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R�esum�e

Dans cette th�ese nous traitons deux th�ematiques di��erentes en optimisation, notamment la g�eom�etrie
des barri�eres auto-concordantes pour l'optimisation conique et les c�ones copositifs. La premi�ere th�e-
matique est trait�ee en Chapitre 1. Celui contient des r�esultats publi�es, mais aussi quelques r�esultats
nouveaux. L'exposition est d�etaill�ee avec preuves compl�etes pour la plupart des r�esultats pr�esent�es. Le
Chapitre 2 sur la deuxi�eme th�ematique constitue un survol de mes r�esultats publi�es, obtenus en partie
en collaboration avec des co-auteurs.

G�eom�etrie des barri�eres auto-concordantes

Un programme conique est le probl�eme de minimisation d'une fonction cible lin�eaire sur l'intersection
d'un sous-espace a�ne de Rn avec un c�one convexe K ⊂ Rn. A chaque programme conique sur un
c�one K on peut associer un programme dual sur le c�one dual K∗ ⊂ Rn, Rn �etant l'espace dual �a
Rn. Tout probl�eme d'optimisation convexe peut �etre formul�e sous forme d'un programme conique
par homog�enisation de l'ensemble faisable et minimisation sur l'�epigraphe de la fonction cible. La
complexit�e d'un programme conique ne d�epend que du c�oneK. Des classes bien connues de programmes
coniques sont les programmes lin�eaires (LP), coniques quadratiques (SOCP) et semi-d�e�nis (SDP).

Ces programmes sont omnipr�esent dans la recherche op�erationnelle, l'ing�enierie [15], l'analyse de
syst�emes [32], le contr�ole [183], le routage de r�eseaux [223], l'apprentissage automatique [71, 129],
l'analyse en composantes principales [47], l'acquisition comprim�ee [46], la reconstruction de signaux
creux [118], la r�ecup�eration de phase [216], la gamme d'applications s'�etandant toujours. Beaucoup
de probl�emes non-convexes peuvent �etre approxim�es par des probl�emes convexes ayant une descrip-
tion naturelle sous forme d'un programme conique, notamment des probl�emes combinatoires comme
MAX-CUT, SAT [75], le probl�eme de la clique maximum ou d'un stable de taille maximum [5, 89],
kissing number [7], quadratic assignment [49], mais aussi des programmes lin�eaires mixtes avec con-
traintes enti�eres [5], des probl�emes quadratiques avec contraintes quadratiques [164], des probl�emes
d'optimisation avec contraintes polynomielles [155, 175, 176, 130]. Il existe des solveurs publics ou
commerciaux pour les LP, SOCP, et SDP.

Les programmes coniques ont �et�e d�evelopp�es dans les ann�ees 90 comme g�en�eralisation des pro-
grammes lin�eaires, pour lesquels le c�one K est donn�e par l'orthant positif Rn+. Cela n'est devenu
possible qu'apr�es l'invention d'une nouvelle classe d'algorithmes pour la r�esolution des LP, les al-
gorithmes de point int�erieur (API). Les m�ethodes connues auparavant, notamment l'algorithme du
simplexe, utilisent explicitement la structure polyh�edrale de l'ensemble faisable et ne s'adaptent pas �a
des ensembles faisables plus g�en�eraux.

En 1967 Dikin a construit le premier API pour LP [58]. En 1984 Karmarkar a publi�e le premier
API avec une complexit�e polynomielle [115]. Cette m�ethode utilise des transformations projectives de
l'ensemble faisable pour "centrer" le point courant �a chaque it�eration. Or, la classe des fonctions cibles
lin�eaires n'�etant pas invariante par rapport �a des transformations projectives, la fonction �a minimiser
doit �etre remplac�ee par une fonction lin�eaire fractionnelle. Cet inconv�enient a motiv�e le d�eveloppement
des modi�cations de l'algorithme de Karmarkar qui utilisent des transformations a�nes, ce qui m�enait
�a la red�ecouverte de la m�ethode de Dikin [213, 8]. Les algorithmes peuvent alors �etre classi��es en deux
types, a�nes ou projectifs.

La m�ethode de Karmarkar peut �etre interpr�et�ee comme r�eduisant la somme de la fonction cible
originale et une fonction de p�enalit�e, la barri�ere, qui croit vers l'in�nie si on s'approche du bord
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de l'ensemble faisable [115, 205]. La barri�ere la plus courante sur Rn+ est la fonction logarithmique
F (x) = −

∑n
j=1 log xi.

En 1988 Yu. Nesterov et A. Nemirovski ont g�en�eralis�e les API pour pouvoir r�esoudre des probl�emes
d'optimisation sur des c�ones arbitraires et ont introduit la notion de programme conique [166, 167].
Cet ach�evement r�eposait sur l'invention des barri�eres auto-concordantes [168]. Nesterov et Nemirovski
ont aussi construit une th�eorie de la dualit�e conique, en g�en�eralisant la dualit�e bien connue des LP
[170]. Deux propri�et�es des barri�eres logarithmiques utilis�ees pour la programmation lin�eiare ont �et�e
reconnues d'expliquer la performance des API, la homog�en�eit�e logarithmique et l'auto-concordance, qui
est une in�egalit�e entre les deuxi�emes et troisi�emes d�eriv�ees de la barri�ere. La th�eorie des barri�eres auto-
concordantes est pr�esent�ee dans l'ouvrage [171]. La plupart des m�ethodes propos�ees est de type a�ne.
Une barri�ere poss�ede un param�etre scalaire qui d�etermine son degr�e d'homog�en�eit�e logarithmique, le
param�etre d'auto-concordance. Plus petit ce param�etre, plus rapide est la convergence des algorithmes.

La classe de c�ones la plus importante pour l'optimisation est celle des c�ones sym�etriques, qui inclut
l'orthant positif Rn+, le c�one de Lorentz et le c�one de matrices semi-d�e�nies positives qui sont utilis�es
en LP, SOCP et SDP. Pour ces c�ones des barri�eres num�eriquement accessibles avec un petit param�etre
sont connues. En 1994 Nesterov et Todd ont observ�e que ces barri�eres poss�edent une propri�et�e qui n'est
pas partag�ee par les barri�eres sur des c�ones arbitraires, notamment d'�etre auto-ajust�ees (self-scaled)
[160].

Faybusovich a remarqu�e que les c�ones sym�etriques sont li�es �a des alg�ebres de Jordan formellement
r�eelles [68], ce qui lui a permis d'�etendre les API sur ces c�ones [69, 70]. La propri�et�e d'auto-ajustement
a �egalement �et�e li�ee aux alg�ebres de Jordan et les barri�eres poss�edant cette propri�et�e ont �et�e classi��es
[84, 83, 85, 189, 87].

Dans [116] la m�etrique riemannienne d�e�nie par le Hessien de la barri�ere a �et�e consid�er�ee pour LP,
bien que sans lien direct avec celle-ci. La vari�et�e riemannienne est l'int�erieur de l'orthant positif dans le
cas a�ne et l'ensemble des rayons dans cet int�erieur dans le cas projectif. Nesterov and Nemirovski ont
consid�er�e cette m�etrique dans le cas g�en�eral et ont montre que la dualit�e de Legendre est une isom�etrie
[171, p.45]. Dans [173, 174, 113] il a �et�e reconnu que la m�etrique hessienne avec les connexions a�nes sur
l'espace Rn et son dual forment une vari�et�e hessienne, structure connue depuis longtemps en g�eom�etrie
de l'information.

Dans cette th�ese nous �etudions la g�eom�etrie des barri�eres auto-concordantes F : Ko → R sur des
c�ones convexes K ⊂ Rn, notamment la relation entre la g�eom�etrie a�ne et la g�eom�etrie projective
sur lesquelles sont bas�ees les m�ethodes de ces deux types correspondants. Le point de d�epart �etait la
r�ev�elation que la g�eom�etrie di��erentielle a�ne, une discipline qui a ses origines en d�ebut de XX�eme
si�ecle, fournit un formalisme adapt�e �a l'�etude des barri�eres auto-concordantes. Pour employer ce
formalisme, il faut consid�erer les surfaces de niveau de la barri�ere F comme plongements centro-a�nes
dans Rn. Les objets d�e�nis sur les surfaces de niveau sont alors les pendants projectifs des objets
a�nes d�e�nies par la barri�ere. Or, la g�eom�etrie di��erentielle centro-a�ne s'applique dans un contexte
beaucoup plus g�en�eral, notamment sur des ensembles coniques arbitraires, pas n�ecessairement convexes.
Nous appliquons cette th�eorie au cas des barri�eres auto-concordantes et trouvons des interpr�etations
g�eom�etriques pour des objets apparaissants. En utilisant la machinerie puissante de la g�eom�etrie
di��erentielle a�ne, nous montrons des r�esultats nouveaux sur les barri�eres auto-concordantes. Ci-
dessous nous donnons un r�esum�e du Chapitre 1.

En section 1.2 nous introduisons des notions g�eom�etriques n�ecessaires. Notamment, nous donnons
en sous-section 1.2.3 une bri�eve introduction en g�eom�etrie di��erentielle a�ne.

En section 1.3 nous consid�erons les barri�eres auto-concordantes d'un point de vue de cette th�eorie.
L'objet principal dans ce contexte n'est pas la barri�ere F , mais une vari�et�e di��erentiable de dimension
n − 1. Une immersion de M dans Rn comme une surface de niveau de la fonction F d�e�nit sur M
une m�etrique riemanienne, la m�etrique centro-a�ne. En sous-section 1.3.1 nous montrons que cette
m�etrique est proportionelle �a la m�etrique de sous-vari�et�e d�e�nie par la hessienne F ′′, le param�etre de
la barri�ere �etant la constante de proportionalit�e. En plus de la m�etrique, l'immersion g�en�ere sur M
une connexion a�ne. La vari�et�e M peut �etre plong�e de la m�eme fa�con dans l'espace dual Rn comme
une surface de niveau de la barri�ere duale F∗. Cette immersion duale g�en�ere la m�eme m�etrique centro-
a�ne surM , mais une connexion a�ne di��erente, la connexion duale. La relation de cette dualit�e avec
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la dualit�e de Legendre sera consid�er�ee en sous-section 1.3.2. La di��erence entre les deux connexions
est appel�ee la forme cubique de l'immersion. Le cas extr�eme quand la forme cubique est �egale �a z�ero
sera consid�er�e en sous-section 1.3.3. Les conditions centrales d'auto-concordance et d'auto-ajustement
seront mis en relation avec la forme cubique. L'auto-concordance peut �etre interpr�et�ee comme une
borne uniforme sur la forme cubique, et le param�etre de la barri�ere comme une fonction de sa norme
|| · ||∞. Ce r�esultat est pr�esent�e en sous-section 1.3.1.

En section 1.4 nous appliquons le th�eor�eme de Calabi sur les sph�eres a�nes, un des r�esultats
centraux en g�eom�etrie di��erentielle a�ne, pour construire la barri�ere canonique.

Un des plus importants probl�emes ouverts dans la th�eorie de l'optimisation conique �etait l'existence
d'une barri�ere avec une valeur petite du param�etre pour un c�one convexe arbitraire K ⊂ Rn. Il �etait
connu qu'il existe une barri�ere F avec param�etre ν = C · n, C ≥ 1 ind�ependent de K, la barri�ere
universelle. Un d�esavantage de la barri�ere universelle est que sa barri�ere duale F∗ n'est pas en g�en�eral
la barri�ere universelle pour K∗, c.-�a-d. sa construction ne respecte pas la dualit�e de Legendre.

Le th�eor�eme de Calabi associe �a chaque c�one convexe K ⊂ Rn une famille de surfaces plong�ees dans
l'int�erieur de K, les sph�eres a�nes. Nous montrons que les sph�eres a�nes peuvent �etre consid�er�ees
comme surfaces de niveau d'une barri�ere auto-concordante avec param�etre ν ≤ n. Cette barri�ere,
d�esormais nomm�ee canonique, est alors une construction universelle qui r�ealise la valeur C = 1 de la
constante C introduite ci-dessus et montre en m�eme temps que cette valeur est optimale. De plus, la
barri�ere canonique respecte la dualit�e. Ce travail est publi�e dans les articles [91],[93] et constitue un
r�esultat d'existence central dans la th�eorie de barri�eres auto-concordantes.

Nous calculons la barri�ere canonique explicitement pour quelques c�ones non-homog�enes en sous-
section 1.4.4. Ces r�esultats ont �et�e publi�es dans [92].

La section 1.5 est d�edi�ee aux barri�eres auto-ajust�ees, qui n'existent que sur les c�ones sym�etriques.
Cette condition est d�emontr�ee d'�etre �equivalente �a une propri�et�e g�eom�etrique des plongements centro-
a�nes correspondants, notamment �a la disparition de la d�eriv�ee covariante de la forme cubique. La
derni�ere est alors parall�ele pour les barri�eres auto-ajust�ees. Cette condition peut �etre d�evelopp�ee sous
forme d'une �equation quasi-lin�eaire de 4�eme ordre aux d�eriv�ees partielles sur la barri�ere F . On obtient
une caract�erisation locale et une interpr�etation simple g�eom�etrique des barri�eres auto-ajust�ees.

Le lien entre le parall�elisme de la forme cubique et la propri�et�e d'auto-ajustement est fait par les
alg�ebres de Jordan. Une description des barri�eres auto-ajust�ees par les alge�bres de Jordan formellement
r�eelles est bien connue [189]. Nous donnons une interpr�etation de l'identit�e de Jordan comme condition
d'int�egrabilit�e de ladite �equation aux d�eriv�ees partielles en sous-section 1.5.3. En sous-section 1.5.4
nous faisons un lien entre l'homog�en�eit�e logarithmique de la barr���ere et la pr�esence d'un �el�ement neutre
dans l'alg�ebre de Jordan correspondante. En sous-section 1.5.5 nous montrons que la convexit�e de la
barri�ere entra�ine que l'alg�ebre de Jordan est formellement r�eelle. Une partie de ces r�esultats a �et�e
publi�ee dans [94].

Le lien d�ecouvert entre les alg�ebres de Jordan et le parall�elisme de la forme cubique nous a aussi
permis de r�esoudre des probl�emes ouverts dans la g�eom�etrie di��erentielle a�ne. En sous-section 1.5.6
nous atteignons la classi�cation des sph�eres a�nes avec une forme cubique parall�ele, qui �etait un sujet
de recherche intense depuis la �n des ann�ees 80. Cette classi�cation se r�eduit �a la classi�cation bien
connue des alg�ebres de Jordan semi-simples. Ce travail a �et�e publi�e dans [96].

C�ones copositifs

Le c�one copositif Cn est l'ensemble des matrices r�eelles sym�etriques A de taille n × n telles que pour
tout vecteur x ∈ Rn+, le produit xTAx soit non-n�egatif. Une telle matrice est appel�ee copositive. Le
c�one copositif joue un r�ole important dans l'optimisation non-convexe, parce qu'un grand nombre de
tels probl�emes peuvent �etre �ecrits comme programmes coniques sur ce c�one, des programmes copositifs.
Cela concerne un nombre de probl�emes combinatoires [179, 180, 48, 215, 80, 181], mais des formulations
copositives ont �et�e d�eriv�ees �egalement pour des probl�emes de la programmation quadratique [182, 25,
22] et des programmes lin�eaires en nombres enti�eres et mixtes [36]. La connexion entre le c�one copositif
et des conditions su�santes d'optimalit�e pour la programmation quadratique, c.-�a-d. le probl�eme de
minimisation d'une fonction quadratique sous de contraintes lin�eaires, a �et�e observ�ee d�ej�a dans les
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ann�ees 70 [109, Theorem 3.2.3]. Les matrices copositives sont aussi utiles pour le calcul de fonctions
de Lyapunov pour des syst�emes hybrides avec le vecteur d'�etat contraint dans un c�one polyh�edral
[142, 120, 35, 19]. Plus d'applications de la programmation copositive peuvent �etre trouv�ees dans
[63, 23]. Un �etat de l'art r�ecent peut �etre trouv�e dans [99, 28], une liste de probl�emes ouverts dans
[17]. Le c�one dual du c�one copositif, le c�one compl�etement positif C∗n, se trouve en dehors de la port�ee
de cette th�ese. Pour plus d'information sur le c�one compl�etement positif voir, e.g., [18, 28, 53].

Par cons�equent, on ne peut pas esp�erer qu'un programme copositif g�en�eral est facile �a r�esoudre.
En fait, de v�eri�er la copositivit�e d'une matrice donn�ee est un probl�eme co-NP-compl�ete [153]. Seul
les programmes copositifs avec contraintes coniques jusqu'�a l'ordre 4 pouvaient �etre r�esolus par des
algorithmes courants de l'optimisation convexe, parce que des descriptions semi-d�e�nies des c�ones
copositifs correspondants sont connues. La plus courante approximation semi-d�e�nie du c�one copositif
Cn est celle par la somme du c�one Sn+ des matrices r�eelles sym�etriques positives semi-d�e�nies et du
c�one Nn des matrices r�eelles sym�etriques non-n�egatives �el�ement par �el�ement. Un r�esultat classique de
Diananda [51, Theorem 2] a�rme que pour n ≤ 4 cette approximation est exacte, c.-�a-d. Cn = Sn++Nn.
En g�en�eral, on a seulement l'inclusion Sn+ +Nn ⊂ Cn. A. Horn a montr�e que cette inclusion est stricte
pour n ≥ 5 [51, p.25]. Les matrices dans la di��erence Cn \ (Sn+ + Nn) sont appel�ees exceptionnelles
[111].

En 2011 j'ai abord�e le th�eme des c�ones copositifs, motiv�e par l'int�er�et de trouver des descriptions
semi-d�e�nies exactes de c�ones copositifs d'ordre sup�erieur �a 4. Mes �etudes se concentrent sur un sujet
particulier, les rayons extr�emes du c�one Cn. Un �el�ement x ∈ K est appel�e un �el�ement extr�emal d'un
c�one convexe K si une d�ecomposition x = x1 + x2 de x en �el�ements x1, x2 ∈ K entra�ine que x1 = λx,
x2 = (1 − λ)x pour un certain λ ∈ [0, 1]. L'ensemble des multiples positifs d'un �el�ement extr�emal est
appel�e rayon extr�eme de K. L'ensemble des rayons extr�emes est une caract�eristique importante d'un
c�one convexe, notamment si on veut d�eterminer si une approximation par l'int�erieur du c�one K par un
autre c�one convexe K ′ est exacte. Cela est le cas si et seulement si le c�one K ′ contient tous les rayons
extr�emes de K. Du fait que les rayons extr�emes d'un c�one K sont en rapport avec les facettes du c�one
dual K∗ de K, les rayons extr�emes de Cn sont recherch�es aussi pour l'�etude du c�one compl�etement
positif [52, 194, 29, 30, 193, 192].

Les rayons extr�emes de Cn qui sont contenus dans la somme Sn+ + Nn ont �et�e classi��es dans
[82]. Le premier �el�ement exceptionnel extr�emal de Cn a �et�e construit par A. Horn [51, p.25]. Cette
forme de Horn est une matrice circulante de taille 5×5 dont les �el�ements sont contenus dans l'ensemble
{−1,+1}. Diananda a observ�e qu'on ne peut pas soustraire d'un �el�ement extr�eme exceptionnel copositif
une matrice non-z�ero du c�one Nn, sans perdre la propri�et�e de copositivit�e [51]. Cela m�ene �a une
propri�et�e d'irreductibilit�e qui est plus faible que l'extr�emalit�e. On appelle une matrice copositive
A ∈ Cn irreductible par rapport �a Nn s'il n'existe pas une d�ecomposition non-triviale A = C +N avec
C ∈ Cn et N ∈ Nn [11]. Cette propri�et�e est plus facile �a traiter que l'extr�emalit�e. On la peut d�e�nir
d'une fa�con similaire aussi par rapport �a d'autres c�ones que Nn.

Les conditions d'irreductibilit�e peuvent �etre d�ecrites en termes de pr�esence ou d'absence de z�eros
avec certaines propri�et�es. L'importance des z�eros a �et�e reconnue d�ej�a par Diananda qui les a introduit
dans [51]. Un z�ero d'une matrice copositive A est un vecteur non-nul x ∈ Rn+ tel que xTAx = 0.
L'ensemble d'index i ∈ {1, . . . , n} tel que l'�el�ement xi d'un z�ero x est strictement positif est appel�e
le support du z�ero. Les ensembles des z�eros et de leurs supports constituent des caract�eristiques
importantes d'une matrice copositive et sont un outil performant dans leur �etude. Dans [51, 82, 10,
11, 12] un nombre de conditions n�ecessaires sur l'ensemble des supports d'une matrice extr�eme ou
irreductible ont �et�e �elabor�ees, et des propri�et�es des matrices ont �et�e formul�ees qui d�ependent de leur
ensemble de supports.

Ci-dessous nous fournissons un r�esum�e de nos travaux sur les matrices copositives extr�emes d�ecrits
dans le chapitre 2 de cette th�ese.

La section 2.2 est d�edi�ee �a l'�etude du c�one copositif d'ordre 5 et comporte des r�esultats publi�es
dans [90, 54, 55]. Nous fournissons une classi�cation compl�ete des rayons extr�emes du c�one C5, un
probl�eme qui est rest�e ouvert depuis les ann�ees 60. Notre strat�egie suit celle propos�ee par Baumert
[10], en rempla�cant la condition d'extr�emalit�e par la condition plus faible d'irreductibilit�e par rapport
�a Nn. N�eanmoins, quelques nouvelles id�ees ont �et�e n�ecessaires. Notamment, nous d�eveloppons une
approche trigonom�etrique, qui s'est av�er�ee aussi tr�es utile pour l'�etude des c�ones copositifs en g�en�eral.
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Celle-ci permet de d�ecrire les rayons extr�emes exceptionnels de C5 sous forme analytique. L'approche
trigonom�etrique fournira des r�esultats similaires pour toute famille de rayons extr�emes de Cn qui n'a
que des z�eros avec des supports de cardinalit�e au plus 3. En section 2.4 nous appliquons cette m�ethode
aux rayons extr�emes du c�one C6.

La seconde nouveaut�e �etait, en collaboration avec M. D�ur, P. Dickinson et L. Gijben, d'�elaborer
une condition n�ecessaire et su�sante sur une matrice copositive d'�etre irreductible par rapport �a Nn.
Celle-ci nous a permis de compl�eter la classi�cation de Baumert [12] des matrices irreductibles dans C5.
La connaissance des ces matrices a permis de trouver une description semi-d�e�nie exacte d'une certaine
section a�ne de C5. Ce r�esultat �etend l'ordre maximal des c�ones dans des programmes copositifs qui
peuvent �etre r�esolus par la programmation semi-d�e�nie jusqu'�a 5.

La section 2.3 est d�edi�ee �a l'approche des z�eros minimaux, publi�e dans l'article [95]. Un z�ero
minimal u d'une matrice copositive A est un z�ero tel qu'il n'existe pas d'autres z�eros de A avec un
support strictement inclus dans le support de u. L'ensemble des supports de ses z�eros minimaux est une
caract�eristique combinatoire d'une matrice copositive. Son utilit�e est issu du fait qu'elle est accessible �a
un traitement algorithmique. Les conditions d'irreductibilit�e par rapport aux c�ones Nn et Sn+ peuvent
�etre d�ecrites en termes des z�eros minimaux, ce qui m�ene �a des conditions n�ecessaires suppl�ementaires
sur l'ensemble des supports des z�eros minimaux d'une matrice copositive exceptionnelle extr�emale. Ces
conditions sont assez fortes pour r�eduire le nombre des supports potentiels dans le cas du c�one C6 �a 44,
un nombre raisonable pour pouvoir atteindre la classi�cation des rayons extr�emes de C6. Des r�esultats
sur C6 sont d�ecrits dans la section 2.4.

La section 2.5 porte sur une �etude locale du c�one copositif. En collaboration avec P. Dickinson j'ai
entrepris une �etude de la structure du bord du c�one copositif. Notamment nous avons d�etermin�e quand
une matrice copositive est irreductible par rapport �a une autre matrice copositive, en fonction des z�eros
minimaux. Entre autre nous avons dev�elopp�e un algorithme pour d�eterminer si une matrice copositive
donn�ee est situ�ee sur un rayon extr�eme, une question qui auparavant �et�e tr�es di�cile �a d�ecider. Ces
r�esultats ont �et�e publi�es dans [57].

En section 2.6 nous consid�erons des matrices copositives dont l'ensemble de supports a une certaine
structure circulante. Il s'est av�er�e que de telles matrices peuvent �etre d�ecrites �a l'aide de syst�emes dy-
namiques lin�eaires avec coe�cients p�eriodiques, un lien �a priori assez surprenant. Nous avons construit
de larges classes de matrices extr�emales exceptionnelles pour d'ordres arbitraires n ≥ 5. Ces matri-
ces peuvent �etre vues comme g�en�eralisations de la forme de Horn et des autres matrices extr�emales
exceptionnelles de C5. Ce r�esultat a �et�e publi�e dans [97].
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Chapter 1

Geometry of self-concordant barriers

1.1 Introduction

1.1.1 Conic programs and interior-point methods

A regular convex cone is a closed convex cone in a real vector space, with non-empty interior, and
containing no lines. A conic program over a regular convex cone K ⊂ Rn is an optimization problem
of the form

min
x∈K
〈c, x〉 : Ax = b. (1.1)

Here the objective function is linear homogeneous, and the feasible set of the problem is the intersection
of the cone with an a�ne subspace. It is easily seen that every convex optimization problem can be cast
as a conic program by homogenization of the feasible set and minimization of the objective function
value over the epigraph of the objective function. The computational complexity of a conic program
depends on the cone K. To any conic program over a cone K ∈ Rn one can associate a dual program,
which is a conic program over the dual cone K∗ = {s ∈ Rn | 〈x, s〉 ≥ 0 ∀ x ∈ K}. Here Rn is the
dual space to Rn. Well-known classes of conic programs are linear programs (LP), second-order cone
programs (SOCP), and semi-de�nite programs (SDP).

These programs are ubiquitous in operations research, engineering [15], systems analysis [32], control
[183], network routing [223], machine learning [71, 129], principal component analysis [47], compressed
sensing [46], sparse signal reconstruction [118], phase recovery [216], with a constantly widening scope
of applications. Many non-convex problems can be approximated by convex problems having a nat-
ural description as a conic program, in particular combinatorial problems such as MAX-CUT, SAT
[75], clique number, stable set [5, 89], kissing number [7], quadratic assignment [49], but also general
mixed-integer linear programs [5], quadratically constrained quadratic problems [164], and polynomi-
ally constrained optimization problems [155, 175, 176, 130]. A number of public and commercial LP,
SOCP, and SDP solvers is available.

Conic programs have been initially developed as a generalization of LPs. In a LP the coneK is given
by the nonnegative orthant Rn+, and e�cient solution methods for this class of optimization problems
are known for decades. The �rst such method was the simplex method [45], which makes explicit use
of the polyhedral structure of the feasible set. It is an iterative method which jumps along the edges
of the feasible set between its vertices, until it reaches the optimal solution or detects infeasibility or
unboundedness of the LP. Despite its excellent performance in practice the simplex method has an
exponential worst-case behaviour [119].

Parallel to the evolution of the simplex method there appeared methods for the solution of general
non-smooth convex optimization problems which were based on the construction of a succession of
increasingly smaller sets containing the optimal solution. In 1965 Levin proposed the method of
centered cuts [134], followed in 1972 by an algorithm of Shor which used ellipsoids [197]. The ellipsoid
algorithm as it is known today has been designed by Yudin and Nemirovski in 1976 [228]. Its behaviour
for LPs with rational data has been analysed by Khachiyan, who proved LP to be polynomial-time
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[117]. The ellipsoid algorithm could not compete with the simplex algorithm and its variants in practice,
however.

In 1967 Dikin designed the �rst interior-point algorithm for LP [58]. This method constructed
a succession of ellipsoids inside the feasible set which converged to the optimal solution. In 1984
Karmarkar designed the �rst polynomial-time interior-point algorithm [115]. This method applied
projective transformations to the feasible set before constructing the inscribed ellipsoid at each step.
Since the class of linear objective functions is not invariant with respect to projective transformations,
it had to be replaced by the wider class of linear fractional functions. This drawback motivated work
on variants of Karmarkars algorithm which came along with a�ne transformations, which led to the
rediscovery of Dikins method [213, 8]. These methods could compete with the simplex method in
practice, however, only Karmarkars variant had also good theoretical properties.

Karmarkars paper was the starting point for systematic research on interior-point methods for
LP. It is a primal method, as its iterates are points in the primal feasible set. The method can be
interpreted as a barrier method, i.e., decreasing the sum of the original objective function and a penalty
function, the barrier, which grows to in�nity as the argument approaches the boundary of the feasible
set [115, 205]. Barrier methods have been known for decades from non-linear programming. As a barrier
on Rn+ the function F (x) = −

∑n
j=1 log xi is used, it is called the logarithmic barrier. In the series of

papers [13, 14, 127] the connections between barrier methods and Karmarkars method and its a�ne
variants are elaborated in detail, see also [144]. In these papers the vector �eld of descent directions
has been integrated and analyzed for di�erent setups. The vector �eld for Karmarkars original method
is called the projective scaling vector �eld [127], that of the variants using a�ne transformations the
a�ne scaling vector �eld [14]. Both �elds coincide on a 1-dimensional submanifold, the central path,
which consists of the minimizers of the above-mentioned sums for di�erent weights at the penalty
function. In [184] a method was proposed whose iterates lie close to the central path and follow it
towards the solution. This method needs fewer iterates than Karmarkars method to reach the same
precision, but the iterations themselves are more costly computationally. In [125, 149, 207] primal-dual
methods were proposed, which generated pairs of primal and dual iterates. Mehrotras algorithm [145]
is a primal-dual method using second-order information at the current iterate to compute the next
iterate. In [147] primal-dual methods with an adaptive step size were proposed. In [124, 146] infeasible
primal-dual methods have been proposed, whose pairs of iterates do not necessarily lie on the a�ne
subspaces de�ned by the constraints of the LP. In the course of the iterations the initial discrepancy
then decreases exponentially. For surveys of these developments see, e.g., [128, 195, 76, 50, 220].

All the methods considered above used either the standard logarithmic barrier or a weighted sum
of the logarithms of the individual entries and were designed for solving LPs. In 1988 Yu. Nesterov
and A. Nemirovski extended the realm of interior-point methods to optimization problems over general
cones, introducing the notion of conic program and showing that general convex optimization problems
can be recast as conic programs [166, 167]. The main innovation which permitted this generalization
was the invention of the self-concordant barrier [168]. In particular, polynomial-time algorithms could
now be applied to solve SDPs, i.e., conic programs over the cone of positive semi-de�nite matrices
[169]. Nesterov and Nemirovski also built a theory of conic duality, generalizing the well-known duality
in LP [170].

Primal methods for the solutions of LPs have independently been extended to SDPs by Alizadeh
[3, 4]. Later Alizadeh recognised that the majority of interior-point algorithms, including primal-dual
methods, that have been devised for LP can be generalized in a straightforward manner also to SDP
[5]. However, these methods relied on scaling transformations preserving the cone and could not be
generalized to non-homogeneous cones in principle.

Two properties of the logarithmic barriers used for LP have been recognized by Nesterov and
Nemirovski as being su�cient to explain the performance of interior-point methods, namely logarithmic
homogeneity and self-concordance. This enabled them to employ an axiomatic approach to barriers
in conic programming. In the book [171] a self-contained theory of interior-point methods for conic
programs over arbitrary regular convex cones has been elaborated, which is based on self-concordant
barriers.

De�nition 1.1.1. [171, De�nition 2.1.1] Let C ⊂ Rn be an open convex set. A convex C3 function
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F : C → R is called self-concordant if for all x ∈ C and all h ∈ Rn the relation

|F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (1.2)

holds.

Here the derivatives of F are considered as multilinear maps, such that h can be interpreted as a
tangent vector at x. Thus self-concordance of a function means that its third derivative is uniformly
bounded in the local norm de�ned by its second derivative. Equivalently, the local norm de�ned at a
given point can be used in a �nite neighbourhood of this point while controlling the committed error.

De�nition 1.1.2. [171, De�nition 2.3.2] Let K ⊂ Rn be a regular convex cone and let ν > 0. A convex
C2 function F : intK → R is called a ν-logarithmically homogeneous barrier for K if F (xk)→ +∞ for
every sequence {xk} of points in intK converging to a point in ∂K, and for every x ∈ intK and every
t > 0 the relation

F (tx) = F (x)− ν log t (1.3)

holds. The function F is called ν-self-concordant barrier or self-concordant barrier with parameter ν if
it is a self-concordant function and a ν-logarithmically homogeneous barrier.

The original notion of normal barrier as given in [171] has not become prevalent, instead the notion
of self-concordant barrier is widely used nowadays. The condition of self-concordance arose from a
thorough analysis of the Newton method. In fact, self-concordance allows the Newton method to make
steps of a guaranteed step size safely.

Suppose a conic program of the form (1.1) is given. Let F be a self-concordant barrier on the cone
K. Then the central path is de�ned as the curve {σ(τ)}τ≥0 given by

σ(τ) = arg min
x∈K,Ax=b

(F (x) + τ〈c, x〉).

By convexity and self-concordance of F the minimum is unique. For every τ ∈ R+ the minimum σ(τ)
is a feasible point, and for τ → +∞ the point σ(τ) tends to a solution of the original conic program.

The interior-point methods proposed in [171] are divided in two classes, the path-following methods
and the potential reduction methods. Most of these methods are generalizations of the a�ne scaling
methods.

In path-following methods the iterates stay in a neighbourhood of the central path while advancing
along it towards the solution. Here the size of the neighbourhood is governed by the barrier parameter
ν. The larger this parameter, the smaller is the neighbourhood and the smaller are the steps that
the method can make while staying safely inside the neighbourhood. In fact, the steps taken by the
so-called short-step algorithms are of order 1 in the local norm de�ned by the second derivative F ′′

of the barrier. In contrast, long-step methods may take larger steps if the state of the current iterate
allows to do this safely, but their theoretical worst-case behaviour is not better than that of the short-
step variants. A modi�cation of these methods are the predictor-corrector methods, which separate
explicitly the (predictor) step of advancing along the central path and the (corrector) step of decreasing
the accumulated distance to the central path. While in primal methods the distance is measured by
the local norm given by the Hessian F ′′ at the current iterate, primal-dual methods di�er in the way
they measure proximity to the central path. Prototypes of primal-dual path-following methods have
been presented in [144, 125, 149] for LP, in [209] generalizations to arbitrary cones have been presented.

Potential reduction algorithms are mostly primal-dual. They decrease at each step a potential
function de�ned on primal-dual pairs of iterates, augmented by an auxiliary variable which serves to
homogenize the product of the primal and dual feasible sets. These methods may feature iterates
which are far from the central path. The potential is unbounded below, and as its value tends to −∞,
the primal-dual pair of iterates tends to the optimal solutions of the respective conic programs. The
method ensures that the potential and along with it the duality gap decreases by a certain amount
at each step, thus yielding a guaranteed speed of convergence. However, the larger the parameter of
the barrier, the smaller the amount by which the duality gap will decrease. Prototypes of potential
reduction algorithms are presented in [203, 207] for LP, and the potentials used in algorithms developed
later, e.g., in [154], are generalizations of the Tanabe-Todd-Ye potential introduced in these papers.
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Karmarkars original method can also be interpreted as a primal potential reduction algorithm, as has
been recognized already by Karmarkar himself [115].

In [154] Nesterov established, however, that the sequence of iterates generated by many potential
reduction algorithms resembles that of long-step path following algorithms.

In order for an interior-point method to be e�cient in solving a conic program over a cone K ⊂ Rn,
an e�ciently computable self-concordant barrier for the cone K with a low barrier parameter has to
be available. In [171, Section 5.5] a self-concordant barrier, the universal barrier, has been constructed
for an arbitrary cone K, with barrier parameter bounded by above by a function of order n, but its
computation requires the calculation of a multidimensional integral. In [77, 79] this barrier has been
computed for homogeneous cones and it has been shown that its barrier parameter equals the rank of
the homogeneous cone, and is hence bounded from above by its dimension n.

The most important class of cones for which easily computable barriers with small parameters are
available are the symmetric cones, i.e., regular convex cones which are both homogeneous and self-dual.
This class includes the nonnegative orthant Rn+, the Lorentz or second order cone Ln, and the cone Sn+
of positive semi-de�nite matrices.

In 1994 Nesterov and Todd observed that the logarithmic barriers on these cones have a property
in common which barriers on general cones do not have, namely that of being self-scaled [160]. In order
to introduce this notion we �rst have to de�ne the dual barrier.

De�nition 1.1.3. Let F be a self-concordant barrier on a cone K with parameter ν. The dual barrier
of F is given by F∗(s) = maxx∈K(−〈x, s〉 − F (x)), s ∈ intK∗.

By [171, Theorem 2.4.4] F∗ is indeed a self-concordant barrier on the dual cone K∗ with the same
parameter ν as F . In fact, F∗(−p), p ∈ − intK∗, is the Legendre transformation of F .

De�nition 1.1.4. Let K ⊂ Rn be a regular convex cone, let K∗ be its dual cone, let F be a self-
concordant barrier on K, and let F∗ be the dual barrier on K

∗. Then F is called self-scaled if for every
x,w ∈ intK we have

F ′′(w)x ∈ intK∗, F∗(F
′′(w)x) = F (x)− 2F (w)− ν.

A cone K admitting a self-scaled barrier is called self-scaled cone.

For every x ∈ intK and s ∈ intK∗ there actually exists a unique point w ∈ intK such that
F ′′(w)x = s [161, Theorem 3.1]. The point w is called the scaling point of the pair (x, s). In contrast to
the central path this scaling point is independent of the data of the conic program and is solely a feature
of the barrier. Nesterov and Todd developed a theory of interior-point methods especially for self-scaled
barriers [161, 162]. In this theory the directions of the steps, the so-called Nesterov-Todd directions,
are computed using the local metric at the scaling point. It has a perfect primal-dual symmetry and
compares favorably with other methods in practice [206, 204]. The Nesterov-Todd directions for LP
have been found already in [144, 125, 149].

At about the same time Faybusovich observed that the above-mentioned cones underlying LP,
SOCP, and SDP have another property in common, namely being symmetric, and hence the cone
of squares of a Euclidean Jordan algebra [68]. He extended the interior-point methods for these
special classes of conic programs to conic programs over arbitrary symmetric cones, using explicitly
the structure of the Jordan algebra [69, 70], see also [190].

While the property of being self-scaled is primarily a property of the barrier, the property of being
symmetric is a property of the cone. Nevertheless, these notions turned out to have a close connection.
Several authors proved independently that the symmetric cones and the self-scaled cones form the same
class, and provided a full classi�cation of self-scaled barriers [84, 83, 85, 189, 87], for a history of these
developments see [86].

Interior-point methods for self-scaled barriers became a subject of intense research at this time, see
[148, 151, 201, 202, 208]. For surveys and books on this stage of development of semi-de�nite and conic
programming see [171, 212, 221, 178, 222, 219, 185].

In [78] methods using self-scaled barriers have been extended to hyperbolic barriers, i.e., logarithms
of polynomials de�ning hyperbolicity cones. In [43] methods for homogeneous cones have been devel-
oped based on the algebraic representation of these cones by T -algebras. In [156, 165] the notion of
scaling point has been considered for general barriers.
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At the turn of the millennium the evolution of the theory of interior-point algorithms considerably
slowed, and the focus of research shifted to applications. Optimization problems arising in practice
are rarely formulated as standard conic programs over a symmetric cone, and often even cannot be
cast as such in principle, e.g., because they are non-convex. Therefore it is important to be able to
convert optimization problems arising in di�erent areas into symmetric cone programs, or at least
to �nd symmetric cone relaxations. Accordingly, while in the 90s the focus of research was on the
development and improvement of solution algorithms for these conic programs, later attention shifted
to the problem of formulating various optimization problems as semi-de�nite programs or �nding semi-
de�nite relaxations, see the literature at the beginning of this paragraph.

In the last years, however, a renewed interest in interior-point methods and self-concordant barriers
can be observed. In particular, new barriers have been constructed, for arbitrary convex sets or cones
[93, 72, 33, 1] as well as for LP [132, Section 6.3],[133]. In [159] a generalization of self-scaled barriers
called barriers of negative curvature has been considered, and the barrier parameter as a measure of
the convergence speed has been complemented by the recession coe�cient.

1.1.2 Geometry of self-concordant barriers

In this subsection we review past developments speci�c to the geometry of self-concordant barriers
and associated objects. Geometry has played a prominent role in the early papers following the
publication of Karmarkars method [115]. As has been mentioned in the previous subsection, this
method is projectively invariant, but subsequently a�nely invariant versions appeared [8, 213]. In the
early geometric studies of these methods the a�ne and projective cases have been pursued in parallel.
Bayer and Lagarias analyzed the vector �elds of descent directions in the a�ne scaling methods [14]
and the projective scaling methods [127]. It was observed that these vector �elds can be strati�ed
into straight lines by non-linear coordinate transformations which can be interpreted as Legendre
transforms.

A comprehensive geometric analysis of LP has been provided in [116]. An important object in this
work is the Riemannian metric de�ned by the Hessian of the barrier, although at �rst it has been
introduced on its own without a connection to the barrier. The metric allows to convert gradients
(cotangent vector �elds) into directions (tangent vector �elds), and hence yields an interpretation
of the interior-point methods as steepest descent algorithms minimizing some potential function. The
Riemannian manifold in the a�ne case is the interior of the nonnegative orthant, while in the projective
case it is the set of rays in the interior of the nonnegative orthant. In the a�ne case the metric is �at,
while in the projective case it is not. The vector �elds of descent directions have been shown to be
gradients of the objective function in the a�ne case and of some potential function in the projective
case, although in the original formulation [116, Theorem 1] this is not explicit. One conclusion of the
paper was that the complexity, more precisely the number of steps, grows with the curvature of the
trajectories, because the curvature determines how well the continuous trajectory can be approximated
by discrete steps. Estimates of the iteration complexity by the curvature of the central path have later
been obtained also in [199, 229, 150, 114].

Nesterov and Nemirovski showed that the Legendre transformation which maps the interior of the
primal cone K to the interior of the dual cone K∗ is an isometry when these interiors are equipped
with Hessian Riemannian metrics generated by a mutually dual pair of self-concordant barriers F, F∗
on K and K∗, respectively [171, p.45], see also [163] for an explicit statement. Moreover, the third
derivative F ′′′ is mapped to −F ′′′∗ and the �rst derivative F ′ to −F ′∗.

In the sequel the Riemannian metric played an auxiliary role, providing the local Euclidean norms
which were used in the neighbourhoods of the iterates or the scaling points. In the 2000s, however,
the interest in this metric as an independent geometric object renewed when the geodesics and the
Riemannian distance de�ned by it came under investigation. In [163] the geodesics of the Riemannian
metric have been computed for several sets. The product of the interiors of the primal and dual cones
has also been considered as a Riemannnian manifold, equipped with the corresponding product metric.
It was shown that the primal-dual central path in this product came within a factor of

√
2 of being

a geodesic, implying that it was nearly optimal to let the primal-dual iterates follow this path. In
[157, 158] the length of the primal central path was compared to the geodesic distance.

In [173, 174, 113] parallels have been drawn between the geometry of barriers and information
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geometry, and an iteration complexity estimate has been given in terms of the curvature of the central
path. The two theories have the presence of a dually �at structure in common, which is a manifold
carrying a Riemannian metric together with a pair of �at a�ne connections which are dual to each
other with respect to this metric. Here the primal a�ne connection is the canonical a�ne connection of
the primal space Rn, while the dual a�ne connection is the canonical connection of its dual Rn. Such
a structure is also known under the name of Hessian manifold [196]. It has been shown that the a�ne
scaling vector �eld is parallel under the dual �at connection, which is an equivalent reformulation of
the result in [14] on the strati�cation of this vector �eld by the Legendre transformation.

Let us remark that the viewpoint presented in the previous paragraph bears a conceptual di�erence
with respect to previous approaches. It considers the interiors of the primal and dual cone K,K∗ as a
single object, with the primal and dual structure being de�ned by di�erent �at a�ne connections, or
loosely speaking, di�erent systems of coordinates on it.

1.1.3 Overview

In this subsection we give an overview over the contents of this chapter in the context presented in the
previous subsections. We consider a self-concordant barrier F on the interior of a regular convex cone
K ⊂ Rn and its Legendre transform, the dual barrier F∗ on the interior of the dual cone K∗.

In Section 1.2 we brie�y introduce some geometric concepts which will be needed for our exposition.
In Section 1.3 we investigate the relation between the projective and the a�ne geometry underlying

the projective scaling and a�ne scaling methods elaborated for LP in the years after Karmarkars
publication. It turns out that a similar relation is well-known and has been studied for decades in
centro-a�ne di�erential geometry in a much more general context, i.e., not only for the cone K = Rn+,
but for general conic sets, which are not necessarily convex. We give a short introduction into a�ne
di�erential geometry in Subsection 1.2.3, for a detailed treatment see [172].

We give an a�ne di�erential geometric interpretation of many quantities and conditions which
appear in the theory of interior-point methods. In the context of a�ne di�erential geometry, the
primary object is not the barrier F on a cone K ⊂ Rn, but a di�erentiable manifold M of dimension
n − 1. A Riemannian metric called centro-a�ne metric is generated on M by its immersion into
Rn as a level surface of the barrier F . It turns out that this centro-a�ne metric is proportional
to the submanifold metric induced on the level surface by the Hessian metric F ′′ on intK, with the
proportionality constant being the barrier parameter. This result is derived in Subsection 1.3.1. Beside
the metric, the immersion generates also an a�ne connection on M , the induced connection. This
connection is such that its geodesics, when considered as curves in Rn, experience an acceleration which
is proportional to the vector pointing to the origin of Rn, with a negative proportionality constant.
In the same way, M can be immersed into the dual space Rn as a level surface of the dual barrier
F∗. This dual immersion generates the same a�ne metric on M , but a di�erent a�ne connection,
the dual connection. The relation of this duality with Legendre duality is considered in Subsection
1.3.2. The di�erence between the primal and dual connections is called cubic form, it measures the
deviation of the level surfaces of F and F∗ from quadrics. In the extreme case when the cubic form
vanishes identically the a�ne metric turns the level surfaces of F into a hyperbolic space form. The
corresponding barrier is the hyperbolic barrier on the Lorentz cone. This particular case is considered
in Subsection 1.3.3. The central conditions of self-concordance and self-scaledness are both closely
related to the cubic form. Self-concordance can be interpreted as a uniform bound on the cubic form,
with the barrier parameter measuring its ∞-norm. This result will be presented in Subsection 1.3.1.

The bene�t of considering self-concordant barriers from the viewpoint of a�ne di�erential geometry
is not only to gain a transparent geometric interpretation of the former. A�ne di�erential geometry
is a century old branch of mathematics which has developed a powerful apparatus that can be used
to solve problems related to optimization. In particular, the results concerning a�ne spheres, a class
of hypersurfaces having an especially rich structure, allowed us to construct the canonical barrier, a
primal-dual symmetric self-concordant barrier de�ned on arbitrary convex cones and having a barrier
parameter bounded from above by the dimension of the cone. This result will be presented in Section
1.4 and has been published in [93], see also [91]. In Subsection 1.4.4 we compute the canonical barrier
on several non-homogeneous cones. These results have been published in
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In Section 1.5 we consider self-scaled barriers. The condition of self-scaledness is shown to be
equivalent to the vanishing of the covariant derivative of the cubic form, or in other words, to the
condition that the cubic form is parallel. This condition can also be rewritten as a 4-th order quasi-
linear partial di�erential equation (PDE) on the barrier. Part of the results presented in Section 1.5
has been published in [94].

On the other hand, the well-developed theory of symmetric cones and its connection to Jordan
algebras allows us to solve open problems in a�ne di�erential geometry, in particular to accomplish
the classi�cation of a�ne spheres with parallel cubic form. This result is described in Subsection 1.5.6
and has been published in [96].

In the table below we present some objects or conditions appearing in the theory of self-concordant
barriers along with their centro-a�ne geometric counterparts.

self-concordant barriers centro-a�ne immersions
Legendre duality conormal map
Hessian metric centro-a�ne metric
third derivative cubic form
self-concordance condition bound on cubic form
self-concordance parameter ∞-norm of the cubic form
canonical barrier a�ne hypersphere
self-scaled barrier parallel cubic form

1.2 Mathematical tools

In this section we brie�y review some concepts from di�erential geometry which are necessary for our
exposition later. This includes widely known subjects like Riemannian metrics, curvature, and a�ne
connections, but also less common matter like a�ne hypersurface immersions and a�ne spheres. We
are not able and we do not aim to give a self-contained introduction into these topics. We shall rather
refer the reader to some introductory literature.

1.2.1 Tensor �elds

In this subsection we provide basic de�nitions and de�ne tensor �elds on manifolds. Let M be a
di�erentiable manifold of dimension d and p ∈ M a point. Let x : M ⊃ U → Rd de�ne a coordinate
chart on M such that p ∈ U , with x1, . . . , xd : U → R being its components.

The tangent space to M at p consists of all tangent vectors to M at p and is denoted by TpM . It
is isomorphic to Rd. In the coordinate chart given by x the k-th component of the vector u ∈ TpM is
given by the derivative of the k-th coordinate function xk in the direction of u. We shall denote this
component by uk.

The cotangent space to M at p is the dual space to TpM and is denoted by T ∗pM . Its elements are
called cotangent vectors or covectors. The components of a covector v ∈ T ∗pM , denoted v1, . . . , vd, are

de�ned as the coe�cients in the decomposition v =
∑d
k=1 vkdx

k, where dxk is the di�erential of the
coordinate function xk at p.

We shall adopt the Eistein summation convention throughout this chapter, implying summation
over indices which appear in pairs as upper and lower indices. In particular, the value of a covector
v ∈ T ∗pM on a vector u ∈ TpM is given by the sum ukvk :=

∑d
k=1 u

kvk.
A tensor of order (m,n) at p is a multi-linear real-valued map on the direct product (T ∗pM)m ×

(TpM)n. The components of a (m,n)-tensor T , denoted by T j1...jmi1...in
, are the coe�cients of the decom-

position T (v, . . . , y;u, . . . , z) = T i1...imj1...jn
vi1 . . . yimu

j1 . . . zjn , where v, . . . , y ∈ T ∗pM are m covectors and
u, . . . , z ∈ TpM are n vectors. In particular, a (0, 0)-tensor is a real number, a (1, 0)-tensor is a vector,
and a (0, 1)-tensor is a covector. Upper indices of a tensor are called contravariant, while lower indices
are called covariant.
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A (m,n)-tensor �eld T assigns a (m,n)-tensor to each point p ∈ M , such that the components
T i1...imj1...jn

are smooth functions in every chart on M . A (1, 0)-tensor �eld is called a vector �eld, and a
(0, 1)-tensor �eld a covector �eld.

If x : U → Rd, y : V → Rd are charts on M such that p ∈ U ∩ V , then a coordinate change from x
to y transforms the coordinates of a tensor T at p according to the rule

T i1...imj1...jn
7→ T k1...kml1...ln

∂yi1

∂xk1
· · · ∂y

im

∂xkm
∂xl1

∂yj1
· · · ∂x

ln

∂yjn
, (1.4)

where the partial derivatives are evaluated at p.
Introductions into tensor calculus can be found, e.g., in [200, 218].

1.2.2 Riemannian manifolds

In this section we provide some basics on Riemannian manifolds and objects on them such as connec-
tions or curvature.

De�nition 1.2.1. A Riemannian metric on a connected di�erentiable manifold M is given a smooth
symmetric positive de�nite (0, 2) tensor �eld gµν , the metric tensor.

For a smooth curve [0, T ] 3 t 7→ σ(t) ∈M , the metric de�nes a length by

l =

∫ T

0

√
gµν σ̇µ(t)σ̇ν(t) dt.

The extremals of this length functional are called geodesics and obey the Euler-Lagrange equation

σ̈µ +
1

2
gµγ (gαγ,β + gβγ,α − gαβ,γ) σ̇ασ̇β = 0,

also called geodesic equation. A Riemannian manifold is called complete if every geodesic can be
prolonged in�nitely. The geodesic equation can be written in compact form as σ̈µ + Γµαβ σ̇

ασ̇β = 0,
where

Γµαβ =
1

2
gµγ (gαγ,β + gβγ,α − gαβ,γ) (1.5)

are the Christo�el symbols, which are symmetric in the lower indices. Here gµγ are the components of
the inverse of the metric tensor gµν , such that the sum gµγgµν equals the Kronecker symbol δγν , which
evaluates to 1 for γ = ν and to 0 otherwise.

The Christo�el symbols do not de�ne a tensor �eld, their law of transformation under coordinate
changes from coordinates x to coordinates y is rather given by

Γγαβ 7→
∂xp

∂yα
∂xq

∂yβ
Γrpq

∂yγ

∂xr
+
∂yγ

∂xm
∂2xm

∂yα∂yβ
. (1.6)

The Christo�el symbols determine an a�ne connection, i.e., a rule which de�nes the parallel transport
of tensors along curves, or equivalently, to di�erentiate tensor �elds. The a�ne connection generated
by the metric is called the Levi-Civita connection and is denoted by ∇̂. Let σ : [0, T ] → M be a
smooth curve, and let u be a tangent vector at σ(0). By parallel transport of u along the curve σ we
obtain a vector-valued function on [0, T ] such that u(t) is a tangent vector at σ(t), obeying the parallel
transport equation

u̇γ(t) + Γγαβu
α(t)σ̇β(t) = 0. (1.7)

This equation says that the covariant derivative ∇̂u of u along the direction σ̇, which is given by
the left-hand side of (1.7), vanishes. In general, the covariant derivative of a (m,n)-tensor �eld T along
a vector �eld v is a (m,n+ 1)-tensor �eld given by

∇̂kT i1...imj1...jn
=
∂T i1...imj1...jn

∂xk
+ Γi1klT

li2...im
j1...jn

+ · · ·+ Γimkl T
i1...im−1l
j1...jn

− Γlkj1T
i1...im
lj2...jn

− · · · − ΓlkjnT
i1...im
j1...jn−1l

. (1.8)
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The covariant derivative of a scalar �eld is given by its partial derivative.
A tensor �eld T is called parallel if its covariant derivative ∇̂T vanishes identically, i.e., T is

reproduced by parallel transport along any curve. The metric tensor g itself is always parallel.
If a vector u is carried by parallel transport along a closed loop, then the vector at the end-point

will in general be di�erent from the vector at the starting point. The di�erence is linear in the original
vector and linear up to higher order terms in the area element enclosed by the loop. The proportionality
coe�cients are given by the Riemann curvature tensor, the (1, 3)-tensor

Rρσµν =
∂Γρνσ
∂xµ

−
∂Γρµσ
∂xν

+ ΓρµλΓλνσ − ΓρνλΓλµσ. (1.9)

By contracting the �rst with the third index we obtain a symmetric (0, 2)-tensor, the Ricci curvature
tensor

Rσν = Rµσµν . (1.10)

A Riemannian metric g on a domain Ω ⊂ Rn is called Hessian metric if it can be locally expressed as

the Hessian of a real-valued function, g = ∂2F
∂xi∂xj dx

idxj . The function F is called the (local) potential
of the Hessian metric.

A space form is a Riemannian manifold with Riemann tensor given by

Rρσµν = K(δρµgσν − δρνgσµ), (1.11)

where K is a constant. If K = 0, then the space form is �at, for K < 0 it is hyperbolic, and for K > 0
it is elliptic.

Let us now consider a Riemannian manifoldM with metric G and a smooth submanifold M ⊂M.
The restriction g of G toM de�nes a metric onM and turnsM into a Riemannian manifold too. At any
point y ∈M , the tangent space TyM can be decomposed into a G-orthogonal sum TyM ⊕NyM . Here
NyM is de�ned as the G-orthogonal complement of TyM in TyM and is called the normal subspace to
M at y. The submanifold M is called totally geodesic if if every M -geodesic is also anM-geodesic.

An introduction into Riemannian geometry can be found in [65, 200].

1.2.3 A�ne hypersurface immersions

A�ne hypersurface immersions have �rst been studied in the pioneering works of Tzitzeica [210] and
Blaschke [20]. This branch of di�erential geometry deals with properties of submanifolds, in particular,
submanifolds of codimension 1, of a�ne real space which are invariant with respect to the special linear
group of a�ne transformations.

In the previous subsection we considered the Levi-Civita connection ∇̂ generated by a Riemannian
metric. One may also consider a�ne connections and de�ne notions like parallel transport, geodesics,
or curvature independently of any metric. For a general a�ne connection ∇ on a manifold M , the
Christo�el symbols Γkij in the transformation rule (1.6), the parallel transport equation (1.7), the
formula for the covariant derivative (1.8), and the curvature tensors (1.9),(1.10) have to replaced by
the corresponding coe�cients of the connection ∇kij . We deal only with torsion-free connections, whose
coe�cients are symmetric in the lower indices. The Ricci tensor (1.10) de�ned by such a connection is
in general no more symmetric, however. From (1.6) it follows that the components of the di�erence of
any two a�ne connections transform like a (1, 2)-tensor under coordinate changes. By adding such a
tensor to one connection, we hence obtain another connection.

A classical example of an a�ne connection is the canonical connection D on Rn. In the usual coor-
dinate system on Rn the coe�cients of the connection vanish identically, and the covariant derivative
with respect to D just equals the usual partial derivative ∂. The subject of a�ne di�erential geometry
are the structures generated by the connection D on smooth hypersurfaces of Rn.

Let M be an (n − 1)-dimensional di�erentiable manifold and f : M → Rn a smooth hypersurface
immersion. Let ξ : M → Rn be a smooth transversal vector �eld on M , i.e., such that at any point
y ∈ M , every tangent vector u ∈ Tf(y)Rn can be decomposed into a sum of a tangential component
in f∗[TyM ] and a component parallel to ξ(y). Then there exists a unique a�ne connection ∇ and a
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unique symmetric (0, 2)-tensor �eld h on M such that for every ∇-geodesic σ(t) on M we have

d2f(σ(t))

dt2
+ h(σ̇(t), σ̇(t)) · ξ(σ(t)) = 0. (1.12)

This can be written equivalently as D−∇ = −h⊗ ξ, and ∇ can be interpreted as projection of D onto
the tangent space to M along ξ. The tensor h is called the a�ne fundamental form, and ∇ is called
the induced connection. If h is non-degenerate everywhere on M , then f is called non-degenerate and
h is called the a�ne metric.

Given a hypersurface immersion f : M → Rn and a transversal vector �eld ξ : M → Rn, we may
de�ne another hypersurface immersion ν : M → Rn into the dual space of Rn, as follows. For y ∈ M
we de�ne the image ν(y) as the vector v ∈ Rn which is zero on the tangent space f∗[TyM ] and 1 on
the transversal vector ξ(y). It turns out that this conormal map de�nes the same quadratic form h on
M , but a di�erent a�ne connection ∇̄, which is called the dual a�ne connection. The conormal map
of the immersion ν is the original immersion f , so the correspondence f ↔ ν is a duality.

The induced connection ∇ on M does in general not coincide with the Levi-Civita connection ∇̂
of the a�ne metric h. Their di�erence Kγ

αβ = ∇γαβ − ∇̂
γ
αβ is called the di�erence tensor. Although

the covariant derivative of h with respect to ∇̂ vanishes, its covariant derivative with respect to ∇ is
in general not zero. The covariant derivative Cαβγ = ∇αhβγ is called the cubic form.

In this thesis we shall deal exclusively with hyperbolic centro-a�ne hypersurface immersions f :
M → Rn, whose transversal vector �eld is de�ned by the relation ξ = −f and whose a�ne metric
is positive de�nite. This implies that the image of the immersion is convex such that its convex hull
and the origin lie on opposite sides of the surface. Centro-a�ne immersions have further particular
properties. Their cubic form C is symmetric and can be expressed by the di�erence tensor as Cαβγ =
−2hασK

σ
βγ , with inverse relation K

σ
βγ = − 1

2h
ασCαβγ . The curvature tensors (1.9),(1.10) of the induced

connection ∇ are given by

Rρσµν = hσνδ
ρ
µ − hσµδρν , Rσν = (n− 2)hσν .

The images under f of the ∇-geodesics are always contained in 2-dimensional linear subspaces of Rn,
which are spanned by ξ and the image of the velocity vector.

If the cubic form is symmetric, then there exists a simple relation between the Levi-Civita connection
∇̂ of the a�ne metric, the dual connection ∇̄, and the induced connection ∇. Namely, we have
∇̂ = 1

2 (∇ + ∇̄), or equivalently ∇̄ − ∇ = −2K [172, Section I, Corollary 4.4]. The cubic form hence
measures the di�erence between the primal and dual connections.

There exist, however, also other choices of the transversal vector �eld. In the absence of a dis-
tinguished point in Rn which can serve as the origin, i.e., when the target space of the immersion is
merely an a�ne space, the most natural choice of the transversal vector �eld is the a�ne normal. If
the immersion is locally convex, as will be the case with the level surface of barriers, the a�ne normal
can be interpreted as follows. Choose a point y ∈ M and a neighbourhood U ⊂ M of y such that
f [U ] is a convex surface. Consider the image f∗[TyM ] of the tangent space at some point y as an
a�ne hyperplane H which is tangent to the immersion f [M ] at the point f(y). Consider a family of
hyperplanes Hα which is parallel to H. Then the hyperplane Hα intersects the convex hull of f [U ] in
some compact convex set Cα with center of gravity γα. The centers of gravity form a curve γ with
end-point f(y). The tangent to γ at f(y) is the direction of the a�ne normal ξ at y, see Fig. 1.1. The
de�nition of the a�ne normal assumes the existence of an a�nely invariant volume form on Rn, and
therefore it is de�ned only up to a multiplicative constant in the absence of such a volume form. A�ne
hypersurface immersions equipped with the a�ne normal as transversal vector �eld are called Blaschke
immersions.

A proper a�ne hypersphere is a hypersurface immersion with all a�ne normals meeting in a point.
It is convenient to consider this point to be the origin of Rn. This de�nition involves only the direction
of the a�ne normals and is hence independent of the volume form chosen on Rn. Moreover, it turns
out that the a�ne normal of a proper a�ne hypersphere is always equal to a constant times the centro-
a�ne transversal vector �eld, ξ = const · f . Only the value of this constant depends on the volume
form.
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Figure 1.1: Direction of the a�ne normal for convex hypersurfaces immersions

An excellent general reference on a�ne di�erential geometry is the book [172]. Centro-a�ne hy-
persurface immersions are treated in detail in the �rst chapter.

1.2.4 Lie derivative

There exist also derivations which are not de�ned by a�ne connections. Let M be a di�erentiable
manifold and v a vector �eld on M . Then v de�nes a �ow Φt : M → M on M by the di�erential
equation dx

dt = v(x). The Lie derivative LvT of a tensor �eld T on M is de�ned by the rate of change
of T along the �ow Φt. It is a tensor �eld of the same type as T . The Lie derivative of T vanishes if
and only if the �ow Φt leaves T invariant.

The coordinate expression of the Lie derivative of a tensor �eld T i1...imj1...jn
along a vector �eld vk is

given by [226, eq.(I.3.26)]

(LvT )i1...imj1...jn
= vk

∂T i1...imj1...jn

∂xk
− ∂v

i1

∂xk
T ki2...imj1...jn

−· · ·− ∂v
im

∂xk
T
i1...im−1k
j1...jn

+
∂vk

∂xj1
T i1...imkj2...jn

+ · · ·+ ∂vk

∂xjn
T i1...imj1...jn−1k

.

If M possesses in addition an a�ne connection ∇, then the partial derivatives can be replaced by the
covariant derivatives with respect to ∇ [226, eq.(I.3.27)],

(LvT )i1...imj1...jn
= vk∇kT i1...imj1...jn

−∇kvi1T ki2...imj1...jn
− · · · − ∇kvimT i1...im−1k

j1...jn
+

+∇j1vkT
i1...im
kj2...jn

+ · · ·+∇jnvkT
i1...im
j1...jn−1k

.

In particular, we have Lvδij = 0 for the Lie derivative of the Kronecker symbol. Let now Tαβ be a

non-degenerate (0, 2) tensor �eld and Sαβ the inverse (2, 0) tensor �eld, such that TαβS
βγ = δγα. Then

we have by the Leibniz rule
SβγLvTαβ + TαβLvSβγ = 0

and hence LvSµγ = −SµαSβγLvTαβ . Therefore LvS = 0 if and only if LvT = 0.
The Lie derivative Lv commutes with the covariant derivative with respect to ∇ if and only if the

a�ne �ow Φt de�ned by v leaves the a�ne connection ∇ invariant [226, Theorem I.4.2]. In particular,
we have the following result.

Lemma 1.2.2. Let U ⊂ Rn be a domain and let v be a vector �eld on U . Let D be the canonical �at
a�ne connection of Rn. Then the Lie derivative Lv commutes with D if and only if the vector �eld v
is linear-a�ne in a�ne coordinates on U .

A treatment of the Lie derivative can be found in many books on di�erential geometry or general
relativity, e.g., [218]. For a specialized monograph see [226].
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1.3 Barriers from the viewpoint of a�ne di�erential geometry

In this section we establish how logarithmically homogeneous barriers, which are functions F de�ned
on domains in Rn, relate to centro-a�ne geometry, which deals with hypersurfaces in Rn. The key
result which relates these two objects is the splitting of the metric de�ned by the Hessian F ′′ into
a trivial 1-dimensional radial part and a non-trivial (n − 1)-dimensional part modelled on the level
surfaces of F , which turns out to be proportional to the centro-a�ne metric. Then we consider how
the cubic form on the level surface relates to the third derivative F ′′′. The main result will be the
characterization of self-concordant barriers by the centro-a�ne geometry of their level surfaces, in
particular, the equivalence between the condition of self-concordance and the uniform boundedness of
the cubic form. This will yield also an interpretation of the barrier parameter as a measure of the
di�erence between the primal and dual a�ne connections on the level surface. We shall present this
result in Subsection 1.3.1. In Subsection 1.3.2 we consider the relation between Legendre duality and
the conormal map. In Subsection 1.3.3 we then consider the simplest possible case, namely centro-
a�ne immersions with vanishing cubic form, for which the primal and dual a�ne connections coincide
with the Levi-Civita connection of the centro-a�ne metric. We show that this case corresponds the
hyperbolic barrier on the Lorentz cone.

The viewpoint on barriers as functions on the interior of the cone can be associated to the class
of a�ne-scaling methods. The viewpoint of centro-a�ne geometry puts in the focus the level surface
of the barrier, which is canonically isomorphic to the manifold of rays in the interior of the cone, and
can thus be associated to projective-scaling methods. One of the reasons for developing the theory
presented in this chapter is to lay a theoretical foundation onto which one can build projective-scaling
methods for general cones.

Another advantage of the presented connection between a�ne di�erential geometry and self-con-
cordant barriers is that results from geometry can be applied to yield new insights in the theory of
barriers. We shall present several applications in the subsequent sections.

1.3.1 Self-concordance and cubic form

The splitting result presented below is not limited to self-concordant barriers, but is valid for arbitrary
logarithmically homogeneous functions. Let F : Ko → R be a smooth locally strongly convex function
on the interior of a regular convex cone K satisfying the logarithmic homogeneity condition (1.3) with
some ν > 0. Let Fα = {x ∈ Ko |F (x) = α} be the level surfaces of F . For every α ∈ R, there exists
a di�eomorphism Iα : Fα × R+ → Ko given by Iα : (x, β) 7→ βx. The following result states that the
Hessian metric de�ned by F on Ko splits into a direct product under the inverse of Iα.

Proposition 1.3.1. [139, Theorem 1, p.428] Assume the notations and conditions of the previous
paragraph. Then the Riemannian manifold (Ko, F ′′), consisting of the interior of K equipped with the
Hessian metric generated by F , is isometric under I−1

α to the product (Fα, νh)× (R+, νβ
−2dβ2), where

h is the centro-a�ne metric of the inclusion Fα ↪→ Rn, considered as centro-a�ne immersion.
Thus the a�ne metric on the level surface Fα is given by ν−1 times the restriction of the Hessian

metric F ′′ on this level surface, while the metric on a ray has metric tensor νβ−2, where β is the
natural coordinate on the ray. Since all 1-dimensional Riemannian manifolds are locally isometric to
the Euclidean space R1, all the information contained in the metric F ′′ is concentrated in the non-
trivial (n − 1)-dimensional factor and is encoded by the centro-a�ne metric h of the level surfaces of
F . Note also that all level surfaces Fα are mutually isometric.

All the necessary ingredients to prove this result have already been provided in [171, Section 2.3.3].
For the case of homogeneous cones equipped with the universal barrier it has been proven in [187].
However, even convexity and non-degeneracy are not necessary. A proof in this general case can be
found in [96, Theorem 2.2].

The barrier parameter ν appears as a proportionality coe�cient between the centro-a�ne metric on
the level surfaces of F and the Hessian metric F ′′. From the viewpoint of centro-a�ne geometry it is
therefore convenient to consider logarithmically homogeneous functions of homogeneity degree ν = 1,
because in this case the centro-a�ne metric is directly reproduced as the submanifold metric generated
by the Hessian. This yields also a simple means to compute the centro-a�ne fundamental form on
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an arbitrary smooth hypersurface. To this end one has to construct a 1-logarithmically homogeneous
function F in a neighbourhood of the hypersurface, such that F is constant on the surface itself, and
then take the restriction of the Hessian F ′′ to the hypersurface.

In the same way the second derivative F ′′ is related to the centro-a�ne metric on the level surfaces
of F , the third derivative is related to their cubic forms.

Lemma 1.3.2. Assume above notations and conditions. Then for every α ∈ R, the cubic form of
the inclusion Fα ↪→ Rn, considered as centro-a�ne immersion, equals the restriction of the symmetric
(0, 3) tensor �eld ν−1F ′′′ on Fα.

Proof. Let y ∈ Fα be an arbitrary point and let u ∈ TyFα be a tangent vector at y. We shall now
compute the value C[u, u, u] of the cubic form on this vector. Let ∇ be the induced centro-a�ne
connection on Fα and D the canonical a�ne connection on D. We then have C = ∇h = ν−1∇F ′′ by
the de�nition of the cubic form and by Proposition 1.3.1.

Let σ(t) be the ∇-geodesic through y = σ(0) with velocity u. Then by de�nition u(t) = σ̇(t) is the
vector obtained by ∇-parallel transport of u from y to σ(t) along σ. Applying (1.12) we get

u̇(t)− h(u(t), u(t)) · σ(t) = 0. (1.13)

Let further γ(t) = F ′′(σ(t))[u(t), u(t)] be the value of F ′′ on the vector u(t). On the one hand, we get
by di�erentiation

γ̇(t) = F ′′′(σ(t))[σ̇(t), u(t), u(t)] + 2F ′′(σ(t))[u̇(t), u(t)]

= F ′′′(σ(t))[u(t), u(t), u(t)] + 2h(u(t), u(t))F ′′(σ(t))[σ(t), u(t)]

= F ′′′(σ(t))[u(t), u(t), u(t)].

Here the second equality comes from (1.13), and the third equality holds because the position vector
σ(t) and the tangent vector u(t) are orthogonal by virtue of Proposition 1.3.1. On the other hand, we
have

γ̇(t) = ∇u(t)γ(t) = (∇F ′′)(σ(t))[u(t), u(t), u(t)] = νC(σ(t))[u(t), u(t), u(t)].

Here the �rst equality holds because the covariant derivative of a scalar equals its partial derivative.
The second equality holds by the Leibniz rule, taking into account that the ∇-derivative of u vanishes
because u(t) is ∇-parallel. The third equality comes from the de�nition of the cubic form C.

Equalling the two expressions for γ̇(t) completes the proof.

By Lemma 1.3.2 self-concordance of F implies that the cubic form on the level surfaces of F is
uniformly bounded. However, the converse implication is not immediately evident, because the a�ne
metric and the cubic form on the level surface Fα determine the derivatives F ′′, F ′′′ only on those
vectors which are tangent to Fα. We can, however, restore the values of these derivatives on arbitrary
vectors from the values on the vectors tangent to Fα only, which allows to obtain the following result.

Lemma 1.3.3. Let F : Ko → R be a logarithmically homogeneous convex C3 function with homogeneity
degree ν on a convex cone K ⊂ Rn, n ≥ 2, let x ∈ Ko be a point, and set α = F (x). Assume that F ′′

is positive de�nite everywhere on Ko. Then |F ′′′(x)[u, u, u]| ≤ 2(F ′′(x)[u, u])3/2 holds for all vectors
u ∈ Rn if and only if the cubic form C on the level surface Fα at x has ∞-norm not exceeding 2ϑ with
ϑ = ν−2√

ν−1
as measured in the a�ne metric h at x.

Proof. Di�erentiating (1.3) with respect to t at t = 1 and with respect to x we obtain F ′(x)[x] = −ν,
F ′′(x)[x] = −F ′(x), see also [171, eqs. (2.3.12�13)]. Di�erentiating further with respect to x, we get
F ′′′(x)[x] = −2F ′′(x), see also [163].

Let v ∈ TxFα be a vector tangent to Fα, and set u = v + βx with β ∈ R. By Proposition 1.3.1 and
Lemma 1.3.2 we have F ′′(x) = νh(x), F ′′′(x) = νC(x) on v. Using the above formulas recursively and
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the condition that v is tangent to the level surface of F we obtain

F ′′′(x)[u, u, u] = F ′′′(x)[v, v, v] + 3βF ′′′(x)[v, v, x] + 3β2F ′′′(x)[v, x, x] + β3F ′′′(x)[x, x, x]

= F ′′′(x)[v, v, v]− 6βF ′′(x)[v, v] + 6β2F ′(x)[v]− 2β3ν

= ν(C(x)[v, v, v]− 6βh(x)[v, v]− 2β3), (1.14)

F ′′(x)[u, u] = F ′′(x)[v, v] + 2βF ′′(x)[v, x] + β2F ′′(x)[x, x]

= F ′′(x)[v, v]− 2βF ′(x)[v]− β2F ′(x)[x] = ν(h(x)[v, v] + β2). (1.15)

Therefore we have |F ′′′(x)[u, u, u]| ≤ 2(F ′′(x)[u, u])3/2 for all u ∈ Rn if and only if we have

|C(x)[v, v, v]− 6βh(x)[v, v]− 2β3| ≤ 2ν1/2(h(x)[v, v] + β2)3/2

for all v ∈ TxFα and β ∈ R. By squaring the inequality we get the equivalent condition

4ν(h(x)[v, v] + β2)3 − (C(x)[v, v, v]− 6βh(x)[v, v]− 2β3)2 ≥ 0. (1.16)

The left-hand side is a polynomial p in β. We shall now determine the triples
(ν, h(x)[v, v], C(x)[v, v, v]) for which p(β) is nonnegative on the real axis. If v = 0, then p(β) =
4(ν − 1)β6, and p is nonnegative if and only if ν ≥ 1. If v 6= 0, and such v exist by our assumption

n ≥ 2, then h(x)[v, v] > 0, and we may make the substitution β = β̃
√
h(x)[v, v]. With ϑ = C(x)[v,v,v]

2(h(x)[v,v])3/2

we get

p(β) = (h(x)[v, v])3
[
4ν(1 + β̃2)3 − (2ϑ− 6β̃ − 2β̃3)2

]
.

The polynomial in brackets is nonnegative if and only if it is a sum of squares of cubic polynomials in
β̃, which by a standard procedure [175] can equivalently be expressed by the matrix inequality

∃ µ, ρ, τ :


4(ν − 1) 0 µ 4ϑ+ ρ

0 12(ν − 2)− 2µ −ρ τ
µ −ρ 12(ν − 3)− 2τ 12ϑ

4ϑ+ ρ τ 12ϑ 4ν − 4ϑ2

 � 0.

By Schur complements this is in turn equivalent to the linear matrix inequality (LMI)

∃ µ, ρ, τ : A =


4(ν − 1) 0 µ 4ϑ+ ρ 0

0 12(ν − 2)− 2µ −ρ τ 0
µ −ρ 12(ν − 3)− 2τ 12ϑ 0

4ϑ+ ρ τ 12ϑ 4ν 2ϑ
0 0 0 2ϑ 1

 � 0,

which is linear in (ν, ϑ). Hence the feasible set of this LMI is convex. We shall show that this set equals
the set S = {(ν, ϑ) | ν ≥ 2, |ϑ| ≤ ν−2√

ν−1
}.

Indeed, inserting the values ν = 2, ϑ = ρ = 0, µ = −4, τ = −8 into A above yields a block-diagonal
positive semi-de�nite rank 3 matrix and shows that the point (2, 0) is feasible. Let now β̃ ∈ (−1, 1)\{0}
and set ν̂ = 1+β̃2

β̃2
, ϑ̂ = − 1−β̃2

β̃
, µ̂ = − 8β̃2−4

β̃2
, τ̂ = −4(β̃2 + 1), ρ̂ = 0. Inserting these values into the

matrix A de�ned above, we obtain the matrix

Â =



4
β̃2

0 4(1−2β̃2)

β̃2
− 4(1−β̃2)

β̃
0

0 4(1+β̃2)

β̃2
0 −4(1 + β̃2) 0

4(1−2β̃2)

β̃2
0 4(2β̃4−4β̃2+3)

β̃2
− 12(1−β̃2)

β̃
0

− 4(1−β̃2)

β̃
−4(1 + β̃2) − 12(1−β̃2)

β̃

4(1+β̃2)

β̃2
− 2(1−β̃2)

β̃

0 0 0 − 2(1−β̃2)

β̃
1


.

By computing the determinants of the principal minors in the upper left corner one can check that this
matrix is positive semi-de�nite of rank 4. It can be checked directly that the kernel of Â is generated
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by the vector w = (β̃4, β̃3, β̃2, β̃, 2(1− β̃2))T . Therefore the pair (ν, ϑ) = ( 1+β̃2

β̃2
,− 1−β̃2

β̃
) is feasible for

all β̃ ∈ (−1, 1)\{0}. Thus all extremal points of the set S de�ned above are feasible, and S is contained
in the feasible set of the LMI.

On the other hand, for every positive semi-de�nite matrix A as above we have

wTAw = 4(β̃2 + 1)2(2ϑβ̃ + β̃2ν + β̃4ν − 4β̃2 − β̃4 + 1) ≥ 0,

leading to the linear inequality 2β̃(ϑ− ϑ̂) + β̃2(1 + β̃2)(ν − ν̂) ≥ 0. It is not hard to check that the set
S equals the intersection of the closed half-planes de�ned by these inequalities, with the parameter β̃
running through the set (−1, 1) \ {0}. Therefore the feasible set of the LMI is contained in S.

We have shown that (1.16) holds for all v ∈ TxFα and all β ∈ R if and only if ν ≥ 2 and
|C(x)[v, v, v]| ≤ 2 ν−2√

ν−1
(h(x)[v, v])3/2 for all v ∈ TxFα. Clearly the condition ν ≥ 2 is redundant, which

completes the proof.

Corollary 1.3.4. Let F : Ko → R be a logarithmically homogeneous convex C3 function with homo-
geneity degree ν on a convex cone K ⊂ Rn, n ≥ 2. Then F is self-concordant if and only if the cubic
form on the level surfaces of F has ∞-norm not exceeding 2ϑ with ϑ = ν−2√

ν−1
as measured in the a�ne

metric.

If we want to perform computations with geometric objects on the level surfaces of a barrier F , we
need to introduce a coordinate system on these level surfaces. While the interior of the cone K can be
conveniently parameterized by any linear coordinate system on Rn, the level surfaces are curved and
such a coordinate system cannot be used directly. We shall map the level surface by a radial bijection
to the interior of a compact proper a�ne section S of the cone and then use an a�ne coordinate system
on this section, as shown in Fig. 1.2. The next result shows how to express the a�ne metric and the

Figure 1.2: Coordinate system on level surface of F de�ned by radial projection onto a�ne section

cubic form in such a coordinate system.

Lemma 1.3.5. Let F : Ko → R be a self-concordant barrier with parameter ν on some regular convex
cone K ⊂ Rn. Let S be a compact proper a�ne section of K. Let Fα be a level surface of F , equipped
with the centro-a�ne metric h and the cubic form C. De�ne a bijection ι : Fα → So such that for
every point p ∈ Fα, the image point ι(p) ∈ So is a multiple of p. Let y : So → Rn−1 be an a�ne
coordinate chart on So and let x = y ◦ ι : Fα → Rn−1 be the corresponding coordinate chart on Fα. Let
f = F ◦ ι : Fα → R be the scalar function de�ned by the restriction of F to the interior of the section
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S. Then we have

hαβ = ν−1 ∂2f

∂xα∂xβ
− ν−2 ∂f

∂xα
∂f

∂xβ
, (1.17)

Cαβγ = ν−1 ∂3f

∂xα∂xβ∂xγ
− 2ν−2(

∂2f

∂xα∂xβ
∂f

∂xγ
+

∂2f

∂xα∂xγ
∂f

∂xβ
+

∂2f

∂xβ∂xγ
∂f

∂xα
)

+ 4ν−3 ∂f

∂xα
∂f

∂xβ
∂f

∂xγ
. (1.18)

Proof. Let x ∈ Fα be a point on the level surface and y = ι(x) the projection of x to the a�ne section
S. Note that homotheties map level surfaces of F to level surfaces and leave the transversal vector
�eld invariant. Hence the a�ne metric and the cubic form on the level surfaces are also mapped to
each other. Moreover, the coordinate charts x de�ned by the a�ne section S are also mapped to each
other, i.e., in these coordinates a homothety is the identity map. We may hence assume without loss
of generality that the level surface Fα passes through the point y, and in fact x = y, by applying an
appropriate homothety.

Let now v ∈ TxFα be a vector tangent to the level surface, and u = ι∗v its image in the tangent space
to S. Then u = v+βx for some β ∈ R, because in a neighbourhood of x the surface Fα is projected to
S parallel to the vector x, up to terms of higher order. We have F ′(x)[u] = F ′(x)[v]+βF ′(x)[x] = −βν,
giving β = −ν−1F ′(x)[u]. Formulas (1.15),(1.14) then yield

F ′′′(x)[u, u, u] = νC(x)[v, v, v] + 6F ′(x)[u]h(x)[v, v] + 2ν−2(F ′(x)[u])3,

F ′′(x)[u, u] = νh(x)[v, v] + ν−1(F ′(x)[u])2.

Solving this system for h and C we obtain

h(x)[v, v] = ν−1F ′′(x)[u, u]− ν−2(F ′(x)[u])2,

C(x)[v, v, v] = ν−1F ′′′(x)[u, u, u]− 6ν−2F ′(x)[u]F ′′(x)[u, u] + 4ν−3(F ′(x)[u])3.

Now F ′(x)[u] = f ′(x)[v], F ′′(x)[u, u] = f ′′(x)[v, v], F ′′′(x)[u, u, u] = f ′′′(x)[v, v, v] by de�nition of f .
The claim of the lemma readily follows.

The a�ne metric h and the cubic form C of a level surface of a barrier F can be seen as the
projective counterparts of the Hessian metric F ′′ and the third derivative F ′′′. Indeed, in the case
of LP, i.e., when K = Rn+, the projective metric introduced by Karmarkar [116, Section 2] on the
interior of the standard simplex is proportional to the centro-a�ne metric on the level surfaces of the
logarithmic barrier F (x) = −

∑n
j=1 log xj on Rn+, as can be seen by applying (1.17) to the restriction

of F to the a�ne section of Rn+ given by
∑n
j=1 xj = 1.

Sometimes it is convenient to consider the level surface Fα not as a submanifold of the ambient
space Rn but as an abstract (n− 1)-dimensional manifold equipped with a metric h and a cubic form
C, modelled on the interior of a compact a�ne section of K, with h and C given by (1.17),(1.18).
These data su�ce to recover both the barrier, up to an additive constant and a multiplicative factor
determining the barrier parameter, and the cone K, up to linear isomorphisms of Rn. Indeed, by
raising an index of C by means of h we may reconstruct the di�erence tensor ∇̄ −∇. The Levi-Civita
connection ∇̂ = 1

2 (∇ + ∇̄) then allows to recover both connections ∇, ∇̄. Uniqueness of the centro-
a�ne immersion of M as a submanifold of Rn then follows from the fundamental uniqueness result
[172, Theorem 8.1].

In order to be a self-concordant barrier with parameter ν for a cone K ⊂ Rn, it is not su�cient
for a smooth convex ν-logariathmically homogeneous function F : Ko → R to be a self-concordant
function. We must also have F (x)→ +∞ for x→ ∂K. This condition can also be rewritten in terms
of the level surfaces of F . We shall need the following de�nition.

De�nition 1.3.6. Let K ⊂ Rn be a regular convex cone. A hyperbolic centro-a�ne hypersurface
M ⊂ Ko is called asymptotic to K if every ray in Ko intersects M in exactly one point and for every
compact proper a�ne section S of K and some Euclidean metric on Rn, the distance between the
intersections ∂K ∩ S and αM ∩ S is positive for all α > 0.
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Since all Euclidean metrics on Rn are equivalent, we may also replace "some Euclidean metric" by
"every Euclidean metric". Let S be a proper compact a�ne section of K. For a surface M which is
asymptotic to K, the intersections Sα = αM ∩ So are closed, because every limit point of Sα must
also be in So and hence in Sα by continuity of M . By convexity of M the convex hull of Sα equals the
union S≥α =

⋃
β≥α Sβ . Hence for decreasing α we have that S≥α is an increasing sequence of compact

convex sets whose union equals the interior of S and who have a positive distance from the boundary
∂S = ∂K ∩ S. This situation is shown on Fig. 1.3. We have the following result.

Figure 1.3: Intersections Sα = αM ∩ So for di�erent α

Lemma 1.3.7. Let K ⊂ Rn be a regular convex cone and F : Ko → R a ν-logarithmically homogeneous
smooth convex function for some ν > 0. Then the following are equivalent:

(a) the level surfaces of F are hyperbolic centro-a�ne surfaces which are asymptotic to K;

(b) for every sequence of points xk ∈ Ko tending to a boundary point x ∈ ∂K we have F (xk)→ +∞.

Proof. (a)⇒ (b): Let x ∈ ∂K be a non-zero point, and let S be a proper compact a�ne section of K
containing x. Let xk ∈ Ko be a sequence of points tending to x. Project xk radially on S to obtain a
point x̃k ∈ So. Then x̃k = αkxk for some αk > 0, and limk→∞ αk = 1, because the sequence x̃k tends to
the same point as the sequence xk. By logarithmic homogeneity of F we have F (x̃k) = F (xk)−ν logαk,
and limk→∞ ν logαk = 0. Therefore F (xk)→ +∞ if and only if F (x̃k)→ +∞ as k → +∞. However,
F (x̃k) → +∞, because the level set {x ∈ So |F (x) ≤ α} has a positive distance from ∂S for every
α > 0.

Let now x = 0 and let xk ∈ Ko be a sequence of points tending to x. Choose a proper compact
a�ne section S of K and an arbitrary point y ∈ So. Let αk > 0 be the unique number such that
xk ∈ αkS. The level set {x ∈ So |F (x) ≤ F (y)} is non-empty and has a positive distance from ∂S. It
is hence closed by continuity of F , because every limit point has to be in So. It is also bounded and
therefore compact, hence F attains a global minimum t∗ on So. It follows that the minimum of F on
the section αS is given by t∗ − ν logα for every α > 0. In particular, F (xk) ≥ t∗ − ν logαk → +∞ for
k → +∞, because limk→∞ αk = 0. This proves (b).

(b)⇒ (a): Since F is convex, its level surfaces are convex. By logarithmic homogeneity the function
F is strictly decreasing along the rays of Ko, hence the level surfaces intersect every ray in exactly one
point and are curved away from the origin, i.e., hyperbolic. Let S be a proper compact a�ne section of
K. Then the restriction of F to So is convex and tends to +∞ along every sequence of points tending
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to some point in ∂S. It follows that the level sets {x ∈ So |F (x) ≤ α} have a positive distance from
∂S for every α. This shows (a).

We are now ready to formulate the main result of this subsection.

Theorem 1.3.8. Let M ↪→ Rn be a smooth hyperbolic centro-a�ne hypersurface immersion which is
asymptotic to some regular convex cone K ⊂ Rn. Let C be the cubic form and h the centro-a�ne

metric of the immersion, and let ||C||∞ = sup{ |C(x)[u,u,u]|
(h(x)[u,u])3/2

|x ∈ M, u ∈ TxM, h(x)[u, u] 6= 0} be

the ∞-norm of C as measured in the metric h. Then for every ν > 0 such that ||C||∞ ≤ 2(ν−2)√
ν−1

, the

function F : Ko → R given by F [αM ] = {−ν logα} for every α > 0 is a self-concordant logarithmically
homogeneous barrier for K with parameter ν.

On the other hand, let F : Ko → R be a self-concordant logarithmically homogeneous barrier for
some regular convex cone K ⊂ Rn with parameter ν. Then every level surface of F is a hyperbolic
centro-a�ne hypersurface immersion, asymptotic to K, such that the ∞-norm of its cubic form, as

measured in its a�ne metric, does not exceed the value 2(ν−2)√
ν−1

.

The theorem follows directly from Corollary 1.3.4 and Lemma 1.3.7.

The function ν 7→ 2(ν−2)√
ν−1

is monotonic for ν ≥ 2 with inverse function c 7→ 16+c2+c
√

16+c2

8 . The

∞-norm ||C||∞ of the cubic form of the level surfaces of a self-concordant barrier F hence yields a

lower bound
16+||C||2∞+||C||∞

√
16+||C||2∞

8 on the barrier parameter. The relation between the∞-norm of
the cubic form and the barrier parameter is somewhat obscured by the fact that the barrier parameter
is de�ned as the degree of logarithmic homogeneity. For given level surfaces of the barrier this degree
can be chosen in an arbitrary manner, the sole condition to respect is inequality (1.2). Whether this
inequality is tight or not has no in�uence on the barrier parameter. In order to highlight the role of
the cubic form we shall introduce the following de�nition.

De�nition 1.3.9. For a self-concordant logarithmically homogeneous barrier F , we de�ne the e�ective
barrier parameter of F as the lowest barrier parameter which can be achieved by dividing F by a positive
constant α ≥ 1 while maintaining the property of self-concordance.

From Theorem 1.3.8 we then get immediately the following result.

Lemma 1.3.10. Let F be a self-concordant logarithmically homogeneous barrier for some regular
convex cone K ⊂ Rn, n ≥ 2, and let C be the centro-a�ne cubic form of any level surface of F . Let
||C||∞ be the ∞-norm of C in the a�ne metric of the surface. Then the e�ective barrier parameter of

F is given by
16+||C||2∞+||C||∞

√
16+||C||2∞

8 .

As mentioned in Subsection 1.2.3, the cubic form can be obtained by lowering an index of the
di�erence tensor between the dual connection and the induced connection on the level surface. Hence
||C||∞ is also the in�nity norm of the di�erence between these connections. The barrier parameter can
therefore be seen as estimating this di�erence from above.

1.3.2 Legendre duality and the conormal map

As mentioned in Subsection 1.1.1, to every self-concordant barrier F on a cone K ⊂ Rn with parameter
ν one can associate a dual barrier F∗ on the dual cone K∗ ⊂ Rn with the same parameter ν. In this
subsection we show that this notion of duality is closely linked to the duality in a�ne di�erential
geometry de�ned by the conormal map.

By applying the �rst order optimality condition to the maximization problem maxx∈K(−〈x, s〉 −
F (x)) in De�nition 1.1.3 we obtain the condition s = −F ′(x). Let us denote the corresponding map
from Ko to Rn by Φ, Φ(x) = −F ′(x). By [171, Theorem 2.4.4] the image of Φ is exactly the interior of
the dual cone K∗. Positive de�niteness of the Hessian F ′′ implies that Φ is actually a bijection between
the interiors of K and K∗. Moreover, it is an isometry when the interiors of K,K∗ are equipped with
the Hessian metrics F ′′, F ′′∗ , respectively [171, p.45],[163]. By the De�nition 1.1.3 of the dual barrier
we have

F (x) + F∗(Φ(x)) = −〈x,Φ(x)〉 = 〈x, F ′(x)〉 = −ν, (1.19)
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and hence Φ maps level surfaces of F to level surfaces of F∗. As a consequence, the isometry Φ preserves
the product structure in Proposition 1.3.1, but as is easily seen from (1.19), the orientation of the rays
is reversed: a ray pointing away from the origin in the primal cone is mapped to a ray pointing towards
the origin in the dual cone.

Let us now choose α ∈ R and consider the level surface Fα = {x ∈ Ko |F (x) = α}. By de�nition
the conormal map of the hypersurface immersion Fα ↪→ Rn maps the point x ∈ Fα to p ∈ Rn such that
p is proportional to F ′(x) and 〈p,−x〉 = 1. From the identity F ′(x)[x] = −ν we obtain the explicit
expression p = ν−1F ′(x) = −ν−1Φ(x). We get the following result.

Lemma 1.3.11. Let F : Ko → R be a self-concordant barrier on a regular convex cone K ⊂ Rn with
parameter ν. Let Fα be a level surface of F . Then the conormal map of the hypersurface immersion
Fα ↪→ Rn is given by −ν−1Φ, where Φ is the isometry between the interiors of K and K∗ de�ned by
Legendre duality.

1.3.3 Lorentz cones and hyperbolic barriers

As we have seen in Subsection 1.3.1, the e�ective barrier parameter of a self-concordant barrier with
a given level surface is a monotonic function of the ∞-norm of the cubic form C of this surface. Here
the lowest possible norm of the cubic form, ||C||∞ = 0, corresponds to the parameter value 2. In
this subsection we shall consider this case in detail. We show that the only cone which admits a
self-concordant barrier with parameter ν = 2 is the Lorentz cone with its usual hyperbolic barrier.

By an extension of the Pick-Berwald theorem a centro-a�ne hypersurface with vanishing cubic
form must be given by a quadratic equation [172, Section IV.6]. If it is in addition hyperbolic and
asymptotic to a cone, it must be a hyperboloid and the cone must be linearly isomorphic to the Lorentz

cone Ln = {x = (x0, x1, . . . , xn−1)T |x0 ≥
√∑n−1

j=1 x
2
j}. We immediately obtain the following result.

Lemma 1.3.12. Let F : Ko → R be a self-concordant logarithmically homogeneous barrier on a cone
K ⊂ Rn, n ≥ 2. Then the value of its barrier parameter is at least 2. If its parameter equals 2,
then there exists a basis of Rn such that in the corresponding coordinate system we have K = Ln and
F (x) = − log(x2

0 −
∑n−1
j=1 x

2
j ) + const.

The cubic form measures the deviation of the level surface of a barrier F from a quadric. This is not
surprising, since by Lemma 1.3.2 it is given by the third derivative F ′′′, which measures the deviation
of F from a quadratic function. We would like to stress an important di�erence between the a�ne and
the projective viewpoint, however. If F ′′′ = 0, then the level surfaces of F become paraboloids, while
in the case of a vanishing cubic form they become hyperboloids. A paraboloid cannot be asymptotic to
a convex cone, and that is why the self-concordance parameter cannot be zero. The "ideal barrier" in
the a�ne case thus does not exist, while in the projective case it is a well-known object. There are also
practical consequences. In the methods using a�ne scaling each iteration consists of a Newton-type
step in an a�ne space. This step can never be exact, because the deviation of F from a quadratic
function is always non-zero. In the projective case this drawback disappears.

Let us now compute the a�ne metric on the hyperboloid. We project the hyperboloid radially to the
a�ne section of Ln given by x0 = 1. The hyperboloid is thus mapped to the open (n− 1)-dimensional
unit ball, parameterized by the coordinates x = (x1, . . . , xn−1)T . The restriction of F to this section

is given by f(x) = − log(1−
∑n−1
j=1 x

2
j ). Formula (1.17) then yields

h =
1

2
· 2(1− ||x||2)I + 4xxT

(1− ||x||2)2
− 1

4
· 2x

1− ||x||2
· 2xT

1− ||x||2
=

(1− ||x||2)I + xxT

(1− ||x||2)2

for the a�ne metric. Thus we obtain the Beltrami-Klein model of hyperbolic space. The geodesics of
the a�ne metric in this model are straight lines.
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1.4 Canonical barrier

1.4.1 Introduction

In this section we present the main result of [93], the construction of the canonical barrier. This result
is a consequence of a deep theorem in a�ne di�erential geometry, the Calabi theorem. The connections
which have been made in the previous section between a�ne di�erential geometry and logarithmically
homogeneous functions allow to rewrite the Calabi theorem as an existence and uniqueness result for
the solution of a certain PDE on the interior of an arbitrary regular convex cone. That this solution is
a self-concordant barrier will then be deduced from a curvature estimate.

The canonical barrier is a universal construction, in the sense that it assigns a self-concordant
barrier to every regular convex cone. It is, however, not the �rst such construction. In [171, Section
2.5] Nesterov and Nemirovski introduce the universal barrier. This is a self-concordant logarithmically
homogeneous barrier which exists and is unique, up to an additive constant1, for any regular convex
cone K ⊂ Rn. Its barrier parameter ν is of order O(n), i.e., there exists a constant C > 0, independent
of K and n, such that ν can be chosen equal to Cn [171, Theorem 2.5.1, Remark 2.5.1, p.50]. In
[77, Cor. 4.1, p.868] G�uler showed that the universal barrier on a regular convex cone K is, up to an
additive constant, equal to C times the logarithm of the characteristic function of K. The latter object
was introduced by Koranyi in [126] and is given by the expression

ϕ(x) =

∫
K∗

e−〈x,y〉dy (1.20)

for x ∈ Ko. A similar function was introduced by Koecher in [121] on so-called domains of positivity,
which are self-dual cones2 K such that the isomorphism between K and K∗ is a self-adjoint map.
Some interesting properties of a particular level surface of the characteristic function, the constant
volume envelope, have been deduced in [73, Sections 3,4]. From de�nition (1.20) it follows that the
universal barrier on a product cone is the sum of the universal barriers on the factor cones, thus it is
compatible with the operation of taking product cones. Moreover, it is invariant with respect to any
automorphism of K with determinant 1, i.e., the unimodular automorphism subgroup. Note that this
property ensures that for homogeneous cones, the level surfaces of the universal barrier are the orbits of
the unimodular subgroup of automorphisms. The universal barrier does not behave well with respect
to duality, however: in [6] an example of a self-dual cone was given on which the duality mapping
de�ned by the universal barrier is not involutive, and hence the universal barrier is not equal to its
dual barrier.

The canonical barrier is another self-concordant logarithmically homogeneous barrier which exists
and is unique, up to an additive constant, for every regular convex cone. It can be obtained as the
potential of a natural Hessian metric on the interior of K, the Cheng-Yau metric, which was �rst
introduced in [42]. The canonical barrier shares with the universal barrier all invariance properties,
but in addition it behaves well under duality. It can be represented as the solution of the PDE
log detF ′′ = 2F with boundary condition F |∂K = +∞. On homogeneous cones its level surfaces equal
those of the universal barrier, and on this class of cones the two barriers are essentially the same object.
That the universal barrier on homogeneous cones satis�es above PDE has been shown already by G�uler
[77, Theorem 4.4, p.868]. G�uler also conjectured that the solution of this PDE de�nes a self-concordant
barrier for general cones.

We give a precise statement of the Calabi theorem on a�ne spheres in Subsection 1.4.2, where we
also list some properties of the Cheng-Yau metric. As with the universal barrier, which can easily
be obtained as the logarithm of the long-known characteristic function of K, the di�culty with the
canonical barrier is to show that it is indeed a barrier, in particular, that it satis�es the self-concordance
condition (1.2). The proof of this fact is the main result of this section and will be accomplished in
Subsection 1.4.3. It turns out that the barrier parameter of the canonical barrier equals the dimension n
of K. Like with the universal barrier, it may be possible to lower the barrier parameter of the canonical
barrier by multiplying it by a positive constant smaller than 1, i.e., the e�ective barrier parameter of
the canonical barrier may be strictly smaller than n. In Subsection 1.4.4 we give expressions for

1This constant is determined by the choice of the volume form on K∗ when integrating (1.20).
2Here we understand self-dual in the wider sense that K is linearly isomorphic to its dual cone K∗.
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the canonical barrier on a class of cones including the 3-dimensional power cone in order to provide
nontrivial examples.

The self-concordance of the canonical barrier has been obtained independently by Daniel Fox in
[72]. In that paper he applies methods that are more sophisticated than those used here, and he
obtains more general results. He also mentions that the barrier parameter of the canonical barrier can
be obtained by the easier method presented here.

1.4.2 A�ne hyperspheres and the Calabi theorem

A proper a�ne sphere is a hypersurface in Rn whose a�ne normals all meet in a point, which may be
conveniently considered as the origin. The Calabi theorem, originally formulated as the Calabi conjec-
ture in [39, p.22], is an existence and uniqueness result on hyperbolic a�ne spheres. The conjecture
has been proven by the e�orts of many authors, a synthesis of the proof is given in [135, Section 2].

Theorem 1.4.1 (Calabi theorem). Let K ⊂ Rn be a regular convex cone. Then there exists a unique
foliation of the interior Ko into a family of mutually homothetic proper hyperbolic a�ne hyperspheres
which are asymptotic to K.

Since the direction of the a�ne normal is invariant under a�ne transformations of Rn, we have
that this foliation is invariant under linear isomorphisms of the cone. Let us formalize this result as
follows.

Corollary 1.4.2. Let A : Rn → Rn be an invertible linear map, let K ⊂ Rn be a regular convex cone,
and let K ′ = A[K] be its image. Then A maps the foliation of Ko into proper a�ne spheres which are
asymptotic to K to the foliation of intK ′ into proper a�ne spheres which are asymptotic to K ′.

The Calabi theorem is closely linked to another existence and uniqueness result involving regular
convex domains in Rn. Here regular means that the domain is non-empty and does not contain any
line.

Proposition 1.4.3. Let Ω ⊂ Rn be a regular convex domain. Then there exists a unique locally
strongly convex smooth solution F : Ω→ R of the PDE

log detF ′′ = 2F (1.21)

with boundary condition limx→∂Ω F (x) = +∞.
Existence of the solution is proven in [42, Theorem 4.4, p.365], while uniqueness follows from [41,

Proposition 5.5, p.528]. The Hessian F ′′ of the solution de�nes a complete Einstein-Hessian metric on
Ω, the Cheng-Yau metric. Here Einstein-Hessian means that an appropriate complexi�cation of the
Riemannian manifold has its Ricci curvature tensor equal to a multiple of the metric tensor [196, Def.
3.3, p.41].

For domains Ω which can be represented as a product of two domains, we have the following evident
result.

Lemma 1.4.4. Let Ωn ⊂ Rn, Ωm ⊂ Rm be regular convex domains, and let Fn : Ωn → R, Fm :
Ωm → R be the solutions of the boundary value problem in Proposition 1.4.3 for the domains Ωn,Ωm.
Then the solution of this boundary value problem on the product domain Ω = Ωn × Ωm is given by
F (x, y) = Fn(x) + Fm(y).

Equation (1.21) is invariant with respect to a�ne transformations of Rn. It can be checked directly
that if x 7→ x̃ = Ax+ b is an a�ne coordinate transformation of Rn, then the solution F̃ (x̃) of (1.21)
in the new coordinates is given by

F̃ (x̃) = F (x)− log |detA|. (1.22)

In particular, F remains invariant if detA = ±1, i.e., if the a�ne map preserves the volume from on
Rn. If no distinguished volume form is given, then the solution of (1.21) may change by an additive
constant under coordinate transformations, due to the coordinate dependence of the de�nition of the
determinant.
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We wish to use the solution F as a barrier for conic programming, and hence our interest is in
the case when the domain Ω is the interior of a regular convex cone K ⊂ Rn. Then the homothety
x 7→ x̃ = αx is an automorphism of Ko for all α > 0. We therefore obtain from (1.22) that F (αx) =
F (x) − n logα for all α > 0, i.e., the solution F satis�es (1.3) with ν = n. That the potential of the
Cheng-Yau metric on regular convex cones is logarithmically homogeneous was already mentioned in
[139, pp.426�427] without a detailed proof. By Lemma 1.3.7 and by virtue of the boundary condition in
Proposition 1.4.3 it follows that the level surfaces of the solution F of (1.21) form a family of mutually
homothetic centro-a�ne surfaces which are asymptotic to the cone K and foliate its interior. Sasaki
[188, pp.73�74] has shown that these level surfaces are exactly the hyperbolic a�ne hyperspheres from
the Calabi Theorem 1.4.1. This relation has been later rediscovered as the main result of [139]. A more
comprehensive review of the literature and an independent derivation can be found in [72], where the
solution of (1.21) was termed canonical potential of the cone K.

The solution F shares with the universal barrier of Nesterov and Nemirovski its existence and
uniqueness as well as the invariance properties with respect to unimodular automorphisms and the
behaviour under the operation of taking products of cones.

In contrast to the universal barrier, whose dual barrier on the dual cone is in general not the
universal barrier of the dual cone, a�ne hyperspheres also behave well under duality. In particular, we
have the following result.

Proposition 1.4.5. [74, Prop. 1, p.391] Let M ⊂ Rn be an a�ne hypersphere. Then the image of M
under the conormal map is also an a�ne hypersphere.

By Lemma 1.3.11 the conormal map is proportional to the isometry Φ between the interiors of the
cones K,K∗ de�ned by Legendre duality. Therefore Φ maps the foliation of Ko by a�ne spheres to
the corresponding foliation of the interior of K∗.

1.4.3 Self-concordance

In this subsection we prove the self-concordance of the solution F of equation (1.21). By Theorem
1.3.8 this property is equivalent to the uniform boundedness of the ∞-norm of the cubic form of the
level surfaces of F . However, in the previous subsection we have seen that these level surfaces are
exactly the a�ne spheres which are asymptotic to the cone K. In [135, Corollary 2.6.5, p.128] a
uniform bound on the 2-norm of the cubic form of hyperbolic a�ne spheres has been deduced by a
purely algebraic argument from estimates of the Ricci curvature of the a�ne metric. We shall provide
a similar argument for bounding the ∞-norm. The proof provided here is somewhat di�erent from
that in [93] and has been published in the related paper [91].

The Ricci curvature tensor Rich of the centro-a�ne metric h on complete hyperbolic a�ne spheres
of dimension n− 1 satis�es the inequalities −(n− 2)h � Rich � 0. The �rst inequality comes from [39,
eq. (2.7), p.24], the second one from [39, Theorem 5.1, p.31].

The utility of these bounds comes from the fact that the Ricci tensor and the cubic form are
algebraically dependent. The Ricci curvature of the a�ne metric is explicitly given by [191, p.3]

Rij = −(n− 2)hij +
1

4
hkrhlsCiklCjrs, (1.23)

where hij is, as usual, the inverse of the matrix hij of the centro-a�ne metric.
Moreover, the cubic form of an a�ne sphere satis�es the apolarity condition [172, Section II, The-

orem 4.4]
hijCijk = 0. (1.24)

We shall need the following auxiliary inequality.

Lemma 1.4.6. Let n ≥ 3 and λ1, . . . , λn−2 ≤ 1 be such that
∑n−2
i=1 λi = −1. Then

3

4

n−2∑
i=1

λ2
i −

1

2

n−2∑
i=1

λ3
i ≥

3n− 4

4(n− 2)2
.
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Proof. De�ne ci = (n−2)λi+1. Then
∑n−2
i=1 ci = 0 and ci ≤ n−1 for all i. It follows that c3i ≤ (n−1)c2i

for all i. We then have

3

4

n−2∑
i=1

λ2
i −

1

2

n−2∑
i=1

λ3 − 3n− 4

4(n− 2)2
=

3

4(n− 2)2

n−2∑
i=1

(ci − 1)2 − 1

2(n− 2)3

n−2∑
i=1

(ci − 1)3 − 3n− 4

4(n− 2)2

=

(
3

4(n− 2)
+

1

2(n− 2)2
− 3n− 4

4(n− 2)2

)
−
(

3

2(n− 2)2
+

3

2(n− 2)3

) n−2∑
i=1

ci

+

(
3

4(n− 2)2
+

3

2(n− 2)3

) n−2∑
i=1

c2i −
1

2(n− 2)3

n−2∑
i=1

c3i

≥
(

3n

4(n− 2)3
− n− 1

2(n− 2)3

) n−2∑
i=1

c2i =
n+ 2

4(n− 2)3

n−2∑
i=1

c2i ≥ 0.

This completes the proof.

For n = 2 every regular convex cone is isomorphic to R2
+, which is homogeneous. Therefore the

condition n ≥ 3 in the lemma does not restrict generality.

Corollary 1.4.7. Let B be a real symmetric (n − 1) × (n − 1) matrix with vanishing trace. Then
3
4λmax(B) trB2 − 1

2 trB3 ≥ n(n−1)
4(n−2)2λ

3
max(B).

Proof. If λmax(B) = 0, then B = 0 and the assertion of the corollary is evident.
Suppose now that λmax(B) > 0. Let λ1 ≤ λ2 ≤ · · · ≤ λn−2 ≤ λn−1 = 1 be the eigenvalues of the

matrix B̃ = B
λmax(B) in increasing order. Then

∑n−2
i=1 λi = −1 and λi ≤ 1 for all i. We then have

3

4
λmax(B) trB2 − 1

2
trB3 − n(n− 1)

4(n− 2)2
λ3

max(B) = λ3
max(B)

(
3

4
tr B̃2 − 1

2
tr B̃3 − n(n− 1)

4(n− 2)2

)
= λ3

max(B)

[
3

4

(
1 +

n−2∑
i=1

λ2
i

)
− 1

2

(
1 +

n−2∑
i=1

λ3
i

)
− n(n− 1)

4(n− 2)2

]
≥ 0,

where the inequality comes from the preceding lemma.

We are now in a position to estimate the norm ||C(p)||∞ = maxu∈TpM : h(p)[u,u]=1 C(p)[u, u, u] of
the cubic form at a point p of a complete hyperbolic a�ne sphere M of dimension n − 1. Let p ∈ M
be an arbitrary point, let ξ ∈ TpM be a maximizer of the cubic form on the unit sphere in TpM . We
shall now drop the argument p from the tensors h,C.

De�ne the symmetric (0, 2)-tensor Bij = Cijkξ
k. Note that B is traceless by the apolarity condition

(1.24), i.e., hijBij = 0, and that Bijξ
iξj = ||C||∞. Moreover, by the optimality conditions [135, Lemma

2.2.3.19, p.106] on ξ we have that Bijξ
iηj = 0 and Bijη

iηj ≤ 1
2Bijξ

iξj ≤ ||C||∞ for every unit length
vector η which is orthogonal to ξ. It follows that ξ is also a maximizer of B on the unit sphere in TpM .
In particular, we have

Bijξ
j = ||C||∞hijξj (1.25)

as the �rst order optimality condition, and ||C||∞ is the maximal eigenvalue of the matrix of B in any
orthonormal basis of TpM .

In an orthonormal basis of TpM the matrix of the centro-a�ne metric h is given by the identity
matrix In−1. Let {ξ, η1, . . . , ηn−2} be an orthonormal basis of TpM , then we have

||C||2∞ = (Bijξ
iξj)2 =

(
−
n−2∑
k=1

Bijη
i
kη
j
k

)2

≤ (n− 2)

n−2∑
k=1

(Bijη
i
kη
j
k)2 ≤ (n− 2)

n−2∑
k=1

BilB
l
jη
i
kη
j
k

= (n− 2)
(
BilB

li −BilBljξiξj
)

= (n− 2)
(
CiljC

li
k ξ

jξk − ||C||2∞
)

= 4(n− 2)(Rjk + (n− 2)hjk)ξjξk − (n− 2)||C||2∞ ≤ 4(n− 2)2 − (n− 2)||C||2∞.
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Here the second equality holds because B is traceless. The next two inequalities are due to Bunjakowski-
Schwarz. The third equality holds because

∑n−2
k=1 ηkη

T
k = In−1− ξξT . We used (1.25) and (1.23) in the

last two equalities, respectively, and the non-positivity of the Ricci curvature [39, Theorem 5.1, p.31]
in the last inequality.

Since the point p ∈ M was arbitrary, it follows that ||C||∞ ≤ 2(n−2)√
n−1

. Theorem 1.3.8 then yields

the following result.

Lemma 1.4.8. Let K ⊂ Rn be a regular convex cone and let F be the solution of (1.21) on Ko. Then
F is a self-concordant logarithmically homogeneous barrier on K with barrier parameter ν = n.

De�nition 1.4.9. We call the barrier given by the solution F of (1.21) the canonical barrier.

Corollary 1.4.10. Let K ⊂ Rn be a regular convex cone. Then the barrier parameter of the optimal
barrier on K does not exceed n.

We shall summarize the obtained results in the following theorem.

Theorem 1.4.11. Let K ⊂ Rn be a regular convex cone. Fix a basis of Rn and consider in the
corresponding coordinate system the boundary value problem

log det

(
∂2F (x)

∂x2

)
= 2F (x), x ∈ Ko; F |∂K = +∞. (1.26)

This problem has a unique locally strictly convex solution F : Ko → R. This solution is a smooth
logarithmically homogeneous self-concordant barrier, the canonical barrier, on K with barrier parameter
n, and gives rise to an Einstein-Hessian metric F ′′ on Ko. It is invariant under unimodular basis
changes of Rn and is determined up to an additive constant under arbitrary basis changes. In particular,
it is invariant under the group of unimodular automorphisms of the cone K. The dual barrier F∗ :
intK∗ → R di�ers from the solution of the above boundary value problem on the dual cone K∗ by an
additive constant, and hence its Hessian is an Einstein-Hessian metric on intK∗. If K = K1 × K2

is a product of regular convex cones, then the canonical barrier F on K is the sum of the canonical
barriers on the individual factor cones K1,K2.

From the invariance properties it follows that the canonical barrier has the same level surfaces as the
universal barrier on the class of homogeneous cones, see also [77, Theorem 4.4, p.868]. In particular, all
classical barriers used in interior-point methods for solving conic programs over irreducible symmetric
cones have the same level surfaces as the canonical barrier. This shows at the same time that the
e�ective barrier parameter of the canonical barrier may be strictly smaller than the dimension n of the
cone. Below in Section 1.4.4 we shall demonstrate this on the example of a non-homogeneous cone.

The canonical barrier is in general not optimal, i.e., on a given cone K there may exist self-
concordant barriers with parameter strictly smaller than the e�ective parameter of the canonical barrier.

An example is the symmetric cone L3×R+ =
{
x ∈ R4 |x1 ≥

√
x2

2 + x2
3, x4 ≥ 0

}
. The optimal barrier

− log(x2
1 − x2

2 − x2
3) − log x4 on this cone has barrier parameter ν = 3, while the canonical barrier

− 3
2 log

x2
1−x

2
2−x

2
3

3 − log x4 has e�ective barrier parameter 4.

1.4.4 Examples

In this subsection we provide analytic expressions for the canonical barrier on several non-homogeneous
cones. As this barrier is a solution of a non-linear PDE, such expressions are notoriously di�cult to
obtain and likely do not exist is most cases. Most promising are cones K possessing a rich continuous
symmetry group, which allows to reduce the dimension of the PDE by using its invariance properties.
In particular, if the orbits of the automorphism group of the cone have codimension 1, then the PDE
can be reduced to an ordinary di�erential equation (ODE). Here we consider the canonical barrier
on the power cone in arbitrary dimension and on 3-dimensional cones with a non-trivial symmetry
group, which we call semi-homogeneous. In general, the canonical barrier can be expressed by elliptic
functions in these cases. These results have been published in [93] and [92], respectively. In recent
years a promising approach based on loop groups has been developed to compute the hyperbolic a�ne
spheres which are asymptotic to general 3-dimensional cones [62, 137, 136], by using the especially rich
complex-analytic structure of these surfaces [217, 198].
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Generalized power cone

Let n ≥ 3, let p, q ∈ (1,+∞) such that 1
p + 1

q = 1, and consider the cone

K =
{

(x, y, zT )T ∈ Rn |x ≥ 0, y ≥ 0, ||z||2 ≤ (
√
px)1/p(

√
qy)1/q

}
.

For n = 3, i.e., z scalar, we obtain a linear image of the power cone, a well-known non-homogeneous
self-dual cone. For general n the cones K have been considered in [40, p.94] and are also self-dual.

The cone K is invariant under unimodular automorphisms of the form

x 7→ α−1−n−2
q x, y 7→ α1+n−2

p y, z 7→ α
1
q−

1
pUz,

where α > 0 and U is an orthogonal matrix of size n − 2. Hence the canonical barrier on K, which
must be invariant under these automorphisms and satis�es (1.3) with ν = n, can be written in the
form

F (x, y, z) = −
(

1 +
n− 2

p

)
log(
√
px)−

(
1 +

n− 2

q

)
log(
√
qy) + φ

(
(
√
px)−1/p(

√
qy)−1/q||z||

)
,

where φ : [0, 1)→ R is a function of a scalar variable such that limt=1 φ(t) = +∞.
Setting t = (

√
px)−1/p(

√
qy)−1/q||z|| and inserting above expression into PDE (1.21) and integrat-

ing, we obtain

log t = − 1

2p
log

(
1 +

p+ n− 2

ρ

)
− 1

2q
log

(
1 +

q + n− 2

ρ

)
,

φ =
1

2

(
1 +

n− 2

p

)
log(ρ+ p+ n− 2) +

1

2

(
1 +

n− 2

q

)
log(ρ+ q + n− 2),

where ρ = tdφdt . These relations give a parametric representation of the solution curve (t, φ(t)), with the
parameter ρ ranging from 0 to +∞. It is also seen that for p 6= 2 there exists no closed-form expression
for φ(t).

Numerical calculations indicate the following conjecture.

Conjecture 1.4.12. The e�ective barrier parameter of the canonical barrier F on the cone K equals

ν = nmax(p,q)
max(p,q)+n−2 .

The conjecture can be formulated equivalently as the nonnegativity of a certain multivariate poly-
nomial. For n = 3, i.e., when K is isomorphic to the power cone, this polynomial can be shown to

be a sum of squares. The corresponding value ν = 3 max(p,q)
max(p,q)+1 of the barrier parameter is smaller than

the best-known values ν = 3 (analytically) and ν = 3− 2
max(p,q) (numerically) reported in [40, Section

3.1]. In Fig. 1.4 the self-concordance parameters of the barriers proposed in [40] and of the canonical
barrier are depicted as a function of p.

Homogenized epigraph of the exponential function

Consider the closure of the homogenization of the epigraph of the exponential function given by

K = {(x, y, 0)T |x ≤ 0, y ≥ 0} ∪
{

(x, y, z)T
∣∣∣ y
z
≥ exp

x

z
, z > 0

}
.

This cone is invariant with respect to the unimodular subgroup of automorphisms (x, y, z) 7→ (et(x−
3tz), e−2ty, etz), t ∈ R. Invariance of the canonical barrier with respect to this group leads to the
Ansatz

F (x, y, z) = − log y − 2 log z + φ
(

log
y

z
− x

z

)
.

Here φ : R++ → R is a scalar function. Inserting F into (1.21) and integrating, we obtain the parametric
representation (

t
φ

)
=

1

2

(
log(1 + κ) + 2κ

log(1 + κ)− 3 log κ

)
of the function φ(t), where κ = − 1

φ̇
runs through all positive reals.

It is not hard to check that the e�ective barrier parameter of the canonical barrier for this cone
equals 3.
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Figure 1.4: E�ective self-concordance parameters of barriers for the power cone

Asymmetric power cone

Consider the cone
K = {(x, y, z)T | − αx1/py1/q ≤ z ≤ x1/py1/q}

with α ∈ (0, 1], p ∈ [2,+∞), and q ∈ (1, 2] such that 1
p + 1

q = 1. This cone is invariant with respect

to the unimodular group of automorphisms (x, y, z) 7→ (e(2p−1)tx, e−(p+1)ty, e−(p−2)tz). The canonical
barrier on K must be invariant with respect to this symmetry group and therefore has the form

F = −p+ 1

p
log x− q + 1

q
log y + φ

(
x−1/py−1/qz

)
, (1.27)

where φ : (−α, 1)→ R is a scalar function.
In order to represent this function, we shall need the cubic polynomial P (ξ) = 4(p+ q)(ξ − 1)(ξ +

p)(ξ + q) + c2 depending on a parameter c ∈ [0, 2(p + q)) which we shall choose further below. This
polynomial has 3 real roots ξ1, ξ2, ξ3 satisfying 1 ≥ ξ1 > 0 > ξ2 ≥ −q ≥ −p ≥ ξ3. De�ne the function

G(ζ) =

(
1

ζ2 + ξ1 − 1
− 1

p(ζ2 + ξ1 + p)
− 1

q(ζ2 + ξ1 + q)

)(
ζ −

√
(1− ξ1)(1− ξ2)(1− ξ3)√

(ζ2 + ξ1 − ξ2)(ζ2 + ξ1 − ξ3)

)
.

This function has a simple pole at ζ = −
√

1− ξ1 with residue 1 and is analytic elsewhere on R. Left of
the pole it is negative, right of the pole positive, decreasing in absolute value as |ζ|−3. We now choose
the parameter c such that

logα = −
∫ +∞

0

G(ζ −
√

1− ξ1) +G(−ζ −
√

1− ξ1) dζ.

The pole of the function G cancels out in the integrand and the integral is �nite and positive. It can
be checked that c ∈ [0, 2(p+ q)) is mapped bijectively to α ∈ (0, 1] by this equation.

A parametric description of the function φ(t) is then given by

t =


exp

(
−
∫ +∞
ζ

G(ζ) dζ
)
, ζ ∈ (−

√
1− ξ1,+∞),

−α · exp
(∫ ζ
−∞G(ζ) dζ

)
, ζ ∈ (−∞,−

√
1− ξ1),

0, ζ = −
√

1− ξ1,
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φ = log

√
(1− ξ1)(1− ξ2)(1− ξ3) + ζ

√
(ζ2 + ξ1 − ξ2)(ζ2 + ξ1 − ξ3)

t
√
p+ q

.

The integrals over G(ζ) can be expressed by elliptic functions [38], see also [2].

Symmetric power cone

Specializing the value of α from the previous subsection to 1 leads to the power cone

K = {(x, y, z)T | |z| ≤ x1/py1/q}.

The value α = 1 corresponds to the value c = 0, which yields the roots ξ1 = 1, ξ2 = −q, ξ3 = −p of
the polynomial P . The canonical barrier of K is still given by (1.27), but the integrals have analytic
expressions and the parametric representation of the scalar function φ : (−1, 1)→ R can be simpli�ed.
Namely, we have(

t
φ

)
=

(
(ζ2 + p+ 1)−

1
2p (ζ2 + q + 1)−

1
2q ζ

− 1
2 log(p+ q) + p+1

2p log(ζ2 + p+ 1) + q+1
2q log(ζ2 + q + 1)

)
with parameter ζ ∈ R.

Intersection of the power cone with a half-space

For the value α = 0 we obtain the cone

K = {(x, y, z)T | 0 ≤ z ≤ x1/py1/q},

which is an intersection of the power cone with the closed half-space given by the inequality z ≥ 0. The
canonical barrier for this cone is given by (1.27) with the function φ : (0, 1)→ R given parametrically
by

t = (
√
ξ + p+ q − 1 +

√
p+ q)

(
ξ

(
√
ξ + p+ q − 1 +

√
p+ q − 1)2

)√p+q−1√
p+q

·

·
(√

ξ + p+ q − 1 +
√
q − 1

ξ + p

) 1
p
(√

ξ + p+ q − 1 +
√
p− 1

ξ + q

) 1
q

,

φ = log

(
1 +

ξ
√
ξ + p+ q − 1√

p+ q

)
− log t,

where the parameter runs through ξ ∈ (0,+∞). The e�ective barrier parameter of the canonical barrier
for this cone equals 3.

Intersection of L3 with a half-space

For the special case p = q = 2 in the previous subsection we get the cone

K = {(x, y, z)T | 0 ≤ z ≤ √xy},

which is isomorphic to the cone built over a half-disc. The canonical barrier for K is given by (1.27)
with the parametrization of φ simplifying to

t =

( √
ξ

√
ξ + 3 +

√
3

)√3

· (
√
ξ + 3 + 2)(

√
ξ + 3 + 1)

ξ + 2
,

φ = log

(
1 +

ξ
√
ξ + 3

2

)
+
√

3 log

√
ξ + 3 +

√
3√

ξ
− log

(
√
ξ + 3 + 2)(

√
ξ + 3 + 1)

ξ + 2
,

with parameter ξ ∈ (0,+∞). The e�ective barrier parameter of the canonical barrier for this cone
equals 3.
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Power cone plus orthant

The cone dual to the intersection of the power cone with a half-space is isomorphic to

K = {(x, y, z)T | z ≥ −x1/py1/q},

which equals the sum of the power cone and the nonnegative orthant of R3. The canonical barrier for
this cone is given by (1.27) with the function φ : (−1,+∞)→ R given parametrically by

t =
1− ξ√

ξ + p+ q − 1 +
√
p+ q

(√
ξ + p+ q − 1 +

√
p+ q − 1√

ξ + p+ q − 1−
√
p+ q − 1

)√p+q−1√
p+q

·

· (
√
ξ + p+ q − 1 +

√
q − 1)−

1
p (
√
ξ + p+ q − 1 +

√
p− 1)−

1
q ,

φ = log

√
p+ q − ξ

√
ξ + p+ q − 1√

p+ q t
= log

1 + ξ + ξ2

p+q

1 + ξ
√

1 + ξ−1
p+q

+ log
1− ξ
t

,

where the parameter runs through ξ ∈ (0,+∞). The e�ective barrier parameter of the canonical barrier
for this cone equals 3.

Sum of L3 and an orthant

Specializing to p = q = 2 in the previous subsection we get

K = {(x, y, z)T | z ≥ −√xy},

which equals the sum of an inclined Lorentz cone and the nonnegative orthant of R3. The canonical
barrier for this cone is given by (1.27) with the function φ : (−1,+∞)→ R given parametrically by

t =
1− ξ

(
√
ξ + 3 + 2)(

√
ξ + 3 + 1)

(√
ξ + 3 +

√
3

√
ξ + 3−

√
3

)√3
2

φ = log
1 + ξ + ξ2

4

1 + ξ
√

1 + ξ−1
4

+ log(
√
ξ + 3 + 2) + log(

√
ξ + 3 + 1) +

√
3

2
log

√
ξ + 3−

√
3

√
ξ + 3 +

√
3
,

where the parameter runs through ξ ∈ (0,+∞). The e�ective barrier parameter of the canonical barrier
for this cone equals 3.

Semi-homogeneous 3-dimensional cones

The computation of the canonical potential in the cases listed above was possible due to a reduction of
PDE (1.21) to an ODE by virtue of a non-trivial automorphism group of the cone. We shall call regular
convex cones K ⊂ Rn whose automorphism group has orbits of codimension 1 semi-homogeneous. The
following result, whose proof can be found in [92], shows that every 3-dimensional semi-homogeneous
cone is isomorphic to one of the cases computed above.

Theorem 1.4.13. Let K ⊂ R3 be a regular convex cone such that dim AutK ≥ 2. Then K is
isomorphic to exactly one of the following cones.

1. the cone obtained by the homogenization of the epigraph of the exponential function,
2. the positive orthant R3

+,

3. the cone given by {x | z ≥ −x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞), 1
p + 1

q = 1,

4. the cone given by {x | −αx1/py1/q ≤ z ≤ x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞), 1
p + 1

q = 1,

α ∈ (0, 1],
5. the cone given by {x | 0 ≤ z ≤ x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞), 1

p + 1
q = 1.
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1.5 Self-scaled barriers and parallel cubic forms

1.5.1 Introduction

In this section we study the centro-a�ne geometry of the level surfaces of self-scaled barriers. We
show that self-scaledness of a barrier is characterized by the vanishing of the covariant derivative of
the cubic form on its level surfaces. Therefore from the viewpoint of a�ne di�erential geometry the
self-scaled barriers are the simplest class of self-concordant logarithmically homogeneous barriers after
the hyperbolic barrier on the Lorentz cone, which is characterized by the vanishing of the cubic form
itself.

Self-scaled barriers have been classi�ed completely, with the �rst steps done by Hauser [84, 83, 85]
and the classi�cation being completed independently by Schmieta [189], G�uler [86], and Lim [87].
Hauser showed that a self-scaled barrier FK×K′(x, y) on a product of cones K,K ′ decomposes into a
sum FK(x) + FK′(y) of self-scaled barriers on the factor cones, with the decomposition being unique
up to an additive constant. The other authors showed that an irreducible self-scaled cone must be
symmetric and every self-scaled barrier on it must be an a�ne scaling of the universal barrier. These
results rely on the connection between symmetric cones and Jordan algebras.

De�nition 1.5.1. A Jordan algebra J over a �eld K is a vector space over K endowed with a bilinear
operation • : J × J → J satisfying the following conditions:

i) commutativity: x • y = y • x for all x, y ∈ J ,
ii) Jordan identity: x • (x2 • y) = x2 • (x • y) for all x, y ∈ J , where x2 = x • x.
The Jordan algebra is called Euclidean or formally real if K = R and the identity

∑m
k=1 x

2
k = 0

entails xk = 0, k = 1, . . . ,m, for all elements k1, . . . , km ∈ J .

The symmetric cones can then be characterized as sets of the form {x2 |x ∈ J} or as closures of
sets of the form {exp(x) |x ∈ J}, where J is a Euclidean Jordan algebra [214, Theorem 3],[122]. Most
of the material on Jordan algebras used in this section can be looked up in [123]. Other references on
Jordan algebras are [110] or [143].

The Euclidean Jordan algebras have been completely classi�ed in [112]. Every Euclidean Jordan
algebra can in a unique manner be represented as a direct sum of simple or irreducible Euclidean Jordan
algebras [112, p.38]. The simple Euclidean Jordan algebras have been listed in [112, Fundamental
Theorem 2].

In this section we shall work a lot with the partial derivatives of a barrier F . We will denote

the partial derivatives of F short-hand by indices after a comma. Thus ∂F
∂xα = F,α,

∂2F
∂xα∂xβ

= F,αβ
etc. The elements of the inverse of the Hessian F ′′ will be denoted by upper indices after a comma,
(F ′′)−1 = (F ,αβ)α,β=1,...,n, such that F,αβF

,βγ = δγα.
G�uler and Schmieta associate to every self-scaled barrier F on a cone K ⊂ Rn a Euclidean Jordan

algebra J by the formula

(u • v)γ = −1

2
F ,γδF,αβδu

αvβ . (1.28)

The cone of squares of the algebra J then coincides with the original symmetric cone K. This approach
can be traced back to Koecher [123] for the more general case of ω-domains, see also [211].

Given the Jordan algebra J , it is, however, not possible to recover the derivatives F ′′, F ′′′ in a unique
manner from its structure tensor. It is easily seen, e.g., that the right-hand side of (1.28) remains
invariant under multiplication of F by a constant. In order to be obtain a one-to-one correspondence
between the algebra and the derivatives of the barrier, we have to augment the de�nition of Jordan
algebra as follows.

De�nition 1.5.2. Ametrised algebra is a pair (A, σ) such thatA is an algebra and σ is a non-degenerate
symmetric invariant bilinear form on A, i.e.,

σ(a, b • c) = σ(a • b, c) (1.29)

for all a, b, c ∈ A.

If A is commutative, then condition (1.29) is equivalent to the condition that the operator La of
left multiplication by a is self-adjoint with respect to σ for all a ∈ A.
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The Hessian F ′′ is invariant with respect to the algebra de�ned by (1.28), because the third deriva-
tive F ′′′ is symmetric. Given the metrised Jordan algebra (J, F ′′), it is then possible to recover the
third derivative. The concept of metrised algebra has been introduced in [31] by Bordemann, but in the
context of Jordan algebras it has been essentially used and studied already by Koecher [123, Theorem
III.10, p.64].

Here we shall establish a di�erent link between Jordan algebras and barriers. Let F be a logarith-
mically homogeneous function F with non-degenerate Hessian, and let C be the cubic form of a level
surface of F . We show that the integrability condition of the quasi-linear fourth order PDE ∇̂C = 0
is exactly the Jordan identity for the algebra (1.28). This implies that a non-degenerate centro-a�ne
hypersurface immersion satisfying the condition ∇̂C = 0 de�nes a metrised Jordan algebra (1.28) with
invariant form F ′′. Thus self-scaledness, the metrised Jordan algebra structure, and the parallelism
of the cubic form are all equivalent expressions of the same condition. This provides also a radically
di�erent view on self-scaled barriers, because these are initially de�ned by a global algebraic property,
while the parallelism condition is local and geometric. We consider these connections in Subsection
1.5.3.

A similar parallelism condition turns out to be equivalent to condition (1.3) of logarithmic homo-
geneity. Namely, a scalar function F on a domain in Rn is logarithmically homogeneous with respect
to some central point if and only if the �rst derivative F ′ is parallel with respect to the Levi-Civita
connection de�ned by the Hessian F ′′. This yields a di�erential-geometric description of logarithmic
homogeneity. This relation is considered in Subsection 1.5.2.

We show (Theorem 1.5.14) that given a Hessian manifold satisfying D̂Dg = 0, the existence of
a Hessian potential F satisfying D̂F ′ = 0 is equivalent to unitality of the metrised Jordan algebra
associated to the manifold, where D is the canonical a�ne connection of the manifold and D̂ the
Levi-Civita connection of g.

The correspondence between Euclidean Jordan algebras and symmetric cones can be generalized
to the non-convex case [214, Theorem 4], see also [123],[140],[122]. In a similar manner, the relation
between the condition that the cubic form of the level surface of a logarithmically homogeneous function
F is parallel and the condition that the algebra de�ned by virtue of (1.28) is Jordan still holds for
non-convex functions F and non-Euclidean Jordan algebras. This equivalence can be used to reduce
problems about centro-a�ne hypersurface immersions with parallel cubic form to problems about
metrised Jordan algebras. We used this approach in [96] to solve the problem of classifying a�ne
spheres with parallel cubic form. We shall brie�y present this result in Subsection 1.5.6.

1.5.2 Parallel �rst derivative

In this subsection we consider the condition on a general Hessian metric F ′′ that the �rst derivative
F ′ of the Hessian potential is parallel with respect to the Levi-Civita connection D̂ de�ned by F ′′.
We show that this condition is equivalent to the logarithmic homogeneity of F . Since the condition
D̂F ′ = 0 is invariant with respect to a�ne transformations of the underlying space, the central point
of the homogeneity might not coincide with the origin of Rn. Therefore we consider potentials F which
are de�ned on an a�ne real space An rather than the vector space Rn.

Let U ⊂ An be a simply connected domain in n-dimensional real a�ne space. Consider a C3

function F : U → R with non-degenerate Hessian. The function F turns U into a Hessian pseudo-
Riemannian manifold with metric F ′′. Let D be the canonical �at a�ne connection on U , D̂ the
Levi-Civita connection of the Hessian metric F ′′, and K = D− D̂ the di�erence tensor. The di�erence
tensor is a tensor of type (1, 2) which is symmetric in the two lower indices.

In an a�ne coordinate system, the Christo�el symbols of the Levi-Civita connection D̂ have the
form Γγαβ = 1

2F,αβδF
,γδ, while the Christo�el symbols of D vanish. Hence the di�erence tensor can be

expressed by the derivatives of F as

Kγ
αβ = −Γγαβ = −1

2
F,αβδF

,γδ. (1.30)

The covariant derivative of F ′ = DF with respect to D̂ is given by
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D̂βF,α = F,αβ − 1
2F,δF

,γδF,αβγ . Hence F
′ is D̂-parallel if and only if

F,δF
,γδF,αβγ = 2F,αβ . (1.31)

Let F : U → R be a solution of (1.31). De�ne the vector �eld eγ = −F,δF ,γδ on U . We then have

Dαe
γ = −F,αδF ,γδ + F,δF

,γρF,ρσαF
,σδ = −δγα + 2F ,γρF,ρα = δγα. (1.32)

Let xα be an a�ne coordinate system on An. By (1.32) the vector �eld e di�ers on U from the position
vector �eld x by a constant c = x − e. This di�erence distinguishes a point c ∈ An, which we call
the center. Let us shift the coordinate system in An such that c = 0, and the position vector �eld x
coincides with e. By de�nition of e we then have

F,δ + F,γδx
γ = 0. (1.33)

Integrating, we obtain
F,γx

γ = −ν, (1.34)

where ν ∈ R is an integration constant. Integrating (1.34) along the rays emanating from c, we obtain

F (αx) = −ν logα+ F (x) (1.35)

for all x ∈ U and α > 0 such that the ray segment between x and αx lies in U . This means that F is
locally logarithmically homogeneous with homogeneity parameter ν.

On the other hand, we have the following result.

Lemma 1.5.3. Let F : U → R be a locally logarithmically homogeneous function on some domain
U ⊂ Rn with homogeneity parameter ν and with non-degenerate Hessian. Then D̂F ′ = 0, where D̂ is
the Levi-Civita connection of F ′′. Moreover, the vector �eld eβ = −F,αF ,αβ equals the position vector
�eld xβ on U .

Proof. Di�erentiating (1.35) with respect to α at α = 1 yields (1.34). Di�erentiating (1.34) yields
(1.33). Di�erentiating (1.33) and eliminating x by virtue of (1.33) then gives back (1.31). The equality
x = e also follows from (1.33).

Combining with the preceding consideration, we obtain the following result.

Theorem 1.5.4. Let F : U → R be a C3 function de�ned on some simply connected domain U ⊂ An.
Suppose that F has a non-degenerate Hessian and denote by D̂ the Levi-Civita connection of the
Hessian metric F ′′. Then the �rst derivative F ′ is D̂-parallel if and only if F is locally logarithmically
homogeneous with some homogeneity parameter ν with respect to some central point c ∈ An.

In particular, for every logarithmically homogeneous function F : Ko → Rn on the interior of a
regular convex cone K ⊂ Rn with non-degenerate Hessian we have that the �rst derivative F ′ is parallel
with respect to the Levi-Civita connection de�ned by F ′′.

1.5.3 Parallel third derivative

In this subsection we analyze the condition D̂F ′′′ = 0, where D̂ is the Levi-Civita connection of the
Hessian metric F ′′. Actually, we do not need to require that F ′′ is positive de�nite, it is su�cient for
the considerations in this subsection that F ′′ is non-degenerate.

Let U ⊂ Rn be a simply connected domain and consider a C5 function F : U → R with non-
degenerate Hessian. The covariant derivative of F ′′′ with respect to D̂ is given by

D̂δF,αβγ = F,αβγδ −
1

2
F ,ρσ(F,αβρF,γσδ + F,αγρF,βσδ + F,βγρF,ασδ). (1.36)

Hence F ′′′ is parallel with respect to D̂ if and only if F is a solution of the quasi-linear fourth order
PDE

F,αβγδ =
1

2
F ,ρσ(F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ). (1.37)
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Note that F is a solution of (1.37) if and only if F + l is a solution, where l is an arbitrary a�ne-linear
function, i.e., a function satisfying l′′ = 0. The functions F and F+l de�ne also the same pseudo-metric
F ′′ and the same di�erence tensor K. We may also obtain other solutions of (1.37) by multiplying a
solution F by non-zero constants or performing an a�ne change of coordinates in U .

Let us deduce the integrability condition of PDE (1.37). Introduce a�ne coordinates xα on U .
Di�erentiating (1.37) with respect to the coordinate xη and substituting the appearing fourth order
derivatives of F by the right-hand side of (1.37), we obtain after simpli�cation

F,αβγδη =
1

4
F ,ρσF ,µν (F,βηνF,αρµF,γδσ + F,αηµF,ρβνF,γδσ + F,γηνF,αρµF,βδσ + F,αηµF,ργνF,βδσ

+F,βηνF,γρµF,αδσ + F,γηµF,ρβνF,αδσ + F,βηνF,δρµF,αγσ + F,δηµF,ρβνF,αγσ

+F,δηνF,αρµF,βγσ + F,αηµF,ρδνF,βγσ + F,δηνF,γρµF,αβσ + F,γηµF,ρδνF,αβσ) .

The right-hand side must be symmetric in all 5 indices. Commuting the indices δ, η and equating the
resulting expression with the original one we obtain

F ,ρσF ,µν (F,βηνF,δρµF,αγσ + F,αηµF,ρδνF,βγσ + F,γηµF,ρδνF,αβσ

−F,βδνF,ηρµF,αγσ − F,αδµF,ρηνF,βγσ − F,γδµF,ρηνF,αβσ) = 0.

Raising the index η by the inverse metric F ,µν , we get by virtue of (1.30) the integrability condition

Kη
αµK

µ
δρK

ρ
βγ +Kη

βµK
µ
δρK

ρ
αγ +Kη

γµK
µ
δρK

ρ
αβ = Kµ

αδK
η
ρµK

ρ
βγ +Kµ

βδK
η
ρµK

ρ
αγ +Kµ

γδK
η
ρµK

ρ
αβ .

This condition is satis�ed if and only if Kη
αµK

µ
δρK

ρ
βγu

αuβuγvδ = Kµ
αδK

η
ρµK

ρ
βγu

αuβuγvδ for all tangent
vectors �elds u, v on U , which can be written as

K(K(K(u, u), v), u) = K(K(u, v),K(u, u)). (1.38)

Consider an arbitrary point y ∈ U . The di�erence tensorK de�nes a bilinear map TyU×TyU → TyU
by (u, v) 7→ K(u, v). Equipped with this bilinear map, the tangent space TyU becomes an algebra Ay.
We shall denote the multiplication in this algebra by •, such that u•v = K(u, v). The left multiplication
operator with the element u will be denoted by Lu, such that Luv = u • v for all u, v. Further, we
de�ne the positive powers of an element u recursively by u1 = u, uk+1 = u • uk = Lkuu. If the algebra
has a unit element e, then we put also u0 = e.

Lemma 1.5.5. Let F : U → R be a C5 solution of PDE (1.37) with non-degenerate Hessian and let
y ∈ U ⊂ Rn be a point. Let Ay be the algebra de�ned by the di�erence tensor K = D − D̂ on TyU ,

where D is the canonical a�ne connection on Rn and D̂ the Levi-Civita connection of F ′′. Let σy be
the bilinear form de�ned on TyU by the Hessian pseudo-metric F ′′ = D2F . Then the pair (Ay, σy) is
a metrised Jordan algebra.

Proof. The tensor K is symmetric in the lower indices, and hence the multiplication • of the algebra
Ay is commutative. Condition (1.38) is equivalent to the Jordan identity u • (u2 • v) = u2 • (u • v), and
thus Ay is a Jordan algebra.

For arbitrary vectors u, v, w ∈ Ay we have

σy(u • v, w) = F,βγK
β
δρu

δvρwγ = −1

2
F,βγF,δρσF

,σβuδvρwγ = −1

2
F,δργu

δvρwγ (1.39)

= −1

2
F,βδu

δF,ργσF
,σβvρwγ = F,δβu

δKβ
ργv

ρwγ = σy(u, v • w).

Here the second and �fth equation come from (1.30). Hence the form σy satis�es (1.29) and is an
invariant form. Finally, σy is non-degenerate and symmetric because F ′′ is.

Lemma 1.5.6. Let F : U → R be a C5 solution of (1.37) with non-degenerate Hessian, de�ned on a
connected domain U ⊂ Rn, and let y, y′ ∈ U be di�erent points. Let (Ay, σy),(Ay′ , σy′) be the metrised
Jordan algebras de�ned on the tangent spaces TyU, Ty′U as in Lemma 1.5.5. Then (Ay, σy),(Ay′ , σy′)
are isomorphic.
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Proof. Assume the conditions of the lemma. Let γ be a smooth path connecting the points y, y′. The
parallel transport with respect to the Levi-Civita connection D̂ along γ de�nes a non-degenerate linear
map J : TyU → Ty′U . Now both F ′′ and F ′′′ are parallel with respect to D̂. Hence the di�erence tensor

K is also D̂-parallel. It then follows that J is an isomorphism mapping (Ay, σy) to (Ay′ , σy′).

In particular, a closed path leading back to y de�nes an automorphism of the metrised Jordan
algebra (Ay, σy).

We have seen how a solution of (1.37) de�nes a metrised Jordan algebra. We shall now consider
the reverse direction.

Lemma 1.5.7. Let (A, σ) be a metrised Jordan algebra. Then there exists a neighbourhood U ⊂ A of
zero such that the analytic function F : U → R de�ned by

F (x) =

∞∑
k=2

(−1)k

k
σ(x, xk−1) (1.40)

is a solution of (1.37).

Proof. First note that the expression σ(x, xk−1) is a homogeneous polynomial of degree k in the entries
of x, and the right-hand side of (1.40) is an ordinary Taylor series. It is also easily seen that the
convergence radius of the series is nonzero, and hence F is de�ned on some neighbourhood U ⊂ A of
zero. On this neighbourhood F is analytic. By possibly shrinking U , we shall also assume that the
matrix Lx has spectral radius strictly smaller than 1 for all x ∈ U .

The partial derivative of xk in the direction u is given by

Dux
k = Du(Lk−1

x x) =

k−1∑
l=1

Ll−1
x LuL

k−1−l
x x+ Lk−1

x u =

k−1∑
l=1

Ll−1
x Lux

k−l + Lk−1
x u

=

k∑
l=1

Ll−1
x Lxk−lu,

where Lx0 is by convention the identity matrix. The derivative of F is then given by

DuF =

∞∑
k=2

(−1)k

k

(
σ(Dux, x

k−1) + σ(x,Dux
k−1)

)
=

∞∑
k=2

(−1)k

k

(
σ(u, xk−1) +

k−1∑
l=1

σ(x, Ll−1
x Lxk−1−lu)

)

=

∞∑
k=2

(−1)k

k

(
σ(xk−1, u) +

k−1∑
l=1

σ(Lxk−1−lLl−1
x x, u)

)
=

∞∑
k=2

(−1)kσ(xk−1, u)

=

∞∑
k=1

(−1)k+1σ(xk, u) = σ((I + Lx)−1x, u), (1.41)

where the fourth equality comes from power-associativity of the Jordan algebra A and all sums de�ne
analytic functions on U . Note that I + Lx and its inverse are self-adjoint with respect to σ.

The next derivatives are given by

DvDuF = σ((I + Lx)−1v, u)− σ((I + Lx)−1Lv(I + Lx)−1x, u),

D2
vDuF = −2σ((I + Lx)−1Lv(I + Lx)−1v, u) + 2σ((I + Lx)−1Lv(I + Lx)−1Lv(I + Lx)−1x, u),

D3
vDuF = 6σ(((I + Lx)−1Lv)

2(I + Lx)−1v, u)− 6σ(((I + Lx)−1Lv)
3(I + Lx)−1x, u).

At x = 0 we hence get

DvDuF = σ(v, u),

D2
vDuF = −2σ(v2, u),

D4
vF = 6σ(v3, v) = 6σ(v2, v2).
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Using these expressions we obtain[
F,αβγδ −

1

2
F ,ρσ(F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ)

]
uαuβuγuδ

= 6σ(u2, u2) + (F,αβρK
ρ
γδ + F,αγρK

ρ
βδ + F,αδρK

ρ
βγ)uαuβuγuδ

= 6σ(u2, u2) + 3D2
uDu2F = 0.

It follows that (1.37) is satis�ed at x = 0.
For x ∈ U an arbitrary point, we shall identify the tangent space TxU with A. Fix a vector w ∈ A,

and de�ne the vector �eld v(x) = (I + Lx)w = w + x •w on U . Since the vector �eld v is a�ne-linear
in x, the Lie derivative Lv commutes with the directional derivative D on U by Lemma 1.2.2.

We shall now compute the Lie derivative of (1.36) with respect to the vector �eld v. By (1.41) we
have

LvF = σ((I + Lx)−1x, (I + Lx)w) = σ(x,w),

and the Lie derivative of F is a linear function in x. It follows that LvDF = DLvF is a constant
1-form, and LvDkF = Dk−1LvDF = 0 for every k ≥ 2. Hence the Lie derivative Lv of (1.36) vanishes
on U .

We thus have D̂F ′′′ = 0 at x = 0 and Lv(D̂F ′′′) = 0 for all w ∈ A and all x ∈ U . Since I + Lx
is regular, we have {v = (I + Lx)w |w ∈ A} = TxU for all x ∈ U . If U is connected, which we may
assume without restriction of generality, then it follows that D̂F ′′′ = 0 identically on U and (1.37) is
satis�ed by the function F . This completes the proof.

Lemmas 1.5.5 and 1.5.7 show how to construct a metrised Jordan algebra from a solution of (1.37)
and vice versa. We now show that the corresponding maps are the inverse of one another in the sense
of the following lemmas.

Lemma 1.5.8. Let F : U → R be a C5 solution of (1.37) on a domain U ⊂ Rn and y ∈ U a point.
Let (Ay, σy) be the metrised Jordan algebra de�ned by F as in Lemma 1.5.5. Let Ũ ⊂ Ay = TyU ' Rn
be the neighbourhood of zero and F̃ : Ũ → R the solution of (1.37) de�ned by (Ay, σy) as in Lemma
1.5.7.

Then there exists a neighbourhood V ⊂ U∩(y+Ũ) of y such that the di�erence d(x) = F (x)−F̃ (x−y)
is a�ne-linear on V .

Proof. The functions F (x) and F̃ (x−y) are both de�ned on U ∩(y+ Ũ) and are C5 solutions of (1.37).
We shall now compare the second and third derivatives of these functions at x = y. For tangent vectors
u, v, w ∈ Ay we have by de�nition of σy and by (1.39) that

F ′′(u, v) = σy(u, v), F ′′′(u, v, w) = −2σy(u • v, w).

On the other hand, the quadratic and cubic terms in the Taylor series (1.40) yield

F̃ ′′(u, u) = σy(u, u), F̃ ′′′(u, u, u) = −2σy(u, u • u).

Thus the second and third derivatives of F (x) and F̃ (x− y) coincide at x = y.
Consider a ray γ(t) = y+ tz emanating from y. On this ray equation (1.37) de�nes an ODE on the

vector of second and third partial derivatives of F and F̃ , respectively. By the preceding paragraph,
both ODEs have the same initial condition at t = 0. Since the second derivative is non-degenerate,
the ODEs satisfy the conditions of the Picard-Lindel�of theorem [138] on the existence and uniqueness
of the solution. Therefore the restriction of the second derivative D2d to the ray γ is identically zero
on some interval [0, T ] with T > 0. The Lipschitz constant of the right-hand side of the ODE, which
is involved in the proof of the Picard-Lindel�of theorem and de�nes a strictly positive lower bound on
T , is a continuous function of the direction z of the ray. This bound then also depends continuously
on z. By letting z run through the unit sphere, it follows that there exists a neighbourhood V of y
where D2d identically vanishes. On this neighbourhood d is an a�ne-linear function. This completes
the proof.
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Lemma 1.5.9. Let (A, σ) be a metrised Jordan algebra, let U ⊂ A be the neighbourhood of zero and
F : U → R the solution of (1.37) de�ned by (A, σ) as in Lemma 1.5.7. Let (A0, σ0) be the metrised
Jordan algebra de�ned by F at the point y = 0 as in Lemma 1.5.5. Then, under identi�cation of A
with T0U , we have (A0, σ0) = (A, σ).

Proof. By (1.40) we have for arbitrary u ∈ T0U that

F ′′(u, u) = σ(u, u), F ′′′(u, u, u) = −2σ(u, u • u),

where • denotes the multiplication in A. From the �rst relation it follows that σ0 = σ. Since A
is commutative and σ is a symmetric invariant form, it follows from the second relation that for all
u, v, w ∈ T0U we have F ′′′(u, v, w) = −2σ(u•v, w). By (1.30) we then get K(u, v) = u•v. But K(u, v)
de�nes the multiplication in A0, which proves also A0 = A.

From Lemma 1.5.8 we have also the following corollary.

Corollary 1.5.10. Let F be a C4 solution of (1.37). Then F is analytic.

Proof. If F is C4, then the right-hand side of (1.37) is continuously di�erentiable. But then the left-
hand side is continuously di�erentiable, and F is actually C5. By Lemma 1.5.8 F then locally coincides
with an analytic function. Hence F is analytic.

In this subsection we have shown that the local isomorphism classes of Hessian metrics g on domains
U ⊂ Rn with D̂-parallel derivative Dg are in one-to-one correspondence with the isomorphism classes
of metrised Jordan algebras, where D is the canonical a�ne connection on Rn and D̂ the Levi-Civita
connection of g. In the next subsection we shall specialize this correspondence to Hessian metrics with
logarithmically homogeneous potentials.

1.5.4 Parallel �rst and third derivatives

In this subsection we consider the situation when both conditions D̂F ′ = 0 and D̂F ′′′ = 0 are satis�ed,
where D̂ is the Levi-Civita connection of the Hessian metric F ′′. We show that for a logarithmically
homogeneous solution of (1.37) the corresponding Jordan algebra is unital, i.e., possesses a unit element
e, and that the converse implication also holds up to an additive a�ne-linear term. On the other hand,
we show that a logarithmically homogeneous function F is a solution of (1.37) if and only if the cubic
form C of the level surfaces of F is parallel with respect to the Levi-Civita connection ∇̂ of the a�ne
metric h.

Lemma 1.5.11. Let F : U → R be a solution of (1.37) on some domain U ⊂ Rn, and let y ∈ U be a
point. Let (Ay, σy) be the metrised Jordan algebra de�ned by F as in Lemma 1.5.5. If F in addition
satis�es (1.31), then the Jordan algebra Ay possesses a unit element, which is given by eγ = −F,δF ,γδ.

Proof. Raising the index β in (1.31), we obtain by (1.30) that −F,δF ,γδKβ
αγ = δβα. The left-hand side

of this equation de�nes the multiplication operator Le of the algebra Ay corresponding to the vector
eγ = −F,δF ,γδ. The right-hand side is the identity operator on TyU , and hence e is a unit element of
Ay.

Corollary 1.5.12. Let F : U → R be a logarithmically homogeneous solution of (1.37) on some
domain U ⊂ Rn, and let y ∈ U be a point. Let (Ay, σy) be the metrised Jordan algebra de�ned by F as
in Lemma 1.5.5. Then y is the unit element of Ay.

The corollary is a direct consequence of Lemmas 1.5.3 and 1.5.11.

Lemma 1.5.13. Let F : U → R be a solution of (1.37) on some domain U ⊂ An in a�ne space, let
y ∈ U be a point, and (Ay, σy) the metrised Jordan algebra de�ned by F as in Lemma 1.5.5. Suppose

Ay possesses a unit element. Then there exists a potential F̃ of the Hessian metric F ′′ on U which
satis�es (1.31).

42



Proof. Assume the conditions of the lemma. Since Ay has a unit element, for every x ∈ U the similarly
de�ned Jordan algebra Ax has also a unit element, because by Lemma 1.5.6 the algebras Ay and Ax
are isomorphic. Let e be the vector �eld on U de�ned by these unit elements. We then have

Kβ
αγe

γ = δβα, (1.42)

where K = D − D̂ is the (1, 2)-tensor �eld of the structure tensors of the algebras Ax, x ∈ U . Note
that the di�erence tensor K as well as the Kronecker symbol are D̂-parallel, because F is a solution of
(1.37). Let v be an arbitrary smooth vector �eld on U . Applying the covariant derivative D̂v to both
sides of (1.42), we obtain Kβ

αγD̂ve
γ = 0, or equivalently u • D̂ve = 0 for all vector �elds u, v.

This implies LD̂veu = 0 for all u, v. Note that in a unital algebra with unit element e the condition

Lw = 0 implies Lwe = w = 0. Therefore the covariant derivative D̂e vanishes identically on U . Writing
this out, we get ∂

∂xδ
eγ + Γγβδe

β = ∂
∂xδ

eγ −Kγ
βδe

β = 0. By (1.42) we then get

Dβe
γ =

∂eγ

∂xβ
= δγβ . (1.43)

Lowering the index β in (1.42), we get by virtue of (1.30) that

−1

2
F,αβγe

γ = F,αβ . (1.44)

Hence the second derivative

∂2(F,γe
γ)

∂xα∂xβ
= F,γαβe

γ + F,γαδ
γ
β + F,γβδ

γ
α = F,γαβe

γ + 2F,αβ

vanishes on U . Here we have used (1.43) to express the derivatives of the vector �eld e. It follows that
the function F̃ = F −F,γeγ satis�es F̃ ′′ = F ′′, F̃ ′′′ = F ′′′, and is a potential of the Hessian metric F ′′.
Moreover, we have

F̃,α = F,α − F,γαeγ − F,γ
∂eγ

∂xα
= F,α − F,γαeγ − F,γδγα = −F̃,γαeγ ,

whence eγ = −F̃,αF̃ ,αγ . Inserting this into (1.44) �nally yields (1.31).

Combining the two lemmas, we obtain the following theorem.

Theorem 1.5.14. Let F : U → R be a solution of (1.37) on a domain U ⊂ An in a�ne space, let
y ∈ U be a point, and (Ay, σy) the metrised Jordan algebra de�ned by F as in Lemma 1.5.5. Then the
following are equivalent.

1. Ay possesses a unit element.

2. There exists another solution F̃ of (1.37) on U , generating the same Hessian metric F ′′ = F̃ ′′

on U and the same metrised Jordan algebra (Ay, σy) on TyU , such that D̂F̃ ′ = 0, where D̂ is the
Levi-Civita connection of F ′′.

Recall that by Theorem 1.5.4 the condition D̂F̃ ′ = 0 is equivalent to logarithmic homogeneity of F
with respect to some central point.

We shall now assume logarithmic homogeneity of F and �nd an equivalent condition of (1.37) in
terms of the centro-a�ne cubic form of the level surfaces of F .

Lemma 1.5.15. Let U ⊂ Rn be a conic domain, α ∈ R an arbitrary number, and F : U → R a
logarithmically homogeneous function with homogeneity parameter ν > 0 and positive de�nite Hessian.
Let D̂ be the Levi-Civita connection of the metric F ′′, Fα = {x ∈ U |F (x) = α} a level surface of F ,
h the centro-a�ne metric and C the cubic form on Fα, and ∇̂ the Levi-Civita connection of h. Then
D̂F ′′′ = 0 if and only if ∇̂C = 0.
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Proof. Since F is logarithmically homogeneous with homogeneity parameter ν > 0, the level surfaces of
F are homothetic images of each other and Fα ↪→ U is indeed a centro-a�ne hypersurface immersion.

Let x ∈ Fα be an arbitrary point. By Proposition 1.3.1 the tangent space TxU splits into an
F ′′-orthogonal sum TxFα ⊕ {tx | t ∈ R}. Let Π be the orthogonal projection of TxU onto the �rst
summand. This projection is a (1, 1)-tensor with components

Πγ
β = δγβ + ν−1xγF,β = δγβ − ν

−1F ,γδF,δF,β .

De�ne a symmetric (0, 3)-tensor T on TxU by T [u, u, u] = F ′′′[Πu,Πu,Πu], or in coordinate notation

Tβγδ = Πρ
βΠσ

γΠτ
δF,ρστ = (δρβ + ν−1xρF,β)(δσγ + ν−1xσF,γ)(F,ρσδ − 2ν−1F,δF,ρσ)

= (δρβ + ν−1xρF,β)(F,ργδ − 2ν−1F,γF,ρδ − 2ν−1F,δF,ργ + 2ν−2F,γF,δF,ρ)

= F,βγδ − 2ν−1(F,βF,γδ + F,γF,βδ + F,δF,βγ) + 4ν−2F,βF,γF,δ.

Here we used that F ′′′(x)[x] = −2F ′′(x), F ′′(x)[x] = −F ′(x), F ′(x)[x] = −ν. Thus the di�erence
F ′′′ − T depends on F ′, F ′′ only.

Extend T to a tensor �eld on U by varying x ∈ Fα and the parameter α of the level surface. We
have that F ′′ is D̂-parallel, and F ′ is also D̂-parallel by Lemma 1.5.3. Hence the di�erence F ′′′ − T is
D̂-parallel and D̂F ′′′ = 0 if and only if D̂T = 0.

By Lemma 1.3.2 we have that T can be represented as a direct sum T = νC ⊕ 0, where the �rst
summand is a tensor on the tangent subspace TxFα and the second is the null tensor on the radial
subspace {tx | t ∈ R} of TxU . But the Riemannian manifold (U,F ′′) is a direct product with �rst factor
(Fα, νh) by Proposition 1.3.1. Hence D̂T = 0 if and only if ∇̂C = 0. This completes the proof.

Remark 1.5.16. The condition that F ′′ is positive de�nite can be replaced by the weaker condition
that F ′′ is non-degenerate. The proof of this stronger result is similar, with Proposition 1.3.1 replaced
by [96, Theorem 2.2].

1.5.5 Self-scaled barriers and parallel cubic form

We are now in a position to apply the theory developed in the previous subsections to self-concordant
logarithmically homogeneous barriers. First we add the convexity of the Hessian potential F as a
condition.

Lemma 1.5.17. Let F : U → R be a solution of both (1.37) and (1.31) with positive de�nite Hessian
on a domain U ⊂ Rn, let y ∈ U be a point, and (Ay, σy) the metrised Jordan algebra de�ned by F as
in Lemma 1.5.5. Then Ay is a Euclidean Jordan algebra.

The lemma follows immediately from [123, Theorem VI.12], which states that if the invariant
bilinear form σ of a metrised Jordan algebra (A, σ) is positive de�nite, then the algebra A is Euclidean.

Now the metrised Jordan algebras (A, σ), where A is Euclidean and σ is non-degenerate, can
be completely classi�ed. By [123, Corollary VI.5] a Euclidean Jordan algebra is semi-simple, i.e.,
τ(u, v) = tr Lu•v is a non-degenerate bilinear form, the trace form. The trace form is actually itself
invariant [123, Lemma III.4] and positive de�nite [123, Theorem VI.12]. By [123, Theorem III.10]
there exists a central element z ∈ A (i.e., an element satisfying z • (u • v) = u • (z • v) for all u, v)
such that σ(u, v) = τ(z • u, v) = tr L(z•u)•v for all u, v ∈ A. This central element z is invertible,
and every invertible central element gives rise to an invariant non-degenerate bilinear form in this way
[123, Theorem III.10; item (v), pp.71�72]. The semi-simple algebra A can be decomposed in a unique
manner as a direct sum A = A1 ⊕ · · · ⊕ Am of simple ideals [123, Theorem III.11], which have been
completely classi�ed in [112, Fundamental Theorem 2] and are in one-to-one correspondence with the
irreducible symmetric cones. Let e1, . . . , em be the unit elements of these simple ideals. Then every
central element z ∈ A has a unique representation as a sum z =

∑m
j=1 αjej , where αj are real numbers

[112, p.46].

Lemma 1.5.18. Let A be a Euclidean Jordan algebra with simple summands A1, . . . , Am. Then every
positive de�nite invariant bilinear form σ on A can be represented as

σ(u, v) =

m∑
j=1

αjtr Luj•vj (1.45)
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for some positive real numbers α1, . . . , αm, where uj , vj ∈ Aj are the components of the elements u, v
in the simple summands, respectively.

On the other hand, for every α1, . . . , αm > 0 the form σ de�ned in (1.45) is a positive de�nite
invariant bilinear form on A.

Proof. By the above every invariant bilinear form σ on A has the form (1.45) for some αj ∈ R, and
all m-tuples (α1, . . . , αm) give rise to invariant bilinear forms. Since the trace forms on the summand
algebras are positive de�nite, the form (1.45) is positive de�nite if and only if all coe�cients αj are
positive.

This characterization of metrised Euclidean Jordan algebras allows to classify also all logarithmically
homogeneous solutions of (1.37) with positive de�nite Hessian. We need the following uniqueness result.

Lemma 1.5.19. Let F : U → R be a logarithmically homogeneous solution of (1.37) on a conic
domain U ⊂ R and with homogeneity parameter ν. Let y ∈ U be a point and let (Ay, σy) be the

metrised Jordan algebra de�ned on TyU as in Lemma 1.5.5. Let F̃ : U → R be another logarithmically
homogeneous solution of (1.37) which generates the same metrised Jordan algebra (Ay, σy) on TyU .

Then F̃ = F + const and the homogeneity parameter of F̃ also equals ν.

Proof. By Lemma 1.5.8 the functions F, F̃ di�er by an a�ne-linear function on U , and F̃ ′′ = F ′′.
By Lemma 1.5.3 the �rst derivative of a logarithmically homogeneous function can be written as
F,α = −F,αβxβ , with x the position vector �eld. Therefore the �rst derivatives of F, F̃ also coincide on

U . Therefore F and F̃ di�er by an additive constant, and by (1.34) have also the same homogeneity
parameter.

We shall now construct an explicit logarithmically homogeneous solution of (1.37) which produces
a given metrised Euclidean Jordan algebra (A, σ). To this end we need to introduce the determinant
of an element x ∈ A.

In a Euclidean Jordan algebra A, there exists for every element x ∈ A a complete system of mutually
orthogonal idempotents ε1, . . . , εm and distinct reals λ1, . . . , λm such that x =

∑m
j=1 λjε

j [112, Theorem
6]. The numbers λj are called the eigenvalues of x, and dj = tr Lεj is their multiplicity. The sum∑m
j=1 dj depends on the algebra A only and is called its rank. Clearly we have xk =

∑m
j=1 λ

k
j ε
j for the

powers of x, and hence tr Lxk =
∑m
j=1 λ

k
j dj . The determinant of x is de�ned as the product

∏m
j=1 λ

dj
j .

It is a homogeneous polynomial of degree rk A in x. The point x is in the interior of the symmetric
cone K corresponding to A if and only if all its eigenvalues are positive. The unit element e of A can
be expressed as sum e =

∑m
j=1 ε

j and is an element of Ko.

Let τ be the trace form on A, and let x =
∑m
j=1 λje

j ∈ A be such that all eigenvalues λj lie in the

open interval (−1, 1). Let dj be the multiplicities of λj . Then we have e + x =
∑m
j=1(1 + λj)e

j , and
hence

− log det(e+ x) = −
m∑
j=1

dj log(1 + λj) =

m∑
j=1

dj

∞∑
l=1

(−1)l

l
λlj =

∞∑
l=1

(−1)l

l
tr Lxl

= −tr Lx +

∞∑
k=2

(−1)k

k
τ(x, xk−1). (1.46)

By Lemma 1.5.7 the function F (x) = − log det(e+x), and after a coordinate change F (x) = − log detx,
is hence a solution of (1.37).

Lemma 1.5.20. Let (A, σ) be a metrised Euclidean Jordan algebra, A1, . . . , Am its simple summands,
with σ given by (1.45) for some αj > 0. Let e ∈ A and ej ∈ Aj be the unit elements of the corresponding
algebras. Then the function

F (x) = −
m∑
j=1

αj log detxj

is a logarithmically homogeneous solution of (1.37), de�ned on the interior of the symmetric cone
K corresponding to A. The metrised Euclidean Jordan algebra (Ae, σe) de�ned by F on TeK

o as in
Lemma 1.5.5 coincides with (A, σ).
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Proof. The cone K can be represented as direct product K1 × · · · ×Km, where Kj is the irreducible
symmetric cone corresponding to the algebra Aj . The function Fj(xj) = − log detxj is a logarithmically
homogeneous solution of (1.37) on the interior of Kj , with homogeneity parameter rk Aj . But then
F (x) =

∑m
j=1 αjFj(x) is also a solution of (1.37), de�ned on Ko and with homogeneity parameter∑m

j=1 αj rk Aj .
Let τj be the trace form on Aj . Then by Lemma 1.5.9 and (1.46) the metrised Jordan algebra

de�ned by Fj at ej equals (Aj , τj). It follows that the solution αjFj generates the metrised algebra
(Aj , αjτj) at ej , and hence F generates the metrised algebra (A, σ) at e.

This result allows to explicitly characterize the logarithmically homogeneous convex solutions of
(1.37).

Theorem 1.5.21. Let U ⊂ Rn be a conic domain, and let F : U → R be a logarithmically homoge-
neous C4 function with positive de�nite Hessian. Then F is a solution of (1.37) if and only if there
exists a Euclidean Jordan algebra A = A1 ⊕ · · · ⊕ Am, where Aj are the simple summands of A, with
corresponding symmetric cone K ⊂ Rn, positive numbers α1, . . . , αm, and a constant c ∈ R such that
U ⊂ Ko and

F (x) = −
m∑
j=1

αj log detxj + c, (1.47)

where xj ∈ Aj are the components of x.

Proof. Let F be a solution of (1.37) and y ∈ U an arbitrary point. Let (Ay, σy) be the metrised
Euclidean Jordan algebra de�ned by F on TyU as in Lemma 1.5.5. Denote by A1, . . . , Am the simple
summands of Ay. By Lemma 1.5.18 there exist numbers α1, . . . , αm such that the form σy is given by
(1.45).

Let K be the symmetric cone corresponding to Ay. By Corollary 1.5.12 the element y is the unit

of Ay and hence y ∈ Ko. De�ne the function F̃ : Ko → R by

F̃ (x) = −
m∑
j=1

αj log detxj ,

where xj ∈ Aj are the components of x. By Lemma 1.5.20 the function F̃ is a logarithmically homo-
geneous solution of (1.37) and generates the same metrised algebra (Ay, σy) on TyU as F . By Lemma

1.5.19 the functions F, F̃ di�er by a constant in a neighbourhood of y. Since both functions are analytic
by Corollary 1.5.10, we obtain F = F̃ + c for some c ∈ R on the intersection Ko ∩ U .

Now F̃ cannot be continued analytically beyond ∂K, because F̃ (x)→ +∞ for x→ ∂K. Therefore
we must have U ⊂ Ko. This proves one side of the equivalence.

The opposite implication is evident: a function F̃ (x) of the form de�ned above is a solution of
(1.37) by Lemma 1.5.20, and it remains a solution if one adds a constant to it.

This allows us to formulate our main result, the characterization of self-scaled barriers.

Theorem 1.5.22. Let K ⊂ Rn be a regular convex cone and F : Ko → R a logarithmically homoge-
neous self-concordant barrier on K. Then the following conditions are equivalent:

(a) F is self-scaled;

(b) F is a solution of (1.37);

(c) the dual barrier F∗ is a solution of (1.37);

(d) the cubic form C on the level surfaces of F is parallel with respect to the Levi-Civita connection
∇̂ of the centro-a�ne metric h on these level surfaces.
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Proof. (a)⇒ (b). Let F be self-scaled. Then K is a symmetric cone [86]. Let K = K1×· · ·×Km be its
decomposition into irreducible symmetric cones, and let Aj be simple Euclidean Jordan algebras such
that their cones of squares equal Kj . By [189, Theorem 4] the function F has the form (1.47) for some
c ∈ R, αj ≥ 1, where xj ∈ Aj are the components of x corresponding to the product decomposition of
K. By Theorem 1.5.21 the function F satis�es (1.37).

(b)⇒ (a). Suppose F satis�es (1.37). By Theorem 1.5.21 there exists a Euclidean Jordan algebra
A = A1⊕· · ·⊕Am, where Aj are its simple summands, such that F has the form (1.47) for some c ∈ R
and αj > 0, and K ⊂ KA, where KA is the cone of squares for A. By [189, Theorem 2] we actually
have αj ≥ 1 as a consequence of the self-concordance condition (1.2). By (1.47) we have F (x)→ +∞
for x → ∂KA and by assumption for x → ∂K. Hence K = KA. Finally, [189, Theorem 4] shows that
F is a self-scaled barrier.

(b)⇔ (d). This is the assertion of Lemma 1.5.15.
(c)⇔ (d). Condition (d) is invariant under the conormal map. Hence this equivalence is again the

assertion of Lemma 1.5.15, but applied to the dual barrier F∗.

If the interiors of K and K∗ are identi�ed under the isometry Φ : x 7→ −F ′(x) de�ned by Legendre
duality, then the canonical �at a�ne connection D̄ of the dual space Rn can be carried over to the
interior of K. By (1.6) the Christo�el symbols of D̄ are given by Γγαβ = F ,γmF,mαβ . Hence by virtue

of (1.30) we have D̂ = 1
2 (D + D̄), as is always the case in a Hessian structure.

Now Legendre duality maps the third derivative F ′′′ to −F ′′′∗ in dual space [171, p.45]. Therefore

the condition D̄F ′′′ = 0 is equivalent to the condition d4F∗
ds4 = 0, i.e., the dual barrier is a cubic

polynomial. Likewise, the condition DF ′′′ = 0 means that F is a cubic polynomial. Thus the self-
scaledness condition D̂F ′′′ = 0 can be interpreted as a mean between the condition that F is a cubic
and that F∗ is a cubic.

Finally, we shall characterize the metrised Jordan algebras which correspond to the canonical barrier
on symmetric cones.

Lemma 1.5.23. Let A be an Euclidean Jordan algebra and K ⊂ Rn its cone of squares. Let F : Ko →
R be the canonical barrier on K, and let e be the unit element of A. Then F de�nes on TeK

o the
metrised Jordan algebra (A, τ), where τ is the trace form of A.

Proof. Since the canonical barrier on a symmetric cone is of the form (1.47), we have by virtue of
Lemma 1.5.20 that the algebra generated by F is again A. In order to compute the invariant form
σ = F ′′(e) generated by F , we shall di�erentiate (1.21). We get F ,βγF,αβγ = 2F,α.

The trace form is then given by

τ(u, v) = tr Lu•v = Kδ
γδK

γ
αβu

αvβ =
1

4
F ,δρF,γδρF

,γσF,αβσu
αvβ =

1

2
F,γF

,γσF,αβσu
αvβ

= F,αβu
αvβ = F ′′(e)[u, v].

Here we used (1.30) to express the structure tensor K of A and (1.31) in the �fth equality.

1.5.6 Classi�cation of a�ne spheres with parallel cubic corm

In this subsection we apply the connection between Jordan algebras and the parallelism of the cubic
form to a problem in a�ne di�erential geometry, namely the classi�cation of all a�ne hyperspheres
satisfying the condition ∇̂C = 0. This result has been published in [96].

Since the a�ne metric is parallel with respect to ∇̂, the conditions ∇̂C = 0 and ∇̂K = 0 are
equivalent. A Blaschke immersion satisfying ∇̂C = 0 must be an a�ne hypersphere [21]. Thus both
the classi�cation of a�ne spheres satisfying ∇̂K = 0 and of Blaschke immersions satisfying ∇̂C = 0 or
∇̂K = 0 are equivalent to the classi�cation problem considered in this subsection.

In [141] all Blaschke immersions into R3 satisfying ∇̂C = 0 have been classi�ed. In [59, 103, 104]
all such Blaschke immersions into R4 with de�nite, Lorentzian, and general a�ne metric, respectively,
have been classi�ed. In [61] all such Blaschke immersions into R5 with de�nite a�ne metric have
been classi�ed, and it has been shown that in arbitrary dimension, de�niteness of the a�ne metric
implies that the immersion is either a quadric or a locally homogeneous a�ne hypersphere. In [106]
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all such immersions into Rk, k ≤ 8, with de�nite a�ne metric have been classi�ed. In [60, 107]
it has been observed that the Calabi product (a procedure for constructing higher-dimensional a�ne
spheres from lower-dimensional ones) of two a�ne hyperspheres with parallel cubic form or of such a
hypersphere with a point are again a�ne hyperspheres with parallel cubic form, and hence one can speak
of decomposable or irreducible such immersions. In a classi�cation, one then only needs to consider the
irreducible immersions. Finally, in [108, 105] a classi�cation of all irreducible Blaschke hypersurface
immersions with parallel cubic form whose a�ne metric is de�nite or Lorentzian, respectively, has been
achieved.

A closer look at the classi�cation in [108] reveals that the locally strongly convex hyperbolic a�ne
hyperspheres with parallel cubic form are exactly those hyperspheres which are asymptotic to symmetric
cones. Now the interiors of the symmetric cones are exactly the convex ω-domains of Koecher [123],
and it is not hard to verify that the hyperspheres in question are exactly the level surfaces of the
ω-function in these ω-domains.

Our result is that this relation holds in general, i.e., independently of the convexity assumption.
Namely, every non-degenerate proper a�ne hypersphere with center in the origin satisfying ∇̂C = 0
can be represented as a level surface of the ω-function in some ω-domain, and conversely, every such
level surface is a non-degenerate proper a�ne hypersphere with center in the origin satisfying ∇̂C = 0.
The ω-function of Koecher is a homogeneous polynomial. The non-convex analog of the canonical
barrier is the logarithmic potential Φ, which is de�ned as a multiple of the logarithm of the ω-function.
The a�ne spheres with parallel cubic form are then also level surfaces of the potential Φ.

The ω-domains of Koecher are closely linked to real semi-simple Jordan algebras J . Namely, every
ω-domain can be represented as a connected component of the set of invertible elements in J , and every
such connected component is an ω-domain. The potential Φ generates the metrised algebra (J, τ) as
in Lemma 1.5.23, where τ is the trace form of J .

The classi�cation of proper a�ne hyperspheres with parallel cubic form then reduces to the clas-
si�cation of real semi-simple Jordan algebras. Much like in the case of semi-simple Lie algebras, any
semi-simple Jordan algebra breaks down into a direct sum of a �nite number of simple algebras [123,
Theorem III.11], each of which is in turn a member of one of �nitely many in�nite series, or one of
�nitely many exceptional algebras. The Calabi product of a�ne hyperspheres with parallel cubic form
corresponds to the decomposition of semi-simple Jordan algebras into simple factors. This allows to
characterize the proper a�ne hyperspheres with parallel cubic form as Calabi products of irreducible
such hyperspheres. The irreducible proper a�ne hyperspheres with parallel cubic can in turn be clas-
si�ed using the classi�cation of simple real Jordan algebras.

In the table below we list the non-convex analogs of the objects appearing in the classi�cation of
convex hyperbolic a�ne spheres.

convex case general case
symmetric cone ω-domain
Euclidean Jordan algebra semi-simple Jordan algebra
irreducible Euclidean Jordan algebra simple Jordan algebra
canonical barrier logarithmic potential Φ
determinant of Jordan algebra ω-function

In the table below we present an exhaustive list of simple Jordan algebras along with the correspond-
ing irreducible a�ne spheres with parallel cubic form. In the �rst column we list the ambient vector
space of the ω-domain, and in the second column its real dimension. Here Mm, Sm, Am, Hm, SHm

stands for full, symmetric, skew-symmetric, Hermitian and skew-Hermitian matrices of size m × m,
respectively. Most of the classes of real simple Jordan algebras constitute in�nite series parameterized
by an integer. We give the range of this parameter in the third column. In the fourth column we give an
expression for the local potential Φ, parameterized by a nonzero complex number c for complex Jordan
algebras, and by a nonzero real number α for real central-simple algebras. In the last two columns we
provide the ω-function of the corresponding ω-domains and a description of the a�ne hyperspheres
associated with these domains. The constants in the last column are assumed to be nonzero. Note
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that in the case of a matrix space over the quaternions H, the matrix S is the complex representa-

tion

(
Z W
−W̄ Z̄

)
of the quaternionic matrix and has twice the size. In the row corresponding to the

vector space Rm, Q denotes a non-degenerate quadratic form on Rm. The symbol O stands for the
octonions, and O for the split octonions. The �rst group of rows corresponds to complex Jordan alge-
bras considered as real vector spaces, and the second group corresponds to real central-simple Jordan
algebras.

vector space real dimension range Φ ω a�ne sphere

C 2 Re(c log x) |x|2 |x| = const
Cm 2m m ≥ 3 Re(c log xTx) |xTx|m |xTx| = const

Sm(C) m(m+ 1) m ≥ 3 Re(c log detA) |detA|m+1 |detA| = const
Mm(C) 2m2 m ≥ 3 Re(c log detA) |detA|2m |detA| = const

A2m(C) 2m(2m− 1) m ≥ 3 Re(c log pf A) |pf A|2(2m−1) |pf A| = const
H3(O,C) 54 Re(c log detA) |detA|18 |detA| = const

R 1 log |x| |x| point

Rm m m ≥ 3 log |xTQx| |xTQx|m/2 quadric
Mm(R) m2 m ≥ 3 log |detA| |detA|m detA = const
Mm(H) 4m2 m ≥ 2 log detS (detS)2m detS = const

Sm(R) m(m+1)
2 m ≥ 3 log |detA| |detA|(m+1)/2 detA = const

Hm(C) m2 m ≥ 3 log |detA| |detA|m detA = const

Hm(H) m(2m− 1) m ≥ 3 log detS (detS)m−1/2 detS = const
A2m(R) m(2m− 1) m ≥ 3 log |pf A| |pf A|2m−1 pf A = const

SHm(H) m(2m+ 1) m ≥ 2 log detS (detS)m+1/2 detS = const
H3(O) 27 log |detA| |detA|9 detA = const
H3(O,R) 27 log |detA| |detA|9 detA = const

Our classi�cation result can then be summarized as follows.

Theorem 1.5.24. [96] Let M ⊂ Rn be a proper a�ne hypersphere with parallel cubic form and with
center in the origin. Then Rn can be decomposed into a direct product of vector spaces V1, . . . , Vr,
where each of the Vk is one of the spaces indicated in the �rst column of the above table, and M is a
Calabi product of proper a�ne hyperspheres Mk ⊂ Vk which have the form indicated in the last column
of the above table.

On the other hand, all a�ne hyperspheres listed in the last column of the table have parallel cubic
form.

49



Chapter 2

Copositive cones

2.1 Introduction

Copositive matrices appear to have been introduced in 1952 by Motzkin [152]. A real symmetric n×n
matrix A is called copositive if xTAx ≥ 0 for all x ∈ Rn+. The set of copositive matrices forms a convex
cone, the copositive cone Cn. In this section we �rst give a general overview over this cone and its
relevance in applications, and then explain the more speci�c context of our work on the extreme rays
of Cn.

2.1.1 Copositivity in optimization

The matrix cone Cn is of interest for optimization, as various di�cult non-convex optimization prob-
lems can be reformulated as conic programs over the copositive cone, so-called copositive programs.
Among these are combinatorial problems such as the bandwidth problem [179], graph partitioning
[180], computing the stability number [48], clique number [215], and chromatic number [80] of graphs,
and the quadratic assignment problem [181]. Copositive formulations have been derived for quadratic
programming problems [182, 25, 22] and mixed-integer programs [36]. The connection of the copositive
cone with su�cient optimality conditions for quadratic programming, i.e., the problem of minimizing
a quadratic function under linear constraints, has been recognized already in the 70s [109, Theorem
3.2.3]. For quadratically constrained quadratic programming problems with additional linear con-
straints copositive relaxations are tighter than standard Lagrangian semi-de�nite relaxations [24]. In
[142, 120, 35, 19] copositive matrices are used for determining Lyapunov functions for switched linear
dynamical systems with state con�ned to the positive orthant or, more generally, to a polyhedral cone.
More applications of copositive programming can be found in the surveys [63, 23].

Verifying copositivity of a given matrix is a co-NP-complete problem [153]. Likewise, verifying
whether a given linear hyperplane in the space Sn of n×n real symmetric matrices is supporting to Cn
at the zero matrix is NP-hard [56]. This is not surprising given the extraordinary descriptive power of
copositive programs. Therefore much research has been focussed on �nding tractable approximations
of the copositive cone, in particular, semi-de�nite approximations.

The commonest approximation of the cone Cn is that by the sum of the cone Sn+ of positive
semi-de�nite matrices and the cone Nn of element-wise nonnegative symmetric matrices. In [109] the
matrices in this sum are called stochastically copositive. It is a classical result by Diananda [51, Theorem
2] that for n ≤ 4 the relation Cn = Sn+ + Nn holds, i.e., copositivity and stochastic copositivity are
equivalent. In general, stochastic copositivity merely implies copositivity, and Sn+ +Nn ⊂ Cn. A. Horn
showed that for n ≥ 5 this inclusion is indeed strict [51, p.25]. Matrices which are copositive but not
stochastically copositive are called exceptional, a term that has been coined in [111].

With the appearance of semi-de�nite programming more sophisticated approximations of Cn have
been elaborated in order to solve copositive programs. In [175] a hierarchy of inner semi-de�nite
approximations for Cn has been constructed, with the sum Sn+ + Nn being its simplest member. It
is based on representing the copositive cone as a cone of positive polynomials and applying sum of
squares approximations. In [22] this hierarchy has been relaxed to a hierarchy of polyhedral inner
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approximations. In [131] a hierarchy of outer semi-de�nite approximations of Cn has been proposed
based on moments involving the exponential measure on Rn+. All these hierarchies are asymptotically
exact, i.e., the approximating cones tend to Cn as the order of the approximation tends to in�nity. The
complexity of the approximating cones grows exponentially with the order, however.

There exist also methods which deal directly with the data of the copositive program under consid-
eration. In [34, 35, 215] branch-and-bound methods based on a tree of polyhedral approximations of
the copositive cone have been proposed to check membership in this cone and to solve copositive pro-
grams. In [27] a local descent method was proposed which works with the conic dual to the copositive
program. In [26, 64] copositivity is checked by a decomposition of a non-convex function as a di�erence
of two convex functions.

For further surveys on copositive matrices see [99, 28], for a list of open problems see [17]. Closely
related to the copositive cone Cn is its dual C∗n, the completely positive cone, which is, however, outside
of the scope of this thesis. For surveys on completely positive matrices see, e.g., [18, 28, 53].

2.1.2 Extreme copositive matrices

Our work on copositive cones mainly focusses on a particular topic, namely the extreme rays of Cn. An
element x ∈ K is called an extremal element of a regular convex cone K if a decomposition x = x1 +x2

of x into elements x1, x2 ∈ K is only possible if x1 = λx, x2 = (1 − λ)x for some λ ∈ [0, 1]. The
set of positive multiples of an extremal element is called an extreme ray of K. The set of extreme
rays is an important characteristic of a convex cone. Its structure, �rst of all its strati�cation into a
union of manifolds of di�erent dimension, yields much information about the shape of the cone. The
extreme rays of a di�cult cone are especially important if one wishes to check the tightness of inner
convex approximations of the cone. Namely, an inner approximation is exact if and only if it contains
all extreme rays. Since the extreme rays of a cone determine the facets of its dual cone, they are also
important tools for the study of this dual cone [52, 194, 29, 30, 193, 192].

It is therefore not surprising that the extreme rays of Cn have been the subject already of many of
the �rst papers on copositive matrices. The extreme rays of Cn which are elements of the sum Sn+ +Nn

have been completely classi�ed in [82]. Since Cn = Sn+ + Nn for n ≤ 4, this yields also a complete
classi�cation of the extreme rays of Cn for n ≤ 4. The �rst exceptional extreme copositive form has
been found by A. Horn, according to [51, p.25]. This Horn form is a circulant 5×5 matrix with entries
in {−1,+1}. In [11, Theorem 3.8] Baumert gave a procedure to construct an extreme ray of Cn+1

from an extreme ray of Cn, by duplicating a row and the corresponding column of the original matrix.
Starting with the Horn form, he was then able to construct explicit exceptional extreme copositive
matrices of every size n ≥ 5. Extreme copositive matrices which cannot be obtained by this procedure
have been called basic in [9].

In his thesis [10] and his paper [11] Baumert laid the foundation of a theory of extremal exceptional
copositive forms. He recognized the importance of the symmetry group Gn of the cone Cn, which
consists of maps of the form A 7→ PDADPT , where D is a positive de�nite diagonal matrix, and
P ∈ Sn is a permutation matrix. The elements of this symmetry group preserve the sum Sn+ + Nn

and hence also the property of a copositive matrix of being exceptional. Baumert showed that an
exceptional extreme copositive matrix has positive diagonal elements and hence can be scaled to a
matrix with all diagonal elements equal to 1 by the action of Gn. By a result from [82] he concluded
that the o�-diagonal elements of the scaled extremal exceptional matrix have all to be in the interval
[−1,+1].

The extremal exceptional matrices of Cn with elements in {−1,+1} have been classi�ed completely
in [12] for n ≤ 7, where it has been shown that they can all be obtained from the Horn form by a
group action and the above-mentioned procedure of duplicating rows and columns, a result which does
not hold anymore for n = 8 [9]. For general n the extremal exceptional matrices with elements in
{−1,+1} have been characterized independently in [88, 9]. The extreme exceptional matrices in Cn
with elements from the set {−1, 0,+1} have been characterized in [101].

Since an exceptional copositive matrix cannot be a multiple of an element in the sum Sn+ + Nn,
subtraction of a non-zero such element from an extreme exceptional copositive matrix will lead to
a matrix which is no more copositive. This fact has early been recognized and led to a number of
conditions on exceptional copositive matrices which are weaker than extremality but more tractable.

51



Baumert called a copositive matrix reduced if one cannot subtract a non-zero nonnegative matrix from
it without leaving the copositive cone [11], a condition which has been initially introduced and put
to use in [51]. Baumert re�ned this condition by requiring the subtracted nonnegative matrix to be
proportional to the extremal element Eij of Nn, where Eij is the symmetric n × n matrix having a
1 at positions (i, j) and (j, i) and whose other elements all equal zero. He furnished a necessary and
su�cient condition on a copositive matrix to be reduced with respect to Eii [11, Theorem 3.4] and
conjectured a similar condition for reducedness with respect to Eij with i 6= j [12, Conjecture 4.1],
refuted later in [101] by a counterexample of order n = 7.

These conditions are expressed in terms of the presence or absence of zeros with certain properties.
The importance of the concept of zeros of a copositive matrix has been recognized already by Diananda
who introduced it in [51]. A nonzero vector u ∈ Rn+ is called a zero of a copositive matrix A ∈ Cn if
uTAu = 0. For a vector u ∈ Rn we de�ne its support as suppu = {i ∈ {1, . . . , n} | ui 6= 0}, i.e., as the
index set of the non-zero elements of u. The possible supports of a nonnegative vector are in one-to-one
correspondence with the faces of the nonnegative orthant where this vector may be situated. However,
a zero u of a copositive form represents a global minimum of this form on the nonnegative orthant.
Therefore the �rst and second order optimality conditions at u are determined by its support. The
set of supports of the zeros of a copositive matrix is hence an informative combinatorial characteristic
of this matrix which has attracted a lot of attention and is an important mathematical tool in the
analysis of copositive matrices and the copositive cone. We shall call this set the support set of the
copositive matrix in question. In [51, 82, 10, 11, 12] many necessary conditions on the support set
of an extremal or a reduced exceptional copositive matrix have been found, and on the other hand,
many conditions on the matrix have been established which are determined by its support set. Let us
remark that instead of the support as de�ned here, Baumert de�ned and used the equivalent notion of
the pattern of a zero. This notion turned out to be less convenient than that of the support, by which
it has been superseded nowadays. Properties of zeros and algorithms to �nd the zero set of copositive
matrices have been recently considered in [52] in application to a study of the faces of the copositive
cone and its dual.

In [10, 12] Baumert discovered that the cone C5 possessed a family of exceptional extreme elements
with a support set which is di�erent from that of the Horn form, and gave an explicit matrix from
this family. Key to this �nding was the introduction of the concept of maximal zero. A maximal
zero u of a copositive matrix A is a zero such that there does not exist another zero v of A such that
suppu ⊂ supp v strictly.

After the paper [101] from the early 70s research on the extreme elements of the copositive cone
came to a halt for many years, until the revival which occurred in the current decade.

2.1.3 Overview of our work

In this subsection we give a short summary of our work on extreme copositive matrices and related
concepts, and place it into the larger context described in the previous subsections.

While the extreme elements of Cn for n ≤ 4 have been completely understood by the work of
Diananda [51] and Hall and Newman [82], the structure of C5 remained a mystery until recently. It
was known that C5 contained exceptional extreme matrices, namely the orbit of the Horn form with
respect to the action of the symmetry group G5, and a family of matrices with 5 isolated zeros with
supports of cardinality three [12]. Here we call a zero u of a copositive form A isolated if there are no
other zeros of A in the neighbourhood of u other than the multiples of u.

Our work on copositive matrices started with a complete description of the extreme rays of the cone
C5, published in [90] and described in more detail in Section 2.2 below. Our strategy follows the one
outlined by Baumert [10], by replacing extremality by the weaker condition of reducedness with respect
to nonnegative matrices, which is easier to handle. However, two new ideas have been necessary for a
successful implementation.

The �rst one has been to introduce a trigonometric parametrization of the extreme matrices with all
diagonal elements equal to 1. As mentioned above, such matrices have their o�-diagonal elements in the
interval [−1,+1], which can be parameterized by cosϕ with the angle ϕ running through the interval
[0, π]. It turns out that the family of extreme elements discovered by Baumert becomes a�ne in these
angles and its range is delimited by linear inequalities on the angles. As a result, the manifold of these
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exceptional extreme 5×5 matrices, which have initially been called T -matrices in [90] but are nowadays
called Hildebrand matrices, can be described in a closed analytic form. The reason for this to happen
is the special structure of Cayleys nodal cubic surface which models the zero set of the determinant
of real symmetric 3 × 3 matrices with diagonal elements equal to 1. This surface decomposes into a
union of four planes when undergoing the above trigonometric transformation. However, the optimality
conditions associated with the isolated zeros of the extreme forms of C5 in question force the 3 × 3
principal submatrices of the forms corresponding to the supports of the zeros to be singular. This will
happen anytime a zero of a copositive form has a support of cardinality less or equal to three. Thus
the proposed trigonometric approach will lead to similar results for any family of extreme rays of Cn
whose zeros have supports with cardinality less or equal to three, independently of the order n. We
shall apply this method to the cone C6 in Section 2.4.

The second critical ingredient was to derive a necessary and su�cient condition on a copositive
matrix to be reduced with respect to the extreme element Eij of the nonnegative cone for i 6= j.
Baumert has conjectured such a condition in [12, Conjecture 4.1] and was able to prove that his families
of extreme elements of C5 were indeed exhaustive, assuming the conjecture. Namely, he provided a
partial classi�cation of the support sets of matrices in C5 which are reduced with respect to the coneN 5,
which would have been complete were the conjecture true. In collaboration with M. D�ur, P. Dickinson,
and L. Gijben we completed this classi�cation in [54], after having derived the correct condition for
reducedness with respect to Eij . It turned out that this led to additional families of reduced matrices,
but none of them were extremal.

The study of the cone C5 was completed in the joint paper [55], where it was shown that the second
relaxation in Parrilos hierarchy [175] was exact in describing the subset of 5 × 5 copositive matrices
with all diagonal elements equal to 1. In the same paper, we showed that none of Parrilos relaxations
is exact for the complete cone C5. We describe these results in more detail in Section 2.2.

The classi�cation of the extreme rays of C5 was based on a tedious classi�cation of the possible
support sets of copositive 5× 5 matrices which are reduced with respect to the nonnegative cone N 5,
initiated by Baumert in [12] and completed in [54]. An extension of these results to copositive cones of
order n > 5 seemed impossible without a more systematic study of support sets of exceptional extremal
copositive matrices, due to the expected extraordinary complexity. Our e�orts in this direction resulted
in the paper [95] on support sets of copositive matrices. We present these results in Section 2.3 below.

In [95] we introduced and investigated the concept of minimal zeros, as opposed to the maximal
zeros studied by Baumert in [10]. Here a zero u of a copositive form A is called minimal if for no
other zero v of A, the support of v is a strict subset of the support of u. In contrast to maximal zeros,
or zeros in general, a minimal zero of a copositive matrix is determined up to scaling by a positive
constant only by its support and by the matrix itself. Thus a copositive matrix can essentially have
only a �nite number of minimal zeros, which opens the way to a combinatorial approach. The set of
supports of all minimal zeros of a copositive matrix A is called the minimal support set of A.

The second innovation presented in [95] was the extension of the concept of reducedness. An
exceptional extreme copositive matrix A ∈ Cn is not only reduced with respect to the nonnegative
cone, but for the same reasons must also be reduced with respect to the positive semi-de�nite cone,
i.e., it cannot be decomposed into a non-trivial sum A = C+P , where C is copositive and P is positive
semi-de�nite. This reducedness requirement leads to additional conditions on the support set of the
extremal matrix. In fact, we were able to derive a necessary and su�cient condition for reducedness
with respect to Sn+ in terms of the minimal zeros.

The main result of [95] is a set of necessary conditions on the minimal support set of an exceptional
copositive matrix which is reduced with respect to both Sn+ and Nn. When applied retrospectively
to the cone C5, these conditions are strong enough to single out exactly the two support sets which
correspond to the two types of exceptional extreme rays of C5, namely the orbits of the Horn form
and the Hildebrand matrices, thus making the classi�cation in [10] and [54] obsolete. For n = 6, the
conditions reduce the number of potential minimal support sets to 44, which makes the classi�cation
of the extreme rays of C6 possible with a manageable e�ort. Surprisingly, for some applications the list
of support sets itself su�ces, without explicit knowledge of the extreme rays [192]. We present some
preliminary results on C6 in Section 2.4.

Our next step in the study of copositive matrices has been to tackle the condition of extremality.
As mentioned above, in previous work this condition was substituted by the weaker condition of
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reducedness, because the latter is easier to handle. However, it is a trivial observation that extremality
itself can also be described by a reducedness condition. Namely, a copositive matrix is extremal if
and only if one cannot subtract another copositive matrix from it without leaving the copositive cone,
except when this other matrix is a multiple of the original matrix. This motivated a study of the
reducedness condition with respect to general convex cones and resulted in the paper [57] which was
a joint work with P. Dickinson. Those results of this paper which pertain to extremality are described
in Section 2.5 below.

The concept of reducedness is generalized in the following way. A copositive matrix A ∈ Cn is called
reduced with respect to another copositive matrix C if for every δ > 0, we have A− δC 6∈ Cn, and it is
called reduced with respect to a subsetM⊂ Cn if it is irreducible with respect to all nonzero elements
C ∈M.

The paper [57] has a strong convex analysis �avour. Its main result is a necessary and su�cient
condition on a pair (A,B), where A ∈ Cn and B ∈ Sn, for the existence of a scalar δ > 0 such that
A + δB ∈ Cn. For �xed A, the set of all such matrices B ∈ Sn forms a convex cone KA, which is
referred to as the cone of feasible directions [177]. We express this cone in terms of the zeros of A and
their supports.

The obtained description of the cone KA is a powerful tool. It allows to compute the minimal face
of A, see [16, 186] for further information on faces of a convex set or cone. In particular, we obtain a
simple test of extremality of A, which amounts to checking the rank of a certain matrix constructed
from the minimal zeros of A. The necessary and su�cient conditions for the reducedness of A with
respect to a nonnegative matrix C ∈ Nn or a positive semi-de�nite matrix C ∈ Sn+, which have been
given in [54] and [95], respectively, are generalized to the case of arbitrary matrices C ∈ Cn. The
conditions in [54] and [95] follow as particular cases.

Our latest paper on copositive matrices is the article [97], whose results are described in Section
2.6. On the one hand, it complements the trigonometric approach which served to study matrices with
zeros having small supports, in that it considers copositive matrices in Cn with large supports of size
n−2. On the other hand, it generalizes the Horn form and the Hildebrand matrices, which are of order
n = 5, to families of basic exceptional extreme copositive forms of arbitrary order n ≥ 5.

The de�ning property of the copositive matrices studied in [97] is that their support set contains n
zero supports of cardinality n− 2 which form the orbit of the index set {1, . . . , n− 2} under the action
of cyclic permutations of the indices {1, . . . , n}. Two questions related to such matrices are considered.
Firstly, the n zeros having the requested supports are �xed and the set of copositive forms having
these zeros is studied. This set must be a face of the copositive cone Cn. Surprisingly, the considered
condition on the support set is restrictive enough to determine the structure of this face in most cases.
Secondly, the whole variety of copositive matrices with support set having the considered property is
studied. This variety is shown to contain large families of exceptional extreme rays of Cn. We give
explicit examples of circulant exceptional extreme matrices from this variety for every n ≥ 5.

The proof of these results has been made possible by establishing a link between the properties of
the copositive matrices in question and the behaviour of a certain periodic discrete time-varying linear
dynamical system whose coe�cients are given by the elements of the n de�ning zeros. Parts of the
theory developed in [97] can also be applied to copositive matrices with zeros having smaller support,
given the set of the supports still has the cyclic structure described in the previous paragraph.

Let us now summarize the elaborated approach to exceptional extremal copositive matrices. We
divide our study in two steps. First we look at the possible support sets of extremal copositive matrices,
constrained by necessary conditions on the zeros. This step can be characterized as a qualitative
analysis, because the main object is of a combinatorial nature. Then we consider which extremal
copositive matrices exist with a given support set. This step is of a quantitative nature, and essentially
boils down to solving underdetermined systems of algebraic equations. Both steps encounter di�culties
when the order of the copositive matrices increases. One problem is the exploding number of possible
support sets, and the other is the increasing complexity of the system of equations. There are two
regimes where these problems seem manageable. If the supports of the zeros are small, of cardinality 2
or 3, then the trigonometric parametrization of the extremal matrices scaled such that their diagonal
elements equal 1 yields a linear system on the parameterizing angles, and the corresponding families
of extremal matrices can explicitly be written down. If the supports are large, then the corresponding
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system of equations is rigid enough to prevent a too complex structure of the extremal matrices.

2.1.4 Notations and preliminaries

In this subsection we introduce notations and provide de�nitions which are common for the subsequent
sections. We also provide the �rst and second order optimality conditions which a zero u imposes on
a copositive matrix A.

We shall denote vectors with lower-case letters and matrices with upper-case letters. Individual
entries of a vector u or a matrix A will be denoted by ui, Aij , respectively. For a matrix A and a
vector u of compatible size, the i-th element of the vector Au will be denoted by (Au)i. Inequalities
u ≥ 0 on vectors will be meant element-wise. We denote by 1 = (1, . . . , 1)T the all-ones vector.

For a subset I ⊂ {1, . . . , n} we denote by AI the principal submatrix of A whose elements have row
and column indices in I, i.e. AI = (Aij)i,j∈I . Similarly for a vector u ∈ Rn we de�ne the subvector
uI = (ui)i∈I .

The vector space of real symmetric matrices will be denoted by Sn. The cones of positive semi-
de�nite matrices, element-wise nonnegative matrices, element-wise nonnegative matrices with zero
diagonal, and copositive matrices will be denoted by Sn+, Nn, Nn

0 , and Cn, respectively. Here a real
symmetric n× n matrix A is positive semi-de�nite (PSD), denoted A � 0, if xTAx ≥ 0 for all x ∈ Rn,
and copositive if xTAx ≥ 0 for all x ∈ Rn+. A copositive matrix A ∈ Cn will be called exceptional if
A 6∈ Sn+ +Nn.

De�nition 2.1.1. Let K ⊂ Rn be a closed convex cone. An element x ∈ K is called extremal if for
every x1, x2 ∈ K such that x1 + x2 = x there exists λ ∈ [0, 1] such that x1 = λx, x2 = (1− λ)x. The
conic hull of an extremal element is called extreme ray of K.

Let C ⊂ Rn be a closed convex set. An element x ∈ C is called extremal if for every x1, x2 ∈ C and
λ ∈ (0, 1) such that λx1 + (1− λ)x2 = x we have that x1 = x2 = x.

An extreme ray or an extreme element is a special case of a face of a convex cone or set, respectively.

De�nition 2.1.2. Let K ⊂ Rn be a closed convex cone. A convex subset F ⊂ K is a face of K if
every closed line segment in K with a relative interior point in F must have both end points in F .
For x ∈ K we let Fx equal the intersection of all faces of K containing x. This is itself a face, and is
referred to as the minimal face of K containing x.

We shall deal almost exclusively with extreme elements and faces of the copositive cone Cn.
For a given n ≥ 1, denote by Eij = Eji, i, j = 1, . . . , n, the generators of the extreme rays of

the cone Nn, normalized such that their elements are from the set {0, 1}. Let ei, i = 1, . . . , n be the
canonical basis vectors of Rn, and let ∆n = {x ∈ Rn+ |

∑n
j=1 xj = 1} be their convex hull.

Let Aut(Rn+) be the automorphism group of the positive orthant. It is generated by all n × n
permutation matrices and by all n× n diagonal matrices with positive diagonal elements. This group
generates a group Gn of automorphisms of the cones Sn+, Nn, Cn by A 7→ GAGT , G ∈ Aut(Rn+).

We call a nonzero vector u ∈ Rn+ a zero of a copositive matrix A ∈ Cn if uTAu = 0. We denote the
set of zeros of A by VA = {u ∈ Rn+ \ {0} | uTAu = 0}. For a vector u ∈ Rn we de�ne its support as
suppu = {i ∈ {1, . . . , n} | ui 6= 0}. A zero u of a copositive matrix A is called minimal if there exists no
zero v of A such that the inclusion supp v ⊂ suppu holds strictly. We shall denote the set of minimal
zeros of a copositive matrix A by VAmin. The support set of A is the set suppVA = {suppu |u ∈ VA},
and the minimal support set is the set suppVAmin = {suppu |u ∈ VAmin}.

De�nition 2.1.3. [54, De�nition 1.1] For a matrix A ∈ Cn and a subset M ⊂ Cn, we say that A is
reduced with respect toM if there do not exist γ > 0 and M ∈M \ {0} such that A− γM ∈ Cn.

For simplicity we speak about reducedness with respect to M when M = {M}. Note that if a
matrix A is on an exceptional extreme ray of Cn, then A must be reduced with respect to both Sn+ and
Nn.

Let now u be a zero of a copositive matrix A. Then x = u is a global minimum of the quadratic
function xTAx on the nonnegative orthant, and this function ful�lls the necessary optimality conditions
at this point. These conditions translate to the following result.
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Lemma 2.1.4. Let u ∈ Rn+ with support I = suppu ⊂ {1, . . . , n} be a zero of a copositive matrix
A ∈ Cn. De�ne I ′ = {1, . . . , n} \ suppAu. Then the following conditions hold:

�rst-order conditions: Au ≥ 0, I ⊂ I ′;
second-order conditions: the submatrix AI′ can be written as a sum P + C, where P is positive

semi-de�nite, and C is copositive such that its non-zero elements are contained in the subblock CI′\I .
In particular, the submatrix AI is positive semi-de�nite.

The �rst order condition and the condition AI � 0 are in [51, Lemma 7], the full second-order
condition is in [11, Lemma 3.1]. Note that the nonnegative vector Au is precisely the vector λ of
Lagrange multipliers corresponding to the constraints x ≥ 0. The inclusion I ⊂ I ′ is then nothing else
than the complementarity conditions λiui = 0.

These conditions enforce positive semi-de�niteness of A in the presence of zeros with large supports.
Clearly, if there is a zero u of A with suppu = {1, . . . , n}, then A is positive semi-de�nite. However,
we also have the following result [11, Corollary 3.2].

Corollary 2.1.5. Let A ∈ Cn and let u ∈ VA such that | supp(u)| = n− 1 and Au = 0. Then A ∈ Sn+.

2.2 The cone C5

2.2.1 Introduction

In this section we study the extreme rays of the copositive cone C5. We present a synthesis of the
papers [54, 90]. The outline of the section is as follows. First we derive a necessary and su�cient
condition on a copositive matrix to be reduced with respect to the extremal matrix Eij of the cone of
nonnegative matrices, for i 6= j. This will be accomplished in Subsection 2.2.2. Next we introduce the
trigonometric parametrization of reduced copositive matrices with diagonal elements equal to 1. This
will be done in Subsection 2.2.3. Then we study the support set of an exceptional copositive matrix
in C5 which is reduced with respect to the cone of nonnegative matrices with zero diagonal. This
step will be accomplished in Subsection 2.2.4. Next we shall investigate which support sets give rise
to exceptional extremal matrices, and parameterize these matrices with the help of the trigonometric
transformation. This will be accomplished in Subsection 2.2.5. Finally, we consider the a�ne section
of C5 which consists of the matrices with all diagonal elements equal to 1, and give a semi-de�nite
description of this section. This will be the subject of Subsection 2.2.6.

The value n = 5 is the smallest order for which there exist matrices in Cn which cannot be repre-
sented as a sum of a positive semi-de�nite matrix and a nonnegative matrix. An example of such a
matrix is the Horn form [82]

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 . (2.1)

The Horn form has been characterized as an exceptional extreme ray of C5. It follows that all forms
that can be obtained from the Horn form by a permutation of the indices and a scaling with a positive
diagonal matrix, i.e., the G5-orbit of the Horn form, are also extreme rays of C5 which do not belong
to S5

+ +N5.
Much work has also been devoted to characterize the di�erence between the completely positive

cone C∗n and the intersection Sn+ ∩ Nn, which are the dual cones to Cn and Sn+ + Nn, respectively.
Special emphasis has been made on the 5×5 case. In [227] the extreme rays of Sn+∩Nn for n = 5, 6 are
characterized, and a procedure for general n is given. An earlier paper with a partial characterization
of the 5× 5 completely positive cone is [224]. In [37] extreme rays of S5

+ ∩N5 which do not belong to
C∗5 are characterized and it is shown how to separate them from C∗5 by a copositive matrix.
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2.2.2 Copositive matrices reduced with respect to Eij

We now consider weaker properties than extremality, namely reducedness with respect to the cone Nn

of nonnegative matrices, and reducedness with respect to the cone Nn
0 of nonnegative matrices with

zero diagonal. The �rst of these properties has been utilized and recognized as being more convenient
than extremality already in the early work on copositive matrices [51],[82],[12]. In particular, it was
studied by Baumert who gave a characterisation of copositive matrices which are reduced with respect
to Eii [11, Theorem 3.4].

Lemma 2.2.1. A matrix A ∈ Cn is reduced with respect to the matrix Eii, i = 1, . . . , n, if and only if
there exists a zero u of A such that ui > 0.

It follows for a copositive matrix which is reduced with respect to Nn that for every i = 1, . . . , n
there exists a zero such that ui > 0. This condition is not strong enough to reasonably restrict the
support set of a reduced matrix. However, a matrix which is reduced with respect to Nn is also reduced
with respect to Eij for i 6= j, which gives another source of information on the support set. Our key
result is the following analog of Lemma 2.2.1 [54, Theorem 2.6].

Theorem 2.2.2. Let A ∈ Cn, n ≥ 2, and let 1 ≤ i, j ≤ n. Then the following conditions are equivalent.

(i) A is reduced with respect to Eij,

(ii) there exists u ∈ VA such that (Au)i = (Au)j = 0 and ui + uj > 0.

The theorem shows that reducedness with respect to Eij is tied to the presence of a zero u with
certain properties involving both the support of the zero u and the support of the Lagrange multiplier
λ = Au. Clearly a copositive matrix A is reduced with respect to Nn

0 if and only if it is reduced with
respect to all Eij , i 6= j. This property has strong implications, especially in the presence of zeros with
large support.

We have the following result [54, Lemma 4.12].

Lemma 2.2.3. Let A ∈ Cn be reduced with respect to Nn
0 , and assume there is a (n − 1) × (n − 1)

principal submatrix B of A which is positive semi-de�nite. Then A ∈ Sn+.

In conjunction with Corollary 2.1.5 this gives the following [54, Corollary 4.15].

Corollary 2.2.4. Let A ∈ Cn be reduced with respect to Nn
0 , and let u be a zero of A with | supp(u)| ≥

n− 2. If | suppAu| < 2, then A ∈ Sn+.

Clearly an exceptional copositive matrix A ∈ Cn cannot have a zero with support of cardinality n,
because in this case A is positive semi-de�nite by Lemma 2.1.4. If the matrix is in addition reduced
with respect to Nn

0 , then it cannot have even a zero with cardinality n− 1, because it must again be
positive semi-de�nite by Lemma 2.2.3. On the other hand, if it has a zero with support of cardinality
1, then it must have a zero row and is essentially given by a copositive matrix form Cn−1. This leads
to the following result.

Lemma 2.2.5. Let A ∈ Cn be an exceptional copositive matrix with positive diagonal elements which
is reduced with respect to Nn

0 . Then the support of any zero of A has cardinality between 2 and n− 2.

The following result is evident.

Lemma 2.2.6. Let A ∈ Sn+ +Nn be reduced with respect to Nn
0 . Then A ∈ Sn+.

From work done on the copositive completion problem [102] we have also the following result [54,
Lemma 4.5].

Lemma 2.2.7. Let A ∈ Cn with diagA = 1 be reduced with respect to Nn
0 . Then aij ∈ [−1, 1] for

all i, j.

This result allows us to apply the trigonometric parametrization introduced in the next subsection.
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2.2.3 The trigonometric parametrization

Let A ∈ Sn have diagonal elements equal to 1 and assume its o�-diagonal elements are contained in
the interval [−1, 1]. Then Aij can be written as − cosϕij for some angle ϕij ∈ [0, π]. To appreciate
the bene�ts of this parametrization, we shall �rst consider copositive matrices of order n = 3.

The cone C3 has been characterized in [81, Theorem 4]. A reformulation of this result in terms of
the angles leads to the following.

Lemma 2.2.8. Let

A =

 1 − cosϕ12 − cosϕ13

− cosϕ12 1 − cosϕ23

− cosϕ13 − cosϕ23 1

 (2.2)

for some angles ϕij ∈ [0, π]. Then A is copositive if and only if ϕ12 + ϕ13 + ϕ23 ≥ π.

The algebraic constraint detA ≥ 0 from [81] has thus been converted into a linear constraint on
the angles ϕij . De�ne the vector ϕ = (ϕ12, ϕ13, ϕ23)T and let ∆ = {ϕ ∈ [0, π]3 |1Tϕ = π}. Then we
have for A ∈ C3 as in (2.2):

• A is reduced with respect to N 3
0 if and only if ϕ ∈ ∆;

• ϕ is a vertex of ∆ if and only if suppVA = {{i, j}, {j, k}, {1, 2, 3}};

• {i, j}, {j, k} ∈ suppVA if and only if {1, 2, 3} ∈ suppVA and ϕik = π;

• suppVA = {{1, 2, 3}} if and only if ϕ is in the relative interior of ∆, in this case the zero is
proportional to (sinϕ23, sinϕ13, sinϕ12)T ;

• {i, j} ∈ supp
(
VA
)
if and only if ϕij = 0, in this case ei + ej is a zero;

• if {i, j}, {1, 2, 3} ∈ supp
(
VA
)
, then either {i, k} or {j, k} are in supp

(
VA
)
.

Here (i, j, k) stands for some permutation of (1, 2, 3).
Conditions on the support set of A hence translate into linear equality and inequality constraints

on the angle vector ϕ. If we consider copositive matrices of general order n, then the above relations
hold for every 3× 3 principal submatrix of A.

The parametrization Aij = − cosϕij has close connections to the semi-de�nite approximation of the
MAXCUT problem by Goemans and Williamson [75] and to Nesterovs π

2 -theorem in the semi-de�nite
approximation of nonconvex quadratic optimization problems [164].

De�nition 2.2.9. The MAXCUT polytopeMCn ⊂ Sn+ is the convex hull of all matrices A ∈ Sn+ such
that Aij ∈ {−1,+1} for all i, j = 1, . . . , n, i.e., all matrices of the form vvT , v ∈ {−1,+1}n.

The following lemma is a consequence of [75, Lemma 3.2].

Lemma 2.2.10. [100, Corollary 4.3] Let A ∈ Sn+ be a positive semi-de�nite matrix with Aii = 1,
i = 1, . . . , n. Let B be the real symmetric n × n matrix de�ned entry-wise by Bij = 2

π arcsinAij,
i, j = 1, . . . , n. Then B ∈MCn.

The function f(x) = 2
π arcsinx maps the interval [−1,+1] monotonically onto itself and plays an

important role in the results cited above when applied element-wise to positive semi-de�nite matrices
with diagonal elements equal to 1. If we introduce the a�ne transformation [0, π] 3 ϕij 7→ βij = 2

πϕij−
1, then we obtain βij = 2

π arcsinAij , i.e., the transformation used in our trigonometric parametrization
equals the function f up to an a�ne scaling. We may de�ne the following analog of the MAXCUT
polytope for copositive matrices with unit diagonal.

De�nition 2.2.11. The triangle-free polytope T Fn ⊂ Sn is the convex hull of all matrices A ∈ Sn
such that Aij ∈ {−1,+1} for all i, j = 1, . . . , n, diagA = 1, and the incidence graph of the −1 entries
is triangle-free.
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We have the obvious inclusion MCn ⊂ T Fn. Moreover, by [88] the extreme copositive matrices
of Cn with elements in {−1,+1} are exactly those vertices of T Fn which are reduced with respect to
Nn

0 . The above characterization of the unit diagonal section of C3 can be reformulated as follows.

Corollary 2.2.12. A matrix A ∈ S3 with unit diagonal is in C3 if and only if it is in the sum
f−1[T F3] +N 3

0 , where the function f
−1(ϕ) = sin π

2ϕ is applied element-wise.

Thus portions of the boundary of C3 are mapped to facets of T F3 by the function f .

2.2.4 Copositive matrices reduced with respect to N 5
0

In this subsection we restrict the support sets of exceptional copositive matrices A ∈ C5 which are
reduced with respect to the cone of nonnegative matrices with zero diagonal.

An exceptional copositive matrix A ∈ C5 which is reduced with respect to N 5
0 can only have zeros

with supports of cardinality 2 or 3 by Lemma 2.2.5. This gives still ∼ 104 possible support sets, up
to permutation of the indices 1, . . . , 5. We can, however, further constrain the support set of A. In
addition to the constraints from Subsection 2.2.3, which apply to every 3 × 3 principal submatrix of
A, we have the following restrictions:

• For every index i there exist distinct indices j, k such that there is no zero u with j, k ∈ suppu
and i 6∈ suppu. Indeed, if for some i such vertices j, k do not exist, then by Theorem 2.2.2 the
4×4 submatrix A{1,...,5}\{i} is a copositive matrix which is reduced with respect to N 4

0 . But this
submatrix is in S4

+ +N 4, and hence must be positive semi-de�nite by Lemma 2.2.6. Hence A is
positive semi-de�nite by Lemma 2.2.3, leading to a contradiction with exceptionality.

• For every pair (i, j) of indices, i 6= j, there either exists a zero u with i, j ∈ suppu, or there
exists a zero u with | suppu| = 2 and {i, j}∩ suppu 6= ∅. Indeed, by Theorem 2.2.2 for every pair
(i, j) there exists a zero u with {i, j} ∩ suppu 6= ∅, and (Au)i = (Au)j = 0 if uiuj = 0. Hence
if the condition does not hold for some pair (i, j), then there exists a zero u with | suppu| = 3,
{i, j} 6⊂ suppu, (Au)i = (Au)j = 0. Then A ∈ S5

+ by Corollary 2.2.4, a contradiction.

Supports with cardinality 2 or 3 can conveniently be represented by edges in a graph on 5 vertices.
We will represent a support {i, j} by a dashed edge between the vertices i and j, whilst we will represent
a support {1, . . . , 5} \ {i, j} by a solid edge between the vertices i and j. There are 17 support sets
satisfying above conditions, up to permutation of the vertices. They give rise to the graphs in Fig. 2.1.

In order to describe the exceptional matrices A ∈ C5 which are reduced with respect to N 5
0 we have

to consider each of these 17 cases of support sets. We assume without loss of generality that diagA = 1,
because every such matrix A has a positive diagonal which can be scaled to 1 by a symmetry from
G5. We may then parameterize the o�-diagonal elements Aij = − cosϕij by angles ϕij ∈ [0, π]. The
support set yields linear conditions on these angles by the relations established in Subsection 2.2.3.
Using these conditions to eliminate variables and applying the reducedness conditions in Theorem 2.2.2,
we obtain that

• the support sets given by the graphs (a),(b),(c),(d),(e),(f),(k),(l),(q) do not correspond to an
exceptional reduced copositive matrix;

• the support sets given by the graphs (g),(h),(i),(j),(m),(n),(o),(p) lead to the matrices

T (ψ) =


1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5 + ψ1) cos(ψ3 + ψ4)
cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ5 + ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1

 , (2.3)

where ψ = (ψ1, . . . , ψ5)T is a quintuple of angles satisfying ψi ∈ [0, π), i = 1, . . . , 5, and
∑5
i=1 ψi < π.

Here the individual cases correspond to

(g) ψ2, ψ3, ψ5 > 0, ψ1 = ψ4 = 0;
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Figure 2.1: Graphs of possible support sets of an exceptional copositive 5× 5 matrix which is reduced
with respect to N 5

0 . A dashed edge between vertices i and j represents a zero with support {i, j},
whilst a solid edge between the vertices i and j represents a zero with support {1, . . . , 5} \ {i, j}.

(h) ψ1, ψ2, ψ3 > 0, ψ4 = ψ5 = 0;

(i) ψ3 > 0, ψ1 = ψ2 = ψ4 = ψ5 = 0;

(j) ψ1, ψ3 > 0, ψ2 = ψ4 = ψ5 = 0;

(m) ψ1, ψ2, ψ3, ψ5 > 0, ψ4 = 0;

(n) ψ1, ψ2 > 0, ψ3 = ψ4 = ψ5 = 0;

(o) ψ = 0;

(p) ψ > 0.

The cases (o),(p),(q) have already been considered by Baumert [10], who determined that case (o)
leads to the Horn form, (p) leads to extremal exceptional copositive matrices of some new type, and
(q) does not correspond to any exceptional copositive matrices which are reduced with respect to N 5.

Each support set in Fig. 2.1 is hence represented by matrices T (ψ) in the relative interior of some
face of the simplex

Ψ = {ψ ∈ [0, π]5 |1Tψ ≤ π}. (2.4)

If we consider also the support sets which are obtained from those in Fig. 2.1 by cyclic permutations of
the indices 1, . . . , 5, we obtain all faces of Ψ with the exception of those in the facet {ψ ∈ [0, π]5 |1Tψ =
π}.

In fact, the matrices T (ψ) for ψ in this facet are positive semi-de�nite. This can be easily seen by
the factorization

T (ψ) =


cos(ψ4 + ψ5)
− cosψ5

1
− cosψ1

cos(ψ1 + ψ2)




cos(ψ4 + ψ5)
− cosψ5

1
− cosψ1

cos(ψ1 + ψ2)


T

+


sin(ψ4 + ψ5)
− sinψ5

0
sinψ1

− sin(ψ1 + ψ2)




sin(ψ4 + ψ5)
− sinψ5

0
sinψ1

− sin(ψ1 + ψ2)


T

,

where ψ3 = π − ψ1 − ψ2 − ψ4 − ψ5.
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In order to demonstrate that the matrices T (ψ) for ψ in the other facets of Ψ are indeed copositive,
we can decompose them into a sum of a positive semi-de�nite matrix and a matrix in the G5-orbit of
the Horn form (2.1). For the facet {ψ ∈ [0, π]5 |1Tψ < π, ψ4 = 0} we get for example

T (ψ) = vvT + diag(d)H diag(d)

with

v =


− sin( 1

2 ( ψ5 + ψ1 + ψ2 + ψ3))
sin( 1

2 ( ψ5 + ψ1 + ψ2 + ψ3))
− sin( 1

2 (−ψ5 + ψ1 + ψ2 + ψ3))
sin( 1

2 (−ψ5 − ψ1 + ψ2 + ψ3))
− sin( 1

2 (−ψ5 − ψ1 − ψ2 + ψ3))

 , d =


cos( 1

2 ( ψ5 + ψ1 + ψ2 + ψ3))
cos( 1

2 ( ψ5 + ψ1 + ψ2 + ψ3))
cos( 1

2 (−ψ5 + ψ1 + ψ2 + ψ3))
cos( 1

2 (−ψ5 − ψ1 + ψ2 + ψ3))
cos( 1

2 (−ψ5 − ψ1 − ψ2 + ψ3))

 .

Note that v = 0 if and only if ψ = 0, and d > 0 if 1Tψ < π. These decompositions are due to
P. Dickinson and L. Gijben. That these matrices are indeed reduced with respect to N 5

0 can be
checked directly by applying the criterion in Theorem 2.2.2. We hence get the following result.

Lemma 2.2.13. Let ψ ∈ [0, π)5 be such that 1Tψ < π and mini ψi = 0. Then the matrix T (ψ)
is copositive and reduced with respect to N 5

0 . It is extremal if and only if ψ = 0, in which case it
equals the Horn form. In all other cases it can be represented as a non-trivial sum of a rank 1 positive
semi-de�nite matrix and a matrix in the G5-orbit of the Horn form.

The case when ψ is in the interior of the simplex Ψ, which corresponds to the support set represented
by the graph (p) in Fig. 2.1, is more complicated and treated in the next subsection.

2.2.5 Exceptional extreme rays of C5

In the previous subsection we characterized all support sets of exceptional copositive matrices in C5

which are reduced with respect to N 5
0 . This is a necessary, but not a su�cient condition for extremality.

Indeed, not all matrices T (ψ) are extremal, as demonstrated in Lemma 2.2.13. We described the families
of reduced copositive matrices corresponding to all support sets except case (p) in Fig. 2.1. In this
subsection we show that this support set corresponds to the matrices T (ψ) with ψ in the interior of
the simplex Ψ de�ned in (2.4). We will give only a sketch of the proof, which is to some extent simpler
than the original proof in [90].

Lemma 2.2.14. Let ψ be a vector in the interior of Ψ. Then T (ψ) is copositive and extremal in C5.

The proof of copositivity is in two steps. First we prove that T (ψ) is nonnegative on all vectors on
the boundary of R5

+, and then we prove copositivity by a standard determinantal criterion.
Let ψ be in the interior of Ψ and introduce positive quantities t1 = cos(ψ5+ψ1+ψ2)+cos(ψ3+ψ4) >

0, and t2, . . . , t5 de�ned in a similar way after cyclic permutation of the indices. Then the upper left
4× 4 principal submatrix of T (ψ) can be written as

(T (ψ)){1,2,3,4} =


1 − cosψ4 cos(ψ4+ψ5) − cos(ψ4+ψ5+ψ1)+t5

− cosψ4 1 − cosψ5 cos(ψ5+ψ1)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1

− cos(ψ4+ψ5+ψ1)+t5 cos(ψ5+ψ1) − cosψ1 1



=


sinψ4 − cosψ4

0 1

− sinψ5 − cosψ5

sin(ψ1+ψ5) cos(ψ1+ψ5)




sinψ4 − cosψ4

0 1

− sinψ5 − cosψ5

sin(ψ1+ψ5) cos(ψ1+ψ5)


T

+ t5E14,

which shows that this submatrix is in S4
+ +N 4. The other 4× 4 principal submatrices are copositive

by a similar argument.
Next we show that detT (ψ) > 0. The proof is by direct calculation, which is most easily done by

introducing complex variables zj = eiψj , j = 1, . . . , 5. Then

detT (ψ) =
t1t2t3t4t5

1 + cos(ψ1 + ψ2 + ψ3 + ψ4 + ψ5)
> 0.
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It follows that T (ψ) is copositive by [44, Theorem 3.1].
Finally, let u1, . . . , u5 be the zeros of T (ψ), which are given by the columns of the matrix

sin(ψ3 + ψ4) sinψ5 0 0 sinψ2

sinψ3 sin(ψ4 + ψ5) sinψ1 0 0
0 sinψ4 sin(ψ5 + ψ1) sinψ2 0
0 0 sinψ5 sin(ψ1 + ψ2) sinψ3

sinψ4 0 0 sinψ1 sin(ψ2 + ψ3)

 .

Every matrix A in the minimal face of T (ψ) must satisfy the linear conditions (Auj)suppuj = 0. This
gives a linear system of 15 equations on the 15 coe�cients of A. By passing again to the complex
variables zj = eiψj , the minors of the coe�cient matrix can be factorized into components which are
of small degree in the zj . It is then easily seen that this coe�cient matrix has corank 1, and hence the
only solutions of the system are the multiples of T (ψ) itself. This shows that T (ψ) is extremal.

We may formalize this result as follows.

Theorem 2.2.15. A matrix A ∈ C5 is an exceptional copositive matrix that is reduced with respect
to N 5

0 if and only if it is in the G5-orbit of a matrix T (ψ) as given by (2.3) with ψ = (ψ1, . . . , ψ5)T

satisfying ψi ∈ [0, π), i = 1, . . . , 5, and
∑5
i=1 ψi < π.

A matrix A ∈ C5 is an exceptional extremal copositive matrix if and only if it is in the G5-orbit of
a matrix T (ψ) with either ψ = 0 (A is in the G5-orbit of the Horn form) or ψ in the interior of the
simplex Ψ given by (2.4) (A is a Hildebrand matrix).

Every exceptional copositive matrix A ∈ C5 can be written as a sum C+N , where N is nonnegative
with zero diagonal, and C is in the G5-orbit of a matrix T (ψ) with ψi ∈ [0, π), i = 1, . . . , 5, and∑5
i=1 ψi < π.

While the orbit of the Horn form represents a 5-dimensional variety, the Hildebrand matrices form
a 10-dimensional variety, parameterized by the diagonal elements of D in the scaling element of G5 and
the quintuple of angles ψ in the normal form T (ψ). Here for each permutation P ∈ S5 we obtain a
smooth component of this variety. Cyclic permutations of the indices and a complete reversal of order
leave the support set of the Horn form and of the matrices T (ψ), ψ from the interior of Ψ, invariant.
Hence the smooth component of these matrices is also invariant with respect to this subgroup. Thus
there exist 5!/10 = 12 such smooth components.

2.2.6 The diagonal 1 section of C5

In this subsection we consider those copositive 5×5 matrices whose diagonal elements equal 1. Denote
the subset of these matrices by C5

1. It is a 10-dimensional subset of S5. The action of a general element
of the group G5 does not preserve C5

1, it is, however, still invariant under simultaneous permutations
of the row and column indices. In contrast to the diagonal 1 section of the positive semi-de�nite cone
the set C5

1 is not compact. Its recession cone has, however, a simple description.

Lemma 2.2.16. The recession cone of C5
1 is given by the cone N 5

0 of nonnegative matrices with zero
diagonal.

This follows from the evident fact that the recession cone of C5
1 equals the intersection of C5 with

the subspace of real symmetric matrices with zero diagonal.
In general, an extreme element of an a�ne section of a convex cone does not need to lie on an

extreme ray of this cone, and the set of extreme elements of the section can be much more complex
than the set of extreme rays of the cone. However, in the case of C5

1 we have the following result.

Lemma 2.2.17. Let A be an extreme element of C5
1. Then either A ∈ S5

+ + N 5, or there exists a
permutation matrix P ∈ S5 and a quintuple of angles ψ ∈ Ψ, 1Tψ < π, such that A = PT (ψ)PT ,
where Ψ is the simplex given by (2.4), and T (ψ) is given by (2.3).

This lemma is a direct consequence of Theorem 2.2.15. It allows to deduce a semi-de�nite description
of C5

1 by virtue of Parrilos hierarchy of inner semi-de�nite approximations of the copositive cone [175].
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Here for an integer r ≥ 0 the r-th Parrilos semi-de�nite approximation of Cn is given by the cone Knr
of matrices A ∈ Sn such that the polynomial p(x) =

∑5
i,j=1Aijx

2
ix

2
j equals the ratio

Σ(x)

(
∑5
i=1 x

2
i )
r , where

Σ(x) is a sum of squares of polynomials of degree r+ 2 in x. We have the chain of inclusions Knr ⊂ Knr′
for r ≤ r′, and Cn equals the closure of the union

⋃
r≥0Knr . Moreover, the simplest relaxation equals

Kn0 = Sn+ + Nn. It has been checked by P. Dickinson and L. Gijben that for every ψ ∈ Ψ we have
T (ψ) ∈ K5

1, and hence also PT (ψ)PT ∈ K5
1 for every permutation matrix P ∈ S5. By virtue of the

preceding lemma we then get the following result, proven in [55].

Theorem 2.2.18. A matrix A ∈ S5 with all diagonal elements equal to 1 is copositive if and only if
it is an element of K5

1.

In order to check whether a given matrix A ∈ S5 with positive diagonal is copositive it hence su�ces
to check whether the matrix DAD is in K5

1, where D is a positive de�nite diagonal matrix chosen such
that the diagonal elements of the product DAD all equal 1.

On the other hand, we have the following result [55].

Lemma 2.2.19. Let Dn be the set of positive de�nite diagonal n× n matrices. Then for every r ≥ 0
we have ⋂

D∈Dn

DKnrD = Sn+ +Nn.

Thus for n ≥ 5 none of Parrilos relaxations of the copositive cone will be exact.

Finally we shall consider the image of C5
1 under the map f(x) = 2

π arcsinx when applied element-
wise. This map sends the set {T (ψ) |ψ ∈ Ψ} to a simplex with vertex set
{T (ψ) |ψ is a vertex of Ψ}. This simplex is a 5-dimensional face of the triangle-free polytope T F5, but
its relative interior is outside of the MAXCUT polytopeMC5. In fact, we have the following result.

Lemma 2.2.20. The image of the set C5
1 under the map f(x) = 2

π arcsinx when applied element-wise
is contained in the sum T F5 +N 5

0 .

Note that for the cone C3 the analogous statement Corollary 2.2.12 is valid with equality.

2.3 Minimal zeros of copositive matrices

2.3.1 Introduction

In this section we consider a modi�cation of the support set of a copositive matrix, namely the minimal
support set. This set was introduced in [95] along with the notion of minimal zero. Since the minimal
support set is a subset of the support set, the former is a coarser characteristic of the copositive matrix
than the latter. This has the advantage that the number of possible minimal support sets for certain
subclasses of copositive matrices is smaller than the number of possible support sets. The downside is,
of course, some loss of information on the copositive matrix. The main motivation of introducing this
characteristic is that the decrease in complexity outweighs this loss.

In Subsection 2.3.2 we elaborate some properties of minimal zeros and their supports. In Subsection
2.3.3 we shall show that reducedness of a copositive matrix A ∈ Cn with respect to the cones Nn and
Sn+ can be expressed in terms of minimal zeros and entails constraints on its minimal support set. In
Subsection 2.3.4 we apply the results in order to restrict the combinations of minimal zeros that can
occur in exceptional extreme copositive matrices.

2.3.2 Minimal zeros of copositive matrices

In this subsection we describe some basic properties of minimal zeros and their relation to general zeros
of a copositive matrix.

The following result follows from the optimality conditions in Lemma 2.1.4.
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Corollary 2.3.1. [95, Corollary 3.4] Let A be a copositive matrix and u a zero of A. Then u can be
represented as a �nite sum of minimal zeros of A.

This means that the convex hull of the minimal zeros is an upper bound on the set of all zeros.
The following result shows that up to multiplication by a constant, a minimal zero is de�ned by its
support.

Lemma 2.3.2. [95, Lemma 3.5] Let A be a copositive matrix and u ∈ VA. Then the following are
equivalent.

(a) u is a minimal zero of A,
(b) if v is another zero of A with support supp v ⊂ suppu, then there exists µ > 0 such that v = µu.
The number of equivalence classes of minimal zeros with respect to multiplication by a positive

constant is hence �nite, and the classes of minimal zeros are in a one-to-one correspondence with the
minimal support set suppVAmin. Next we give a characterization of minimal zeros in terms of principal
submatrices.

Lemma 2.3.3. [95, Lemma 3.7] Let A ∈ Cn be a copositive matrix and let I ⊂ {1, . . . , n} be a
nonempty index set. Then the following are equivalent.

(a) A has a minimal zero with support I,
(b) the principal submatrix AI is positive semi-de�nite with corank 1, and the generator of the

kernel of AI can be chosen such that all its elements are positive.
This lemma has an important consequence. If the index subset I ⊂ {1, . . . , n} belongs to the

minimal support set of some copositive matrix A ∈ Cn, then every proper principal submatrix of AI is
positive de�nite. This implies, e.g., the following non-trivial result.

Theorem 2.3.4. [95, Theorem 3.11] Let A ∈ Cn be a copositive matrix and I ⊂ {1, . . . , n} an index
set such that the principal submatrix AI is positive de�nite. Let u1, . . . , um be zeros of A such that
(suppul) \ I = {kl} consists of exactly one element, and let ul be normalized such that ulkl = 1,
l = 1, . . . ,m. Suppose that the zeros u1, . . . , um are mutually di�erent after normalization. Suppose
further that suppurI ⊂ suppur+1

I for all r = 1, . . . ,m− 1.
Then the indices k1, . . . , km are mutually di�erent, and u1, . . . , um are minimal zeros. Moreover,

if v ∈ VA is a zero satisfying supp v ⊂ I ∪ {k1, . . . , km}, then v =
∑m
i=1 αiu

i for some nonnegative
scalars αi. If in addition v is minimal, then there exists l ∈ {1, . . . ,m} and α > 0 such that v = αul.

Theorem 2.3.4 restricts the ensemble of minimal zeros that a copositive matrix can have. For
example, we have the following restriction on pairs of minimal zeros with overlapping supports.

Corollary 2.3.5. [95, Corollary 3.12] Let A be a copositive matrix and u, v minimal zeros of A with
supports suppu = I, supp v = J . Assume that J \ I = {k} consists of one element. Then every zero w
of A with support suppw ⊂ I ∪ J can be represented as a convex conic combination w = αu+ βv with
α, β ≥ 0. In particular, up to multiplication by a positive constant, there are no minimal zeros w with
suppw ⊂ I ∪ J other than u and v.

2.3.3 Minimal zeros of reduced copositive matrices

In this subsection we establish necessary and su�cient criteria for the reducedness of a copositive
matrix A ∈ Cn with respect to the cones Nn and Sn+, respectively.

First we give a slightly stronger version of Theorem 2.2.2, by requiring the zero u to be minimal.

Lemma 2.3.6. [95, Lemma 4.1] Let A ∈ Cn, and let i, j ∈ {1, . . . , n}. Then A is reduced with respect
to Eij if and only if there exists a minimal zero u of A such that (Au)i = (Au)j = 0 and ui + uj > 0.

This yields a necessary and su�cient condition on the reducedness of a copositive matrix with
respect to the cones Nn and Nn

0 in terms of minimal zeros only.
We shall now consider reducedness with respect to the cone of positive semi-de�nite matrices.

Lemma 2.3.7. [95, Corollary 4.4] Let A ∈ Cn be a copositive matrix and let w ∈ Rn be a nonzero
vector. Then A is reduced with respect to wwT if and only if there exists a minimal zero u of A with
wTu 6= 0.

This allows us to characterize reducedness with respect to the cone of positive semi-de�nite matrices
in terms of minimal zeros.
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Theorem 2.3.8. [95, Theorem 4.5] A copositive matrix A ∈ Cn is reduced with respect to the cone Sn+
if and only if the linear span of the minimal zeros of A equals Rn. In particular, the number of linearly
independent minimal zeros, and hence also the cardinality of the minimal support set, has to be at least
n.

2.3.4 Minimal support sets of reduced copositive matrices

In this subsection we present necessary conditions for a collection I = {I1, . . . , Im} of index subsets
Ii ⊂ {1, . . . , n} to represent the minimal support set suppVAmin of a copositive matrix A ∈ Cn which
is reduced with respect to both Sn+ and Nn and satis�es Aii = 1 for all i. The obtained results are to
be applied to the classi�cation of the extreme rays of Cn, by limiting the number of possible minimal
support sets of an exceptional extreme element with unit diagonal. The restrictions of the minimal
support set fall into several categories.

One set of conditions has its origin in the trigonometric parametrization presented in Subsection
2.2.3. Let A ∈ Cn have unit diagonal and be reduced with respect to Nn

0 . Let B = f [A] be its image
under the element-wise application of the function f(x) = 2

π arcsinx. Due to Lemma 2.2.10, Corollary
2.2.12, Lemma 2.2.20, and the results in Subsection 2.2.3 the principal submatrices of B of orders 3
and 5 satisfy some strict or non-strict inclusion properties in the polytopes MCj , T F j for j = 3, 5,
respectively, depending on whether the corresponding submatrices of A are positive (semi-)de�nite
or merely copositive, and whether there exist minimal zeros with supports in the index set of these
submatrices. These properties translate into linear inequalities and equalities on the elements of B.
We summarize these in the following result.

Lemma 2.3.9. [95, Lemma 5.6] Let A ∈ Cn be irreducible with respect to Nn and such that Aii = 1
for every i = 1, . . . , n. For i, j = 1, . . . , n, let αij ∈ [0, 1] be such that Aij = − cos(αijπ). Let further
B be a real symmetric n × n matrix de�ned element-wise by Bij = 2

π arcsinAij = 2αij − 1. Then the
following relations hold, where the indices i, j, k are assumed to be pairwise distinct:

(a) if {i, j} ∈ suppVAmin, then αij = 0;

(b) if {i, j} 6∈ suppVAmin, then αij > 0;

(c) if I ∈ suppVAmin, then BI ∈MC|I|;

(d) if I ⊂ J strictly and J ∈ suppVAmin, then BI ∈ relintMC|I|;

(e) if {i, j, k} ∈ suppVAmin, then αij + αik + αjk = 1;

(f) if there does not exist I ∈ suppVAmin such that I ⊂ {i, j, k}, then αij + αik + αjk > 1;

(g) if {i, j} ∈ suppVAmin, then αik + αjk ≥ 1 for all k;

(h) for every pairwise distinct indices i1, . . . , i5 ∈ {1, . . . , n} we have
∑

1≤j<k≤5 αijik ≥ 4.

Another set of conditions comes from the reducedness of A with respect to Sn+, which was char-
acterized in Theorem 2.3.8 in terms of the minimal zeros of A. The next result presents a neces-
sary condition in terms of the minimal support set. We shall need the following construction. Let
I1, . . . , Im ⊂ {1, . . . , n} be the elements of I = suppVAmin, sorted by their cardinality. Let m2 be the
number of support sets of cardinality 2. We construct two graphs G2(I), G>2(I) from I1, . . . , Im. The
graph G2(I) has n vertices 1, . . . , n and m2 edges I1, . . . , Im2 . The graph G>2(I) is bipartite, with the
two vertex subsets being de�ned as V = {1, . . . , n}, W = {m2 + 1, . . . ,m}. A pair (v, w) ∈ V ×W
is an edge of G>2(I) if and only if v ∈ Iw. Let G2,1, . . . , G2,r be the connected components of G2(I)
which are bipartite.

Lemma 2.3.10. [95, Lemma 5.2] Let A ∈ Cn be a copositive matrix with unit diagonal. Let I1, . . . , Im
be the elements of its minimal support set I = suppVAmin, ordered by cardinality, and let m2 be the num-
ber of supports with cardinality 2. De�ne the two graphs G2(I), G>2(I) as above, and let G2,1, . . . , G2,r

be the connected components of G2(I) which are bipartite.
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If the linear span of the minimal zero set VAmin is the whole space Rn, then there exist edges
(v1, w1), . . . , (vr, wr) of G>2(I) such that vj is a vertex of G2,j for all j = 1, . . . , r, and the vertices
w1, . . . , wr are mutually di�erent.

The third set of conditions on the minimal support set is of a combinatorial nature and comes from
Theorem 2.3.4, Lemma 2.2.5, and from the de�nition of minimal zeros.

We summarize all these conditions in the following theorem.

Theorem 2.3.11. [95, Theorem 5.7] Let A ∈ Cn be a copositive matrix with unit diagonal. Suppose
that A is reduced with respect to both Sn+ and Nn. Let I1, . . . , Im be the supports in the minimal support
set I = suppVAmin of A, ordered by their cardinality. Then I satis�es the following conditions.

(i) Every index set Ii contains 2 ≤ |Ii| ≤ n− 2 indices.

(ii) There do not exist i, j such that Ii ⊂ Ij strictly.

(iii) For every index set I ⊂ {1, . . . , n} and indices i, i1, . . . , il, j satisfying the conditions

� I ⊂ Ii strictly,
� Iir \ I = {kr} consists of exactly one element for r = 1, . . . , l,

� (Iir ∩ I) ⊂ (Iir+1 ∩ I) for r = 1, . . . , l − 1,

� Ij ⊂ I ∪ {k1, . . . , kl},

there exists r ∈ {1, . . . , l} such that j = ir.

(iv) Let G2(I), G>2(I) be the graphs constructed from I as in Lemma 2.3.10, and let G2,1, . . . , G2,r

be the bipartite connected components of G2(I). Then there exist edges (v1, w1), . . . , (vr, wr) of
G>2(I) such that vj is a vertex of G2,j for all j = 1, . . . , r, and the vertices w1, . . . , wr are
mutually di�erent.

(v) The system of linear equations and strict and nonstrict inequalities which is de�ned by (a)�(h)
of Lemma 2.3.9 on the variables αij = αji ∈ [0, 1], 1 ≤ i, j ≤ n, has a solution.

An exceptional extremal matrix A ∈ Cn is irreducible with respect to both Sn+ and Nn. Hence con-
ditions (i)�(v) of Theorem 2.3.11 are necessary conditions for the minimal support set of an exceptional
extremal copositive matrix.

For given n it can be checked algorithmically whether a collection I1, . . . , Im ⊂ {1, . . . , n} of index
sets satis�es conditions (i)�(v) of Theorem 2.3.11. While this is evident for conditions (i)�(iii), condi-
tion (iv) can be reduced to a matching problem, and condition (v) to a linear program with integer
coe�cients.

Two collections I1, . . . , Im and J1, . . . , Jm satisfying conditions (i)�(v) of Theorem 2.3.11 can be
considered being equivalent if there exists a permutation π ∈ Sn of the indices 1, . . . , n such that
{π(I1), . . . , π(Im)} = {J1, . . . , Jm}. We have computed all such collections for n ≤ 7. The number of
equivalence classes is 0 for n ≤ 4, 2 for n = 5, 44 for n = 6, and 12378 for n = 7. The classi�cation of the
extreme rays at least for C6 thus comes within reach. The results imply that Cn cannot have exceptional
extreme rays for n ≤ 4, which yields a quick proof of Dianandas identity Cn = Sn+ + Nn for n ≤ 4.
The two equivalence classes for the case n = 5, with representatives {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}
and {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}}, are realized by the G5-orbit of the Horn form (2.1)
and the Hildebrand matrices, respectively, which indeed exhaust the types of exceptional extreme rays
of C5. In the next section we consider the implications of Theorem 2.3.11 for the extreme rays of the
cone C6.

2.4 Extreme elements of the cone C6

In this section we apply the approach to extreme copositive matrices which was developed in the
previous section to the cone C6. There are, up to permutation of the indices, 44 possible minimal
support sets which an extremal exceptional copositive 6× 6 matrix can have [95]. These are listed in
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Table 2.1. As of now the classi�cation of the extreme rays of C6 has not been completed. However, a
number of possible minimal support sets has been examined in collaboration with P. Dickinson, and the
corresponding families of exceptional extreme copositive matrices and exceptional reduced copositive
matrices have been found. Reducedness is considered not with respect to the cone of nonnegative
matrices, but with respect to the larger cone S6

+ +N 6, and is hence stronger and closer to the condition
of extremality. Below we list the examined support sets along with its families of extreme and reduced
exceptional copositive matrices A ∈ C6 with diagonal elements equal to 1.

No. suppVA
min

1 {1,2},{1,3},{1,4},{2,5},{3,6},{5,6}
2 {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6}
3 {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6}
4 {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6}
5 {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6}
6 {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6}
7 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,4,6}
8 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6}
9 {1,2},{3,4},{1,3,5},{2,4,6},{1,5,6},{4,5,6}
10 {1,2},{1,3,4},{1,3,5},{2,3,6},{3,4,6},{3,5,6}
11 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6}
12 {1,2},{1,3,4},{1,3,5},{1,4,6},{3,5,6},{4,5,6}
13 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6}
14 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{3,5,6}
15 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6}
16 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}
17 {1,2},{1,3,4},{2,3,5},{3,4,5},{2,4,6},{3,4,6}
18 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{1,5,6}
19 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6}
20 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6}
21 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6}
22 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6}
23 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,5,6}
24 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{3,5,6}
25 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{4,5,6}
26 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6}
27 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{3,4,6}
28 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5},{2,3,6}
29 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{2,3,6},{2,5,6}
30 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,6},{3,5,6}
31 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{2,5,6}
32 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{4,5,6}
33 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,5,6},{4,5,6}
34 {1,2,3},{1,2,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}
35 {1,2,3,4},{1,2,3,5},{1,2,4,6},{1,3,5,6},{2,4,5,6},{3,4,5,6}
36 {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}
37 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
38 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6},{3,5,6}
39 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6}
40 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6},{4,5,6}
41 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
42 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6}
43 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
44 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6},{3,5,6},{4,5,6}

Table 2.1: Candidate minimal support sets of exceptional extreme matrices in C6

supp
(
VA
)

= {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {5, 6}}. The reduced matrices with this support set
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are given by

A =


1 −1 −1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1
−1 1 1 1 λ −λ
1 −1 1 λ 1 −1
1 1 −1 −λ −1 1

 ,

where λ ∈ (−1, 1). These matrices are not extremal.

supp
(
VA
)

= {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {4, 5, 6}}. The reduced matrices with this support
set are given by

A =


1 −1 −1 −1 1 1
−1 1 1 1 −1 cosφ3

−1 1 1 1 cosφ3 −1
−1 1 1 1 − cosφ1 − cosφ2

1 −1 cosφ3 − cosφ1 1 − cosφ3

1 cosφ3 −1 − cosφ2 − cosφ3 1

 ,

where φ1, φ2, φ3 > 0, φ1 + φ2 + φ3 = π. All these matrices are extremal.

supp
(
VA
)

= {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5, 6}, {4, 5, 6}}. The reduced matrices with this sup-
port set are given by

A =


1 −1 −1 −1 1 cosφ1

−1 1 1 1 −1 cosφ3

−1 1 1 1 cos(φ1 + φ3) − cosφ1

−1 1 1 1 cos(φ2 + φ3) − cosφ2

1 −1 cos(φ1 + φ3) cos(φ2 + φ3) 1 − cosφ3

cosφ1 cosφ3 − cosφ1 − cosφ2 − cosφ3 1


and those matrices which are obtained from the above by an exchange of the row and column indices
3 and 4, where 0 < φ1 < φ2 < π − φ3 < π. All these matrices are extremal. This support set has been
examined by P. Dickinson.

supp
(
VA
)

= {{1, 2}, {1, 3}, {1, 4}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6}}. The reduced matrices with this sup-
port set are given by

A =


1 −1 −1 −1 − cos(φ1 + φ4) cosφ3

−1 1 1 1 cos(φ1 + φ4) − cosφ1

−1 1 1 1 cos(φ2 + φ4) − cosφ2

−1 1 1 1 cos(φ3 + φ4) − cosφ3

− cos(φ1 + φ4) cos(φ1 + φ4) cos(φ2 + φ4) cos(φ3 + φ4) 1 − cosφ4

cosφ3 − cosφ1 − cosφ2 − cosφ3 − cosφ4 1


and those matrices which are obtained from the above by a permutation of the row and column indices
2,3, and 4, where 0 < φ3 < φ2 < φ1 < π − φ4 < π. All these matrices are extremal. This support set
has been examined by P. Dickinson.

supp
(
VA
)

= {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1}, {6, 1, 2}}. The reduced matrices with
this support set are given by

A =


1 − cosφ1 cos(φ1 + φ2) a cos(φ5 + φ6) − cosφ6

− cosφ1 1 − cosφ2 cos(φ2 + φ3) b cos(φ1 + φ6)
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) c

a cos(φ2 + φ3) − cosφ3 1 − cosφ4 cos(φ4 + φ5)
cos(φ5 + φ6) b cos(φ3 + φ4) − cosφ4 1 − cosφ5

− cosφ6 cos(φ1 + φ6) c cos(φ4 + φ5) − cosφ5 1

 (2.5)
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with φ1, . . . , φ6 > 0; φj + φj+1 < π, j = 1, . . . , 5; φ1 + φ6 < π;
∑6
j=1 φj < 2π;

a = −min{cos(φ1 + φ2 + φ3), cos(φ4 + φ5 + φ6)},
b = −min{cos(φ2 + φ3 + φ4), cos(φ1 + φ5 + φ6)},
c = −min{cos(φ3 + φ4 + φ5), cos(φ1 + φ2 + φ6)}.

A matrix of this form is extremal if and only if either
∑6
j=1 φj 6= π, or at least four of the sums

φ1 + φ2 + φ3, φ2 + φ3 + φ4, . . . , φ1 + φ2 + φ6 appearing in the expressions for a, b, c equal π2 .

supp
(
VA
)

= {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {4, 5}, {3, 6}, {5, 6}}. The support set uniquely determines
the extremal exceptional copositive matrix

A =


1 −1 −1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1
−1 1 1 1 −1 1
1 −1 1 −1 1 −1
1 1 −1 1 −1 1

 .

This matrix is non-basic, and an equivalent matrix has been obtained by Baumert [12] by duplicating
a row and a column of the Horn form.

supp
(
VA
)

= {{1, 2, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {3, 4, 6}, {1, 2, 6}, {1, 4, 6}}. The variety
of reduced matrices corresponding to this support set is given by

1 − cosφ4 cos(φ4+φ5) cos(φ2+φ3) − cosφ3 − cos(φ3+φ)

− cosφ4 1 − cosφ5 cos(φ1+φ5) cos(φ3+φ4) cos(φ3+φ4+φ)

cos(φ4+φ5) − cosφ5 1 − cosφ1 cos(φ1+φ2) cos(φ1+φ2−φ)

cos(φ2+φ3) cos(φ1+φ5) − cosφ1 1 − cosφ2 − cos(φ2−φ)

− cosφ3 cos(φ3+φ4) cos(φ1+φ2) − cosφ2 1 cosφ

− cos(φ3+φ) cos(φ3+φ4+φ) cos(φ1+φ2−φ) − cos(φ2−φ) cosφ 1


with φi > 0,

∑5
i=1 φi < π, φ ∈ (−φ3, φ2). All of them are extremal.

These preliminary results indicate that the number of types of exceptional extreme rays is an order
of magnitude larger for C6 than for C5. However, it appears that the extreme rays of C6 can still be
described by the trigonometric approach elaborated in Subsection 2.2.3. This is no more the case for
the cone C7, because there are extremal elements of C7 which have minimal zeros with a support of
cardinality 5.

2.5 Local properties of the boundary

2.5.1 Introduction

In this section we describe results which have been obtained in collaboration with P. Dickinson and
have been published in [57]. We present necessary and su�cient criteria when a copositive matrix
is reduced with respect to another matrix. This allows to compute the minimal face of a copositive
matrix and to characterize extremality of a copositive matrix in terms of its minimal zeros. These
results greatly simplify the proof or refutation of extremality of the families of reduced matrices which
can be found by virtue of the classi�cation of minimal support sets in Section 2.3.

In Subsection 2.5.2 we provide the main result of [57], the description of the cone KA of feasible
directions of Cn at A. We also compute its closure, the tangent cone cl(KA). In Section 2.5.3 we
deduce the descriptions of the minimal face of a copositive matrix. In Section 2.5.4 we consider when
a copositive matrix is reduced with respect to another copositive matrix.

69



2.5.2 Reducedness with respect to arbitrary matrices

For a matrix A ∈ Cn we consider the convex cone KA = {B ∈ Sn | ∃δ > 0 s.t. A + δB ∈ Cn}, which
is called cone of feasible directions in [177]. By de�nition it consists of all matrices B ∈ Sn such that
A is not reduced with respect to −B. Clearly we have Cn ⊂ KA. However, KA is not pointed, unless
A = 0, as we always have ±A ∈ KA. It is also in general not closed. The results in this section are
based on the following theorem.

Theorem 2.5.1. [57, Theorem 6] Let A ∈ Cn, then

KA =

{
B ∈ Sn

∣∣∣∣∣ v
TBv ≥ 0 for all v ∈ VA,

(Bv)i ≥ 0 for all v ∈ VA ∩ VB , i ∈ {1, . . . , n} \ supp(Av)

}
,

where VB = {v ∈ Rn+ \ {0} | vTBv = 0}.

In convex analysis there exists the notion of the (solid) tangent cone to some closed convex set
C ⊂ Rn at a boundary point x ∈ ∂C [98, 177]. By de�nition the tangent cone to Cn at a boundary
point A ∈ ∂Cn is given by the closure of the cone of feasible directions KA. The next result gives a
simple characterization of the tangent cone in our case.

Theorem 2.5.2. [57, Theorem 9] For A ∈ Cn we have cl(KA) = {B ∈ Sn | vTBv ≥ 0 for all v ∈ VA}.

2.5.3 Minimal Faces

In this subsection we apply Theorem 2.5.1 to determine the linear span of the minimal face FA of the
copositive cone containing a matrix A ∈ Cn.

For A ∈ Cn denote the linear span of FA by LA. We have KA = Cn+LA, following from the general
result [177, Lemma 3.2.1] which is valid for arbitrary cones. Application of Theorem 2.5.1 then yields

LA = KA ∩ (−KA) = {B ∈ Sn | (Bv)i = 0 ∀ v ∈ VA, i ∈ {1, . . . , n} \ suppAv}.

In contrast to the characterization of KA in Theorem 2.5.1, the characterization of LA involves only
expressions which are linear in the zeros v ∈ VA. Therefore it is su�cient to consider only the set of
minimal zeros of A by Corollary 2.3.1. We therefore get [57, Theorem 17]

Theorem 2.5.3. Let A ∈ Cn. The linear span of the minimal face of A is given by

LA = {B ∈ Sn | (Bv)i = 0 ∀ v ∈ VAmin, i ∈ {1, . . . , n} \ suppAv}.

Since VAmin is a �nite set up to multiplication of the minimal zeros by positive scalars, the system
of linear equations in Theorem 2.5.3 is �nite. We can thus algorithmically compute the dimension of
LA by �nding the rank of the coe�cient matrix of this system of linear equations. This then allows us
to determine if the copositive matrix A lies on an extreme ray.

Corollary 2.5.4. Let A ∈ Cn be a non-zero matrix. Then A is extremal if and only if the system of
linear equations

(Bv)i = 0, v ∈ VAmin, i ∈ {1, . . . , n} \ suppAv

on B ∈ Sn has a 1-dimensional solution space.

2.5.4 Reducedness with respect to copositive matrices

In this subsection we describe when a copositive matrix A is reduced with respect to another copositive
matrix C. This allows us to recover Lemmas 2.3.6 and 2.3.7 as special cases. By de�nition A is not
reduced with respect to C if and only if B = −C ∈ KA. By Theorem 2.5.1 we have in this case that for
every v ∈ VA also v ∈ VC and further supp (Cv) ⊂ supp (Av). Here we used the �rst order optimality
conditions from Lemma 2.1.4 for C at v. As in the previous subsection, we then need to consider only
the minimal zeros of A, which leads to the following result.
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Theorem 2.5.5. [57, Theorem 23] Let A,C ∈ Cn. Then A is not reduced with respect to C if and
only if for all v ∈ VAmin we have supp(Cv) ⊂ supp(Av).

Alternatively we could have stated this theorem as follows:

Theorem 2.5.6. [57, Theorem 24] Let A,C ∈ Cn. Then A is reduced with respect to C if and only if
there exist v ∈ VAmin, i ∈ {1, . . . , n} such that (Av)i = 0 6= (Cv)i.

2.6 Copositive matrices with circulant support set

2.6.1 Introduction

In this section we consider copositive matrices with zeros having very speci�c supports. The prototypes
of these matrices are the exceptional extremal elements of the cone C5, which have been classi�ed
in Section 2.2 above. Both the Horn form H given by (2.1) and the matrices T (θ) given by (2.3)
possess zeros with supports {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}, respectively. These supports
are exactly the vertex subsets obtained by removing the vertices of a single edge in the cycle graph C5.
In this section we show that the presence of zeros with this kind of supports is su�cient to explain
many of the properties of the Horn form and the matrices T (ψ), including their being exceptional and
extremal. Moreover, these relations hold for copositive matrices of arbitrary order n ≥ 5, thus giving
rise to families of basic exceptional extremal copositive matrices for every n ≥ 5.

We shall generalize the exceptional extremal elements of C5 to arbitrary order n ≥ 5 by taking
the above property of the supports as our point of departure. Fix a set u = {u1, . . . , un} ⊂ Rn+ of
nonnegative vectors with supports {1, 2, . . . , n−2}, {2, 3, . . . , n−1}, . . . , {n, 1, . . . , n−3}, respectively,
i.e., the supports of the vectors uj are the vertex subsets obtained by removing the vertices of a single
edge in the cycle graph Cn. We consider the faces

Fu = {A ∈ Cn | (uj)TAuj = 0 ∀ j = 1, . . . , n}, Pu = {A ∈ Sn+ | (uj)TAuj = 0 ∀ j = 1, . . . , n} (2.6)

of the copositive cone and the positive semi-de�nite cone, respectively. Note that Pu ⊂ Fu. For n ≥ 5
a copositive matrix having zeros u1, . . . , un satis�es the conditions of Theorem 2.2.2 and hence must
be reduced with respect to Nn. It follows that every matrix in Fu \ Pu is exceptional.

One of our main results is an explicit semi-de�nite description of the faces Fu and Pu (Theorem
2.6.4). In order to obtain this description, we associate the set u with a discrete-time linear dynamical
system Su of order d = n − 3 and with time-dependent coe�cients having period n. If Lu is the
d-dimensional solution space of this system, then there exists a canonical bijective linear map between
Fu and the set of positive semi-de�nite symmetric bilinear forms on the dual space L∗u satisfying certain
additional homogeneous linear equalities and inequalities. For an arbitrary collection u in general only
the zero form satis�es the corresponding linear matrix inequality (LMI) and the face Fu consists of the
zero matrix only. However, for every n ≥ 5 there exist collections u for which the LMI has non-trivial
feasible sets.

The properties of the copositive matrices in Fu are closely linked to the properties of the periodic
linear dynamical system Su. Such systems are the subject of Floquet theory, see, e.g., [66, Section
3.4]. We need only the concept of the monodromy operator and its eigenvalues, the Floquet multipliers,
which we shall review in Subsection 2.6.3. It turns out that the face Pu is isomorphic to Sd1+ , where d1

is the geometric multiplicity of the Floquet multiplier 1, or equivalently, the dimension of the subspace
of n-periodic solutions of Su. For the existence of exceptional copositive matrices in Fu it is necessary
that all or all but one Floquet multiplier are located on the unit circle (Corollary 2.6.7).

We are able to describe the structure of Fu explicitly in general. Exceptional matrices A ∈ Fu can
be divided in two categories, de�ned as follows.

De�nition 2.6.1. Let A ∈ Cn be an exceptional copositive matrix possessing zeros u1, . . . , un ∈ Rn+
such that suppuj = Ij , j = 1, . . . , n. We say the matrix A has minimal circulant zero support set if
every zero v of A is proportional to one of the zeros u1, . . . , un, and non-minimal circulant zero support

set otherwise.
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Matrices with non-minimal circulant zero support set are always extremal, while matrices with
minimal circulant zero support set can be extremal only for odd n. For even n a matrix with minimal
circulant zero support set can be represented as a non-trivial sum of a matrix with non-minimal
circulant zero support set and a positive semi-de�nite rank 1 matrix, the corresponding face Fu is
then isomorphic to R2

+ (Lemma 2.6.9). For odd n a su�cient condition for extremality of a matrix
with minimal circulant zero support set is that −1 does not appear among the Floquet multipliers
(Theorem 2.6.11). For every n ≥ 5 the matrices with non-minimal circulant zero support set constitute
an algebraic submanifold of Sn of codimension 2n (Theorem 2.6.14), while the matrices with minimal
circulant zero support set form an algebraic submanifold of codimension n (Theorem 2.6.12), in which
the extremal matrices form an open subset (Theorem 2.6.13). In Subsection 2.6.8 we construct explicit
examples of circulant (i.e., invariant with respect to simultaneous circular shifts of row and column
indices) exceptional extremal copositive matrices, both with minimal and non-minimal circulant zero
support set. The results in this section have been published in the paper [97].

For n ≥ 5 an integer, de�ne the ordered index sets I1 = (1, 2, . . . , n − 2), I2 = (2, 3, . . . , n −
1), . . . , In = (n, 1, . . . , n− 3) of cardinality n− 2, each obtained by a circular shift of the indices from
the previous one. We will need also the index sets I ′1 = (1, 2, . . . , n − 3), . . . , I ′n = (n, 1, . . . , n − 4)
de�ned similarly.

In order to distinguish it from the index sets I1, . . . , In de�ned above, we shall denote the identity
matrix or the identity operator by Id or Idk if it is necessary to indicate the size of the matrix. For
a real number r, we denote by brc the largest integer not exceeding r and by dre the smallest integer
not smaller than r.

2.6.2 Conditions for copositivity

In this subsection we consider matrices A ∈ Sn such that the submatrices AI1 , . . . , AIn are all positive
semi-de�nite and possess element-wise positive kernel vectors. We derive necessary and su�cient
conditions for such a matrix to be copositive.

Theorem 2.6.2. [97, Theorem 2.9] Let n ≥ 5 and let A ∈ Sn be such that for every j = 1, . . . , n
there exists a nonnegative vector uj with suppuj = Ij satisfying (uj)TAuj = 0. Then the following are
equivalent:

(i) A is copositive;

(ii) every principal submatrix of A of size n− 1 is copositive;

(iii) every principal submatrix of A of size n− 1 is in Sn−1
+ +Nn−1;

(iv) AIj is positive semi-de�nite for j = 1, . . . , n, (un)TAu1 ≥ 0, and (uj)TAuj+1 ≥ 0 for j =
1, . . . , n− 1.

Moreover, given above conditions (i)�(iv), the following are equivalent:

(a) A is positive semi-de�nite;

(b) at least one of the n numbers (un)TAu1 and (uj)TAuj+1, j = 1, . . . , n− 1, is zero;

(c) all n numbers (un)TAu1 and (uj)TAuj+1, j = 1, . . . , n− 1, are zero;

(d) A is not exceptional.

The theorem states that the presence of n zeros with supports Ij , j = 1, . . . , n places stringent
constraints on a copositive matrix A ∈ Cn. Such a matrix must either be exceptional or positive semi-
de�nite. Which of these two cases arises is determined by any of the n numbers in condition (iv) of
the theorem, which are either simultaneously positive or simultaneously zero. Note also that condition
(iv) is easy to check, as it represents an LMI on the coe�cients of A. We shall, however, derive an
equivalent and much simpler LMI below.

2.6.3 Linear systems with periodic coe�cients

In this subsection we investigate the solution spaces of linear periodic dynamical systems and perform
some linear algebraic constructions on them. These will be later put in correspondence to copositive
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forms. First we shall introduce the monodromy and the Floquet multipliers associated with such
systems, for further reading about these and related concepts see, e.g., [66, Section 3.4].

We consider real scalar discrete-time homogeneous linear dynamical systems governed by the equa-
tion

xt+d +

d−1∑
i=0

ctixt+i =

d∑
i=0

ctixt+i = 0, t = 1, 2, . . . (2.7)

where xt ∈ R is the value of the solution x at time instant t, d > 0 is the order, and ct = (ct0, . . . , c
t
d)
T ∈

Rd+1, t ≥ 1, are the coe�cient vectors of the system. For convenience we have set ctd = 1 for all t ≥ 1.
We assume that the coe�cients are periodic with period n > d, i.e., ct+n = ct for all t ≥ 1. Denote by
L the linear space of all solutions x = (xt)t≥1. This space has dimension d and can be parameterized,
e.g., by the vector (x1, . . . , xd) ∈ Rd of initial conditions.

If x = (xt)t≥1 is a solution of the system, then y = (xt+n)t≥1 is also a solution by the periodicity
of the coe�cients. The corresponding linear map M : L → L taking x to y is called the monodromy
of the periodic system. Its eigenvalues are called Floquet multipliers. The following result is a trivial
consequence of this de�nition.

Lemma 2.6.3. Let Lper ⊂ L be the subspace of n-periodic solutions of system (2.7). Then x ∈ Lper if
and only if x is an eigenvector of the monodromy operator M with eigenvalue 1. In particular, dimLper
equals the geometric multiplicity of the eigenvalue 1 of M.

Let us now consider the space L∗ of linear functionals on the solution space L. For every t ≥ 1, the
map taking a solution x = (xs)s≥1 to its value xt at time instant t is such a linear functional. We shall
denote this evaluation functional by et ∈ L∗. By de�nition of the monodromy we have et+n = M∗et
for all t ≥ 1, where M∗ : L∗ → L∗ is the adjoint of M. Our main tool in the study of copositive forms
are positive semi-de�nite symmetric bilinear forms B on L∗ which are invariant with respect to a time
shift by the period n, i.e.,

B(et+n, es+n) = B(et, es) ∀ t, s ≥ 1. (2.8)

An equivalent condition is B(w,w′) = B(M∗w,M∗w′) for all w,w′ ∈ L∗.

2.6.4 Copositive matrices and linear periodic systems

In this subsection we establish a relation between the objects considered in the preceding two subsec-
tions. Throughout this and the next section, we �x a collection u = {u1, . . . , un} ⊂ Rn+ of nonnegative
vectors such that suppuj = Ij , j = 1, . . . , n. Moreover, we assume these vectors are normalized such

that the last elements of their positive subvectors ujIj all equal 1. With the collection u we associate

a discrete-time linear periodic system Su of order d = n − 3 and with period n, given by (2.7) with
coe�cient vectors ct = utIt , t = 1, . . . , n. The coe�cient vectors ct for all other time instants t > n are
then determined by the periodicity relation ct+n = ct. Denote by Lu the space of solutions of Su.

Let Au ⊂ Sn be the linear subspace of matrices A satisfying AIju
j
Ij

= AIjc
j = 0 for all j = 1, . . . , n.

With A ∈ Au we associate a symmetric bilinear form B on the dual space L∗u by setting B(et, es) = Ats
for every t, s = 1, . . . , d and de�ning the value of B on arbitrary vectors in L∗u by linear extension. In
other words, in the basis {e1, . . . , ed} of L∗u the coe�cient matrix of B is given by the submatrix AI′1 .
Let Λ : A 7→ B be the so-de�ned linear map from Au into the space of symmetric bilinear forms on
L∗u. It can be shown that the map Λ is injective [97, Lemma 4.4].

Now we are in a position to describe the face Fu of the copositive cone and the face Pu of the
positive semi-de�nite cone which are de�ned by virtue of (2.6) by the zeros uj , j = 1, . . . , n. The
description will be by linear matrix inequalities on the images of these faces under the map Λ, which
is much more convenient than to describe these faces directly in terms of the elements of the matrices.
The map Λ translates conditions on bilinear forms on the dual space L∗u into conditions on matrices
in Sn.

Theorem 2.6.4. [97, Theorem 4.8] Let n ≥ 5, and let Fu be the set of positive semi-de�nite symmetric
bilinear forms B on L∗u satisfying the linear equality relations

B(et, es) = B(M∗et,M
∗es), t, s = 1, . . . , n− 3;

B(et, es) = B(M∗et, es), 1 ≤ t < s ≤ n : 3 ≤ s− t ≤ n− 3
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and the linear inequalities

B(et, et+2) ≥ B(M∗et, et+2), t = 1, . . . , n.

Let Pu ⊂ Fu be the subset of forms B which satisfy all linear inequalities with equality.
The set Fu is a subset of the image of Λ. The face of Cn de�ned by the zeros uj, j = 1, . . . , n,

satis�es Fu = Λ−1[Fu], and the face of Sn+ de�ned by these zeros satis�es Pu = Λ−1[Pu]. Moreover, for
all forms B ∈ Fu \ Pu the linear inequalities are satis�ed strictly, and Fu \ Pu consists of exceptional
matrices.

This theorem yields an algorithmic procedure to determine the faces Fu and Pu for a given collection
u of zeros. From the zeros uj one obtains the coe�cients of the linear periodic dynamical system Su.
The monodromy of this system then yields the linear constraints for the LMI that describes these
faces. If the vectors in the collection u are in generic position, then the set Fu de�ned in Theorem
2.6.4 consists of the zero form only. In the next section we investigate the consequences of a non-trivial
set Fu.

2.6.5 Structure of the faces Fu and Pu

As was mentioned in the introduction, the eigenvalues of the monodromy M, the Floquet multipliers,
largely determine the properties of the matrices in the face Fu of Cn. In this section we shall investigate
these connections in detail. In particular, we will be interested in the structure of the cones Pu and
Pu = Λ[Pu] de�ned by the positive semi-de�nite matrices in the face Fu ⊂ Cn and its connections to
the periodic solutions of the system Su. We also investigate the properties of the exceptional copositive
matrices with minimal and non-minimal circulant zero support set as de�ned in De�nition 2.6.1.

Denote by Lper ⊂ Lu the subspace of n-periodic solutions. We have the following characterization
of Lper.

Lemma 2.6.5. [97, Lemma 5.1] An n-periodic in�nite sequence x = (x1, x2, . . . ) is a solution of Su if
and only if the vector (x1, . . . , xn)T ∈ Rn is orthogonal to all vectors uj, j = 1, . . . , n. In particular, the
dimension of Lper equals the corank of the n×n matrix U composed of the column vectors u1, . . . , un.

This means the periodic solutions of the system Su are given directly by the kernel of the matrix
UT . On the other hand, a positive semi-de�nite matrix has the vectors in u as zeros if and only if it
is in the face of Sn+ which is orthogonal to the column span of U . This yields the following connection
between the subspace Lper of periodic solutions and the face Pu.

Lemma 2.6.6. [97, Lemma 5.2] Suppose that n ≥ 5. Then Pu equals the convex hull of all tensor

products x⊗ x, x ∈ Lper. In particular, Pu ' S
dimLper
+ , and for every B ∈ Pu we have Im B ⊂ Lper .

Moreover, for every B ∈ Pu the preimage A = Λ−1(B) ∈ Pu is given by A = (B(et, es))t,s=1,...,n.
The positive semi-de�nite face Pu is hence closely connected to the eigenvalue 1 of the monodromy

operator M. In particular, the rank of this face is equal to the dimension of the eigenspace to this
eigenvalue.

The existence of exceptional copositive matrices with zeros u1, . . . , un has much more stringent
consequences on the structure and the eigenvalues of the monodromy operator.

Lemma 2.6.7. [97, Corollary 5.5] Let n ≥ 5, and let B ∈ Fu \ Pu. Then the bilinear form on L∗u
given by (w,w′) 7→ B((Id −M∗)w ,w ′) has corank at most 1. In particular, both B and Id −M∗ have
corank at most 1. Moreover, M has at least n − 4 linearly independent eigenvectors with eigenvalues
on the unit circle.

A trivial consequence is that if the face Fu contains exceptional copositive matrices, then the positive
semi-de�nite matrices in this face can have rank at most 1. The forms B in the set Fu \ Pu can have
either full rank or have corank 1. The following results describe the structure of Fu in dependence on
whether there exist positive de�nite forms in Fu \ Pu or not.

Lemma 2.6.8. [97, Lemma 5.7] Suppose n ≥ 5 and assume that every form B ∈ Fu is degenerate.
Then either Fu consists of positive semi-de�nite matrices only, or Fu is 1-dimensional and generated by
an extremal exceptional copositive matrix A. In the latter case the submatrices AIj of this exceptional
matrix have corank 2 for all j = 1, . . . , n.
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Lemma 2.6.9. [97, Lemma 5.9] Let n > 5 be even, and suppose that there exist positive de�nite forms
B ∈ Fu 6= Pu. Then Fu is linearly isomorphic to R2

+, where one boundary ray of Fu is generated by a
rank 1 positive semi-de�nite matrix, and the other boundary ray is generated by an extremal exceptional
copositive matrix A. The submatrices AIj of this exceptional matrix have corank 2 for all j = 1, . . . , n.

Lemma 2.6.10. [97, Lemma 5.10] Let n ≥ 5 be odd, and suppose that there exist positive de�nite
forms B ∈ Fu 6= Pu. Then Fu does not contain non-zero positive semi-de�nite matrices.

If Fu is 1-dimensional, then it is generated by an extremal exceptional copositive matrix A such
that the submatrices AIj have corank 1 for all j = 1, . . . , n.

If dimFu > 1, then the monodromy operator M of the system Su possesses the eigenvalue −1,
and all boundary rays of Fu are generated by extremal exceptional copositive matrices. For any such
boundary matrix A 6= 0, its submatrices AIj have corank 2 for all j = 1, . . . , n.

The previous results described the face Fu. The next theorem gives more details on the structure of
the exceptional copositive matrices in this face, in dependence on whether their support set is minimal
circulant or not.

Theorem 2.6.11. [97, Theorem 5.12] Let A ∈ Fu be an exceptional copositive matrix and set B =
Λ(A). Then either

(i.a) A has minimal circulant zero support set;

(i.b) B is positive de�nite;

(i.c) the corank of the submatrices AIj equals 1, j = 1, . . . , n;

(i.d) the minimal zero support set of A is {I1, . . . , In}, with minimal zeros u1, . . . , un;

(i.e) for even n the matrix A is the sum of an exceptional copositive matrix with non-minimal circulant
zero support set and a rank 1 positive semi-de�nite matrix;

(i.f) if n is odd and the monodromy operator M has no eigenvalue equal to −1, then A is extremal;

or

(ii.a) A has non-minimal circulant zero support set;

(ii.b) the corank of B equals 1;

(ii.c) the corank of the submatrices AIj equals 2, j = 1, . . . , n;

(ii.d) the support of any minimal zero of A is a strict subset of one of the index sets I1, . . . , In, and
every index set Ij has exactly two subsets which are supports of minimal zeros of A;

(ii.e) every non-minimal zero of A has support equal to Ij for some j = 1, . . . , n and is a sum of two
minimal zeros;

(ii.f) A is extremal.

The prototype of exceptional copositive matrices satisfying conditions (i.a)�(i.f) are the matrices
(2.3) for ψ in the interior of the simplex Ψ given by (2.4), while the prototype of those satisfying
(ii.a)�(ii.f) is the Horn form (2.1).

2.6.6 Submanifolds of extremal exceptional copositive matrices

In the previous two subsections we considered the face Fu ⊂ Cn for a �xed collection u of zeros. In
Theorem 2.6.11 we have shown that there are two potential possibilities for an exceptional copositive
matrix A in such a face Fu. Namely, either A has minimal, or A has non-minimal circulant zero support
set, either case imposing its own set of conditions on A. In this section we show that in each of these
cases, the matrix A is embedded in a submanifold of Sn of codimension n or 2n, respectively, which
consists of exceptional copositive matrices with similar properties. However, di�erent matrices in this
submanifold may belong to faces Fu corresponding to di�erent collections u.

Theorem 2.6.12. [97, Theorem 6.1] Let n ≥ 5, and let Â ∈ Cn be an exceptional matrix with minimal
circulant zero support set and with zeros û1, . . . , ûn ∈ Rn+ such that supp ûj = Ij. Then there exists a

neighbourhood U ⊂ Sn of Â with the following properties:

(i) if A ∈ U and detAIj = 0 for all j = 1, . . . , n, then A is an exceptional copositive matrix with
minimal circulant zero support set;

75



(ii) the set of matrices A ∈ U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion n in Sn.

The matrices in the manifold described in this theorem can be extremal only if n is odd. The next
result states that if there are any extremal matrices, then they form a submanifold of codimension n
too.

Theorem 2.6.13. [97, Theorem 6.2] The extremal exceptional copositive matrices with minimal cir-
culant zero support set form an open subset of the manifold of all exceptional matrices with minimal
circulant zero support set.

The simplest manifold of the type described in Theorem 2.6.13 is the 10-dimensional union of the
G5-orbits of the matrices (2.3) for ψ in the interior of Ψ. Matrices (2.3) themselves depend on 5
parameters, while the action of G5 adds another 5 parameters.

Theorem 2.6.14. [97, Theorem 6.3] Let n ≥ 5, and let Â ∈ Cn be an exceptional matrix with non-
minimal circulant zero support set and having zeros û1, . . . , ûn ∈ Rn+ such that supp ûj = Ij. Then

there exists a neighbourhood U ⊂ Sn of Â with the following properties:

(i) if A ∈ U and rkAIj = n − 4 for all j = 1, . . . , n, then A is an exceptional extremal copositive
matrix with non-minimal circulant zero support set;

(ii) the set of matrices A ∈ U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion 2n in Sn.

The simplest manifold of the type described in Theorem 2.6.14 is the 5-dimensional G5-orbit of the
Horn form (2.1). Another example is the 9-dimensional variety composed of the G6-orbits of matrices
(2.5) with φj+3 = φj , j = 1, 2, 3.

In both Theorem 2.6.12 and 2.6.14 the polynomials de�ning the algebraic submanifold are minors
of the matrix A ∈ Sn.

2.6.7 Faces consisting of positive semi-de�nite matrices

So far we have always supposed that the feasible sets Fu or Pu of the LMIs in Theorem 2.6.4 contain
non-zero forms. We have not yet shown that non-trivial faces Fu and Pu actually exist. In this
subsection we construct non-zero faces Fu of Cn which contain only positive semi-de�nite matrices,
i.e., which satisfy Fu = Pu.

We shall need the following concept of a slack matrix, which has been introduced in [225] for convex
polytopes. Let K ⊂ Rm be a regular polyhedral convex cone, and let K∗ = {f ∈ Rm | 〈f, x〉 ≥ 0 ∀ x ∈
K} be its dual cone, where Rm is the space of linear functionals on Rm. Then K∗ is also a regular
convex polyhedral cone. Let x1, . . . , xr be generators of the extreme rays ofK, and f1, . . . , fs generators
of the extreme rays of K∗.

De�nition 2.6.15. Assume the notations of the previous paragraph. The slack matrix of K is the
nonnegative s× r matrix (〈fi, xj〉)i=1,...,s;j=1,...,r.

Theorem 2.6.16. Assume n ≥ 5, and let u = {u1, . . . , un} ⊂ Rn+ be such that suppuj = Ij for
all j = 1, . . . , n. Let U be the n × n matrix with columns u1, . . . , un. Then the face Fu consists of
positive semi-de�nite matrices up to rank n−3 inclusive if and only if U is the slack matrix of a convex
polyhedral cone K ⊂ R3 with n extreme rays.

Theorem 2.6.16 provides a way to construct all collections u ⊂ Rn+ of vectors u1, . . . , un satisfying
suppuj = Ij , j = 1, . . . , n, such that the face Fu of Cn consists of positive semi-de�nite matrices only
and is linearly isomorphic to Sn−3

+ .
Let now u = {u1, . . . , un} ⊂ Rn+ be an arbitrary collection such that suppuj = Ij for all j = 1, . . . , n.

Let again U be the n×n matrix with columns u1, . . . , un. By Lemmas 2.6.5 and 2.6.6 we have Pu ' Sk+,
where k is the corank of U . We have shown that there exist collections u such that U has corank n−3.
By perturbing some of the zeros uj in such a collection, the corank of U can be decreased and may
assume an arbitrary value between 0 and n − 3. In this way we obtain faces Fu of Cn for which the
subset Pu of positive semi-de�nite matrices is isomorphic to Sk+ with arbitrary rank k = 0, . . . , n− 3.
Here for k ≥ 2 we must have that Fu = Pu.
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2.6.8 Circulant matrices

In this subsection we shall explicitly construct non-zero faces Fu 6= Pu for arbitrary matrix sizes n ≥ 5.
We consider faces Fu de�ned by special collections u. Let u ∈ Rn−2

++ be palindromic, i.e., with positive
entries and invariant with respect to inversion of the order of its entries. De�ne u = {u1, . . . , un} ⊂ Rn+
such that suppuj = Ij and u

j
Ij

= u for all j = 1, . . . , n. By construction, the linear dynamical system

Su de�ned by u has constant coe�cients, namely the entries of u. Set p(x) =
∑n−3
k=0 uk+1x

k.
We provide necessary and su�cient conditions on u such that the corresponding face Fu ⊂ Cn

contains exceptional copositive matrices, and construct explicit collections u which satisfy these con-
ditions. We show that the copositive matrices in these faces must be circulant, i.e., invariant with
respect to simultaneous circular shifts of its row and column indices.

The next two lemmas provide necessary conditions on the entries of u by virtue of constraints on
the roots of the polynomial p(x), and give an explicit expression of the matrices in the corresponding
face Fu.

Lemma 2.6.17. [97, Lemma 7.6] Let n > 5 be even, let u be as above, and let A ∈ Fu be an exceptional
copositive circulant matrix. Then there exist m = n

2 − 2 distinct angles ζ1, . . . , ζm ∈ (0, π), arranged in
increasing order, with the following properties:

(a) the fractional part of
nζj
4π is in (0, 1

2 ) for odd j and in ( 1
2 , 1) for even j;

(b) the polynomial p(x) is a positive multiple of (x+ 1) ·
∏m
j=1(x2 − 2x cos ζj + 1);

(c) there exist c > 0, λ ≥ 0 such that for all k = 1, . . . , n2 + 1 we have

A1k = (−1)k−1λ+ c ·
m∑
j=1

cos(k − 1)ζj

sin ζj sin
nζj
2

∏
l 6=j(cos ζj − cos ζl)

. (2.9)

If λ = 0, then A is extremal with non-minimal circulant zero support set. If λ > 0, then A has minimal
circulant zero support set and is not extremal.

Lemma 2.6.18. [97, Lemma 7.7] Let n ≥ 5 be odd, let u be as above, and let A ∈ Fu be an exceptional
copositive circulant matrix. Then there exist m = n−3

2 distinct angles ζ1, . . . , ζm ∈ (0, π], arranged in
increasing order, with the following properties:

(a) the fractional part of
nζj
4π is in (0, 1

2 ) for odd j and in ( 1
2 , 1) for even j;

(b) the polynomial p(x) is a positive multiple of
∏m
j=1(x2 − 2x cos ζj + 1);

(c) there exists c > 0 such that for all k = 1, . . . , n+1
2 we have

A1k = c ·
m∑
j=1

cos(k − 1)ζj

sin
ζj
2 sin

nζj
2

∏
l 6=j(cos ζj − cos ζl)

. (2.10)

The matrix A has non-minimal circulant zero support set if ζm = π and minimal circulant zero support
set if ζm < π. In both cases A is extremal.

In contrast to item (i.f) in Theorem 2.6.11 item (c) in Lemma 2.6.18 states the extremality of A
unconditionally. This allows us to prove below that extremal exceptional copositive matrices with
minimal circulant zero support set actually exist for every odd order n ≥ 5. Note that the elements
A1k, k = 1, . . . , dn+1

2 e, determine the matrix A completely by its circulant property. We obtain the
following characterization of collections u de�ning faces Fu which contain exceptional matrices.

Theorem 2.6.19. [97, Lemma 7.8] Let n > 5 be even, m = n
2 −2, and let u and p(x) be as in the �rst

paragraph of this section. Then Fu 6= Pu if and only if there exist distinct angles ζ1, . . . , ζm ∈ (0, π),
arranged in increasing order, such that conditions (a),(b) of Lemma 2.6.17 hold. In this case the face Fu

is linearly isomorphic to R2
+ and consists of the circulant matrices A with entries A1k, k = 1, . . . , n2 +1,

given by (2.9) with c, λ ≥ 0. The subset Pu ⊂ Fu is given by those A with c = 0.

Theorem 2.6.20. [97, Lemma 7.9] Let n ≥ 5 be odd, m = n−3
2 , and let u and p(x) be as in the �rst

paragraph of this section. Then Fu 6= Pu if and only if there exist distinct angles ζ1, . . . , ζm ∈ (0, π],
arranged in increasing order, such that conditions (a),(b) of Lemma 2.6.18 hold. In this case the face
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Fu is an extreme ray of Cn and consists of the circulant matrices A with entries A1k, k = 1, . . . , n+1
2 ,

given by (2.10) with c ≥ 0.
The question which collections u, of the type described at the beginning of this subsection, yield

faces Fu containing exceptional copositive matrices hence reduces to the characterization of real poly-
nomials of the form given in (b) of Lemmas 2.6.17 or 2.6.18, with positive coe�cients and satisfying
condition (a) of these lemmas. This is seemingly a di�cult question, and only limited results are
known. However, the existence of faces Fu containing exceptional copositive matrices is guaranteed for
every n ≥ 5 by the following result on polynomials with equally spaced roots on the unit circle.

Lemma 2.6.21. [67, Theorem 2] Let m ≥ 1 be an integer, and let α > 0, θ ≥ 0 be such that
π
2 ≤ θ+ (m−1)α

2 ≤ π and 0 < α < π
m . Then the polynomial q(x) =

∏m
j=1(x2 − 2x cos(θ+ (j − 1)α) + 1)

has positive coe�cients.
Based on this result we are able to construct the following explicit examples of extremal exceptional

circulant matrices.
Degenerate extremal matrices. Let n ≥ 5, m = dn2 e − 2, and p(x) = (xn+1)(x+1)

(x2−2x cos πn+1)(x2−2x cos 3π
n +1)

.

Then p(x) is a palindromic polynomial of degree n− 3. Set also q(x) = p(x) for odd n and q(x) = p(x)
x+1

for even n. Then q(x) is of degree 2m and has positive coe�cients by virtue of Lemma 2.6.21 with
α = 2π

n , θ = 5π
n . It follows that also p(x) has positive coe�cients. Let u ∈ Rn−2

+ be the vector of
its coe�cients, and let u be the collection of nonnegative vectors constructed from u as in the �rst

paragraph of this section. Then the angles ζj = (2j+3)π
n , j = 1, . . . ,m, satisfy conditions (a),(b) of

Lemmas 2.6.17 and 2.6.18, for even and odd n, respectively. By Theorems 2.6.19 and 2.6.20 we obtain
that Fu ' R2

+ for even n and Fu ' R+ for odd n, their elements being circulant matrices given by (2.9)
and (2.10), respectively. One extreme ray of Fu is then generated by an extremal copositive circulant
matrix A with non-minimal circulant zero support set. For even n the other extreme ray is generated
by a circulant positive semi-de�nite rank 1 matrix P . Their elements are given by Pij = (−1)i−j and

Aij =


2(1 + 2 cos πn cos 3π

n ), i = j,
−2(cos πn + cos 3π

n ), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

(2.11)

i, j = 1, . . . , n. For n = 5 we obtain the Horn form.

Regular extremal matrices. Let n ≥ 5 be odd, and set p(x) = xn+1+1
(x2−2x cos π

n+1 +1)(x2−2x cos 3π
n+1 +1)

,

m = n−3
2 . Then p(x) is a palindromic polynomial of degree 2m = n− 3, and it has positive coe�cients

by virtue of Lemma 2.6.21 with α = 2π
n+1 , θ = 5π

n+1 . Construct u ∈ Rn−2
+ and u ⊂ Rn+ as above from the

coe�cients of p(x). Then the angles ζj = (2j+3)π
n+1 , j = 1, . . . ,m, satisfy conditions (a),(b) of Lemma

2.6.18. By Theorem 2.6.20 Fu is one-dimensional and generated by a circulant extremal copositive
matrix with minimal circulant zero support set whose elements are given by (2.10). The elements of
A are explicitly given by

Aij =


2(1 + 2 cos π

n+1 cos 3π
n+1 ), i = j,

−2(cos π
n+1 + cos 3π

n+1 ), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

(2.12)

i, j = 1, . . . , n. For n = 5 we obtain a multiple of matrix (2.3) with ψ = π
6 · 1.
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