origin in the primal cone is mapped to a ray pointing towards
the origin in the dual cone.

Let us now choose o € R and consider the level surface F, = {x € K°|F(z) = a}. By definition
the conormal map of the hypersurface immersion F,, < R"™ maps the point x € F}, to p € R,, such that
p is proportional to F'(x) and (p,—z) = 1. From the identity F’(z)[z] = —v we obtain the explicit
expression p = v 1F'(z) = —v~1®(x). We get the following result.

Lemma 1.3.11. Let F: K° — R be a self-concordant barrier on a reqular convex cone K C R™ with
parameter v. Let F, be a level surface of F'. Then the conormal map of the hypersurface immersion
F, — R™ is given by —v~'®, where ® is the isometry between the interiors of K and K* defined by
Legendre duality. O

1.3.3 Lorentz cones and hyperbolic barriers

As we have seen in Subsection 1.3.1, the effective barrier parameter of a self-concordant barrier with
a given level surface is a monotonic function of the co-norm of the cubic form C' of this surface. Here
the lowest possible norm of the cubic form, ||C||« = 0, corresponds to the parameter value 2. In
this subsection we shall consider this case in detail. We show that the only cone which admits a
self-concordant barrier with parameter v = 2 is the Lorentz cone with its usual hyperbolic barrier.
By an extension of the Pick-Berwald theorem a centro-affine hypersurface with vanishing cubic
form must be given by a quadratic equation [172, Section IV.6]. If it is in addition hyperbolic and
asymptotic to a cone, it must be a hyperboloid and the cone must be linearly isomorphic to the Lorentz

cone L, = {x = (z0, 71, ..., Tn_1)" |20 > Z;:ll 23}, We immediately obtain the following result.

Lemma 1.3.12. Let F': K° — R be a self-concordant logarithmically homogeneous barrier on a cone
K C R", n > 2. Then the value of its barrier parameter is at least 2. If its parameter equals 2,
then there exists a basis of R™ such that in the corresponding coordinate system we have K = L, and
F(z) = —log(x3 — Z;:ll %) + const. O

The cubic form measures the deviation of the level surface of a barrier F' from a quadric. This is not
surprising, since by Lemma 1.3.2 it is given by the third derivative F"”’, which measures the deviation
of F' from a quadratic function. We would like to stress an important difference between the affine and
the projective viewpoint, however. If F’”” = 0, then the level surfaces of F' become paraboloids, while
in the case of a vanishing cubic form they become hyperboloids. A paraboloid cannot be asymptotic to
a convex cone, and that is why the self-concordance parameter cannot be zero. The "ideal barrier" in
the affine case thus does not exist, while in the projective case it is a well-known object. There are also
practical consequences. In the methods using affine scaling each iteration consists of a Newton-type
step in an affine space. This step can never be exact, because the deviation of F' from a quadratic
function is always non-zero. In the projective case this drawback disappears.

Let us now compute the affine metric on the hyperboloid. We project the hyperboloid radially to the
affine section of L,, given by xg = 1. The hyperboloid is thus mapped to the open (n — 1)-dimensional
unit ball, parameterized by the coordinates x = (z1,...,7,_1)7. The restriction of F to this section
is given by f(z) = —log(1 — Z;:ll 2%). Formula (1.17) then yields

2(1 = ||z]|>)I + 4az™ 1 27 22T (1= || + z2™

1
h==. _ . . —
2 (1= [[[[*)? 4 1|zl 11—l (1= [][*)?

for the affine metric. Thus we obtain the Beltrami-Klein model of hyperbolic space. The geodesics of
the affine metric in this model are straight lines.

26



1.4 Canonical barrier

1.4.1 Introduction

In this section we present the main result of [93], the construction of the canonical barrier. This result
is a consequence of a deep theorem in affine differential geometry, the Calabi theorem. The connections
which have been made in the previous section between affine differential geometry and logarithmically
homogeneous functions allow to rewrite the Calabi theorem as an existence and uniqueness result for
the solution of a certain PDE on the interior of an arbitrary regular convex cone. That this solution is
a self-concordant barrier will then be deduced from a curvature estimate.

The canonical barrier is a universal construction, in the sense that it assigns a self-concordant
barrier to every regular convex cone. It is, however, not the first such construction. In [171, Section
2.5] Nesterov and Nemirovski introduce the universal barrier. This is a self-concordant logarithmically
homogeneous barrier which exists and is unique, up to an additive constant!, for any regular convex
cone K C R™. Tts barrier parameter v is of order O(n), i.e., there exists a constant C' > 0, independent
of K and n, such that v can be chosen equal to Cn [171, Theorem 2.5.1, Remark 2.5.1, p.50]. In
[77, Cor. 4.1, p.868| Giiler showed that the universal barrier on a regular convex cone K is, up to an
additive constant, equal to C times the logarithm of the characteristic function of K. The latter object
was introduced by Koranyi in [126] and is given by the expression

@(x):/*e’@’y)dy (1.20)

for € K°. A similar function was introduced by Koecher in [121] on so-called domains of positivity,
which are self-dual cones? K such that the isomorphism between K and K* is a self-adjoint map.
Some interesting properties of a particular level surface of the characteristic function, the constant
volume envelope, have been deduced in [73, Sections 3,4]. From definition (1.20) it follows that the
universal barrier on a product cone is the sum of the universal barriers on the factor cones, thus it is
compatible with the operation of taking product cones. Moreover, it is invariant with respect to any
automorphism of K with determinant 1, i.e., the unimodular automorphism subgroup. Note that this
property ensures that for homogeneous cones, the level surfaces of the universal barrier are the orbits of
the unimodular subgroup of automorphisms. The universal barrier does not behave well with respect
to duality, however: in [6] an example of a self-dual cone was given on which the duality mapping
defined by the universal barrier is not involutive, and hence the universal barrier is not equal to its
dual barrier.

The canonical barrier is another self-concordant logarithmically homogeneous barrier which exists
and is unique, up to an additive constant, for every regular convex cone. It can be obtained as the
potential of a natural Hessian metric on the interior of K, the Cheng-Yau metric, which was first
introduced in [42]. The canonical barrier shares with the universal barrier all invariance properties,
but in addition it behaves well under duality. It can be represented as the solution of the PDE
log det F" = 2F with boundary condition F|gx = 4+00. On homogeneous cones its level surfaces equal
those of the universal barrier, and on this class of cones the two barriers are essentially the same object.
That the universal barrier on homogeneous cones satisfies above PDE has been shown already by Giiler
[77, Theorem 4.4, p.868]. Giiler also conjectured that the solution of this PDE defines a self-concordant
barrier for general cones.

We give a precise statement of the Calabi theorem on affine spheres in Subsection 1.4.2, where we
also list some properties of the Cheng-Yau metric. As with the universal barrier, which can easily
be obtained as the logarithm of the long-known characteristic function of K, the difficulty with the
canonical barrier is to show that it is indeed a barrier, in particular, that it satisfies the self-concordance
condition (1.2). The proof of this fact is the main result of this section and will be accomplished in
Subsection 1.4.3. It turns out that the barrier parameter of the canonical barrier equals the dimension n
of K. Like with the universal barrier, it may be possible to lower the barrier parameter of the canonical
barrier by multiplying it by a positive constant smaller than 1, i.e., the effective barrier parameter of
the canonical barrier may be strictly smaller than n. In Subsection 1.4.4 we give expressions for

1This constant is determined by the choice of the volume form on K* when integrating (1.20).
2Here we understand self-dual in the wider sense that K is linearly isomorphic to its dual cone K*.
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the canonical barrier on a class of cones including the 3-dimensional power cone in order to provide
nontrivial examples.

The self-concordance of the canonical barrier has been obtained independently by Daniel Fox in
[72]. In that paper he applies methods that are more sophisticated than those used here, and he
obtains more general results. He also mentions that the barrier parameter of the canonical barrier can
be obtained by the easier method presented here.

1.4.2 Affine hyperspheres and the Calabi theorem

A proper affine sphere is a hypersurface in R™ whose affine normals all meet in a point, which may be
conveniently considered as the origin. The Calabi theorem, originally formulated as the Calabi conjec-
ture in [39, p.22], is an existence and uniqueness result on hyperbolic affine spheres. The conjecture
has been proven by the efforts of many authors, a synthesis of the proof is given in [135, Section 2].

Theorem 1.4.1 (Calabi theorem). Let K C R™ be a regular convex cone. Then there exists a unique
foliation of the interior K° into a family of mutually homothetic proper hyperbolic affine hyperspheres
which are asymptotic to K.

Since the direction of the affine normal is invariant under affine transformations of R™, we have
that this foliation is invariant under linear isomorphisms of the cone. Let us formalize this result as
follows.

Corollary 1.4.2. Let A: R"™ — R"™ be an invertible linear map, let K C R™ be a reqular convex cone,
and let K' = A[K] be its image. Then A maps the foliation of K° into proper affine spheres which are
asymptotic to K to the foliation of int K’ into proper affine spheres which are asymptotic to K'. [

The Calabi theorem is closely linked to another existence and uniqueness result involving regular
convex domains in R™. Here regular means that the domain is non-empty and does not contain any
line.

Proposition 1.4.3. Let Q C R" be a reqular convex domain. Then there exists a unique locally
strongly convex smooth solution F : ) — R of the PDE

log det F"" = 2F (1.21)

with boundary condition lim,_,sq F(x) = +oc0.

Existence of the solution is proven in [42, Theorem 4.4, p.365], while uniqueness follows from [41,
Proposition 5.5, p.528]. The Hessian F” of the solution defines a complete Einstein-Hessian metric on
Q, the Cheng-Yau metric. Here Finstein-Hessian means that an appropriate complexification of the
Riemannian manifold has its Ricci curvature tensor equal to a multiple of the metric tensor [196, Def.
3.3, p41].

For domains €2 which can be represented as a product of two domains, we have the following evident
result.

Lemma 1.4.4. Let Q, C R™, Q,, C R™ be regular convex domains, and let F,, : Q, — R, F,, :
Qm — R be the solutions of the boundary value problem in Proposition 1.4.3 for the domains Q,,,Q2,,.

Then the solution of this boundary value problem on the product domain Q = Q, x Q,, is given by

Equation (1.21) is invariant with respect to affine transformations of R™. It can be checked directly
that if z — & = Ax + b is an affine coordinate transformation of R”, then the solution F'(Z) of (1.21)
in the new coordinates is given by

F(&) = F(z) — log| det A. (1.22)

In particular, F' remains invariant if det A = +1, i.e., if the affine map preserves the volume from on
R™. If no distinguished volume form is given, then the solution of (1.21) may change by an additive
constant under coordinate transformations, due to the coordinate dependence of the definition of the
determinant.
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We wish to use the solution F' as a barrier for conic programming, and hence our interest is in
the case when the domain € is the interior of a regular convex cone K C R™. Then the homothety
x — & = ax is an automorphism of K° for all « > 0. We therefore obtain from (1.22) that F(azx) =
F(z) —nloga for all a > 0, i.e., the solution F' satisfies (1.3) with v = n. That the potential of the
Cheng-Yau metric on regular convex cones is logarithmically homogeneous was already mentioned in
[139, pp.426—-427] without a detailed proof. By Lemma 1.3.7 and by virtue of the boundary condition in
Proposition 1.4.3 it follows that the level surfaces of the solution F' of (1.21) form a family of mutually
homothetic centro-affine surfaces which are asymptotic to the cone K and foliate its interior. Sasaki
[188, pp.73—74] has shown that these level surfaces are exactly the hyperbolic affine hyperspheres from
the Calabi Theorem 1.4.1. This relation has been later rediscovered as the main result of [139]. A more
comprehensive review of the literature and an independent derivation can be found in [72], where the
solution of (1.21) was termed canonical potential of the cone K.

The solution F' shares with the universal barrier of Nesterov and Nemirovski its existence and
uniqueness as well as the invariance properties with respect to unimodular automorphisms and the
behaviour under the operation of taking products of cones.

In contrast to the universal barrier, whose dual barrier on the dual cone is in general not the
universal barrier of the dual cone, affine hyperspheres also behave well under duality. In particular, we
have the following result.

Proposition 1.4.5. [7/, Prop. 1, p.891] Let M C R™ be an affine hypersphere. Then the image of M
under the conormal map is also an affine hypersphere.

By Lemma 1.3.11 the conormal map is proportional to the isometry ® between the interiors of the
cones K, K* defined by Legendre duality. Therefore ® maps the foliation of K° by affine spheres to
the corresponding foliation of the interior of K*.

1.4.3 Self-concordance

In this subsection we prove the self-concordance of the solution F' of equation (1.21). By Theorem
1.3.8 this property is equivalent to the uniform boundedness of the co-norm of the cubic form of the
level surfaces of F. However, in the previous subsection we have seen that these level surfaces are
exactly the affine spheres which are asymptotic to the cone K. In [135, Corollary 2.6.5, p.128] a
uniform bound on the 2-norm of the cubic form of hyperbolic affine spheres has been deduced by a
purely algebraic argument from estimates of the Ricci curvature of the affine metric. We shall provide
a similar argument for bounding the co-norm. The proof provided here is somewhat different from
that in [93] and has been published in the related paper [91].

The Ricci curvature tensor Ricy, of the centro-affine metric h on complete hyperbolic affine spheres
of dimension n — 1 satisfies the inequalities —(n — 2)h < Ricy < 0. The first inequality comes from [39,
eq. (2.7), p.24], the second one from [39, Theorem 5.1, p.31].

The utility of these bounds comes from the fact that the Ricci tensor and the cubic form are
algebraically dependent. The Ricci curvature of the affine metric is explicitly given by [191, p.3]

1
Rij=—(n—2)hy + thThlSCilejrs, (1.23)
where h'/ is, as usual, the inverse of the matrix h;; of the centro-affine metric.
Moreover, the cubic form of an affine sphere satisfies the apolarity condition [172, Section II, The-
orem 4.4] -
h”C’ijk =0. (1.24)
We shall need the following auxiliary inequality.

Lemma 1.4.6. Let n >3 and Ay, ..., A2 < 1 be such that .- >\i = —1. Then

3"’2A2 s Bn—4
Z; ‘ Z 1_471—2)
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Proof. Define ¢; = (n—2)\;+1. Then ZZ ¢ =0and ¢; <n—1foralli. It follows that ¢} < (n—1)c?
for all <. We then have

3n— 3 — 3n —4
*Z”“Z” —2p e T Z U o

i=1 i=1
3n n—1 \<2 9 n+2 2 9
— = — ° > 0.
(4(n—2)3 2(n—2)3> ;c A(n — 2)3 ;c =
This completes the proof. O

For n = 2 every regular convex cone is isomorphic to ]R , which is homogeneous. Therefore the
condition n > 3 in the lemma does not restrict generality.

Corollary 1.4.7. Let B be a real symmetric (n — 1) x (n — 1) matriz with vanishing trace. Then

3 \max(B) tr B2 — L tr B3 > f(n" 21))2 A3 (B).

Proof. If Apax(B) = 0, then B = 0 and the assertion of the corollary is evident.

Suppose now that /\mwx( )>0. Let \y < XAy <--- < Ao < A\—1 = 1 be the eigenvalues of the
matrix B = T(B) in increasing order. Then E ; = —1 and \; <1 for all . We then have
B (Bt B2 — 2tepr = M= s gy s gy §trB2—1trB3—m
4o 2 4(n — 2)2 max max 2 4(n — 2)?
_ 1)
_ ) 2\ 1, 3\ n(n S
2 (B ( +Z)\ +ZA T 2 >0,
where the inequality comes from the preceding lemma. O

We are now in a position to estimate the norm ||C(p)|[oc = MmaXyer,ar: h(p)[u,ul=1 C(P)[u, u,u] of
the cubic form at a point p of a complete hyperbolic affine sphere M of dimension n — 1. Let p € M
be an arbitrary point, let £ € T,,M be a maximizer of the cubic form on the unit sphere in T, M. We
shall now drop the argument p from the tensors h, C.

Define the symmetric (0,2)-tensor B;; = Ci;1EF. Note that B is traceless by the apolarity condition
(1.24), i.e., h B;; = 0, and that B;;£'¢/ = ||C||~. Moreover, by the optimality conditions [135, Lemma
2.2.3.19, p.106] on ¢ we have that B;;&'n/ = 0 and Byn'n < 1B;;£'¢? < ||C||« for every unit length
vector 7 which is orthogonal to £. It follows that ¢ is also a maximizer of B on the unit sphere in T),M.
In particular, we have

Bi;&’ = [|Cllochiz&’ (1.25)
as the first order optimality condition, and ||C/||~ is the maximal eigenvalue of the matrix of B in any
orthonormal basis of T}, M.

In an orthonormal basis of T, M the matrix of the centro-affine metric h is given by the identity

matrix I,,_1. Let {£,71,...,m,—2} be an orthonormal basis of T}, M, then we have
_ n—2
IOl = (By&'d?)? ( Z Bzﬂlkﬁk) <( Z ) ZBzzBlmmk
ko= k=1

= (n—2)(BuB" - iszfEf]):( 2) ( uJC ek —|ol%)
= 4n=2)(Rjx + (n = 2)hj)e’€" — (n = 2)||CI5, < 4(n - 2)* = (n = 2)[|C]]3.
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Here the second equality holds because B is traceless. The next two inequalities are due to Bunjakowski-
Schwarz. The third equality holds because S 7—2 mpn = I, 1 — £€7. We used (1.25) and (1.23) in the
last two equalities, respectively, and the non-positivity of the Ricci curvature [39, Theorem 5.1, p.31]
in the last inequality.

Since the point p € M was arbitrary, it follows that ||C||s < 2\(/2%21). Theorem 1.3.8 then yields

the following result.

Lemma 1.4.8. Let K C R™ be a regular convex cone and let F' be the solution of (1.21) on K°. Then
F is a self-concordant logarithmically homogeneous barrier on K with barrier parameter v = n. O

Definition 1.4.9. We call the barrier given by the solution F of (1.21) the canonical barrier.

Corollary 1.4.10. Let K C R™ be a regular convex cone. Then the barrier parameter of the optimal
barrier on K does not exceed n. O
We shall summarize the obtained results in the following theorem.

Theorem 1.4.11. Let K C R" be a reqular convex cone. Fiz a basis of R™ and consider in the
corresponding coordinate system the boundary value problem

2F
log det (aax(;)> =2F(z), vz € K% Flox = +o0. (1.26)

This problem has a unique locally strictly convex solution F : K° — R. This solution is a smooth
logarithmically homogeneous self-concordant barrier, the canonical barrier, on K with barrier parameter
n, and gives rise to an Einstein-Hessian metric F” on K°. It is invariant under unimodular basis
changes of R™ and is determined up to an additive constant under arbitrary basis changes. In particular,
it is invariant under the group of unimodular automorphisms of the cone K. The dual barrier F, :
int K* — R differs from the solution of the above boundary value problem on the dual cone K* by an
additive constant, and hence its Hessian is an FEinstein-Hessian metric on int K*. If K = K| x K,
is a product of reqular convex comes, then the canonical barrier F' on K is the sum of the canonical
barriers on the individual factor cones K1, K. O
From the invariance properties it follows that the canonical barrier has the same level surfaces as the
universal barrier on the class of homogeneous cones, see also [77, Theorem 4.4, p.868]. In particular, all
classical barriers used in interior-point methods for solving conic programs over irreducible symmetric
cones have the same level surfaces as the canonical barrier. This shows at the same time that the
effective barrier parameter of the canonical barrier may be strictly smaller than the dimension n of the
cone. Below in Section 1.4.4 we shall demonstrate this on the example of a non-homogeneous cone.
The canonical barrier is in general not optimal, i.e., on a given cone K there may exist self-
concordant barriers with parameter strictly smaller than the effective parameter of the canonical barrier.

An example is the symmetric cone L3 x Ry = {;U eR* |z > /22 + x3, 14 > O}. The optimal barrier

—log(z? — 22 — 2%) — logz4 on this cone has barrier parameter v = 3, while the canonical barrier

—3 log —22—"5 — log x4 has effective barrier parameter 4.

1.4.4 Examples

In this subsection we provide analytic expressions for the canonical barrier on several non-homogeneous
cones. As this barrier is a solution of a non-linear PDE, such expressions are notoriously difficult to
obtain and likely do not exist is most cases. Most promising are cones K possessing a rich continuous
symmetry group, which allows to reduce the dimension of the PDE by using its invariance properties.
In particular, if the orbits of the automorphism group of the cone have codimension 1, then the PDE
can be reduced to an ordinary differential equation (ODE). Here we consider the canonical barrier
on the power cone in arbitrary dimension and on 3-dimensional cones with a non-trivial symmetry
group, which we call semi-homogeneous. In general, the canonical barrier can be expressed by elliptic
functions in these cases. These results have been published in [93] and [92], respectively. In recent
years a promising approach based on loop groups has been developed to compute the hyperbolic affine
spheres which are asymptotic to general 3-dimensional cones [62, 137, 136], by using the especially rich
complex-analytic structure of these surfaces [217, 198].

31



Generalized power cone

Let n > 3, let p,q € (1,400) such that % + é =1, and consider the cone

K ={ @y, €R 220, y >0, |l2]lo < (VBr)/(/ay) '/}

For n = 3, i.e., z scalar, we obtain a linear image of the power cone, a well-known non-homogeneous
self-dual cone. For general n the cones K have been considered in [40, p.94] and are also self-dual.
The cone K is invariant under unimodular automorphisms of the form

_1_n=2 142=2 1_1
T— Tx, y—a Py z—ai rUz

where o > 0 and U is an orthogonal matrix of size n — 2. Hence the canonical barrier on K, which
must be invariant under these automorphisms and satisfies (1.3) with v = n, can be written in the
form

n—2

Fag2) == (14722 )toa() - (1472 Y oa(van) + 0 (Vi) /2 )

where ¢ : [0,1) — R is a function of a scalar variable such that lim;—; ¢(t) = +oo.
Setting t = (y/pr)~*/P(\/qy)~*/9||2|| and inserting above expression into PDE (1.21) and integrat-
ing, we obtain

1 -2 1 -2
logt:—10g<1+p+n> —log(l—ﬁ-m),
2p p 2q p

1

-2
¢2(1+np>log(p+p+n2)+

1 n—2

= <1+ > log(p+q+n —2),

2 q

where p = t%. These relations give a parametric representation of the solution curve (¢, ¢(t)), with the
parameter p ranging from 0 to +o0. It is also seen that for p # 2 there exists no closed-form expression
for ¢(t).

Numerical calculations indicate the following conjecture.

Conjecture 1.4.12. The effective barrier parameter of the canonical barrier F' on the cone K equals

n max(p,q)
max(p,q)+n—2"
The conjecture can be formulated equivalently as the nonnegativity of a certain multivariate poly-

nomial. For n = 3, i.e., when K is isomorphic to the power cone, this polynomial can be shown to

be a sum of squares. The corresponding value v = %%’3_)1 of the barrier parameter is smaller than

the best-known values v = 3 (analytically) and v = 3 —

V=

m (numerically) reported in [40, Section

3.1]. In Fig. 1.4 the self-concordance parameters of the barriers proposed in [40] and of the canonical
barrier are depicted as a function of p.

Homogenized epigraph of the exponential function

Consider the closure of the homogenization of the epigraph of the exponential function given by
K ={(z,9,0)" |2 <0, y > 0}U {(l'vyaz)T ‘ Y>ep?, 2> 0}.
z z

This cone is invariant with respect to the unimodular subgroup of automorphisms (z,y, 2) — (e'(xz —
3tz),e 2y elz), t € R. Invariance of the canonical barrier with respect to this group leads to the
Ansatz

F(l‘ayvz)=—1ogy—210gz+¢<logg—§>.

Here ¢ : R4 — Ris a scalar function. Inserting F' into (1.21) and integrating, we obtain the parametric

representation
t\ _1( log(1+k)+2K
o) 2 \log(l+k)—3logk

of the function ¢(t), where k = —i runs through all positive reals.

It is not hard to check that the effective barrier parameter of the canonical barrier for this cone
equals 3.
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Figure 1.4: Effective self-concordance parameters of barriers for the power cone

Asymmetric power cone

Consider the cone
K ={(z,y,2)"| —az'/Pyt/? <z < 2'/ryl/a}
with @ € (0,1], p € [2,+00), and ¢ € (1,2] such that - + ; = 1. This cone is invariant with respect

to the unimodular group of automorphisms (z,, z) — (2P~ Vg e=(P+Nty ¢=(P=2)t;) The canonical
barrier on K must be invariant with respect to this symmetry group and therefore has the form

_ptl ¢+1

F = logz —
p

logy + ¢ (xil/pyfl/qz) , (1.27)

where ¢ : (—a, 1) — R is a scalar function.

In order to represent this function, we shall need the cubic polynomial P(£) =4(p+ q)(¢é — 1)(£ +
p)(€ + q) + ¢® depending on a parameter ¢ € [0,2(p + ¢)) which we shall choose further below. This
polynomial has 3 real roots &1, &, &3 satisfying 1 > & > 0 > & > —q > —p > £3. Define the function

_ 1 1 1 V-8 -&)(1-&)
60~ ( ) (c )

Ct+a—-1 pE+&+p dC+&+g VIC+& &) +a - &)

This function has a simple pole at { = —1/1 — &; with residue 1 and is analytic elsewhere on R. Left of
the pole it is negative, right of the pole positive, decreasing in absolute value as |[¢|~3. We now choose
the parameter ¢ such that

+oo

loga = — ; G(g—m)+G(fC*v1*£1)dC~

The pole of the function G cancels out in the integrand and the integral is finite and positive. It can
be checked that ¢ € [0,2(p + ¢)) is mapped bijectively to « € (0, 1] by this equation.
A parametric description of the function ¢(t) is then given by

oo (= [IT6Qd),  Ce(—VI=&, +o),
P=) —acesp ([ GQ), (e (-o0,—VT=E),
07 Cz_\/l_gla
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VI &)1 -&)1—E&)+ V(P + & — &) G+ & — &)
typFq '

The integrals over G(¢) can be expressed by elliptic functions [38], see also [2].

¢ =log

Symmetric power cone

Specializing the value of a from the previous subsection to 1 leads to the power cone
K = {(z,y,2)" ||2] < z"/Py/a},

The value o = 1 corresponds to the value ¢ = 0, which yields the roots & = 1, & = —q, &3 = —p of
the polynomial P. The canonical barrier of K is still given by (1.27), but the integrals have analytic
expressions and the parametric representation of the scalar function ¢ : (—1,1) — R can be simplified.
Namely, we have

(t> _ (¢4 p+1) 3 (¢ +q+1)%¢
¢ —3log(p+q) + Bt log(¢2 +p+ 1) + Gt log(¢ + ¢+ 1)
with parameter ¢ € R.

Intersection of the power cone with a half-space

For the value o = 0 we obtain the cone
K= {(3573/,Z)T |0< 2z < ggl/Ivyl/q}7

which is an intersection of the power cone with the closed half-space given by the inequality z > 0. The
canonical barrier for this cone is given by (1.27) with the function ¢ : (0,1) — R given parametrically
by

Vpta—T
5 Vpta
t=(VErpta-l+ Vp+q>((\/§+p+q—1+\/p+q—1)2>

.(\/§+p+q—1+\/q_1)é (\/€+p+q—1+\/p_1>§7

§+p §+4q
_ EVEFTPTa—T\ _
¢ = log (1 + N ) logt,

where the parameter runs through £ € (0, +00). The effective barrier parameter of the canonical barrier
for this cone equals 3.
Intersection of L3 with a half-space

For the special case p = ¢ = 2 in the previous subsection we get the cone

K ={(z,y,2)7 |0 < 2z < Jzy},

which is isomorphic to the cone built over a half-disc. The canonical barrier for K is given by (1.27)
with the parametrization of ¢ simplifying to

t ( VE )ﬁxmwxmm
VET3+3 £+2 ’
_ EVEFD VEFS+VE | (VEFB+2)(VEF3+1)
¢ = 1og(1+2>+\/§log 7 —log 740 ,

with parameter { € (0,4+00). The effective barrier parameter of the canonical barrier for this cone
equals 3.
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Power cone plus orthant
The cone dual to the intersection of the power cone with a half-space is isomorphic to
K ={(z,y,2)" |z 2 —a'/Py!/9},
which equals the sum of the power cone and the nonnegative orthant of R3. The canonical barrier for
this cone is given by (1.27) with the function ¢ : (=1, +00) — R given parametrically by

vptqg—T

_ 1-¢ (\/£+p+q—1+\/p+q—1) Vi
VE+p+a—1+vp+a\VE+p+q—T1-Vp+q—1
(WVEFPHa—T+Vg- ) (VE+pta—1+Vp- 1)1,

62

_ 1 I e 1—
6= log VP11 §VE+p+y ~log TRt
VP +at 1+6,/1+ 52 t

where the parameter runs through £ € (0, +00). The effective barrier parameter of the canonical barrier
for this cone equals 3.

Sum of L3 and an orthant

Specializing to p = ¢ = 2 in the previous subsection we get

K ={(z,y,2)" | 2 > -2y},

which equals the sum of an inclined Lorentz cone and the nonnegative orthant of R®. The canonical
barrier for this cone is given by (1.27) with the function ¢ : (—1,400) — R given parametrically by

1—¢ VEF3+V3 =
(VEF3+2)(VEF3+1) \VE+3 -3

1_|_ _|_£ 3 \/ 3— 3
o = logA—i-log (VE+3+2)+log(v/E+3+1)+ £ §+ \[,

where the parameter runs through £ € (0, +00). The effective barrier parameter of the canonical barrier
for this cone equals 3.

Semi-homogeneous 3-dimensional cones

The computation of the canonical potential in the cases listed above was possible due to a reduction of
PDE (1.21) to an ODE by virtue of a non-trivial automorphism group of the cone. We shall call regular
convex cones K C R™ whose automorphism group has orbits of codimension 1 semi-homogeneous. The
following result, whose proof can be found in [92], shows that every 3-dimensional semi-homogeneous
cone is isomorphic to one of the cases computed above.

Theorem 1.4.13. Let K C R? be a reqular conver cone such that dim Aut K > 2. Then K is
isomorphic to exactly one of the following cones.
1. the cone obtained by the homogenization of the epigraph of the exponential function,
2. the positive orthant le_,
3. the cone given by {x|z > —x'/Py"/9, £ >0, y > 0} for some p € [2,00), %
4. the cone given by {x | —ax'/Py/1 < z < gVPyl/a x>0, y > 0} for somep
€ (0,1],
5. the cone given by {x|0 < z < zV/Pyt/4 x>0, y > 0} for some p € [2,00),

1 _
=L

4
€ [2,00),

+1l=1,

1
q

D=
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1.5 Self-scaled barriers and parallel cubic forms

1.5.1 Introduction

In this section we study the centro-affine geometry of the level surfaces of self-scaled barriers. We
show that self-scaledness of a barrier is characterized by the vanishing of the covariant derivative of
the cubic form on its level surfaces. Therefore from the viewpoint of affine differential geometry the
self-scaled barriers are the simplest class of self-concordant logarithmically homogeneous barriers after
the hyperbolic barrier on the Lorentz cone, which is characterized by the vanishing of the cubic form
itself.

Self-scaled barriers have been classified completely, with the first steps done by Hauser [84, 83, 85]
and the classification being completed independently by Schmieta [189], Giiler [86], and Lim [87].
Hauser showed that a self-scaled barrier F g/ (x,y) on a product of cones K, K’ decomposes into a
sum F(x) + Fi(y) of self-scaled barriers on the factor cones, with the decomposition being unique
up to an additive constant. The other authors showed that an irreducible self-scaled cone must be
symmetric and every self-scaled barrier on it must be an affine scaling of the universal barrier. These
results rely on the connection between symmetric cones and Jordan algebras.

Definition 1.5.1. A Jordan algebra J over a field K is a vector space over K endowed with a bilinear
operation e : J x J — J satisfying the following conditions:

i) commutativity: z ey =y ez for all z,y € J,

ii) Jordan identity: x e (z? @ y) = 22 o (z @ y) for all z,y € J, where 22 = v @ 2.

The Jordan algebra is called Euclidean or formally real if K = R and the identity Y ;" , xi =0
entails zp =0, k= 1,...,m, for all elements k1,...,k,, € J.

The symmetric cones can then be characterized as sets of the form {z%|x € J} or as closures of
sets of the form {exp(z)|x € J}, where J is a Euclidean Jordan algebra [214, Theorem 3],[122]. Most
of the material on Jordan algebras used in this section can be looked up in [123]. Other references on
Jordan algebras are [110] or [143].

The Euclidean Jordan algebras have been completely classified in [112]. Every Euclidean Jordan
algebra can in a unique manner be represented as a direct sum of simple or irreducible Euclidean Jordan
algebras [112, p.38]. The simple Euclidean Jordan algebras have been listed in [112, Fundamental

Theorem 2].
In this section we shall work a lot with the partial derivatives of a barrier F'. We will denote
2
the partial derivatives of I short-hand by indices after a comma. Thus 25 = F,, 21 = F 5

etc. The elements of the inverse of the Hessian F”' will be denoted by upper indices after a comma,
(F")~t = (F*®), g=1,...n, such that F,g %7 = §].

Giiler and Schmieta associate to every self-scaled barrier F' on a cone K C R™ a Euclidean Jordan
algebra J by the formula

1
(uev) = —§F775Fya55uav’8. (1.28)

The cone of squares of the algebra J then coincides with the original symmetric cone K. This approach
can be traced back to Koecher [123] for the more general case of w-domains, see also [211].

Given the Jordan algebra J, it is, however, not possible to recover the derivatives F”, F” in a unique
manner from its structure tensor. It is easily seen, e.g., that the right-hand side of (1.28) remains
invariant under multiplication of F' by a constant. In order to be obtain a one-to-one correspondence
between the algebra and the derivatives of the barrier, we have to augment the definition of Jordan
algebra as follows.

Definition 1.5.2. A metrised algebra is a pair (A, o) such that A is an algebra and o is a non-degenerate
symmetric invariant bilinear form on A, i.e.,

o(a,bec)=c(aeb,c) (1.29)

for all a,b,c € A.

If A is commutative, then condition (1.29) is equivalent to the condition that the operator L, of
left multiplication by a is self-adjoint with respect to o for all a € A.
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The Hessian F” is invariant with respect to the algebra defined by (1.28), because the third deriva-
tive F" is symmetric. Given the metrised Jordan algebra (J, F"'), it is then possible to recover the
third derivative. The concept of metrised algebra has been introduced in [31] by Bordemann, but in the
context of Jordan algebras it has been essentially used and studied already by Koecher [123, Theorem
I11.10, p.64].

Here we shall establish a different link between Jordan algebras and barriers. Let F' be a logarith-
mically homogeneous function F' with non-degenerate Hessian, and let C be the cubic form of a level
surface of F. We show that the integrability condition of the quasi-linear fourth order PDE VC =0
is exactly the Jordan identity for the algebra (1.28). This implies that a non-degenerate centro-affine
hypersurface immersion satisfying the condition VC = 0 defines a metrised Jordan algebra (1.28) with
invariant form F”. Thus self-scaledness, the metrised Jordan algebra structure, and the parallelism
of the cubic form are all equivalent expressions of the same condition. This provides also a radically
different view on self-scaled barriers, because these are initially defined by a global algebraic property,
while the parallelism condition is local and geometric. We consider these connections in Subsection
1.5.3.

A similar parallelism condition turns out to be equivalent to condition (1.3) of logarithmic homo-
geneity. Namely, a scalar function F' on a domain in R" is logarithmically homogeneous with respect
to some central point if and only if the first derivative F’ is parallel with respect to the Levi-Civita
connection defined by the Hessian F/. This yields a differential-geometric description of logarithmic
homogeneity. This relation is considered in Subsection 1.5.2.

We show (Theorem 1.5.14) that given a Hessian manifold satisfying DDg = 0, the existence of
a Hessian potential F' satisfying DF’ = 0 is equivalent to unitality of the metrised Jordan algebra
associated to the manifold, where D is the canonical affine connection of the manifold and D the
Levi-Civita connection of g.

The correspondence between Euclidean Jordan algebras and symmetric cones can be generalized
to the non-convex case [214, Theorem 4], see also [123],[140],[122]. In a similar manner, the relation
between the condition that the cubic form of the level surface of a logarithmically homogeneous function
F is parallel and the condition that the algebra defined by virtue of (1.28) is Jordan still holds for
non-convex functions F' and non-Euclidean Jordan algebras. This equivalence can be used to reduce
problems about centro-affine hypersurface immersions with parallel cubic form to problems about
metrised Jordan algebras. We used this approach in [96] to solve the problem of classifying affine
spheres with parallel cubic form. We shall briefly present this result in Subsection 1.5.6.

1.5.2 Parallel first derivative

In this subsection we consider the condition on a general Hessian metric F” that the first derivative
F’ of the Hessian potential is parallel with respect to the Levi-Civita connection D defined by F”’.
We show that this condition is equivalent to the logarithmic homogeneity of F'. Since the condition
DF’ = 0 is invariant with respect to affine transformations of the underlying space, the central point
of the homogeneity might not coincide with the origin of R™. Therefore we consider potentials F' which
are defined on an affine real space A™ rather than the vector space R"™.

Let U C A™ be a simply connected domain in n-dimensional real affine space. Consider a C®
function F' : U — R with non-degenerate Hessian. The function F' turns U into a Hessian pseudo-
Riemannian manifold with metric F”/. Let D be the canonical flat affine connection on U, D the
Levi-Civita connection of the Hessian metric F”/, and K = D — D the difference tensor. The difference
tensor is a tensor of type (1,2) which is symmetric in the two lower indices.

In an affine coordinate system, the Christoffel symbols of the Levi-Civita connection D have the
form T 5 = 1F 455 F7°, while the Christoffel symbols of D vanish. Hence the difference tensor can be

«@
expressed by the derivatives of F' as

1
Ko =-Tls=—5FasF". (1.30)

The covariant derivative of F’ = DF with respect to D is given by
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DgF o= F o5~ 3FsF7°F ,5,. Hence F' is D-parallel if and only if
FsFF o5, =2F o5. (1.31)
Let F: U — R be a solution of (1.31). Define the vector field e? = —F sF7° on U. We then have
Doe” = —F o5 F 4 FsFPF j o F7% = —§) 4 2F7PF ., = 57, (1.32)

Let ¢ be an affine coordinate system on A™. By (1.32) the vector field e differs on U from the position
vector field x by a constant ¢ = x — e. This difference distinguishes a point ¢ € A™, which we call
the center. Let us shift the coordinate system in A™ such that ¢ = 0, and the position vector field x
coincides with e. By definition of e we then have

E(; + Fﬁgl"y =0. (133)

Integrating, we obtain
F.z" = —v, (1.34)

)

where v € R is an integration constant. Integrating (1.34) along the rays emanating from ¢, we obtain
F(ax) = —vloga + F(z) (1.35)

for all x € U and « > 0 such that the ray segment between = and ax lies in U. This means that F is
locally logarithmically homogeneous with homogeneity parameter v.

On the other hand, we have the following result.

Lemma 1.5.3. Let F : U — R be a locally logarithmically homogeneous functzon on some domain
U C R™ with homogeneity parameter v and with non-degenerate Hessian. Then DF' = 0, where D is
the Levi-Civita connection of F". Moreover, the vector field e’ = —F, FP equals the position vector
field z® on U.

Proof. Differentiating (1.35) with respect to « at « = 1 yields (1.34). Differentiating (1.34) yields
(1.33). Differentiating (1.33) and eliminating = by virtue of (1.33) then gives back (1.31). The equality
x = e also follows from (1.33). O

Combining with the preceding consideration, we obtain the following result.

Theorem 1.5.4. Let F: U — R be a C® function defined on some simply connected domain U C A",
Suppose that I has a non-degenerate Hessian and denote by D the Levi-Civita connection of the
Hessian metric F''. Then the first derivative F' is D-parallel if and only if F is locally logarithmically
homogeneous with some homogeneity parameter v with respect to some central point ¢ € A™. O

In particular, for every logarithmically homogeneous function F' : K° — R™ on the interior of a
regular convex cone K C R™ with non-degenerate Hessian we have that the first derivative F” is parallel
with respect to the Levi-Civita connection defined by F”.

1.5.3 Parallel third derivative

In this subsection we analyze the condition DF”’ = 0, where D is the Levi-Civita connection of the
Hessian metric F”. Actually, we do not need to require that F” is positive definite, it is sufficient for
the considerations in this subsection that F” is non-degenerate.

Let U C R™ be a simply connected domain and consider a C® function F : U — R with non-
degenerate Hessian. The covariant derivative of F”” with respect to D is given by

. 1
DsFapy = Fapys = 57 (FappFros + FaypF pos + FgypFacs). (1.36)
Hence F"” is parallel with respect to D if and only if F is a solution of the quasi-linear fourth order

PDE 1
Fyllﬁ’yls = §F7pU(F,aﬁpF,’y50 + F,a'yp-F,ﬁSJ + -F,oaspF,ﬁ'ycr)o (137)
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Note that F' is a solution of (1.37) if and only if F'+1 is a solution, where [ is an arbitrary affine-linear
function, i.e., a function satisfying I = 0. The functions F' and F'+[ define also the same pseudo-metric
F" and the same difference tensor K. We may also obtain other solutions of (1.37) by multiplying a
solution F' by non-zero constants or performing an affine change of coordinates in U.

Let us deduce the integrability condition of PDE (1.37). Introduce affine coordinates x® on U.
Differentiating (1.37) with respect to the coordinate z7 and substituting the appearing fourth order
derivatives of F' by the right-hand side of (1.37), we obtain after simplification

1 g v
Foapysn = ZFW B (EBWVF:QPMF’Y‘SU + FoanuF ppvFyso + FompFappl gse + Fanu oy F pso

+F g F oy pplase + FanpF v Fase + EFpnuEFspplane + Fonpl ppr Flaye
+EsnFappF pyo + FoanuF psv F gyo + FonpFyppFape + FrmuFméuFAﬁo) .

s

The right-hand side must be symmetric in all 5 indices. Commuting the indices J,7 and equating the
resulting expression with the original one we obtain

FPoEM (F oy Fspul amo + FanuF pov Fpyo + Fanp psv Faps
—F s FnppFlane — FasplonFpye — E'yé#F-,anF,aﬁa) =0.

Raising the index 7 by the inverse metric F"*", we get by virtue of (1.30) the integrability condition

n Rk RP N gl 7P N FB P Il fen 3P B g e B P
KaMKépKﬁ“/ + KBMKSPKM + KwKépKaﬁ - KaéKpuKﬁv + KﬁéKpuKav + KwéK/mKozﬁ‘

This condition is satisfied if and only if KgqungvuauﬁQﬂv‘s = KgéKgquvu“uﬁu'yvé for all tangent
vectors fields u,v on U, which can be written as

K(K(K(u,u),v),u) = K(K(u,v), K(u,u)). (1.38)

Consider an arbitrary point y € U. The difference tensor K defines a bilinear map 7,U xT,U — T,,U
by (u,v) — K(u,v). Equipped with this bilinear map, the tangent space T,,U becomes an algebra A,.
We shall denote the multiplication in this algebra by e, such that uev = K (u,v). The left multiplication
operator with the element u will be denoted by L,, such that L,v = u e v for all u,v. Further, we
define the positive powers of an element u recursively by u! = u, u**! = v e u¥ = LEw. If the algebra
has a unit element e, then we put also ©° = e.

Lemma 1.5.5. Let F : U — R be a C° solution of PDE (1.37) with non-degenerate Hessian and let
y € U C R" be a point. Let A, be the algebra defined by the difference tensor K = D — D on T,U,
where D is the canonical affine connection on R™ and D the Levi-Civita connection of F"". Let o, be
the bilinear form defined on T,U by the Hessian pseudo-metric F" = D*F. Then the pair (A, 0,) is
a metrised Jordan algebra.

Proof. The tensor K is symmetric in the lower indices, and hence the multiplication e of the algebra
A, is commutative. Condition (1.38) is equivalent to the Jordan identity u e (u? e v) = u? e (v ev), and
thus A, is a Jordan algebra.

For arbitrary vectors u,v,w € A, we have

1 1
oy(uev,w) = FBA,K(’?pu‘Sva"Y =—3 ' F5po F 7P ul 0P = —iﬂgmu‘sv”w”* (1.39)

3

1
D) »55U6F,pr’aﬁUpw’y = F,éﬁuéngvafy = oy(u,vew).

Here the second and fifth equation come from (1.30). Hence the form o, satisfies (1.29) and is an
invariant form. Finally, o, is non-degenerate and symmetric because F" is. O

Lemma 1.5.6. Let F': U — R be a C° solution of (1.37) with non-degenerate Hessian, defined on a
connected domain U C R", and let y,y’ € U be different points. Let (A, 0y),(Ay, 0y ) be the metrised
Jordan algebras defined on the tangent spaces T,U, T,y U as in Lemma 1.5.5. Then (A, 0y),(Ay,0y)
are isomorphic.
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Proof. Assume the conditions of the lemma. Let v be a smooth path connecting the points y,vy’. The
parallel transport with respect to the Levi-Civita connection D along v defines a non-degenerate linear
map J : T,U — T,,U. Now both F” and F"" are parallel with respect to D. Hence the difference tensor
K is also D-parallel. It then follows that J is an isomorphism mapping (Ay,0y) to (Ay,04). O

In particular, a closed path leading back to y defines an automorphism of the metrised Jordan
algebra (A,,0y).

We have seen how a solution of (1.37) defines a metrised Jordan algebra. We shall now consider
the reverse direction.

Lemma 1.5.7. Let (A,0) be a metrised Jordan algebra. Then there exists a neighbourhood U C A of
zero such that the analytic function F': U — R defined by

o (_1\k
F(z) = Z &a(@ zh=1) (1.40)

is a solution of (1.37).

Proof. First note that the expression o(z, z*~!) is a homogeneous polynomial of degree k in the entries

of z, and the right-hand side of (1.40) is an ordinary Taylor series. It is also easily seen that the
convergence radius of the series is nonzero, and hence F is defined on some neighbourhood U C A of
zero. On this neighbourhood F' is analytic. By possibly shrinking U, we shall also assume that the
matrix L, has spectral radius strictly smaller than 1 for all x € U.

The partial derivative of 2* in the direction u is given by

k—1 k—1
Dya* = Dy (LF 2y =Y LD, L e e =) L Lt 4 L
=1 =1

k
= E Li:_lek—lU7
=1

where L,o is by convention the identity matrix. The derivative of F' is then given by

_ o (=1)* k—1 k—1
D,F Z (c(Dyz, 2" 1) + o(z, Dya* 1))

e
) k—1
- (_]i)k (J(U, ) 4 a(x,Lé_lLIk1zu))
k=2 —
_ o~ (=1)* k—1 -1 _ c- Ve (k=1
Z 3 o(z ,u)—&—Za(szflszz x,u) Z( 1o (x" " u)
k=2 =1 k=2
— i(—l)’”la(xk,u) =o((I+ Lz)_lm,u), (1.41)
k=1

where the fourth equality comes from power-associativity of the Jordan algebra A and all sums define
analytic functions on U. Note that I + L, and its inverse are self-adjoint with respect to o.
The next derivatives are given by

D,D,F = o((I+ L) 'v,u) —o((I+Ly) ' Ly(I + L) z,u),
D?’D,F = —20((I+ Ly) 'Lo(I + Ly) 'v,u) +20((I + L) *Ly(I + Ly) 'Ly (I + L) ', u),
D3D,F = 60((I+Ly) "L,)*(I +L,) 'v,u) —60(((I + L) *L,)*(I + Ly) ', u).

At x = 0 we hence get

D,D,F = o(v,u),
D?D,F = —20(v*u),
DiF = 60(v? v) = 60(v?v?).
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Using these expressions we obtain

1
Fopys = 5F "7 (FappF yso + FovpF pso + FasoF o) | utu’uu’

= 60(u*,u”) + (FappKls + FaypKhs + Fasp K5, Juu’uu’
= 60(u*,u*)+3D>D,:F = 0.

It follows that (1.37) is satisfied at z = 0.

For x € U an arbitrary point, we shall identify the tangent space T, U with A. Fix a vector w € A,
and define the vector field v(z) = (I + L,)w = w + x e w on U. Since the vector field v is affine-linear
in x, the Lie derivative £, commutes with the directional derivative D on U by Lemma 1.2.2.

We shall now compute the Lie derivative of (1.36) with respect to the vector field v. By (1.41) we
have

L,F=0o((I+ Ly) 2, (I + Ly)w) = o(x,w),

and the Lie derivative of F' is a linear function in z. It follows that £,DF = DL,F is a constant
1-form, and £,D*F = D*~1£,DF = 0 for every k > 2. Hence the Lie derivative £, of (1.36) vanishes
on U.

We thus have DF" = 0 at = 0 and L,(DF") = 0 for all w € A and all z € U. Since I + L,
is regular, we have {v = (I + L,)w|w € A} = T,.U for all x € U. If U is connected, which we may
assume without restriction of generality, then it follows that DF"’ = 0 identically on U and (1.37) is
satisfied by the function F'. This completes the proof. O

Lemmas 1.5.5 and 1.5.7 show how to construct a metrised Jordan algebra from a solution of (1.37)
and vice versa. We now show that the corresponding maps are the inverse of one another in the sense
of the following lemmas.

Lemma 1.5.8. Let F: U — R be a C° solution of (1.37) on a domain U C R" and y € U a point.
Let (Ay, 0y) be the metrised Jordan algebra defined by F' as in Lemma 1.5.5. Let U C Ay =T,U ~R"
be the neighbourhood of zero and F : U — R the solution of (1.37) defined by (Ay,0y) as in Lemma
1.5.7.

Then there exists a neighbourhood V C UN(y+U) of y such that the difference d(x) = F(x)—F(z—y)
is affine-linear on V.

Proof. The functions F(z) and F(z —y) are both defined on U N (y+U) and are C solutions of (1.37).
We shall now compare the second and third derivatives of these functions at = y. For tangent vectors
u,v,w € A, we have by definition of o, and by (1.39) that

F"(u,v) = oy(u,v), F" (u,v,w) = =20, (u e v,w).
On the other hand, the quadratic and cubic terms in the Taylor series (1.40) yield
F" (u,u) = o (u,u), F" (uyu,u) = =20, (u,u e u).

Thus the second and third derivatives of F(z) and F(x — ) coincide at z = y.

Consider a ray v(t) = y 4 tz emanating from y. On this ray equation (1.37) defines an ODE on the
vector of second and third partial derivatives of F' and F, respectively. By the preceding paragraph,
both ODEs have the same initial condition at ¢ = 0. Since the second derivative is non-degenerate,
the ODEs satisfy the conditions of the Picard-Lindeldf theorem [138] on the existence and uniqueness
of the solution. Therefore the restriction of the second derivative D?d to the ray + is identically zero
on some interval [0,7] with 7" > 0. The Lipschitz constant of the right-hand side of the ODE, which
is involved in the proof of the Picard-Lindeldf theorem and defines a strictly positive lower bound on
T, is a continuous function of the direction z of the ray. This bound then also depends continuously
on z. By letting z run through the unit sphere, it follows that there exists a neighbourhood V of y
where D?d identically vanishes. On this neighbourhood d is an affine-linear function. This completes
the proof. O
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Lemma 1.5.9. Let (A,0) be a metrised Jordan algebra, let U C A be the neighbourhood of zero and
F : U — R the solution of (1.37) defined by (A,o) as in Lemma 1.5.7. Let (Ag,00) be the metrised
Jordan algebra defined by F' at the point y = 0 as in Lemma 1.5.5. Then, under identification of A
with ToU, we have (Ao, 00) = (A, 0).

Proof. By (1.40) we have for arbitrary u € ToU that
FH(’U/, u) = U(”) ’U/), Fm(ua U, U) = _QU(U? ue ’U/),

where e denotes the multiplication in A. From the first relation it follows that o9 = 0. Since A
is commutative and ¢ is a symmetric invariant form, it follows from the second relation that for all
u,v,w € ToU we have F""' (u,v,w) = —20(uev,w). By (1.30) we then get K (u,v) = uev. But K(u,v)
defines the multiplication in Ag, which proves also Ag = A. O

From Lemma 1.5.8 we have also the following corollary.
Corollary 1.5.10. Let F be a C* solution of (1.37). Then F is analytic.

Proof. If F is C*, then the right-hand side of (1.37) is continuously differentiable. But then the left-
hand side is continuously differentiable, and F is actually C°. By Lemma 1.5.8 F then locally coincides
with an analytic function. Hence F' is analytic. O

In this subsection we have shown that the local isomorphism classes of Hessian metrics g on domains
U c R" with ﬁ—parallel derivative Dg are in one-to-one correspondence with the isomorphism classes
of metrised Jordan algebras, where D is the canonical affine connection on R™ and D the Levi-Civita
connection of g. In the next subsection we shall specialize this correspondence to Hessian metrics with
logarithmically homogeneous potentials.

1.5.4 Parallel first and third derivatives

In this subsection we consider the situation when both conditions DF’ = 0 and DF"" = 0 are satisfied,
where D is the Levi-Civita connection of the Hessian metric F”. We show that for a logarithmically
homogeneous solution of (1.37) the corresponding Jordan algebra is unital, i.e., possesses a unit element
e, and that the converse implication also holds up to an additive affine-linear term. On the other hand,
we show that a logarithmically homogeneous function F' is a solution of (1.37) if and only if the cubic
form C of the level surfaces of F is parallel with respect to the Levi-Civita connection V of the affine
metric h.

Lemma 1.5.11. Let F': U — R be a solution of (1.37) on some domain U C R™, and let y € U be a
point. Let (Ay,0,) be the metrised Jordan algebra defined by F as in Lemma 1.5.5. If F in addition
satisfies (1.31), then the Jordan algebra A, possesses a unit element, which is given by ¥ = —F75F”7‘5.

Proof. Raising the index 8 in (1.31), we obtain by (1.30) that —FsF""° K/ = 5. The left-hand side
of this equation defines the multiplication operator L. of the algebra A, corresponding to the vector
e’ = 7F75FW5. The right-hand side is the identity operator on 7, U, and hence e is a unit element of
Ay. O

Corollary 1.5.12. Let F' : U — R be a logarithmically homogeneous solution of (1.37) on some
domain U C R™, and let y € U be a point. Let (A, o,) be the metrised Jordan algebra defined by F as
in Lemma 1.5.5. Then y is the unit element of A,.

The corollary is a direct consequence of Lemmas 1.5.3 and 1.5.11.

Lemma 1.5.13. Let F : U — R be a solution of (1.37) on some domain U C A™ in affine space, let
y € U be a point, and (A, oy) the metrised Jordan algebra defined by F as in Lemma 1.5.5. Suppose

A, possesses a unit element. Then there exists a potential F of the Hessian metric F" on U which
satisfies (1.31).
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Proof. Assume the conditions of the lemma. Since A, has a unit element, for every « € U the similarly
defined Jordan algebra A, has also a unit element, because by Lemma 1.5.6 the algebras A, and A,
are isomorphic. Let e be the vector field on U defined by these unit elements. We then have

B — 58
KP e =6, (1.42)

where K = D — D is the (1,2)-tensor field of the structure tensors of the algebras A,, 2 € U. Note
that the difference tensor K as well as the Kronecker symbol are D-parallel, because F is a solution of
(1.37). Let v be an arbitrary smooth vector field on U. Applying the covariant derivative D, to both
sides of (1.42), we obtain ngﬁueV = 0, or equivalently u e D,e = 0 for all vector fields u, v.

This implies Ly u = 0 for all u,v. Note that in a unital algebra with unit element e the condition
Ly, = 0 implies Lye = w = 0. Therefore the covariant derivative De vanishes identically on U. Writing

this out, we get z25e7 + I'}se” = ;2:¢7 — KJse® = 0. By (1.42) we then get

Dge" = -— =4}, (1.43)

Lowering the index § in (1.42), we get by virtue of (1.30) that

1
—5 70(,3,),67 = F7a/3. (].44)

Hence the second derivative
O%(F Y
8;17’(;;5) - F”Yaﬁe’y + F”Yo‘ég + E’Yﬁdg = F,'yaﬁery + 2F,a[-3

vanishes on U. Here we have used (1.43) to express the derivatives of the vector field e. It follows that
the function F' = F — Fe" satisfies "/ = F", F""" = F"", and is a potential of the Hessian metric .
Moreover, we have

- oe -
Fo=Fqo—Fyae" — F’ya? =Fo—Frae” = Fy0) = —F €,
whence ¢7 = —F , F®7. Tnserting this into (1.44) finally yields (1.31). O

Combining the two lemmas, we obtain the following theorem.

Theorem 1.5.14. Let F' : U — R be a solution of (1.37) on a domain U C A™ in affine space, let
y € U be a point, and (Ay,0y) the metrised Jordan algebra defined by F as in Lemma 1.5.5. Then the
following are equivalent.

1. A, possesses a unit element.

2. There exists another solution F of (1.37) on U, generating the same Hessian metric F” = F"
on U and the same metrised Jordan algebra (A, 0,) on T,U, such that DF' = 0, where D is the
Levi-Civita connection of F". O

Recall that by Theorem 1.5.4 the condition DEF' =0is equivalent to logarithmic homogeneity of F’
with respect to some central point.

We shall now assume logarithmic homogeneity of F' and find an equivalent condition of (1.37) in
terms of the centro-affine cubic form of the level surfaces of F'.

Lemma 1.5.15. Let U C R"™ be a conic domain, o € R an arbitrary number, and F : U — R a
logarithmically homogeneous function with homogeneity parameter v > 0 and positive definite Hessian.
Let D be the Levi-Civita connection of the metric F'', F, = {r € U|F(z) = a} a level surface of I,
h the centro-affine metric and C' the cubic form on F,, and V the Levi-Civita connection of h. Then
DF" =0 if and only if VC = 0.
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Proof. Since F is logarithmically homogeneous with homogeneity parameter v > 0, the level surfaces of
F' are homothetic images of each other and F,, — U is indeed a centro-affine hypersurface immersion.
Let x € F, be an arbitrary point. By Proposition 1.3.1 the tangent space T,U splits into an
"-orthogonal sum T, F, @& {tx|t € R}. Let II be the orthogonal projection of T,U onto the first
summand. This projection is a (1, 1)-tensor with components

Iy =6y +v 2" Fg=6)—v ' FF;Fp.
Define a symmetric (0, 3)-tensor T on T, U by T'[u, u,u] = F"'[Ilu, Tu, ITu], or in coordinate notation
Tpys = MGG F por = (35 + v 2P Fig) (05 + v a7 F o )(Fpas — 207 FsF o)
= (65 + v 'aPFR)(F pys — 20 'FyFps — 20 ' F5F o + 207 °F , F5F )
=Fpg,s— 20 (FgF 5 +F Fgs+ FsFg,)+4v ?FgF . Fj.

)

Here we used that F"'(z)[z] = —2F"(z), F"(z)[z] = —F'(z), F'(z)[x] = —v. Thus the difference
F"" — T depends on F’, F" only.

Extend T to a tensor field on U by varying x € F,, and the parameter « of the level surface. We
have that /" is D-parallel, and F” is also D-parallel by Lemma 1.5.3. Hence the difference F”" — T is
D-parallel and DF" = 0 if and only if DT = 0.

By Lemma 1.3.2 we have that T can be represented as a direct sum T = vC & 0, where the first
summand is a tensor on the tangent subspace T, F, and the second is the null tensor on the radial
subspace {tz |t € R} of T,,U. But the Riemannian manifold (U, F"') is a direct product with first factor
(Fy,vh) by Proposition 1.3.1. Hence DT =0 if and only if VC = 0. This completes the proof. O

Remark 1.5.16. The condition that F” is positive definite can be replaced by the weaker condition
that F”" is non-degenerate. The proof of this stronger result is similar, with Proposition 1.3.1 replaced
by [96, Theorem 2.2].

1.5.5 Self-scaled barriers and parallel cubic form

We are now in a position to apply the theory developed in the previous subsections to self-concordant
logarithmically homogeneous barriers. First we add the convexity of the Hessian potential F' as a
condition.

Lemma 1.5.17. Let F : U — R be a solution of both (1.37) and (1.31) with positive definite Hessian
on a domain U C R™, let y € U be a point, and (A,,o,) the metrised Jordan algebra defined by F as
in Lemma 1.5.5. Then A, is a Euclidean Jordan algebra.

The lemma follows immediately from [123, Theorem VI.12], which states that if the invariant
bilinear form o of a metrised Jordan algebra (A, o) is positive definite, then the algebra A is Euclidean.

Now the metrised Jordan algebras (A,o), where A is Euclidean and o is non-degenerate, can
be completely classified. By [123, Corollary VI.5] a Euclidean Jordan algebra is semi-simple, i.e.,
T(u,v) = tr Lye, is a non-degenerate bilinear form, the trace form. The trace form is actually itself
invariant [123, Lemma III.4] and positive definite [123, Theorem VI.12]. By [123, Theorem III.10]
there exists a central element z € A (i.e., an element satisfying z e (u e v) = u e (2 @ v) for all u,v)
such that o(u,v) = 7(2 ® u,v) = tr L ey)e, for all u,v € A. This central element z is invertible,
and every invertible central element gives rise to an invariant non-degenerate bilinear form in this way
[123, Theorem III.10; item (v), pp.71-72]. The semi-simple algebra A can be decomposed in a unique
manner as a direct sum A = A' & .- & A™ of simple ideals [123, Theorem I11.11], which have been
completely classified in [112, Fundamental Theorem 2] and are in one-to-one correspondence with the
irreducible symmetric cones. Let ey, ..., e, be the unit elements of these simple ideals. Then every
central element z € A has a unique representation as a sum z = Z;”:l aje;, where o5 are real numbers
[112, p.46].

Lemma 1.5.18. Let A be a Fuclidean Jordan algebra with simple summands A+, ..., A,,. Then every
positive definite invariant bilinear form o on A can be represented as

v) = ZajtrLuj.Uj (1.45)

44



for some positive real numbers o, ..., oy, where uj,v; € A; are the components of the elements u,v
in the simple summands, respectively.

On the other hand, for every aq,...,am > 0 the form o defined in (1.45) is a positive definite
invariant bilinear form on A.

Proof. By the above every invariant bilinear form o on A has the form (1.45) for some «; € R, and

all m-tuples (a1, ..., @) give rise to invariant bilinear forms. Since the trace forms on the summand
algebras are positive definite, the form (1.45) is positive definite if and only if all coefficients «; are
positive. O

This characterization of metrised Euclidean Jordan algebras allows to classify also all logarithmically
homogeneous solutions of (1.37) with positive definite Hessian. We need the following uniqueness result.

Lemma 1.5.19. Let F : U — R be a logarithmically homogeneous solution of (1.37) on a conic
domain U C R and with homogeneity parameter v. Let y € U be a point and let (A,,0,) be the
metrised Jordan algebra defined on T,U as in Lemma 1.5.5. Let F : U — R be another logarithmically
homogeneous solution of (1.37) which generates the same metrised Jordan algebra (A,,o,) on T,U.
Then F = F + const and the homogeneity parameter of F also equals v.

Proof. By Lemma 1.5.8 the functions F, F differ by an affine-linear function on U, and F" = F”.
By Lemma 1.5.3 the first derivative of a logarithmically homogeneous function can be written as
F o = —F ,32”, with z the position vector field. Therefore the first derivatives of F, F' also coincide on

U. Therefore F and F differ by an additive constant, and by (1.34) have also the same homogeneity
parameter. 0

We shall now construct an explicit logarithmically homogeneous solution of (1.37) which produces
a given metrised Euclidean Jordan algebra (4, c). To this end we need to introduce the determinant
of an element x € A.

In a Euclidean Jordan algebra A, there exists for every element x € A a complete system of mutually
orthogonal idempotents €', ..., €™ and distinct reals A1, ..., Ay, such that z = 77" | A;€/ [112, Theorem
6]. The numbers A; are called the eigenvalues of x, and d; = tr L. is their multiplicity. The sum
Z;.":l d; depends on the algebra A only and is called its rank. Clearly we have k= Z;”:l )\fej for the
powers of x, and hence tr L = Z;nzl )\é?dj. The determinant of x is defined as the product H;nzl )\;lj.
It is a homogeneous polynomial of degree rk A in x. The point x is in the interior of the symmetric
cone K corresponding to A if and only if all its eigenvalues are positive. The unit element e of A can
be expressed as sum e = > " | ¢/ and is an element of K.

Let 7 be the trace form on A, and let z = Z;nzl Ajel € A be such that all eigenvalues ); lie in the
open interval (—1,1). Let d; be the multiplicities of A;. Then we have e +2 = > (1 + A;)e’, and
hence

m m 1\l [e%e} 1\l
—logdet(e +z) = —Zdjlog(u/\j):zczjz( ll) /\g.:z( ll) tr Ly

j=1 j=1  1=1 1=1

= —trL,+ f: (_;)kT(%xk_l). (1.46)
k=2

By Lemma 1.5.7 the function F'(z) = —log det(e+z), and after a coordinate change F'(z) = —log det z,
is hence a solution of (1.37).

Lemma 1.5.20. Let (A, o) be a metrised Euclidean Jordan algebra, Ay, ..., Ay, its simple summands,
with o given by (1.45) for some a; > 0. Lete € A and e; € A; be the unit elements of the corresponding
algebras. Then the function

m
F(z)=-— Zaj log det z;
j=1
is a logarithmically homogeneous solution of (1.37), defined on the interior of the symmetric cone

K corresponding to A. The metrised Euclidean Jordan algebra (A.,o.) defined by F on T.K° as in
Lemma 1.5.5 coincides with (A, o).
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Proof. The cone K can be represented as direct product Ky x --- x K,,, where K; is the irreducible
symmetric cone corresponding to the algebra A;. The function F;(z;) = — logdet x; is a logarithmically
homogeneous solution of (1.37) on the interior of K, with homogeneity parameter rk A;. But then
F(z) = Z;”:l a; Fj(z) is also a solution of (1.37), defined on K° and with homogeneity parameter
Z;'nzl a; rk Aj.

Let 7; be the trace form on A;. Then by Lemma 1.5.9 and (1.46) the metrised Jordan algebra
defined by Fj at e; equals (A;,7;). It follows that the solution o, F; generates the metrised algebra
(Aj, ;1) at ej, and hence F' generates the metrised algebra (A, o) at e. O

This result allows to explicitly characterize the logarithmically homogeneous convex solutions of
(1.37).

Theorem 1.5.21. Let U C R™ be a conic domain, and let F' : U — R be a logarithmically homoge-
neous C* function with positive definite Hessian. Then F is a solution of (1.37) if and only if there
exists a Buclidean Jordan algebra A = A, @ --- ® Ay, where A; are the simple summands of A, with

corresponding symmetric cone K C R™, positive numbers a, ..., an,, and a constant ¢ € R such that
UCK° and
m
F(z) = —Zaj logdet z; + ¢, (1.47)
j=1

where x; € A; are the components of x.

Proof. Let F be a solution of (1.37) and y € U an arbitrary point. Let (A,,o0,) be the metrised
Euclidean Jordan algebra defined by F' on T,U as in Lemma 1.5.5. Denote by Aq,..., A,, the simple
summands of A4,. By Lemma 1.5.18 there exist numbers a1, ..., a,, such that the form o, is given by
(1.45).

Let K be the symmetric cone corresponding to A,. By Corollary 1.5.12 the element y is the unit
of A, and hence y € K°. Define the function F' : K° — R by

F(x) = — Z o log det x5,
j=1

where z; € A; are the components of x. By Lemma 1.5.20 the function F is a logarithmically homo-
geneous solution of (1.37) and generates the same metrised algebra (A,,0,) on T,U as F. By Lemma
1.5.19 the functions F, F differ by a constant in a neighbourhood of y. Since both functions are analytic
by Corollary 1.5.10, we obtain F' = F + ¢ for some ¢ € R on the intersection K°NU.

Now F cannot be continued analytically beyond 0K, because F'(z) — +oo for 2 — K. Therefore
we must have U C K°. This proves one side of the equivalence.

The opposite implication is evident: a function F(z) of the form defined above is a solution of
(1.37) by Lemma 1.5.20, and it remains a solution if one adds a constant to it. O

This allows us to formulate our main result, the characterization of self-scaled barriers.

Theorem 1.5.22. Let K C R™ be a regular convex cone and F : K° — R a logarithmically homoge-
neous self-concordant barrier on K. Then the following conditions are equivalent:

(a) F is self-scaled;
(b) F is a solution of (1.37);
(¢) the dual barrier F, is a solution of (1.37);

(d) the cubic form C on the level surfaces of F' is parallel with respect to the Levi-Civita connection
V of the centro-affine metric h on these level surfaces.
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Proof. (a) = (b). Let F be self-scaled. Then K is a symmetric cone [86]. Let K = K; x --- x K,,, be its
decomposition into irreducible symmetric cones, and let A; be simple Euclidean Jordan algebras such
that their cones of squares equal K;. By [189, Theorem 4] the function F' has the form (1.47) for some
c € R, a; > 1, where z; € A; are the components of « corresponding to the product decomposition of
K. By Theorem 1.5.21 the function F' satisfies (1.37).

(b) = (a). Suppose F satisfies (1.37). By Theorem 1.5.21 there exists a Euclidean Jordan algebra
A=A & -® A, where A; are its simple summands, such that F’ has the form (1.47) for some ¢ € R
and o; > 0, and K C K4, where K4 is the cone of squares for A. By [189, Theorem 2] we actually
have a; > 1 as a consequence of the self-concordance condition (1.2). By (1.47) we have F'(z) — 400
for x — 0K 4 and by assumption for  — 0K. Hence K = K 4. Finally, [189, Theorem 4] shows that
F is a self-scaled barrier.

(b) < (d). This is the assertion of Lemma 1.5.15.

(¢) & (d). Condition (d) is invariant under the conormal map. Hence this equivalence is again the
assertion of Lemma 1.5.15, but applied to the dual barrier F. O

If the interiors of K and K™ are identified under the isometry ® : x +— —F"(z) defined by Legendre
duality, then the canonical flat affine connection D of the dual space R,, can be carried over to the
interior of K. By (1.6) the Christoffel symbols of D are given by Flﬁ =F7""F s Hence by virtue

of (1.30) we have D = 1(D + D), as is always the case in a Hessian structure.
Now Legendre duality maps the third derivative F””” to —F}” in dual space [171, p.45]. Therefore

the condition DF"" = 0 is equivalent to the condition d; = = 0, i.e., the dual barrier is a cubic
polynomial. Likewise, the condition DF"’ = 0 means that F is a cublc polynomial. Thus the self-
scaledness condition f)F”’ = 0 can be interpreted as a mean between the condition that F is a cubic
and that F, is a cubic.

Finally, we shall characterize the metrised Jordan algebras which correspond to the canonical barrier
on symmetric cones.

Lemma 1.5.23. Let A be an Euclidean Jordan algebra and K C R™ its cone of squares. Let F : K° —
R be the canonical barrier on K, and let e be the unit element of A. Then F defines on T.K° the
metrised Jordan algebra (A, T), where T is the trace form of A.

Proof. Since the canonical barrier on a symmetric cone is of the form (1.47), we have by virtue of
Lemma 1.5.20 that the algebra generated by F'is again A. In order to compute the invariant form
o = F"(e) generated by F, we shall differentiate (1.21). We get F'A7F 5, = 2F .

The trace form is then given by

T(u,v) = tr Lyey = K apt” P ZF 5”F75PF’7 F apou” VP §F F7F hpou® v?
= Fopuv? = F”(e)[u,v].

Here we used (1.30) to express the structure tensor K of A and (1.31) in the fifth equality. O

1.5.6 Classification of affine spheres with parallel cubic corm

In this subsection we apply the connection between Jordan algebras and the parallelism of the cubic
form to a problem in affine differential geometry, namely the classification of all affine hyperspheres
satisfying the condition VC = 0. This result has been published in [96].

Since the affine metric is parallel with respect to V the conditions VC' = 0 and VK = 0 are
equivalent. A Blaschke immersion satisfying VC = 0 must be an affine hypersphere [21]. Thus both
the classification of affine spheres satisfying VK = 0 and of Blaschke immersions satisfying VC =0 or
VK =0 are equivalent to the classification problem considered in this subsection.

In [141] all Blaschke immersions into R? satisfying VC = 0 have been classified. In [59, 103, 104]
all such Blaschke immersions into R* with definite, Lorentzian, and general affine metric, respectively,
have been classified. In [61] all such Blaschke immersions into R® with definite affine metric have
been classified, and it has been shown that in arbitrary dimension, definiteness of the affine metric
implies that the immersion is either a quadric or a locally homogeneous affine hypersphere. In [106]
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all such immersions into R*, k < 8, with definite affine metric have been classified. In [60, 107]
it has been observed that the Calabi product (a procedure for constructing higher-dimensional affine
spheres from lower-dimensional ones) of two affine hyperspheres with parallel cubic form or of such a
hypersphere with a point are again affine hyperspheres with parallel cubic form, and hence one can speak
of decomposable or irreducible such immersions. In a classification, one then only needs to consider the
irreducible immersions. Finally, in [108, 105] a classification of all irreducible Blaschke hypersurface
immersions with parallel cubic form whose affine metric is definite or Lorentzian, respectively, has been
achieved.

A closer look at the classification in [108] reveals that the locally strongly convex hyperbolic affine
hyperspheres with parallel cubic form are exactly those hyperspheres which are asymptotic to symmetric
cones. Now the interiors of the symmetric cones are exactly the convex w-domains of Koecher [123],
and it is not hard to verify that the hyperspheres in question are exactly the level surfaces of the
w-function in these w-domains.

Our result is that this relation holds in general, i.e., independently of the convexity assumption.
Namely, every non-degenerate proper affine hypersphere with center in the origin satisfying VC =0
can be represented as a level surface of the w-function in some w-domain, and conversely, every such
level surface is a non-degenerate proper affine hypersphere with center in the origin satisfying VC =0.
The w-function of Koecher is a homogeneous polynomial. The non-convex analog of the canonical
barrier is the logarithmic potential ®, which is defined as a multiple of the logarithm of the w-function.
The affine spheres with parallel cubic form are then also level surfaces of the potential ®.

The w-domains of Koecher are closely linked to real semi-simple Jordan algebras J. Namely, every
w-domain can be represented as a connected component of the set of invertible elements in J, and every
such connected component is an w-domain. The potential ® generates the metrised algebra (J,7) as
in Lemma 1.5.23, where 7 is the trace form of J.

The classification of proper affine hyperspheres with parallel cubic form then reduces to the clas-
sification of real semi-simple Jordan algebras. Much like in the case of semi-simple Lie algebras, any
semi-simple Jordan algebra breaks down into a direct sum of a finite number of simple algebras [123,
Theorem II1.11], each of which is in turn a member of one of finitely many infinite series, or one of
finitely many exceptional algebras. The Calabi product of affine hyperspheres with parallel cubic form
corresponds to the decomposition of semi-simple Jordan algebras into simple factors. This allows to
characterize the proper affine hyperspheres with parallel cubic form as Calabi products of irreducible
such hyperspheres. The irreducible proper affine hyperspheres with parallel cubic can in turn be clas-
sified using the classification of simple real Jordan algebras.

In the table below we list the non-convex analogs of the objects appearing in the classification of
convex hyperbolic affine spheres.

convex case general case

symmetric cone w-domain

Euclidean Jordan algebra semi-simple Jordan algebra
irreducible Euclidean Jordan algebra | simple Jordan algebra
canonical barrier logarithmic potential ®
determinant of Jordan algebra w-function

In the table below we present an exhaustive list of simple Jordan algebras along with the correspond-
ing irreducible affine spheres with parallel cubic form. In the first column we list the ambient vector
space of the w-domain, and in the second column its real dimension. Here M,,, Sn, Am, Hm, SHp,
stands for full, symmetric, skew-symmetric, Hermitian and skew-Hermitian matrices of size m x m,
respectively. Most of the classes of real simple Jordan algebras constitute infinite series parameterized
by an integer. We give the range of this parameter in the third column. In the fourth column we give an
expression for the local potential ®, parameterized by a nonzero complex number ¢ for complex Jordan
algebras, and by a nonzero real number « for real central-simple algebras. In the last two columns we
provide the w-function of the corresponding w-domains and a description of the affine hyperspheres
associated with these domains. The constants in the last column are assumed to be nonzero. Note

48



that in the case of a matrix space over the quaternions H, the matrix S is the complex representa-

tion (—W Z) of the quaternionic matrix and has twice the size. In the row corresponding to the
vector space R™, () denotes a non-degenerate quadratic form on R™. The symbol O stands for the
octonions, and O for the split octonions. The first group of rows corresponds to complex Jordan alge-
bras considered as real vector spaces, and the second group corresponds to real central-simple Jordan

algebras.

’ vector space \ real dimension \ range \ (0] \ w \ affine sphere ‘
C 2 Re(clogz) |z|? |z| = const
cm 2m m >3 | Re(clogzTx) |z T x| |zT x| = const
Sm(C) m(m + 1) m >3 | Re(clogdet A) | det A1 | det A| = const
M,,(C) 2m? m >3 | Re(clogdet A) | det A[>™ | det A| = const
Ao (C) 2m(2m —1) | m >3 | Re(clogpfA) | |pf APC™=D | |pf A| = const
H3(0,C) 54 Re(clogdet A) |det A|'® |det A| = const
R 1 log || || point
R™ m m >3 log |27 Qx| |zt Qz|™/? quadric
M., (R) m? m >3 log | det A| | det A|™ det A = const
M,,,(H) 4m? m > 2 log det S (det 5)?™ det S = const
S (R) w m >3 log | det A| |det A|(m+1D/2 | det A = const
H,,(C) m? m >3 log | det A| | det A|™ det A = const
H,,(H) m(2m — 1) m >3 log det S (det §)m—1/2 det S = const
Ao (R) m(2m — 1) m >3 log | pf A| | pf A1 pf A = const
SH,,(H) m(2m + 1) m > 2 log det S (det S)™*1/2 | det S = const
H3(0) 27 log | det A] |det A det A = const
Hs(O,R) 27 log | det A| | det A[Y det A = const

Our classification result can then be summarized as follows.

Theorem 1.5.24. [96] Let M C R™ be a proper affine hypersphere with parallel cubic form and with
center in the origin. Then R™ can be decomposed into a direct product of vector spaces Vi,...,V,,
where each of the Vi, is one of the spaces indicated in the first column of the above table, and M is a
Calabi product of proper affine hyperspheres My, C Vi which have the form indicated in the last column
of the above table.

On the other hand, all affine hyperspheres listed in the last column of the table have parallel cubic
form.
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Chapter 2

Copositive cones

2.1 Introduction

Copositive matrices appear to have been introduced in 1952 by Motzkin [152]. A real symmetric n x n
matrix A is called copositive if z7 Az > 0 for all € R? . The set of copositive matrices forms a convex
cone, the copositive cone C". In this section we first give a general overview over this cone and its
relevance in applications, and then explain the more specific context of our work on the extreme rays
of C™.

2.1.1 Copositivity in optimization

The matrix cone C" is of interest for optimization, as various difficult non-convex optimization prob-
lems can be reformulated as conic programs over the copositive cone, so-called copositive programs.
Among these are combinatorial problems such as the bandwidth problem [179], graph partitioning
[180], computing the stability number [48], clique number [215], and chromatic number [80] of graphs,
and the quadratic assignment problem [181]. Copositive formulations have been derived for quadratic
programming problems [182, 25, 22] and mixed-integer programs [36]. The connection of the copositive
cone with sufficient optimality conditions for quadratic programming, i.e., the problem of minimizing
a quadratic function under linear constraints, has been recognized already in the 70s [109, Theorem
3.2.3]. For quadratically constrained quadratic programming problems with additional linear con-
straints copositive relaxations are tighter than standard Lagrangian semi-definite relaxations [24]. In
[142, 120, 35, 19] copositive matrices are used for determining Lyapunov functions for switched linear
dynamical systems with state confined to the positive orthant or, more generally, to a polyhedral cone.
More applications of copositive programming can be found in the surveys [63, 23].

Verifying copositivity of a given matrix is a co-NP-complete problem [153]. Likewise, verifying
whether a given linear hyperplane in the space 8™ of n x n real symmetric matrices is supporting to C™
at the zero matrix is NP-hard [56]. This is not surprising given the extraordinary descriptive power of
copositive programs. Therefore much research has been focussed on finding tractable approximations
of the copositive cone, in particular, semi-definite approximations.

The commonest approximation of the cone C™ is that by the sum of the cone S} of positive
semi-definite matrices and the cone N'™ of element-wise nonnegative symmetric matrices. In [109] the
matrices in this sum are called stochastically copositive. It is a classical result by Diananda [51, Theorem
2| that for n < 4 the relation C* = S} + N™ holds, i.e., copositivity and stochastic copositivity are
equivalent. In general, stochastic copositivity merely implies copositivity, and S +N™ C C™. A. Horn
showed that for n > 5 this inclusion is indeed strict [51, p.25]. Matrices which are copositive but not
stochastically copositive are called ezceptional, a term that has been coined in [111].

With the appearance of semi-definite programming more sophisticated approximations of C™ have
been elaborated in order to solve copositive programs. In [175] a hierarchy of inner semi-definite
approximations for C" has been constructed, with the sum S% + N™ being its simplest member. It
is based on representing the copositive cone as a cone of positive polynomials and applying sum of
squares approximations. In [22] this hierarchy has been relaxed to a hierarchy of polyhedral inner
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approximations. In [131] a hierarchy of outer semi-definite approximations of C™ has been proposed
based on moments involving the exponential measure on R’}. All these hierarchies are asymptotically
exact, i.e., the approximating cones tend to C™ as the order of the approximation tends to infinity. The
complexity of the approximating cones grows exponentially with the order, however.

There exist also methods which deal directly with the data of the copositive program under consid-
eration. In [34, 35, 215] branch-and-bound methods based on a tree of polyhedral approximations of
the copositive cone have been proposed to check membership in this cone and to solve copositive pro-
grams. In [27] a local descent method was proposed which works with the conic dual to the copositive
program. In [26, 64] copositivity is checked by a decomposition of a non-convex function as a difference
of two convex functions.

For further surveys on copositive matrices see [99, 28], for a list of open problems see [17]. Closely
related to the copositive cone C" is its dual C}, the completely positive cone, which is, however, outside
of the scope of this thesis. For surveys on completely positive matrices see, e.g., [18, 28, 53].

2.1.2 Extreme copositive matrices

Our work on copositive cones mainly focusses on a particular topic, namely the extreme rays of C". An
element x € K is called an extremal element of a regular convex cone K if a decomposition x = x1 + x»
of x into elements z1,22 € K is only possible if z; = Az, 2 = (1 — M)z for some A € [0,1]. The
set of positive multiples of an extremal element is called an extreme ray of K. The set of extreme
rays is an important characteristic of a convex cone. Its structure, first of all its stratification into a
union of manifolds of different dimension, yields much information about the shape of the cone. The
extreme rays of a difficult cone are especially important if one wishes to check the tightness of inner
convex approximations of the cone. Namely, an inner approximation is exact if and only if it contains
all extreme rays. Since the extreme rays of a cone determine the facets of its dual cone, they are also
important tools for the study of this dual cone [52, 194, 29, 30, 193, 192].

It is therefore not surprising that the extreme rays of C"™ have been the subject already of many of
the first papers on copositive matrices. The extreme rays of C" which are elements of the sum S +N"
have been completely classified in [82]. Since C" = S + N™ for n < 4, this yields also a complete
classification of the extreme rays of C™ for n < 4. The first exceptional extreme copositive form has
been found by A. Horn, according to [51, p.25]. This Horn form is a circulant 5 X 5 matrix with entries
in {—1,+1}. In [11, Theorem 3.8] Baumert gave a procedure to construct an extreme ray of C"*!
from an extreme ray of C", by duplicating a row and the corresponding column of the original matrix.
Starting with the Horn form, he was then able to construct explicit exceptional extreme copositive
matrices of every size n > 5. Extreme copositive matrices which cannot be obtained by this procedure
have been called basic in [9].

In his thesis [10] and his paper [11] Baumert laid the foundation of a theory of extremal exceptional
copositive forms. He recognized the importance of the symmetry group G, of the cone C", which
consists of maps of the form A — PDADP”, where D is a positive definite diagonal matrix, and
P € S, is a permutation matrix. The elements of this symmetry group preserve the sum S7 + N
and hence also the property of a copositive matrix of being exceptional. Baumert showed that an
exceptional extreme copositive matrix has positive diagonal elements and hence can be scaled to a
matrix with all diagonal elements equal to 1 by the action of G,,. By a result from [82] he concluded
that the off-diagonal elements of the scaled extremal exceptional matrix have all to be in the interval
[—1,+1].

The extremal exceptional matrices of C™ with elements in {—1,+1} have been classified completely
in [12] for n < 7, where it has been shown that they can all be obtained from the Horn form by a
group action and the above-mentioned procedure of duplicating rows and columns, a result which does
not hold anymore for n = 8 [9]. For general n the extremal exceptional matrices with elements in
{—1,+1} have been characterized independently in [88, 9]. The extreme exceptional matrices in C"
with elements from the set {—1,0,+1} have been characterized in [101].

Since an exceptional copositive matrix cannot be a multiple of an element in the sum S + N™,
subtraction of a non-zero such element from an extreme exceptional copositive matrix will lead to
a matrix which is no more copositive. This fact has early been recognized and led to a number of
conditions on exceptional copositive matrices which are weaker than extremality but more tractable.
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Baumert called a copositive matrix reduced if one cannot subtract a non-zero nonnegative matrix from
it without leaving the copositive cone [11], a condition which has been initially introduced and put
to use in [51]. Baumert refined this condition by requiring the subtracted nonnegative matrix to be
proportional to the extremal element E;; of N, where E;; is the symmetric n x n matrix having a
1 at positions (¢,7) and (j,7) and whose other elements all equal zero. He furnished a necessary and
sufficient condition on a copositive matrix to be reduced with respect to E;; [11, Theorem 3.4] and
conjectured a similar condition for reducedness with respect to E;; with ¢ # j [12, Conjecture 4.1],
refuted later in [101] by a counterexample of order n = 7.

These conditions are expressed in terms of the presence or absence of zeros with certain properties.
The importance of the concept of zeros of a copositive matrix has been recognized already by Diananda
who introduced it in [51]. A nonzero vector u € R is called a zero of a copositive matrix A € C" if
u? Au = 0. For a vector u € R" we define its support as suppu = {i € {1,...,n} | u; # 0}, i.e., as the
index set of the non-zero elements of u. The possible supports of a nonnegative vector are in one-to-one
correspondence with the faces of the nonnegative orthant where this vector may be situated. However,
a zero u of a copositive form represents a global minimum of this form on the nonnegative orthant.
Therefore the first and second order optimality conditions at u are determined by its support. The
set of supports of the zeros of a copositive matrix is hence an informative combinatorial characteristic
of this matrix which has attracted a lot of attention and is an important mathematical tool in the
analysis of copositive matrices and the copositive cone. We shall call this set the support set of the
copositive matrix in question. In [51, 82, 10, 11, 12] many necessary conditions on the support set
of an extremal or a reduced exceptional copositive matrix have been found, and on the other hand,
many conditions on the matrix have been established which are determined by its support set. Let us
remark that instead of the support as defined here, Baumert defined and used the equivalent notion of
the pattern of a zero. This notion turned out to be less convenient than that of the support, by which
it has been superseded nowadays. Properties of zeros and algorithms to find the zero set of copositive
matrices have been recently considered in [52] in application to a study of the faces of the copositive
cone and its dual.

In [10, 12] Baumert discovered that the cone C° possessed a family of exceptional extreme elements
with a support set which is different from that of the Horn form, and gave an explicit matrix from
this family. Key to this finding was the introduction of the concept of mazimal zero. A maximal
zero u of a copositive matrix A is a zero such that there does not exist another zero v of A such that
supp u C supp v strictly.

After the paper [101] from the early 70s research on the extreme elements of the copositive cone
came to a halt for many years, until the revival which occurred in the current decade.

2.1.3 Overview of our work

In this subsection we give a short summary of our work on extreme copositive matrices and related
concepts, and place it into the larger context described in the previous subsections.

While the extreme elements of C™ for n < 4 have been completely understood by the work of
Diananda [51] and Hall and Newman [82], the structure of C® remained a mystery until recently. It
was known that C° contained exceptional extreme matrices, namely the orbit of the Horn form with
respect to the action of the symmetry group Gs, and a family of matrices with 5 isolated zeros with
supports of cardinality three [12]. Here we call a zero u of a copositive form A isolated if there are no
other zeros of A in the neighbourhood of u other than the multiples of w.

Our work on copositive matrices started with a complete description of the extreme rays of the cone
C®, published in [90] and described in more detail in Section 2.2 below. Our strategy follows the one
outlined by Baumert [10], by replacing extremality by the weaker condition of reducedness with respect
to nonnegative matrices, which is easier to handle. However, two new ideas have been necessary for a
successful implementation.

The first one has been to introduce a trigonometric parametrization of the extreme matrices with all
diagonal elements equal to 1. As mentioned above, such matrices have their off-diagonal elements in the
interval [—1,41], which can be parameterized by cos¢ with the angle ¢ running through the interval
[0, 7]. It turns out that the family of extreme elements discovered by Baumert becomes affine in these
angles and its range is delimited by linear inequalities on the angles. As a result, the manifold of these
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exceptional extreme 5 x 5 matrices, which have initially been called T-matrices in [90] but are nowadays
called Hildebrand matrices, can be described in a closed analytic form. The reason for this to happen
is the special structure of Cayleys nodal cubic surface which models the zero set of the determinant
of real symmetric 3 x 3 matrices with diagonal elements equal to 1. This surface decomposes into a
union of four planes when undergoing the above trigonometric transformation. However, the optimality
conditions associated with the isolated zeros of the extreme forms of C° in question force the 3 x 3
principal submatrices of the forms corresponding to the supports of the zeros to be singular. This will
happen anytime a zero of a copositive form has a support of cardinality less or equal to three. Thus
the proposed trigonometric approach will lead to similar results for any family of extreme rays of C"
whose zeros have supports with cardinality less or equal to three, independently of the order n. We
shall apply this method to the cone C% in Section 2.4.

The second critical ingredient was to derive a necessary and sufficient condition on a copositive
matrix to be reduced with respect to the extreme element £;; of the nonnegative cone for i # j.
Baumert has conjectured such a condition in [12, Conjecture 4.1] and was able to prove that his families
of extreme elements of C® were indeed exhaustive, assuming the conjecture. Namely, he provided a
partial classification of the support sets of matrices in C°> which are reduced with respect to the cone N,
which would have been complete were the conjecture true. In collaboration with M. Diir, P. Dickinson,
and L. Gijben we completed this classification in [54], after having derived the correct condition for
reducedness with respect to E;;. It turned out that this led to additional families of reduced matrices,
but none of them were extremal.

The study of the cone C° was completed in the joint paper [55], where it was shown that the second
relaxation in Parrilos hierarchy [175] was exact in describing the subset of 5 x 5 copositive matrices
with all diagonal elements equal to 1. In the same paper, we showed that none of Parrilos relaxations
is exact for the complete cone C®. We describe these results in more detail in Section 2.2.

The classification of the extreme rays of C® was based on a tedious classification of the possible
support sets of copositive 5 x 5 matrices which are reduced with respect to the nonnegative cone N,
initiated by Baumert in [12] and completed in [54]. An extension of these results to copositive cones of
order n > 5 seemed impossible without a more systematic study of support sets of exceptional extremal
copositive matrices, due to the expected extraordinary complexity. Our efforts in this direction resulted
in the paper [95] on support sets of copositive matrices. We present these results in Section 2.3 below.

In [95] we introduced and investigated the concept of minimal zeros, as opposed to the maximal
zeros studied by Baumert in [10]. Here a zero u of a copositive form A is called minimal if for no
other zero v of A, the support of v is a strict subset of the support of w. In contrast to maximal zeros,
or zeros in general, a minimal zero of a copositive matrix is determined up to scaling by a positive
constant only by its support and by the matrix itself. Thus a copositive matrix can essentially have
only a finite number of minimal zeros, which opens the way to a combinatorial approach. The set of
supports of all minimal zeros of a copositive matrix A is called the minimal support set of A.

The second innovation presented in [95] was the extension of the concept of reducedness. An
exceptional extreme copositive matrix A € C™ is not only reduced with respect to the nonnegative
cone, but for the same reasons must also be reduced with respect to the positive semi-definite cone,
i.e., it cannot be decomposed into a non-trivial sum A = C'+ P, where C' is copositive and P is positive
semi-definite. This reducedness requirement leads to additional conditions on the support set of the
extremal matrix. In fact, we were able to derive a necessary and sufficient condition for reducedness
with respect to S in terms of the minimal zeros.

The main result of [95] is a set of necessary conditions on the minimal support set of an exceptional
copositive matrix which is reduced with respect to both S and N". When applied retrospectively
to the cone C°, these conditions are strong enough to single out exactly the two support sets which
correspond to the two types of exceptional extreme rays of C°, namely the orbits of the Horn form
and the Hildebrand matrices, thus making the classification in [10] and [54] obsolete. For n = 6, the
conditions reduce the number of potential minimal support sets to 44, which makes the classification
of the extreme rays of C% possible with a manageable effort. Surprisingly, for some applications the list
of support sets itself suffices, without explicit knowledge of the extreme rays [192]. We present some
preliminary results on C% in Section 2.4.

Our next step in the study of copositive matrices has been to tackle the condition of extremality.
As mentioned above, in previous work this condition was substituted by the weaker condition of
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reducedness, because the latter is easier to handle. However, it is a trivial observation that extremality
itself can also be described by a reducedness condition. Namely, a copositive matrix is extremal if
and only if one cannot subtract another copositive matrix from it without leaving the copositive cone,
except when this other matrix is a multiple of the original matrix. This motivated a study of the
reducedness condition with respect to general convex cones and resulted in the paper [57] which was
a joint work with P. Dickinson. Those results of this paper which pertain to extremality are described
in Section 2.5 below.

The concept of reducedness is generalized in the following way. A copositive matrix A € C™ is called
reduced with respect to another copositive matrix C' if for every 6 > 0, we have A — §C ¢ C™, and it is
called reduced with respect to a subset M C C™ if it is irreducible with respect to all nonzero elements
CeM.

The paper [57] has a strong convex analysis flavour. Its main result is a necessary and sufficient
condition on a pair (A, B), where A € C"™ and B € 8™, for the existence of a scalar § > 0 such that
A+ 6B € C". For fixed A, the set of all such matrices B € S™ forms a convex cone K4, which is
referred to as the cone of feasible directions [177]. We express this cone in terms of the zeros of A and
their supports.

The obtained description of the cone K4 is a powerful tool. It allows to compute the minimal face
of A, see [16, 186] for further information on faces of a convex set or cone. In particular, we obtain a
simple test of extremality of A, which amounts to checking the rank of a certain matrix constructed
from the minimal zeros of A. The necessary and sufficient conditions for the reducedness of A with
respect to a nonnegative matrix C' € N or a positive semi-definite matrix C' € S%, which have been
given in [54] and [95], respectively, are generalized to the case of arbitrary matrices C € C". The
conditions in [54] and [95] follow as particular cases.

Our latest paper on copositive matrices is the article [97], whose results are described in Section
2.6. On the one hand, it complements the trigonometric approach which served to study matrices with
zeros having small supports, in that it considers copositive matrices in C™ with large supports of size
n—2. On the other hand, it generalizes the Horn form and the Hildebrand matrices, which are of order
n = 5, to families of basic exceptional extreme copositive forms of arbitrary order n > 5.

The defining property of the copositive matrices studied in [97] is that their support set contains n
zero supports of cardinality n — 2 which form the orbit of the index set {1,...,n — 2} under the action
of cyclic permutations of the indices {1,...,n}. Two questions related to such matrices are considered.
Firstly, the n zeros having the requested supports are fixed and the set of copositive forms having
these zeros is studied. This set must be a face of the copositive cone C™. Surprisingly, the considered
condition on the support set is restrictive enough to determine the structure of this face in most cases.
Secondly, the whole variety of copositive matrices with support set having the considered property is
studied. This variety is shown to contain large families of exceptional extreme rays of C". We give
explicit examples of circulant exceptional extreme matrices from this variety for every n > 5.

The proof of these results has been made possible by establishing a link between the properties of
the copositive matrices in question and the behaviour of a certain periodic discrete time-varying linear
dynamical system whose coefficients are given by the elements of the n defining zeros. Parts of the
theory developed in [97] can also be applied to copositive matrices with zeros having smaller support,
given the set of the supports still has the cyclic structure described in the previous paragraph.

Let us now summarize the elaborated approach to exceptional extremal copositive matrices. We
divide our study in two steps. First we look at the possible support sets of extremal copositive matrices,
constrained by necessary conditions on the zeros. This step can be characterized as a qualitative
analysis, because the main object is of a combinatorial nature. Then we consider which extremal
copositive matrices exist with a given support set. This step is of a quantitative nature, and essentially
boils down to solving underdetermined systems of algebraic equations. Both steps encounter difficulties
when the order of the copositive matrices increases. One problem is the exploding number of possible
support sets, and the other is the increasing complexity of the system of equations. There are two
regimes where these problems seem manageable. If the supports of the zeros are small, of cardinality 2
or 3, then the trigonometric parametrization of the extremal matrices scaled such that their diagonal
elements equal 1 yields a linear system on the parameterizing angles, and the corresponding families
of extremal matrices can explicitly be written down. If the supports are large, then the corresponding
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system of equations is rigid enough to prevent a too complex structure of the extremal matrices.

2.1.4 Notations and preliminaries

In this subsection we introduce notations and provide definitions which are common for the subsequent
sections. We also provide the first and second order optimality conditions which a zero u imposes on
a copositive matrix A.

We shall denote vectors with lower-case letters and matrices with upper-case letters. Individual
entries of a vector u or a matrix A will be denoted by wu;, A;;, respectively. For a matrix A and a
vector u of compatible size, the i-th element of the vector Au will be denoted by (Aw);. Inequalities
u > 0 on vectors will be meant element-wise. We denote by 1 = (1,...,1)7 the all-ones vector.

For a subset I C {1,...,n} we denote by A; the principal submatrix of A whose elements have row
and column indices in I, i.e. A; = (A;j)i jer- Similarly for a vector u € R™ we define the subvector
ur = (wi)ier.

The vector space of real symmetric matrices will be denoted by S™. The cones of positive semi-
definite matrices, element-wise nonnegative matrices, element-wise nonnegative matrices with zero
diagonal, and copositive matrices will be denoted by S, N, N, and C", respectively. Here a real
symmetric n X n matrix A is positive semi-definite (PSD), denoted A = 0, if 7 Az > 0 for all z € R,
and copositive if 7 Az > 0 for all = € R™. A copositive matrix A € C" will be called exceptional if
AgSt+ N

Definition 2.1.1. Let K C R" be a closed convex cone. An element x € K is called extremal if for
every x1,x9 € K such that x1 + o = x there exists A € [0,1] such that z; = Az, x93 = (1 — A\)z. The
conic hull of an extremal element is called extreme ray of K.

Let C C R™ be a closed convex set. An element x € C' is called extremal if for every z1,z2 € C and
A € (0,1) such that Axy + (1 — A\)z2 = = we have that 21 = 25 = x.

An extreme ray or an extreme element is a special case of a face of a convex cone or set, respectively.

Definition 2.1.2. Let K C R™ be a closed convex cone. A convex subset F C K is a face of K if
every closed line segment in K with a relative interior point in F must have both end points in F.
For x € K we let F* equal the intersection of all faces of K containing x. This is itself a face, and is
referred to as the minimal face of K containing x.

We shall deal almost exclusively with extreme elements and faces of the copositive cone C".

For a given n > 1, denote by E;; = Ej;, 1,5 = 1,...,n, the generators of the extreme rays of
the cone N, normalized such that their elements are from the set {0,1}. Let e;, ¢ = 1,...,n be the
canonical basis vectors of R", and let A,, = {z € R | Z;;l xj; = 1} be their convex hull.

Let Aut(R?) be the automorphism group of the positive orthant. It is generated by all n x n
permutation matrices and by all n x n diagonal matrices with positive diagonal elements. This group
generates a group G, of automorphisms of the cones ST, N™, C" by A — GAGT, G ¢ Aut(R7).

We call a nonzero vector u € R"} a zero of a copositive matrix A € C" if uT Au = 0. We denote the
set of zeros of A by V4 = {u € R \ {0} | uT Au = 0}. For a vector u € R" we define its support as
suppu = {i € {1,...,n} | u; # 0}. A zero u of a copositive matrix A is called minimal if there exists no
zero v of A such that the inclusion suppv C supp u holds strictly. We shall denote the set of minimal
zeros of a copositive matrix A by VA. . The support set of A is the set supp VA = {suppu|u € VA},
and the minimal support set is the set supp V4, = {suppu|u € V4, _}.

Definition 2.1.3. [54, Definition 1.1] For a matrix A € C™ and a subset M C C", we say that A is
reduced with respect to M if there do not exist v > 0 and M € M\ {0} such that A —~yM € C™.

For simplicity we speak about reducedness with respect to M when M = {M}. Note that if a
matrix A is on an exceptional extreme ray of C", then A must be reduced with respect to both ST and

N

Let now u be a zero of a copositive matrix A. Then z = wu is a global minimum of the quadratic
function 27 Az on the nonnegative orthant, and this function fulfills the necessary optimality conditions
at this point. These conditions translate to the following result.
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Lemma 2.1.4. Let u € R’} with support I = suppu C {1,...,n} be a zero of a copositive matriz
A e€C™. Define I' ={1,...,n} \ supp Au. Then the following conditions hold:

first-order conditions: Au >0, 1 CI';

second-order conditions: the submatriz Ay can be written as a sum P + C, where P is positive
semi-definite, and C' is copositive such that its non-zero elements are contained in the subblock Cpn ;.

In particular, the submatrixz Ay is positive semi-definite.

The first order condition and the condition A; > 0 are in [51, Lemma 7], the full second-order
condition is in [11, Lemma 3.1]. Note that the nonnegative vector Au is precisely the vector A of
Lagrange multipliers corresponding to the constraints x > 0. The inclusion I C I’ is then nothing else
than the complementarity conditions A;u; = 0.

These conditions enforce positive semi-definiteness of A in the presence of zeros with large supports.
Clearly, if there is a zero u of A with suppu = {1,...,n}, then A is positive semi-definite. However,
we also have the following result [11, Corollary 3.2].

Corollary 2.1.5. Let A € C" and let u € V* such that |supp(u)| = n—1 and Au=0. Then A € S".

2.2 The cone C°

2.2.1 Introduction

In this section we study the extreme rays of the copositive cone C°. We present a synthesis of the
papers [54, 90]. The outline of the section is as follows. First we derive a necessary and sufficient
condition on a copositive matrix to be reduced with respect to the extremal matrix E;; of the cone of
nonnegative matrices, for ¢ # j. This will be accomplished in Subsection 2.2.2. Next we introduce the
trigonometric parametrization of reduced copositive matrices with diagonal elements equal to 1. This
will be done in Subsection 2.2.3. Then we study the support set of an exceptional copositive matrix
in C° which is reduced with respect to the cone of nonnegative matrices with zero diagonal. This
step will be accomplished in Subsection 2.2.4. Next we shall investigate which support sets give rise
to exceptional extremal matrices, and parameterize these matrices with the help of the trigonometric
transformation. This will be accomplished in Subsection 2.2.5. Finally, we consider the affine section
of C5 which consists of the matrices with all diagonal elements equal to 1, and give a semi-definite
description of this section. This will be the subject of Subsection 2.2.6.

The value n = 5 is the smallest order for which there exist matrices in C™ which cannot be repre-
sented as a sum of a positive semi-definite matrix and a nonnegative matrix. An example of such a
matrix is the Horn form [82]

1 -1 1 1 -1
-1 1 -1 1 1
H= 1 -1 1 -1 1 |. (2.1)
1 1 -1 1 -1
-1 1 1 -1 1

The Horn form has been characterized as an exceptional extreme ray of C°. It follows that all forms
that can be obtained from the Horn form by a permutation of the indices and a scaling with a positive
diagonal matrix, i.e., the Gs-orbit of the Horn form, are also extreme rays of C® which do not belong
to 87 + Ns.

Much work has also been devoted to characterize the difference between the completely positive
cone C and the intersection S? NN, which are the dual cones to C" and S} + N,,, respectively.
Special emphasis has been made on the 5 x 5 case. In [227] the extreme rays of ST NN, for n = 5,6 are
characterized, and a procedure for general n is given. An earlier paper with a partial characterization
of the 5 x 5 completely positive cone is [224]. In [37] extreme rays of S N N5 which do not belong to
C: are characterized and it is shown how to separate them from CZ by a copositive matrix.
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2.2.2 Copositive matrices reduced with respect to L;

We now consider weaker properties than extremality, namely reducedness with respect to the cone '™
of nonnegative matrices, and reducedness with respect to the cone M of nonnegative matrices with
zero diagonal. The first of these properties has been utilized and recognized as being more convenient
than extremality already in the early work on copositive matrices [51],[82],[12]. In particular, it was
studied by Baumert who gave a characterisation of copositive matrices which are reduced with respect
to E;; [11, Theorem 3.4].

Lemma 2.2.1. A matriz A € C" is reduced with respect to the matrix Ey;, i = 1,....n, if and only if
there exists a zero u of A such that u; > 0.

It follows for a copositive matrix which is reduced with respect to N that for every i = 1,...,n
there exists a zero such that w; > 0. This condition is not strong enough to reasonably restrict the
support set of a reduced matrix. However, a matrix which is reduced with respect to N is also reduced
with respect to E;; for ¢ # j, which gives another source of information on the support set. Our key
result is the following analog of Lemma 2.2.1 [54, Theorem 2.6].

Theorem 2.2.2. Let A€ C", n>2, andlet1 <i,j <n. Then the following conditions are equivalent.
(i) A is reduced with respect to E;;,
(ii) there exists u € VA such that (Au); = (Au); = 0 and u; +u; > 0.

The theorem shows that reducedness with respect to Ej; is tied to the presence of a zero u with
certain properties involving both the support of the zero u and the support of the Lagrange multiplier
A = Au. Clearly a copositive matrix A is reduced with respect to N if and only if it is reduced with
respect to all E;;, i # j. This property has strong implications, especially in the presence of zeros with
large support.

We have the following result [54, Lemma 4.12].

Lemma 2.2.3. Let A € C" be reduced with respect to N, and assume there is a (n — 1) x (n — 1)
principal submatriz B of A which is positive semi-definite. Then A € ST.

In conjunction with Corollary 2.1.5 this gives the following [54, Corollary 4.15].

Corollary 2.2.4. Let A € C™ be reduced with respect to N, and let u be a zero of A with |supp(u)| >
n — 2. If [supp Au| < 2, then A € ST.

Clearly an exceptional copositive matrix A € C™ cannot have a zero with support of cardinality n,
because in this case A is positive semi-definite by Lemma 2.1.4. If the matrix is in addition reduced
with respect to A, then it cannot have even a zero with cardinality n — 1, because it must again be
positive semi-definite by Lemma 2.2.3. On the other hand, if it has a zero with support of cardinality
1, then it must have a zero row and is essentially given by a copositive matrix form C*~!. This leads
to the following result.

Lemma 2.2.5. Let A € C™ be an exceptional copositive matriz with positive diagonal elements which
is reduced with respect to N§'. Then the support of any zero of A has cardinality between 2 and n — 2.

The following result is evident.
Lemma 2.2.6. Let A € ST + N" be reduced with respect to Nj'. Then A € S}.

From work done on the copositive completion problem [102] we have also the following result [54,
Lemma 4.5].

Lemma 2.2.7. Let A € C™ with diag A = 1 be reduced with respect to NJ'. Then a;; € [—1,1] for
all i, 7.

This result allows us to apply the trigonometric parametrization introduced in the next subsection.
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2.2.3 The trigonometric parametrization

Let A € 8™ have diagonal elements equal to 1 and assume its off-diagonal elements are contained in
the interval [—1,1]. Then A;; can be written as — cos;; for some angle ¢;; € [0,7]. To appreciate
the benefits of this parametrization, we shall first consider copositive matrices of order n = 3.

The cone C? has been characterized in [81, Theorem 4]. A reformulation of this result in terms of
the angles leads to the following.

Lemma 2.2.8. Let

1 —COSY12 —COSY13
A= | —cospi 1 — COS (a3 (2.2)
—COS P13 — COS a3 1

for some angles @;; € [0,7]. Then A is copositive if and only if 12 + @13 + P23 > 7.

The algebraic constraint det A > 0 from [81] has thus been converted into a linear constraint on
the angles ;;. Define the vector ¢ = (12, 13, ¢23)T and let A = {p € [0,7]3|1T¢p = w}. Then we
have for A € C3 as in (2.2):

e A is reduced with respect to N if and only if ¢ € A;

e ¢ is a vertex of A if and only if supp VA = {{i,j}, {4, k}, {1,2,3}};

{i,5}, {4, k} € supp V4 if and only if {1,2,3} € supp V4 and ¢y, = 7;

supp V4 = {{1,2,3}} if and only if ¢ is in the relative interior of A, in this case the zero is
proportional to (sin 93, sin @13, sin p12)7;

{i,5} € supp (V4) if and only if ¢;; = 0, in this case e; + e; is a zero;

if {i,7},{1,2,3} € supp (VA), then either {i,k} or {j,k} are in supp (VA).

Here (i, j, k) stands for some permutation of (1,2, 3).

Conditions on the support set of A hence translate into linear equality and inequality constraints
on the angle vector ¢. If we consider copositive matrices of general order n, then the above relations
hold for every 3 x 3 principal submatrix of A.

The parametrization A;; = — cos ¢;; has close connections to the semi-definite approximation of the
MAXCUT problem by Goemans and Williamson [75] and to Nesterovs J-theorem in the semi-definite
approximation of nonconvex quadratic optimization problems [164].

Definition 2.2.9. The MAXCUT polytope MC,, C S} is the convex hull of all matrices A € S7 such
that A;; € {~1,+1} for all 4,5 = 1,...,n, i.e., all matrices of the form voT, v € {-1,+1}".

The following lemma is a consequence of [75, Lemma 3.2].

Lemma 2.2.10. [100, Corollary 4.3] Let A € S be a positive semi-definite matriz with Ay = 1,
i =1,...,n. Let B be the real symmetric n X n matriz defined entry-wise by B;; = garcslnA”,
i,j=1,...,n. Then B € MC,,.

The function f(z) = %arcsinx maps the interval [—1,+1] monotonically onto itself and plays an
important role in the results cited above when applied element-wise to positive semi-definite matrices
with diagonal elements equal to 1. If we introduce the affine transformation [0, 7] 3 ¢;; — Bi; = 2y —
1, then we obtain 3;; = % arcsin A;;, i.e., the transformation used in our trigonometric parametrization
equals the function f up to an affine scaling. We may define the following analog of the MAXCUT
polytope for copositive matrices with unit diagonal.

Definition 2.2.11. The triangle-free polytope TF, C 8™ is the convex hull of all matrices A € S™
such that A;; € {—1,4+1} for all4,j =1,...,n, diag A = 1, and the incidence graph of the —1 entries
is triangle-free.
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We have the obvious inclusion MC,, C TF,. Moreover, by [88] the extreme copositive matrices
of C™ with elements in {—1, 41} are exactly those vertices of 7, which are reduced with respect to
N The above characterization of the unit diagonal section of C* can be reformulated as follows.

Corollary 2.2.12. A matriz A € S* with unit diagonal is in C® if and only if it is in the sum
FHTFs] + NG, where the function f~1(¢) = sin S¢ is applied element-wise.

Thus portions of the boundary of C* are mapped to facets of 7F3 by the function f.

2.2.4 Copositive matrices reduced with respect to N

In this subsection we restrict the support sets of exceptional copositive matrices A € C° which are
reduced with respect to the cone of nonnegative matrices with zero diagonal.

An exceptional copositive matrix A € C5 which is reduced with respect to Ay can only have zeros
with supports of cardinality 2 or 3 by Lemma 2.2.5. This gives still ~ 10* possible support sets, up
to permutation of the indices 1,...,5. We can, however, further constrain the support set of A. In
addition to the constraints from Subsection 2.2.3, which apply to every 3 x 3 principal submatrix of
A, we have the following restrictions:

e For every index ¢ there exist distinct indices j, k such that there is no zero uw with j, k € suppu
and i & suppu. Indeed, if for some i such vertices j, k do not exist, then by Theorem 2.2.2 the
4 x 4 submatrix Ay . 51\ i} 18 a copositive matrix which is reduced with respect to /\/6". But this
submatrix is in S} + A, and hence must be positive semi-definite by Lemma 2.2.6. Hence A is
positive semi-definite by Lemma 2.2.3, leading to a contradiction with exceptionality.

e For every pair (i,7) of indices, i # j, there either exists a zero w with i,j € suppu, or there
exists a zero u with |suppu| = 2 and {i, 7} Nsuppu # 0. Indeed, by Theorem 2.2.2 for every pair
(i,7) there exists a zero u with {7,j} Nsuppu # 0, and (Au); = (Au); = 0 if w;u; = 0. Hence
if the condition does not hold for some pair (¢,7), then there exists a zero u with |suppu| = 3,
{i,7} ¢ suppu, (Au); = (Au); = 0. Then A € §7 by Corollary 2.2.4, a contradiction.

Supports with cardinality 2 or 3 can conveniently be represented by edges in a graph on 5 vertices.
We will represent a support {i, j} by a dashed edge between the vertices ¢ and j, whilst we will represent
a support {1,...,5}\ {i,5} by a solid edge between the vertices ¢ and j. There are 17 support sets
satisfying above conditions, up to permutation of the vertices. They give rise to the graphs in Fig. 2.1.

In order to describe the exceptional matrices A € C® which are reduced with respect to N we have
to consider each of these 17 cases of support sets. We assume without loss of generality that diag A = 1,
because every such matrix A has a positive diagonal which can be scaled to 1 by a symmetry from
Gs. We may then parameterize the off-diagonal elements A;; = — cos;; by angles ¢;; € [0,7]. The
support set yields linear conditions on these angles by the relations established in Subsection 2.2.3.
Using these conditions to eliminate variables and applying the reducedness conditions in Theorem 2.2.2,
we obtain that

e the support sets given by the graphs (a),(b),(c),(d),(e),(f),(k),(1),(q) do not correspond to an
exceptional reduced copositive matrix;

e the support sets given by the graphs (g),(h),(),(j),(m),(n),(0),(p) lead to the matrices

1 —costhy  cos(ig +s5)  cos(vo + 43) —coss
— cos 1y 1 —cos s cos(s + 1)  cos(hs + 1y)
T() = | cos(vs + 15) — cos Y5 1 —cos cos(¢1 + 1) |, (2.3)
cos(thy + 3) cos(vs + 1) — cos 1 — CoS o
—cos 3 cos(v3 + 1)  cos(Y1 + 12) — costhy 1

where ¢ = (¢1,...,%5)T is a quintuple of angles satisfying ¢; € [0,7), i =1,...,5, and Zle P < .
Here the individual cases correspond to

(8) w2,13,15 >0, Y1 = 1hy = 05
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Figure 2.1: Graphs of possible support sets of an exceptional copositive 5 x 5 matrix which is reduced
with respect to M. A dashed edge between vertices i and j represents a zero with support {i,j},
whilst a solid edge between the vertices ¢ and j represents a zero with support {1,...,5}\ {i,5}.

(h) ¥1, 42,93 > 0, Yg =95 = 0;

(i) 3 >0, 91 =2 =1hg = b5 = 0;
() ¥1,93 >0, P2 =thy = Y5 = 0;
(m) 1,92, 93,5 > 0, Pg = 0;

() ¥1,9%2 >0, P3 = thy = Y5 = 0;
(0) ¥

(p)

The cases (0),(p),(q) have already been considered by Baumert [10], who determined that case (o)
leads to the Horn form, (p) leads to extremal exceptional copositive matrices of some new type, and
(q) does not correspond to any exceptional copositive matrices which are reduced with respect to A/,

Each support set in Fig. 2.1 is hence represented by matrices T'(1)) in the relative interior of some
face of the simplex

P > 0.

U ={y 0,717y < 7}. (2.4)
If we consider also the support sets which are obtained from those in Fig. 2.1 by cyclic permutations of
the indices 1,...,5, we obtain all faces of ¥ with the exception of those in the facet {1 € [0, 7]? |17 =
}.
In fact, the matrices T'(¢) for ¢ in this facet are positive semi-definite. This can be easily seen by
the factorization

cos(ts +15)\ [cos(tba +15)\ " sin(4 + s) sin(vs +v5) \
— cos Y5 — cos s —sin s —sin ¥
T(y) = 1 1 + 0 0 ,
— cos Yy — cos Y sin Yy sin Yy
cos(1 +92) ) \cos(¥1 + 1) —sin(¢1 +v2)/ \—sin(Yr +12)

where 13 = m — 1 — Py — g — V5.
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In order to demonstrate that the matrices T'(¢)) for ¢ in the other facets of ¥ are indeed copositive,
we can decompose them into a sum of a positive semi-definite matrix and a matrix in the Gs-orbit of
the Horn form (2.1). For the facet {1 € [0,7]° | 1T+ < 7, 14 = 0} we get for example

T () = voT + diag(d)H diag(d)

with
—Sln(%( s + 1 + P2 +13)) COS(%( s + 1P + P2 +3))
sin(5( Y5 4+ 1 + P2 + 3)) cos(5( s + 1 + 2 +93))
v = —Sln(%( s + 1+ +3)) |, d= COS(%(—¢5+¢1+¢2+¢3))
Sln(?( s — Y1 + P2 + 1P3)) COS(?(—% — 1 + Yo +¢3))
—sin(5 (=15 — 1 — P2 +3)) cos(5 (=95 — Y1 — P2 + 13))

Note that v = 0 if and only if v = 0, and d > 0 if 174 < 7. These decompositions are due to
P. Dickinson and L. Gijben. That these matrices are indeed reduced with respect to A can be
checked directly by applying the criterion in Theorem 2.2.2. We hence get the following result.

Lemma 2.2.13. Let ¢ € [0,7)° be such that 179y < 7 and min;v; = 0. Then the matriz T ()
is copositive and reduced with respect to N§. It is extremal if and only if 10 = 0, in which case it
equals the Horn form. In all other cases it can be represented as a non-trivial sum of a rank 1 positive
semi-definite matriz and a matriz in the Gs-orbit of the Horn form.

The case when 1) is in the interior of the simplex ¥, which corresponds to the support set represented
by the graph (p) in Fig. 2.1, is more complicated and treated in the next subsection.

2.2.5 Exceptional extreme rays of C°

In the previous subsection we characterized all support sets of exceptional copositive matrices in C°
which are reduced with respect to NJ. This is a necessary, but not a sufficient condition for extremality.
Indeed, not all matrices T'(v) are extremal, as demonstrated in Lemma 2.2.13. We described the families
of reduced copositive matrices corresponding to all support sets except case (p) in Fig. 2.1. In this
subsection we show that this support set corresponds to the matrices T'(v)) with ¢ in the interior of
the simplex ¥ defined in (2.4). We will give only a sketch of the proof, which is to some extent simpler
than the original proof in [90].

Lemma 2.2.14. Let ¢ be a vector in the interior of V. Then T (1)) is copositive and extremal in C5.

The proof of copositivity is in two steps. First we prove that T'(¢) is nonnegative on all vectors on
the boundary of Ri, and then we prove copositivity by a standard determinantal criterion.

Let ¢ be in the interior of ¥ and introduce positive quantities t; = cos(¢5 411 +12)+cos(ws+1by) >
0, and to,...,t5 defined in a similar way after cyclic permutation of the indices. Then the upper left
4 x 4 principal submatrix of T'(¢) can be written as

1 — cos 1y cos(Pat+ips)  —cos(Patipst+ipr)+ts
B — cosa 1 — cos 5 cos(Ps+11)
(T(w)){l 234y = cos(1pa+1)s) — cos 5 1 — cos 1
—cos(a+s+ip1)+ts  cos(ihs+i1) — cos 1
T
sin Yy — cos Yy sin Yy — cos Yy
0 1 0 1
= ts F
—sin s — cos Y5 —sin s — cos Y5 Tts 14

sin(¢1+95)  cos(1+1s) sin(¢1+95)  cos(y1+s)

which shows that this submatrix is in ST +AN*. The other 4 x 4 principal submatrices are copositive
by a similar argument.
Next we show that det T'(¢)) > 0. The proof is by direct calculation, which is most easily done by
introducing complex variables z; = ei j=1,...,5. Then
t1tatstyats

det T'(¢) = 7 T cos(v1 + Yo + U3 + Vs + U5) > 0.
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It follows that T'(¢) is copositive by [44, Theorem 3.1].

Finally, let u!, ..., u% be the zeros of T'(1), which are given by the columns of the matrix
sin(t)s + 14) sin 5 0 0 sin 1o
sin ¢3 sin(¢4 + ¢5) sin ¢1 0 0
0 sin 1,[)4 sin(1/15 + 1/)1) sin wQ 0
0 0 sin ¥5 sin(¢1 + 12) sin 13
sin )y 0 0 sin sin(vg + ¥3)

Every matrix A in the minimal face of T'(1)) must satisfy the linear conditions (Au)s,ppys = 0. This
gives a linear system of 15 equations on the 15 coefficients of A. By passing again to the complex
variables z; = e™i, the minors of the coefficient matrix can be factorized into components which are
of small degree in the z;. It is then easily seen that this coefficient matrix has corank 1, and hence the
only solutions of the system are the multiples of T'(¢) itself. This shows that T'(¢)) is extremal.

We may formalize this result as follows.

Theorem 2.2.15. A matriz A € C° is an exceptional copositive matriz that is reduced with respect
to N if and only if it is in the Gs-orbit of a matriz T(¢) as given by (2.3) with ¢ = (Y1,...,5)7
satisfying ¢¥; € [0,7), i=1,...,5, and Z?:1 P < .

A matriz A € C® is an exceptional extremal copositive matriz if and only if it is in the Gs-orbit of
a matriz T () with either 1 = 0 (A is in the Gs-orbit of the Horn form) or v in the interior of the
simplex ¥ given by (2.4) (A is a Hildebrand matriz).

Every exceptional copositive matriz A € C° can be written as a sum C+ N, where N is nonnegative
with zero diagonal, and C is in the Gs-orbit of a matriz T(¢) with ¢; € [0,7), i = 1,...,5, and
Zle P < .

While the orbit of the Horn form represents a 5-dimensional variety, the Hildebrand matrices form
a 10-dimensional variety, parameterized by the diagonal elements of D in the scaling element of G5 and
the quintuple of angles ¢ in the normal form 7'(¢)). Here for each permutation P € S5 we obtain a
smooth component of this variety. Cyclic permutations of the indices and a complete reversal of order
leave the support set of the Horn form and of the matrices 7'(¢), ¢ from the interior of ¥, invariant.
Hence the smooth component of these matrices is also invariant with respect to this subgroup. Thus
there exist 5!/10 = 12 such smooth components.

2.2.6 The diagonal 1 section of C°

In this subsection we consider those copositive 5 X 5 matrices whose diagonal elements equal 1. Denote
the subset of these matrices by C3. It is a 10-dimensional subset of S°. The action of a general element
of the group Gs does not preserve C3, it is, however, still invariant under simultaneous permutations
of the row and column indices. In contrast to the diagonal 1 section of the positive semi-definite cone
the set C3 is not compact. Its recession cone has, however, a simple description.

Lemma 2.2.16. The recession cone of C{ is given by the cone Ni of nonnegative matrices with zero
diagonal.

This follows from the evident fact that the recession cone of C§ equals the intersection of C5 with
the subspace of real symmetric matrices with zero diagonal.

In general, an extreme element of an affine section of a convex cone does not need to lie on an
extreme ray of this cone, and the set of extreme elements of the section can be much more complex
than the set of extreme rays of the cone. However, in the case of C; we have the following result.

Lemma 2.2.17. Let A be an extreme element of C;. Then either A € S + N, or there exists a
permutation matriz P € S5 and a quintuple of angles ¢ € VU, 1Ty < 7, such that A = PT(¢)PT,
where U is the simplex given by (2.4), and T () is given by (2.3).

This lemma is a direct consequence of Theorem 2.2.15. It allows to deduce a semi-definite description
of C? by virtue of Parrilos hierarchy of inner semi-definite approximations of the copositive cone [175].
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Here for an integer » > 0 the r-th Parrilos semi-definite approximation of C" is given by the cone K

of matrices A € 8™ such that the polynomial p(z) = Zijzl Al-jxfmi equals the ratio %, where

¥ (z) is a sum of squares of polynomials of degree r +2 in z. We have the chain of inclusions K C K7,
for r < 1’/, and C" equals the closure of the union (J,-,K}'. Moreover, the simplest relaxation equals
K§ = St + N™. Tt has been checked by P. Dickinson and L. Gijben that for every ¢» € ¥ we have
T () € K3, and hence also PT(¢)PT € K} for every permutation matrix P € S5. By virtue of the
preceding lemma we then get the following result, proven in [55].

Theorem 2.2.18. A matriz A € S5 with all diagonal elements equal to 1 is copositive if and only if
it is an element of K3.

In order to check whether a given matrix A € S° with positive diagonal is copositive it hence suffices
to check whether the matrix DAD is in K7, where D is a positive definite diagonal matrix chosen such
that the diagonal elements of the product DAD all equal 1.

On the other hand, we have the following result [55].

Lemma 2.2.19. Let D,, be the set of positive definite diagonal n X n matrices. Then for every r > 0
we have
(| DK!D =8} +N"

DeD,

Thus for n > 5 none of Parrilos relaxations of the copositive cone will be exact.

Finally we shall consider the image of C§ under the map f(z) = %arcsinx when applied element-
wise. This map sends the set {T(¢) |¢ € U} to a simplex with vertex set
{T'(¢)| ¢ is a vertex of ¥}. This simplex is a 5-dimensional face of the triangle-free polytope T Fs5, but

its relative interior is outside of the MAXCUT polytope MCs. In fact, we have the following result.

Lemma 2.2.20. The image of the set C3 under the map f(x) = %arcsinx when applied element-wise
is contained in the sum TF5 + N.

Note that for the cone C? the analogous statement Corollary 2.2.12 is valid with equality.

2.3 Minimal zeros of copositive matrices

2.3.1 Introduction

In this section we consider a modification of the support set of a copositive matrix, namely the minimal
support set. This set was introduced in [95] along with the notion of minimal zero. Since the minimal
support set is a subset of the support set, the former is a coarser characteristic of the copositive matrix
than the latter. This has the advantage that the number of possible minimal support sets for certain
subclasses of copositive matrices is smaller than the number of possible support sets. The downside is,
of course, some loss of information on the copositive matrix. The main motivation of introducing this
characteristic is that the decrease in complexity outweighs this loss.

In Subsection 2.3.2 we elaborate some properties of minimal zeros and their supports. In Subsection
2.3.3 we shall show that reducedness of a copositive matrix A € C™ with respect to the cones N and
St can be expressed in terms of minimal zeros and entails constraints on its minimal support set. In
Subsection 2.3.4 we apply the results in order to restrict the combinations of minimal zeros that can
occur in exceptional extreme copositive matrices.

2.3.2 Minimal zeros of copositive matrices

In this subsection we describe some basic properties of minimal zeros and their relation to general zeros
of a copositive matrix.
The following result follows from the optimality conditions in Lemma 2.1.4.
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Corollary 2.3.1. [95, Corollary 3.4] Let A be a copositive matriz and u a zero of A. Then u can be
represented as a finite sum of minimal zeros of A.

This means that the convex hull of the minimal zeros is an upper bound on the set of all zeros.
The following result shows that up to multiplication by a constant, a minimal zero is defined by its
support.

Lemma 2.3.2. [95, Lemma 3.5] Let A be a copositive matriz and v € V2. Then the following are
equivalent.

(a) u is a minimal zero of A,

(b) if v is another zero of A with support suppv C suppu, then there exists p > 0 such that v = pu.

The number of equivalence classes of minimal zeros with respect to multiplication by a positive
constant is hence finite, and the classes of minimal zeros are in a one-to-one correspondence with the
minimal support set supp Véin. Next we give a characterization of minimal zeros in terms of principal
submatrices.

Lemma 2.3.3. [95, Lemma 3.7] Let A € C™ be a copositive matriz and let I C {1,...,n} be a
nonempty index set. Then the following are equivalent.

(a) A has a minimal zero with support I,

(b) the principal submatriz A; is positive semi-definite with corank 1, and the generator of the
kernel of Ay can be chosen such that all its elements are positive.

This lemma has an important consequence. If the index subset I C {1,...,n} belongs to the
minimal support set of some copositive matrix A € C", then every proper principal submatrix of A; is
positive definite. This implies, e.g., the following non-trivial result.

Theorem 2.3.4. [95, Theorem 3.11] Let A € C" be a copositive matriz and I C {1,...,n} an indez

set such that the principal submatriz Ar is positive definite. Let u',...,u™ be zeros of A such that
(suppul) \ I = {k'} consists of evactly one element, and let u' be normalized such that ufgl =1,
I =1,...,m. Suppose that the zeros u',...,u™ are mutually different after normalization. Suppose
further that supp v} C supp u}"ﬂ forallr=1,...,m—1.

Then the indices k',... k™ are mutually different, and u',...,u™ are minimal zeros. Moreover,
if v € VA is a zero satisfying suppv C I U {k',... k™}, then v = 31" cyu® for some monnegative
scalars of. If in addition v is minimal, then there exists | € {1,...,m} and a > 0 such that v = au'.

Theorem 2.3.4 restricts the ensemble of minimal zeros that a copositive matrix can have. For
example, we have the following restriction on pairs of minimal zeros with overlapping supports.

Corollary 2.3.5. [95, Corollary 3.12] Let A be a copositive matriz and u,v minimal zeros of A with
supports suppu = I, suppv = J. Assume that J\ I = {k} consists of one element. Then every zero w
of A with support suppw C I U J can be represented as a convex conic combination w = au + Bv with
a, B > 0. In particular, up to multiplication by a positive constant, there are no minimal zeros w with
suppw C I U J other than u and v.

2.3.3 Minimal zeros of reduced copositive matrices

In this subsection we establish necessary and sufficient criteria for the reducedness of a copositive
matrix A € C" with respect to the cones N and S¥, respectively.
First we give a slightly stronger version of Theorem 2.2.2, by requiring the zero u to be minimal.

Lemma 2.3.6. [95, Lemma 4.1] Let A € C", and let i,j € {1,...,n}. Then A is reduced with respect
to E;; if and only if there exists a minimal zero v of A such that (Au);, = (Au); =0 and u; +u; > 0.
This yields a necessary and sufficient condition on the reducedness of a copositive matrix with
respect to the cones N and N in terms of minimal zeros only.
We shall now consider reducedness with respect to the cone of positive semi-definite matrices.

Lemma 2.3.7. [95, Corollary 4.4] Let A € C™ be a copositive matriz and let w € R™ be a nonzero
vector. Then A is reduced with respect to ww” if and only if there exists a minimal zero u of A with
wlu # 0.

This allows us to characterize reducedness with respect to the cone of positive semi-definite matrices
in terms of minimal zeros.

64



Theorem 2.3.8. [95, Theorem 4.5] A copositive matriz A € C" is reduced with respect to the cone S
if and only if the linear span of the minimal zeros of A equals R™. In particular, the number of linearly
independent minimal zeros, and hence also the cardinality of the minimal support set, has to be at least
n.

2.3.4 Minimal support sets of reduced copositive matrices

In this subsection we present necessary conditions for a collection Z = {I4,..., I, } of index subsets
I; C {1,...,n} to represent the minimal support set supp Vrﬁin of a copositive matrix A € C"™ which

is reduced with respect to both S% and N,, and satisfies A;; = 1 for all . The obtained results are to
be applied to the classification of the extreme rays of C", by limiting the number of possible minimal
support sets of an exceptional extreme element with unit diagonal. The restrictions of the minimal
support set fall into several categories.

One set of conditions has its origin in the trigonometric parametrization presented in Subsection
2.2.3. Let A € C" have unit diagonal and be reduced with respect to NJ'. Let B = f[A] be its image
under the element-wise application of the function f(z) = 2 arcsinz. Due to Lemma 2.2.10, Corollary
2.2.12, Lemma 2.2.20, and the results in Subsection 2.2.3 the principal submatrices of B of orders 3
and 5 satisfy some strict or non-strict inclusion properties in the polytopes MC;, TF; for j = 3,5,
respectively, depending on whether the corresponding submatrices of A are positive (semi-)definite
or merely copositive, and whether there exist minimal zeros with supports in the index set of these
submatrices. These properties translate into linear inequalities and equalities on the elements of B.
We summarize these in the following result.

Lemma 2.3.9. [95, Lemma 5.6] Let A € C™ be irreducible with respect to N,, and such that A; = 1
for everyi=1,...,n. Fori,j=1,...,n, let a;; € [0,1] be such that A;j = —cos(a;;m). Let further
B be a real symmetric n x n matriz defined element-wise by B;; = %arcsin Aij = 2055 — 1. Then the
following relations hold, where the indices i, j, k are assumed to be pairwise distinct:

(a) if {i,j} € supp V4., then a;; = 0;
(b) if {i,j} & supp Vi, then a;; > 0;
(c) if I € supp Vi, , then By € MC\y;

min?

(d) if I C J strictly and J € supp VA

min?

then B € relint MC,y;
(e) if {i,j,k} € supp VA, |, then cij + i + ajp = 1;
(f) if there does not exist I € supp V2

min

such that I C {i,j, k}, then o + o+ o > 1;
(9) if {i,7} € supp Vi, then vy + ajip > 1 for all k;
(h) for every pairwise distinct indices i1, ... is € {1,...,n} we have o y5 i, > 4.

Another set of conditions comes from the reducedness of A with respect to S7, which was char-
acterized in Theorem 2.3.8 in terms of the minimal zeros of A. The next result presents a neces-
sary condition in terms of the minimal support set. We shall need the following construction. Let
Ii,...,I,, C {1,...,n} be the elements of Z = supp V. | sorted by their cardinality. Let ms be the
number of support sets of cardinality 2. We construct two graphs G2(Z), G=2(Z) from Iy, ..., I,,. The
graph G2(Z) has n vertices 1,...,n and mq edges I, ..., I,,,. The graph G~2(Z) is bipartite, with the
two vertex subsets being defined as V = {1,...,n}, W = {mao+1,...,m}. A pair (v,w) € VxW
is an edge of G>2(Z) if and only if v € I,,. Let Ga1,...,G2, be the connected components of G2(Z)
which are bipartite.

Lemma 2.3.10. [95, Lemma 5.2] Let A € C™ be a copositive matriz with unit diagonal. Let I, ..., I,
be the elements of its minimal support set T = supp Vrﬁin, ordered by cardinality, and let mo be the num-

ber of supports with cardinality 2. Define the two graphs G2(I), Gs2(Z) as above, and let Ga.1,...,Gar
be the connected components of Go(Z) which are bipartite.
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If the linear span of the minimal zero set V4. is the whole space R™, then there exist edges
(vi,w1),.. ., (vp,wy) of Gs2(Z) such that v; is a vertex of Ga; for all j = 1,...,r, and the vertices
wi, ..., w, are mutually different.

The third set of conditions on the minimal support set is of a combinatorial nature and comes from
Theorem 2.3.4, Lemma 2.2.5, and from the definition of minimal zeros.

We summarize all these conditions in the following theorem.

Theorem 2.3.11. [95, Theorem 5.7] Let A € C™ be a copositive matriz with unit diagonal. Suppose
that A is reduced with respect to both S and N™. Let I, ..., I, be the supports in the minimal support
set T = supp V2 of A, ordered by their cardinality. Then T satisfies the following conditions.

(i) Every index set I; contains 2 < |I;| < n — 2 indices.
(i) There do not exist i,j such that I; C I; strictly.
(iii) For every index set I C {1,...,n} and indices i,i",. .. .il,j satisfying the conditions

— I C I; strictly,

I;i» \ I = {k"} consists of exactly one element forr =1,...,1,
(LrNI) C (Lir+xNI) forr=1,...,1—1,
— I; cTU{k, ... K'Y},

there exists r € {1,...,1} such that j =1i".

(iv) Let Go(1), G»2(Z) be the graphs constructed from I as in Lemma 2.3.10, and let Go1,...,Ga,
be the bipartite connected components of Go(Z). Then there exist edges (vi,w1), ..., (vy, wy) of
G>2(T) such that v; is a vertex of Goj for all j = 1,...,r, and the vertices w1, ..., w, are
mutually different.

(v) The system of linear equations and strict and nonstrict inequalities which is defined by (a)-(h)
of Lemma 2.3.9 on the variables o;; = aj; € [0,1], 1 < 14,5 < n, has a solution.

An exceptional extremal matrix A € C" is irreducible with respect to both S and N. Hence con-
ditions (i)—(v) of Theorem 2.3.11 are necessary conditions for the minimal support set of an exceptional
extremal copositive matrix.

For given n it can be checked algorithmically whether a collection I, ..., I, C {1,...,n} of index
sets satisfies conditions (i)—(v) of Theorem 2.3.11. While this is evident for conditions (i)—(iii), condi-
tion (iv) can be reduced to a matching problem, and condition (v) to a linear program with integer
coefficients.

Two collections I, ..., I, and Ji,...,J, satisfying conditions (i)—(v) of Theorem 2.3.11 can be
considered being equivalent if there exists a permutation = € S, of the indices 1,...,n such that
{r(l1),....,7(Im)} = {J1,..., Jm}. We have computed all such collections for n < 7. The number of
equivalence classes is 0 for n < 4, 2 for n = 5, 44 for n = 6, and 12378 for n = 7. The classification of the
extreme rays at least for C® thus comes within reach. The results imply that C" cannot have exceptional
extreme rays for n < 4, which yields a quick proof of Dianandas identity C* = S? + N™ for n < 4.
The two equivalence classes for the case n = 5, with representatives {{1, 2}, {2,3}, {3,4},{4,5},{1,5}}
and {{1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5}}, are realized by the Gs-orbit of the Horn form (2.1)
and the Hildebrand matrices, respectively, which indeed exhaust the types of exceptional extreme rays
of C°. In the next section we consider the implications of Theorem 2.3.11 for the extreme rays of the
cone CS.

2.4 Extreme elements of the cone C°
In this section we apply the approach to extreme copositive matrices which was developed in the

previous section to the cone C%. There are, up to permutation of the indices, 44 possible minimal
support sets which an extremal exceptional copositive 6 x 6 matrix can have [95]. These are listed in
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Table 2.1. As of now the classification of the extreme rays of C® has not been completed. However, a
number of possible minimal support sets has been examined in collaboration with P. Dickinson, and the
corresponding families of exceptional extreme copositive matrices and exceptional reduced copositive
matrices have been found. Reducedness is considered not with respect to the cone of nonnegative
matrices, but with respect to the larger cone Si + N, and is hence stronger and closer to the condition
of extremality. Below we list the examined support sets along with its families of extreme and reduced
exceptional copositive matrices A € C% with diagonal elements equal to 1.

No. | supp VA,

1 {1’2}’{1’3}’{1’4}7{275}7{376}7{576}

2 {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6}

3| {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6}

41 {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6}

5 {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6}

6 | {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6}

7| {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,4,6}

8 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6}

9 | {1,2},{3,4},{1,3,5},{2,4,6},{1,5,6},{4,5,6}

10| {1,2},{1,3,4},{1,3,5}.{2,3,6},{3,4,6},{3,5,6}

11 | {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6}

12| {1,2},{1,3,4},{1,3,5},{1,4,6},{3,5,6},{4,5,6}

13| {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6}

14 | {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{3,5,6}

15 | {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6}

16 | {1,2},{1,3,4},{1,3,56},{2,4,6},{3,5,6},{4,5,6}

17 {1,2},{1,3,4},{2,3,5},{3,4,5},{2,4,6},{3,4,6}

18 | {1,2,3}{1,2,4}{1,2,5},{1,3,6},{1,4,6},{1,5,6}

19 | {1,2,3}{1,2,4}{1,2,5},{1,3,6},{1,4,6},{2,5,6}

20 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6}

21 | {1,2,3},{1,2,4}{1,2,5},{1,3,6},{2,4,6},{3,4,6}

22 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6}

23 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,5,6}

24 | {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{3,5,6}

25 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{4,5,6}

26 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6}

27 | {1,2,3},{1,2,4}{1,3,5},{1,4,5},{2,3,6},{3,4,6}

28 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5},{2,3,6}

29 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{2,3,6},{2,5,6 }

30 | {1,2,3},{1,2,4}{1,3,5},{2,4,5},{3,4,6},{3,5,6}

31 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{2,5,6}

32 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{4,5,6}

33 1 {1,2,3},{1,2,4}{1,3,5},{2,4,5},{3,5,6},{4,5,6}

34 | {1,2,3},{1,2,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}

35 | {1,2,3,4},{1,2,3,5},{1,2,4,6},{1,3,5,6},{2,4,5,6},{3,4,5,6}
36 | {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}

37 | {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
38 | {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6},{3,5,6}
39 | {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6}
40 | {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6},{4,5,6}
41 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
42 1 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6}
43 | {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
44 | {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6},{3,5,6},{4,5,6}

Table 2.1: Candidate minimal support sets of exceptional extreme matrices in C°

supp (VA) ={{1,2},{1,3},{1,4},{2,5},{3,6},{5,6}}. The reduced matrices with this support set
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are given by
1 -1 -1 -1 1 1

-1 1 1 1 -1 1
-1 1 1 1 1 -1

A=14 1 1 1 A2
1 -1 1 X 1 -1

1 1 -1 -2 -1 1
where A € (—1,1). These matrices are not extremal.

supp (V) = {{1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6}}. The reduced matrices with this support
set are given by

1 -1 -1 -1 1 1
-1 1 1 1 -1 COS @3
A -1 1 1 1 COS 3 -1
-1 1 1 1 —cos¢p; —cosoy |’
1 —1  cos¢z —cos¢y 1 — COS ¢3
1  cosgs -1 —COS ¢ —COS @3 1

where ¢1, ¢o, d3 > 0, ¢1 + ¢2 + ¢3 = 7. All these matrices are extremal.

supp (VA) = {{1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6}}. The reduced matrices with this sup-
port set are given by

1 -1 -1 -1 1 cos ¢
-1 1 1 1 -1 COS ¢3
A | ! 1 1 1 cos(¢1 + ¢3) —cos¢y
Tl -1 1 1 1 cos(ga + ¢3) — cos P
1 —1  cos(¢1 + ¢3) cos(pa + ¢3) 1 — COoS ¢3
cos ¢y COs @3 — COS @1 — COS (2 — COS @3 1

and those matrices which are obtained from the above by an exchange of the row and column indices
3 and 4, where 0 < ¢1 < ¢ < ™ — ¢p3 < 7. All these matrices are extremal. This support set has been
examined by P. Dickinson.

supp (V4) = {{1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6}}. The reduced matrices with this sup-
port set are given by

1 -1 -1 -1 —cos(¢1 + ¢p4)  cosos
-1 1 1 1 cos(¢py + ¢y)  —cos¢y
e -1 1 1 1 cos(pa + ¢dg)  —cos o
- ~1 1 1 1 cos(¢3 + 1)  —cos ¢z
—cos(¢1 + ¢a) cos(d1 + da) cos(¢2 + ) cos(¢s + da) 1 —COS ¢4
COS ¢3 — COS @1 — COS @2 — COS @3 — COS ¢y 1

and those matrices which are obtained from the above by a permutation of the row and column indices
2,3, and 4, where 0 < ¢3 < ¢o < ¢1 < 7™ — ¢4 < 7. All these matrices are extremal. This support set
has been examined by P. Dickinson.

supp (V4) = {{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,1},{6,1,2}}. The reduced matrices with
this support set are given by

1 —cos @1 cos(¢1 + ¢2) a cos(¢s + de) — €Os ¢g
—Cos ¢ 1 — COS ¢ cos(p2 + ¢3) b cos(¢1 + o6)
A |cos(dr+da)  —coseo 1 —cosdz  cos(P3 + ¢4) ¢ (2.5)
a cos(¢pa + ¢3) — CoS @3 1 — COS @4 cos(pg + ¢5) '
cos(¢s + ¢d6) b cos(¢s + ¢4) — COS @4 1 — oS @5
— COs ¢g cos(¢1 + ¢g) c cos(dq + &5) — CoS @5 1
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with ¢17"')¢6>0; ¢J+¢]+l <7raj:1a"'75; ¢1+¢6<7T; Z?:1¢j<2ﬂ-7

a = —min{cos(¢1 + P2 + ¢3),cos(¢s + ¢5 + P6)},
b = —min{cos(¢2 + ¢3 + ¢4), cos(éd1 + ¢5 + ¢6)},
¢ = —min{cos(¢3 + ¢4 + @5), cos(¢d1 + P2 + ¢g)}-

A matrix of this form is extremal if and only if either Z?zl ¢; # m, or at least four of the sums
1+ P2 + @3, P2 + @3 + P4, ..., P1 + P2 + ¢ appearing in the expressions for a, b, ¢ equal 7.

supp (V4) = {{1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}}. The support set uniquely determines
the extremal exceptional copositive matrix

1 -1 -1 -1 1 1
-1 1 1 1 -1 1
-1 1 1 1 1 -1
A= -1 1 1 1 -1 1

1 -1 1 -1 1 -1
1 1 -1 1 -1 1

This matrix is non-basic, and an equivalent matrix has been obtained by Baumert [12] by duplicating

a row and a column of the Horn form.

supp (V4) = {{1,2,5},{1,2,3}, {2,3,4},{3,4,5},{1,4,5},{3,4,6},{1,2,6},{1,4,6}}. The variety
of reduced matrices corresponding to this support set is given by

1 — oS ¢4 cos(¢a+es) cos(¢p2+¢3) — cos ¢3 — cos(p3+¢)
—cos ¢a 1 — cos ¢5 cos(p1+¢5)  cos(¢pz+da) cos(pzt+oato)
cos(pat+¢s) — cos ¢5 1 — cos ¢1 cos(p1+¢2) cos(d1+d2—¢)
cos(¢p2-+¢3) cos(¢p1+¢s) —cos ¢ 1 —cos ¢2 — cos(p2—¢)
— cos ¢3 cos(¢p3+¢a) cos(¢1+¢2) — cos ¢2 1 cos ¢
—cos(pz+p) cos(pztgatd) cos(¢pitp2—p) —cos(gp2—¢) cos ¢ 1

with ¢; > 0, Z?zl ¢; <, ¢ € (—ps3,d2). All of them are extremal.

These preliminary results indicate that the number of types of exceptional extreme rays is an order
of magnitude larger for C% than for C°. However, it appears that the extreme rays of C% can still be
described by the trigonometric approach elaborated in Subsection 2.2.3. This is no more the case for
the cone C7, because there are extremal elements of C7 which have minimal zeros with a support of
cardinality 5.

2.5 Local properties of the boundary

2.5.1 Introduction

In this section we describe results which have been obtained in collaboration with P. Dickinson and
have been published in [57]. We present necessary and sufficient criteria when a copositive matrix
is reduced with respect to another matrix. This allows to compute the minimal face of a copositive
matrix and to characterize extremality of a copositive matrix in terms of its minimal zeros. These
results greatly simplify the proof or refutation of extremality of the families of reduced matrices which
can be found by virtue of the classification of minimal support sets in Section 2.3.

In Subsection 2.5.2 we provide the main result of [57], the description of the cone K4 of feasible
directions of C" at A. We also compute its closure, the tangent cone cl(K*). In Section 2.5.3 we
deduce the descriptions of the minimal face of a copositive matrix. In Section 2.5.4 we consider when
a copositive matrix is reduced with respect to another copositive matrix.
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2.5.2 Reducedness with respect to arbitrary matrices

For a matrix A € C™ we consider the convex cone K4 = {B € 8" | 36 > 0s.t. A+ dB € C"}, which
is called cone of feasible directions in [177]. By definition it consists of all matrices B € S™ such that
A is not reduced with respect to —B. Clearly we have C" C KA. However, K is not pointed, unless
A = 0, as we always have +£A € KA. It is also in general not closed. The results in this section are
based on the following theorem.

Theorem 2.5.1. [57, Theorem 6] Let A € C", then

K*={Bes” U
(Bv); >0 for allv e V2NVZ, ie{l,...,n}\ supp(A4v)

vI By >0 for all v € VA, }

where VB = {v € R% \ {0} |vT Bv = 0}.

In convex analysis there exists the notion of the (solid) tangent cone to some closed convex set
C C R™ at a boundary point x € 9C [98, 177]. By definition the tangent cone to C" at a boundary
point A € 9C™ is given by the closure of the cone of feasible directions 4. The next result gives a
simple characterization of the tangent cone in our case.

Theorem 2.5.2. [57, Theorem 9] For A € C"™ we have cl(K*) = {B € 8" | v"'Bv > 0 for all v € VA}.

2.5.3 Minimal Faces

In this subsection we apply Theorem 2.5.1 to determine the linear span of the minimal face F4 of the
copositive cone containing a matrix A € C".

For A € C™ denote the linear span of F4 by £4. We have K4 = C"+ £4, following from the general
result [177, Lemma 3.2.1] which is valid for arbitrary cones. Application of Theorem 2.5.1 then yields

LA=KAN(-KY ={BeS"|(Bv);=0YveVA ic{l,...,n}\supp Av}.

In contrast to the characterization of 4 in Theorem 2.5.1, the characterization of £4 involves only
expressions which are linear in the zeros v € VA. Therefore it is sufficient to consider only the set of
minimal zeros of A by Corollary 2.3.1. We therefore get [57, Theorem 17|

Theorem 2.5.3. Let A € C"™. The linear span of the minimal face of A is given by
LA={BeS"|(Bv);=0YveVi,  ic{l,...,n}\suppAv}.

Since V4. is a finite set up to multiplication of the minimal zeros by positive scalars, the system
of linear equations in Theorem 2.5.3 is finite. We can thus algorithmically compute the dimension of
L4 by finding the rank of the coefficient matrix of this system of linear equations. This then allows us

to determine if the copositive matrix A lies on an extreme ray.

Corollary 2.5.4. Let A € C™ be a non-zero matriz. Then A is extremal if and only if the system of
linear equations
(Bv); =0, UEV&H, i€ {l,...,n}\ supp Av

on B € 8™ has a 1-dimensional solution space.

2.5.4 Reducedness with respect to copositive matrices

In this subsection we describe when a copositive matrix A is reduced with respect to another copositive
matrix C. This allows us to recover Lemmas 2.3.6 and 2.3.7 as special cases. By definition A is not
reduced with respect to C if and only if B = —C € K4. By Theorem 2.5.1 we have in this case that for
every v € V4 also v € V¢ and further supp (Cv) C supp (Av). Here we used the first order optimality
conditions from Lemma 2.1.4 for C at v. As in the previous subsection, we then need to consider only
the minimal zeros of A, which leads to the following result.
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Theorem 2.5.5. [57, Theorem 23] Let A,C € C™. Then A is not reduced with respect to C if and
only if for all v € VA, we have supp(Cv) C supp(Av).

Alternatively we could have stated this theorem as follows:

Theorem 2.5.6. [57, Theorem 24] Let A,C € C™. Then A is reduced with respect to C if and only if
there exist v € VA i€ {1,...,n} such that (Av); = 0 # (Cv);.

2.6 Copositive matrices with circulant support set

2.6.1 Introduction

In this section we consider copositive matrices with zeros having very specific supports. The prototypes
of these matrices are the exceptional extremal elements of the cone C®, which have been classified
in Section 2.2 above. Both the Horn form H given by (2.1) and the matrices T'() given by (2.3)
possess zeros with supports {1,2,3},{2,3,4},{3,4,5},{4,5,1},{5,1, 2}, respectively. These supports
are exactly the vertex subsets obtained by removing the vertices of a single edge in the cycle graph Cs.
In this section we show that the presence of zeros with this kind of supports is sufficient to explain
many of the properties of the Horn form and the matrices T'(¢), including their being exceptional and
extremal. Moreover, these relations hold for copositive matrices of arbitrary order n > 5, thus giving
rise to families of basic exceptional extremal copositive matrices for every n > 5.

We shall generalize the exceptional extremal elements of C° to arbitrary order n > 5 by taking
the above property of the supports as our point of departure. Fix a set u = {u',...,u"} C R%} of
nonnegative vectors with supports {1,2,...,n—2}, {2,3,...,n—1},...,{n,1,...,n— 3}, respectively,
i.e., the supports of the vectors u’ are the vertex subsets obtained by removing the vertices of a single
edge in the cycle graph C,,. We consider the faces

Fu={AeC"|(w)Aw =0V j=1,...,n}, Pu={AeS!|(w) AW/ =0Vj=1,....n} (2.6)

of the copositive cone and the positive semi-definite cone, respectively. Note that P, C Fy,. For n > 5
a copositive matrix having zeros u',...,u™ satisfies the conditions of Theorem 2.2.2 and hence must
be reduced with respect to N™. It follows that every matrix in Fy \ P, is exceptional.

One of our main results is an explicit semi-definite description of the faces F,, and P, (Theorem
2.6.4). In order to obtain this description, we associate the set u with a discrete-time linear dynamical
system S, of order d = n — 3 and with time-dependent coefficients having period n. If L, is the
d-dimensional solution space of this system, then there exists a canonical bijective linear map between
F, and the set of positive semi-definite symmetric bilinear forms on the dual space L;; satisfying certain
additional homogeneous linear equalities and inequalities. For an arbitrary collection u in general only
the zero form satisfies the corresponding linear matrix inequality (LMI) and the face F}, consists of the
zero matrix only. However, for every n > 5 there exist collections u for which the LMI has non-trivial
feasible sets.

The properties of the copositive matrices in F}, are closely linked to the properties of the periodic
linear dynamical system S,. Such systems are the subject of Floquet theory, see, e.g., [66, Section
3.4]. We need only the concept of the monodromy operator and its eigenvalues, the Floquet multipliers,
which we shall review in Subsection 2.6.3. It turns out that the face P, is isomorphic to Sil, where d;
is the geometric multiplicity of the Floquet multiplier 1, or equivalently, the dimension of the subspace
of n-periodic solutions of S,,. For the existence of exceptional copositive matrices in F, it is necessary
that all or all but one Floquet multiplier are located on the unit circle (Corollary 2.6.7).

We are able to describe the structure of F,, explicitly in general. Exceptional matrices A € F,, can
be divided in two categories, defined as follows.

Definition 2.6.1. Let A € C" be an exceptional copositive matrix possessing zeros u',...,u" € R7
such that suppu/ = I;, 7 =1,...,n. We say the matrix A has minimal circulant zero support set if
every zero v of A is proportional to one of the zeros u!, ..., u", and non-minimal circulant zero support
set otherwise.
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Matrices with non-minimal circulant zero support set are always extremal, while matrices with
minimal circulant zero support set can be extremal only for odd n. For even n a matrix with minimal
circulant zero support set can be represented as a non-trivial sum of a matrix with non-minimal
circulant zero support set and a positive semi-definite rank 1 matrix, the corresponding face F, is
then isomorphic to R? (Lemma 2.6.9). For odd n a sufficient condition for extremality of a matrix
with minimal circulant zero support set is that —1 does not appear among the Floquet multipliers
(Theorem 2.6.11). For every n > 5 the matrices with non-minimal circulant zero support set constitute
an algebraic submanifold of 8™ of codimension 2n (Theorem 2.6.14), while the matrices with minimal
circulant zero support set form an algebraic submanifold of codimension n (Theorem 2.6.12), in which
the extremal matrices form an open subset (Theorem 2.6.13). In Subsection 2.6.8 we construct explicit
examples of circulant (i.e., invariant with respect to simultaneous circular shifts of row and column
indices) exceptional extremal copositive matrices, both with minimal and non-minimal circulant zero
support set. The results in this section have been published in the paper [97].

For n > 5 an integer, define the ordered index sets Iy = (1,2,...,n —2), I = (2,3,...,n —
1),...,I, = (n,1,...,n — 3) of cardinality n — 2, each obtained by a circular shift of the indices from
the previous one. We will need also the index sets I{ = (1,2,...,n —3),...,I,, = (n,1,...,n —4)
defined similarly.

In order to distinguish it from the index sets I1, ..., I, defined above, we shall denote the identity
matrix or the identity operator by Id or Idj if it is necessary to indicate the size of the matrix. For
a real number r, we denote by |r] the largest integer not exceeding r and by [r] the smallest integer
not smaller than r.

2.6.2 Conditions for copositivity

In this subsection we consider matrices A € 8™ such that the submatrices Ay, ,..., Ay, are all positive
semi-definite and possess element-wise positive kernel vectors. We derive necessary and sufficient
conditions for such a matrix to be copositive.

Theorem 2.6.2. [97, Theorem 2.9] Let n > 5 and let A € 8™ be such that for every j = 1,...,n
there exists a nonnegative vector u? with suppu’ = I; satisfying (u/)T Au? = 0. Then the following are
equivalent:

(i) A is copositive;
(ii) every principal submatriz of A of size n — 1 is copositive;
(iii) every principal submatriz of A of size n — 1 is in Sffl + Nt ‘ A
i) Ar. is positive semi-definite for j = 1,...,n, (u")TAu' > 0, and (v)TAuw/*t > 0 for j =
J
1,....,n—1.

Moreover, given above conditions (i)—(iv), the following are equivalent:

(a) A is positive semi-definite;

(b) at least one of the n numbers (u™)T Au' and (u/)T Auw*t, j=1,...,n—1, is zero;
(c) all n numbers (u™)T Aut and (uw/)T Au/Tt, j=1,...,n— 1, are zero;

(d) A is not exceptional.

The theorem states that the presence of n zeros with supports I;, j = 1,...,n places stringent
constraints on a copositive matrix A € C". Such a matrix must either be exceptional or positive semi-
definite. Which of these two cases arises is determined by any of the n numbers in condition (iv) of
the theorem, which are either simultaneously positive or simultaneously zero. Note also that condition
(iv) is easy to check, as it represents an LMI on the coefficients of A. We shall, however, derive an
equivalent and much simpler LMI below.

2.6.3 Linear systems with periodic coeflicients

In this subsection we investigate the solution spaces of linear periodic dynamical systems and perform
some linear algebraic constructions on them. These will be later put in correspondence to copositive
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forms. First we shall introduce the monodromy and the Floquet multipliers associated with such
systems, for further reading about these and related concepts see, e.g., [66, Section 3.4].

We consider real scalar discrete-time homogeneous linear dynamical systems governed by the equa-
tion

d—1 d
Tyd + chxt-'ri = Z iy =0, t=12,... (2.7)
i=0 i=0
where z; € R is the value of the solution z at time instant ¢, d > 0 is the order, and ¢! = (¢}, . .. ,cfi)T €

R4*+1, ¢ > 1, are the coefficient vectors of the system. For convenience we have set ¢, =1forall t > 1.
We assume that the coefficients are periodic with period n > d, i.e., ¢!*™ = ¢! for all t > 1. Denote by
L the linear space of all solutions « = (x¢);>1. This space has dimension d and can be parameterized,
e.g., by the vector (z1,...,z4) € R? of initial conditions.

If x = (x¢)¢>1 is a solution of the system, then y = (244, ):>1 is also a solution by the periodicity
of the coefficients. The corresponding linear map 9 : £ — L taking z to y is called the monodromy
of the periodic system. Its eigenvalues are called Floquet multipliers. The following result is a trivial
consequence of this definition.

Lemma 2.6.3. Let L., C L be the subspace of n-periodic solutions of system (2.7). Then x € Lpe, if
and only if x is an eigenvector of the monodromy operator M with eigenvalue 1. In particular, dim Ly,
equals the geometric multiplicity of the eigenvalue 1 of M. O
Let us now consider the space £* of linear functionals on the solution space L. For every ¢ > 1, the
map taking a solution z = (z5)s>1 to its value z; at time instant ¢ is such a linear functional. We shall
denote this evaluation functional by e; € £*. By definition of the monodromy we have e;;,, = M*e;
for all ¢ > 1, where 9" : £L* — L* is the adjoint of 9. Our main tool in the study of copositive forms
are positive semi-definite symmetric bilinear forms B on £* which are invariant with respect to a time

shift by the period n, i.e.,
B(€t+n;€s1n) = Blet, €5) Vit s>1 (2.8)

An equivalent condition is B(w,w’) = B(OM*w, M*w’) for all w,w’ € L*.

2.6.4 Copositive matrices and linear periodic systems

In this subsection we establish a relation between the objects considered in the preceding two subsec-
tions. Throughout this and the next section, we fix a collection u = {u',...,u"} C R’} of nonnegative
vectors such that suppw’ = I;, j = 1,...,n. Moreover, we assume these vectors are normalized such

that the last elements of their positive subvectors uf,j all equal 1. With the collection u we associate

a discrete-time linear periodic system S, of order d = n — 3 and with period n, given by (2.7) with
coefficient vectors ¢! = u’}t, t=1,...,n. The coefficient vectors ¢! for all other time instants ¢t > n are
then determined by the periodicity relation ¢'*" = ¢*. Denote by L, the space of solutions of Sy,.

Let A, C 8" be the linear subspace of matrices A satisfying Ay, ujlj = Ay, ¢ =0foralj=1,..., n.
With A € A,, we associate a symmetric bilinear form B on the dual space L, by setting B(e;, es) = Ay
for every t,s = 1,...,d and defining the value of B on arbitrary vectors in £}, by linear extension. In
other words, in the basis {ey,...,eq} of L}, the coefficient matrix of B is given by the submatrix Aj;.
Let A : A — B be the so-defined linear map from A, into the space of symmetric bilinear forms on
L. It can be shown that the map A is injective [97, Lemma 4.4].

Now we are in a position to describe the face F, of the copositive cone and the face P, of the
positive semi-definite cone which are defined by virtue of (2.6) by the zeros uw/, j = 1,...,n. The
description will be by linear matrix inequalities on the images of these faces under the map A, which
is much more convenient than to describe these faces directly in terms of the elements of the matrices.

The map A translates conditions on bilinear forms on the dual space £, into conditions on matrices
in S§™.

Theorem 2.6.4. [97, Theorem 4.8] Let n > 5, and let JF, be the set of positive semi-definite symmetric
bilinear forms B on L}, satisfying the linear equality relations

B(ei,es) = B(Mrer, Mre;), t,s=1,....,n—3;
B(et,es) = DB(Mreye;), 1<t<s<n:3<s—t<n-—3
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and the linear inequalities
B(et,et+2) Z B(mt*et,et+2), t= 17...,71.

Let Py C Fy be the subset of forms B which satisfy all linear inequalities with equality.

The set Fy is a subset of the image of A. The face of C" defined by the zeros v/, j = 1,...,n,
satisfies Fy = A~ Fy], and the face of ST defined by these zeros satisfies Py = A~ [Py]. Moreover, for
all forms B € Fy \ Pu the linear inequalities are satisfied strictly, and Fy \ Py consists of exceptional
matrices.

This theorem yields an algorithmic procedure to determine the faces Fy and P, for a given collection
u of zeros. From the zeros u/ one obtains the coefficients of the linear periodic dynamical system S,.
The monodromy of this system then yields the linear constraints for the LMI that describes these
faces. If the vectors in the collection u are in generic position, then the set F, defined in Theorem
2.6.4 consists of the zero form only. In the next section we investigate the consequences of a non-trivial
set Fu.

2.6.5 Structure of the faces F, and P,

As was mentioned in the introduction, the eigenvalues of the monodromy 9, the Floquet multipliers,
largely determine the properties of the matrices in the face Fy of C™. In this section we shall investigate
these connections in detail. In particular, we will be interested in the structure of the cones P, and
Pu = A[P,] defined by the positive semi-definite matrices in the face F\, C C™ and its connections to
the periodic solutions of the system S,,. We also investigate the properties of the exceptional copositive
matrices with minimal and non-minimal circulant zero support set as defined in Definition 2.6.1.

Denote by L,e, C Ly the subspace of n-periodic solutions. We have the following characterization
of Lper.

Lemma 2.6.5. [97, Lemma 5.1] An n-periodic infinite sequence x = (x1, 2, ...) is a solution of Sy if
and only if the vector (x1,...,x,)T € R™ is orthogonal to all vectorsu’, j = 1,...,n. In particular, the
dimension of L,e, equals the corank of the n x n matriz U composed of the column vectors u',... u™.

This means the periodic solutions of the system S, are given directly by the kernel of the matrix
UT. On the other hand, a positive semi-definite matrix has the vectors in u as zeros if and only if it
is in the face of S% which is orthogonal to the column span of U. This yields the following connection
between the subspace L., of periodic solutions and the face P,.

Lemma 2.6.6. [97, Lemma 5.2] Suppose that n > 5. Then Py equals the convex hull of all tensor
products * @ x, x € Lyper. In particular, Py ~ Silm 'C””, and for every B € Py we have Im B C L.
Moreover, for every B € Py the preimage A= A=Y(B) € P, is given by A = (B(et,€s))t.s=1...n-

The positive semi-definite face P, is hence closely connected to the eigenvalue 1 of the monodromy
operator 9. In particular, the rank of this face is equal to the dimension of the eigenspace to this
eigenvalue.

The existence of exceptional copositive matrices with zeros u',...,u" has much more stringent
consequences on the structure and the eigenvalues of the monodromy operator.

1

Lemma 2.6.7. [97, Corollary 5.5] Let n > 5, and let B € Fy \ Pu. Then the bilinear form on L
given by (w,w’) — B((Id — 9M*)w, w’) has corank at most 1. In particular, both B and Id — M* have
corank at most 1. Moreover, I has at least n — 4 linearly independent eigenvectors with eigenvalues
on the unit circle.

A trivial consequence is that if the face Fy, contains exceptional copositive matrices, then the positive
semi-definite matrices in this face can have rank at most 1. The forms B in the set J, \ P, can have
either full rank or have corank 1. The following results describe the structure of Fy, in dependence on
whether there exist positive definite forms in Fy, \ Py or not.

Lemma 2.6.8. [97, Lemma 5.7] Suppose n > 5 and assume that every form B € Fy is degenerate.
Then either Iy consists of positive semi-definite matrices only, or Fy is 1-dimensional and generated by
an extremal exceptional copositive matriz A. In the latter case the submatrices Aj, of this exceptional
matriz have corank 2 for all j =1,... n.
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Lemma 2.6.9. [97, Lemma 5.9] Let n > 5 be even, and suppose that there exist positive definite forms
B € Fy # Pu- Then Fy is linearly isomorphic to Ri, where one boundary ray of Fy is generated by a
rank 1 positive semi-definite matriz, and the other boundary ray is generated by an extremal exceptional
copositive matriz A. The submatrices Ay, of this exceptional matriz have corank 2 for all j = 1,...,n.

Lemma 2.6.10. [97, Lemma 5.10] Let n > 5 be odd, and suppose that there exist positive definite
forms B € Fy # Pu. Then Fy does not contain non-zero positive semi-definite matrices.

If Fy is 1-dimensional, then it is generated by an extremal exceptional copositive matriz A such
that the submatrices Az, have corank 1 for all j =1,...,n.

If dim F, > 1, then the monodromy operator M of the system Sy possesses the eigenvalue —1,
and all boundary rays of Fy are generated by extremal exceptional copositive matrices. For any such
boundary matriz A # 0, its submatrices Ay, have corank 2 for all j =1,...,n.

The previous results described the face Fy,. The next theorem gives more details on the structure of
the exceptional copositive matrices in this face, in dependence on whether their support set is minimal
circulant or not.

Theorem 2.6.11. [97, Theorem 5.12] Let A € F, be an exceptional copositive matriz and set B =
A(A). Then either

(i.a) A has minimal circulant zero support set;

(i.b) B is positive definite;

(i.c) the corank of the submatrices Ay, equals 1, j =1,...,n;

(i.d) the minimal zero support set of A is {I1,...,I,}, with minimal zeros u',... u™;

(i.e) for even n the matriz A is the sum of an exceptional copositive matriz with non-minimal circulant
zero support set and a rank 1 positive semi-definite matrix;

(i.f) if n is odd and the monodromy operator MM has no eigenvalue equal to —1, then A is extremal;

or

(ii.a) A has non-minimal circulant zero support set;

(ii.b) the corank of B equals 1;

(ii.c) the corank of the submatrices Ay, equals 2, j =1,...,n;

(ii.d) the support of any minimal zero of A is a strict subset of one of the index sets I, ..., I,, and
every index set I; has ezactly two subsets which are supports of minimal zeros of A;

(ii.e) every non-minimal zero of A has support equal to I; for some j =1,...,n and is a sum of two
minimal zeros;

(i5.f) A is extremal.

The prototype of exceptional copositive matrices satisfying conditions (i.a)—(i.f) are the matrices
(2.3) for ¢ in the interior of the simplex ¥ given by (2.4), while the prototype of those satisfying
(ii.a)—(ii.f) is the Horn form (2.1).

2.6.6 Submanifolds of extremal exceptional copositive matrices

In the previous two subsections we considered the face F,, C C™ for a fixed collection u of zeros. In
Theorem 2.6.11 we have shown that there are two potential possibilities for an exceptional copositive
matrix A in such a face F,,. Namely, either A has minimal, or A has non-minimal circulant zero support
set, either case imposing its own set of conditions on A. In this section we show that in each of these
cases, the matrix A is embedded in a submanifold of 8™ of codimension n or 2n, respectively, which
consists of exceptional copositive matrices with similar properties. However, different matrices in this
submanifold may belong to faces F corresponding to different collections u.

Theorem 2.6.12. [97, Theorem 6.1] Let n > 5, and let AeC™ bean exceptional matriz with minimal
circulant zero support set and with zeros 4',... 4" € R? such that supp @’ = I;. Then there exists a

neighbourhood U C 8™ of A with the following properties:

(i) if A€ U and det A;; = 0 for all j = 1,...,n, then A is an exceptional copositive matriz with
minimal circulant zero support set;
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(i1) the set of matrices A € U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion n in S™.

The matrices in the manifold described in this theorem can be extremal only if n is odd. The next
result states that if there are any extremal matrices, then they form a submanifold of codimension n
too.

Theorem 2.6.13. [97, Theorem 6.2] The extremal exceptional copositive matrices with minimal cir-
culant zero support set form an open subset of the manifold of all exceptional matrices with minimal
circulant zero support set.

The simplest manifold of the type described in Theorem 2.6.13 is the 10-dimensional union of the
Gs-orbits of the matrices (2.3) for ¢ in the interior of ¥. Matrices (2.3) themselves depend on 5
parameters, while the action of G5 adds another 5 parameters.

Theorem 2.6.14. [97, Theorem 6.3] Let n > 5, and let A€ C™ be an exceptional matriz with non-
minimal circulant zero support set and having zeros 4',...,4" € R’ such that supp @ = I;. Then

there exists a neighbourhood U C S™ ofA with the following properties:

(i) if Ae U and vk Aj, =n —4 for all j = 1,...,n, then A is an exceptional extremal copositive
matrix with non-minimal circulant zero support set;

(ii) the set of matrices A € U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion 2n in S™.

The simplest manifold of the type described in Theorem 2.6.14 is the 5-dimensional Gs-orbit of the
Horn form (2.1). Another example is the 9-dimensional variety composed of the Gg-orbits of matrices
(25) with ¢j+3 = ¢j7 j = 1,2,3.

In both Theorem 2.6.12 and 2.6.14 the polynomials defining the algebraic submanifold are minors
of the matrix A € S™.

2.6.7 Faces consisting of positive semi-definite matrices

So far we have always supposed that the feasible sets F, or P, of the LMIs in Theorem 2.6.4 contain
non-zero forms. We have not yet shown that non-trivial faces F, and P, actually exist. In this
subsection we construct non-zero faces Fy, of C™ which contain only positive semi-definite matrices,
i.e., which satisfy F, = Py,.

We shall need the following concept of a slack matriz, which has been introduced in [225] for convex
polytopes. Let K C R™ be a regular polyhedral convex cone, and let K* = {f € R,,, | (f,z) >0V z €
K} be its dual cone, where R,, is the space of linear functionals on R™. Then K* is also a regular
convex polyhedral cone. Let x1, ..., z, be generators of the extreme rays of K, and f1, ..., fs generators
of the extreme rays of K*.

Definition 2.6.15. Assume the notations of the previous paragraph. The slack matriz of K is the
nonnegative s x r matrix ((f;, z;))i=1,. .. sj=1,...r-

Theorem 2.6.16. Assume n > 5, and let u = {u!,...,u"} C R’ be such that suppw’ = I; for
all j =1,...,n. Let U be the n x n matriz with columns u',...,u™. Then the face Fy consists of
positive semi-definite matrices up to rank n— 3 inclusive if and only if U is the slack matriz of a convez
polyhedral cone K C R with n extreme rays.

Theorem 2.6.16 provides a way to construct all collections u C R’} of vectors ul, ..., u" satisfying
suppu’ = I;, j =1,...,n, such that the face F, of C™ consists of positive semi-definite matrices only
and is linearly isomorphic to 8173.

Let now u = {u!,...,u"} C R be an arbitrary collection such that suppw/ = I, forall j =1,...,n.
Let again U be the n x n matrix with columns ', ..., u". By Lemmas 2.6.5 and 2.6.6 we have P, ~ Si,
where £ is the corank of U. We have shown that there exist collections u such that U has corank n — 3.
By perturbing some of the zeros v’/ in such a collection, the corank of U can be decreased and may
assume an arbitrary value between 0 and n — 3. In this way we obtain faces F, of C™ for which the
subset P, of positive semi-definite matrices is isomorphic to Sfﬁ with arbitrary rank £ =0,...,n — 3.
Here for k£ > 2 we must have that F, = P,.
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2.6.8 Circulant matrices

In this subsection we shall explicitly construct non-zero faces F,, # Py for arbitrary matrix sizes n > 5.
We consider faces Fy, defined by special collections u. Let u € Rif be palindromic, i.e., with positive
entries and invariant with respect to inversion of the order of its entries. Define u = {u', ..., u"} C R}

such that suppu’/ = I; and uzj =u for all j = 1,...,n. By construction, the linear dynamical system

Su defined by u has constant coefficients, namely the entries of u. Set p(z) = ZZ;S 1"

We provide necessary and sufficient conditions on u such that the corresponding face F, C C"
contains exceptional copositive matrices, and construct explicit collections u which satisfy these con-
ditions. We show that the copositive matrices in these faces must be circulant, i.e., invariant with
respect to simultaneous circular shifts of its row and column indices.

The next two lemmas provide necessary conditions on the entries of u by virtue of constraints on
the roots of the polynomial p(z), and give an explicit expression of the matrices in the corresponding
face Fy.

Lemma 2.6.17. [97, Lemma 7.6] Let n > 5 be even, let u be as above, and let A € F,, be an exceptional
copositive circulant matriz. Then there exist m = § — 2 distinct angles Cy,...,(n € (0,7), arranged in
increasing order, with the following properties

(a) the fractional part of Tj is in (0,3) for odd j and in (3,1) for even j;
(b) the polynomial p(x) is a positive multzple of (x+1)- Hm= (22 — 2z cos(; +1);
(c) there exist ¢ > 0, X > 0 such that for all k =1,..., 5 + T we have
m
Ap=(-D)"Ave- Y COS( DG . (2.9)

i=1 singgsin TJ [14,(cos ¢ —cos @)

If A =0, then A is extremal with non-minimal circulant zero support set. If A > 0, then A has minimal
circulant zero support set and is not extremal.

Lemma 2.6.18. [97, Lemma 7.7] Let n > 5 be odd, let u be as above, and let A € Fy, be an exceptional
copositive circulant matriz. Then there exist m = ”;3 distinct angles C1,...,Gn € (0,7, arranged in
increasing order, with the following pmperties

(a) the fractional part of lej is in (0, ) for odd j and in ( 1) for even j;

(b) the polynomial p(x) is a positive multzple of szl(x — 293 cos(; +1);

(c) there exists ¢ > 0 such that for allk=1,..., ”T'H we have

Ay =c- Z cos(k = 1)¢ . (2.10)

— sin & sin %54 [Tz, (cos ¢ — cos (i)

The matriz A has non-minimal circulant zero support set if (,, = m and minimal circulant zero support
set if G < . In both cases A is extremal.

In contrast to item (i.f) in Theorem 2.6.11 item (c) in Lemma 2.6.18 states the extremality of A
unconditionally. This allows us to prove below that extremal exceptional copositive matrices with
minimal circulant zero support set actually exist for every odd order n > 5. Note that the elements
Ay, k=1,..., [”T'HL determine the matrix A completely by its circulant property. We obtain the
following characterization of collections u defining faces Fy, which contain exceptional matrices.

Theorem 2.6.19. /97, Lemma 7.8 Let n > 5 be even, m = 5§ —2, and let u and p(x) be as in the first
paragraph of this section. Then Fy # Py if and only if there exist distinct angles (1,...,¢m € (0,7),
arranged in increasing order, such that conditions (a),(b) of Lemma 2.6.17 hold. In this case the face Fy
is linearly isomorphic to Rﬁ_ and consists of the circulant matrices A with entries A1y, k=1,...,5+1,
given by (2.9) with ¢, A > 0. The subset P, C F\, is given by those A with ¢ = 0.

Theorem 2.6.20. [97, Lemma 7.9] Let n > 5 be odd, m = ”T_?’, and let u and p(x) be as in the first
paragraph of this section. Then Fy # Py, if and only if there exist distinct angles (1, ...,(m € (0,7,
arranged in increasing order, such that conditions (a),(b) of Lemma 2.6.18 hold. In this case the face
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Fy is an extreme ray of C™ and consists of the circulant matrices A with entries A1, k=1,..., "T'H,
given by (2.10) with ¢ > 0.

The question which collections u, of the type described at the beginning of this subsection, yield
faces Iy, containing exceptional copositive matrices hence reduces to the characterization of real poly-
nomials of the form given in (b) of Lemmas 2.6.17 or 2.6.18, with positive coefficients and satisfying
condition (a) of these lemmas. This is seemingly a difficult question, and only limited results are
known. However, the existence of faces F,, containing exceptional copositive matrices is guaranteed for
every n > 5 by the following result on polynomials with equally spaced roots on the unit circle.

Lemma 2.6.21. [67, Theorem 2] Let m > 1 be an integer, and let o« > 0, 6 > 0 be such that
5 <0+ w <mand 0 < a< . Then the polynomial q(x) = H] (@? =2z cos(0+ (j — 1)a) +1)
has positive coefficients.

Based on this result we are able to construct the following explicit examples of extremal exceptional
circulant matrices.

Degenerate extremal matrices. Let n > 5, m = [§] — 2, and p(z) = (e +1)(e+1)

(z2—2z cos %+1)(w2—2a; cos 37—:'—1-1) .
Then p(z) is a palindromic polynomial of degree n — 3. Set also ¢(z) = p(x) for odd n and ¢(x) = Z(—ﬁ
for even n. Then ¢(z) is of degree 2m and has positive coefficients by virtue of Lemma 2.6.21 with
a =2 ¢ =32 Tt follows that also p(z) has positive coefficients. Let u € R}™* be the vector of
its coefficients, and let u be the collection of nonnegative vectors constructed from w as in the first
paragraph of this section. Then the angles (; = w , j =1,...,m, satisfy conditions (a),(b) of
Lemmas 2.6.17 and 2.6.18, for even and odd n, respectlvely By Theorems 2.6.19 and 2.6.20 we obtain
that F, ~ ]R for even n and F, ~ R, for odd n, their elements being circulant matrices given by (2.9)
and (2.10), respectively. One extreme ray of Fy, is then generated by an extremal copositive circulant
matrix A with non-minimal circulant zero support set. For even n the other extreme ray is generated
by a circulant positive semi-definite rank 1 matrix P. Their elements are given by P;; = (—1)*~7 and

2(1+2cosfcos?’7:r), =7,
— 72(008 +C0837ﬂ—)7 |27‘7| € {1,71*1},
i = Lo fi-jlef2n-2), (210
0, li—j]€{3,...,n—3},
i,j =1,...,n. For n =5 we obtain the Horn form.
Regular extremal matrices. Let n > 5 be odd, and set p(x) = HARES

(22 =2 cos 57 +1) (22 —2x cos n+1 +1)°
m = "T"S Then p(z) is a palindromic polynomial of degree 2m = n — 3, and it has positive coefficients

by virtue of Lemma 2.6.21 with o = +1, 0= n+1 Construct v € R}~ 2 and u C R} as above from the
coefficients of p(x). Then the angles ¢; = (25;31) ,J=1,...,m, satisfy conditions (a),(b) of Lemma

2.6.18. By Theorem 2.6.20 F,, is one-dimensional and generated by a circulant extremal copositive
matrix with minimal circulant zero support set whose elements are given by (2.10). The elements of
A are explicitly given by

2(1+2cosnL+1cosn+1), i=7,
Ay = —2(cos 57 + cos nT—l)’ |Z*j| e{l,n—1}, (2.12)
1, i —j] € {2,n — 2},
0, li—jle{3,....,n—3},
i,j =1,...,n. For n =5 we obtain a multiple of matrix (2.3) with ¢ = T - 1.
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