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Abstract. A new framework for the asymptotic analysis of incompressible flows of complex non-Newtonian
materials is presented in this paper. It allows both to avoid redundant mathematical hypotheses and to
dramatically reduce the amount of tedious formal calculations. The starting point of the proposed framework
is a generic equation, easily adaptable to most problems of continuum mechanics, for which a thin-layer
approximation is developed. We then show how to treat the so-called Gordon–Schowalter derivative, a
general objective time derivative involved in non-Newtonian viscoelastic fluids. As a proof of concept of our
framework, we apply it to the Maxwell viscoelastic model.
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1. Introduction

The scientific literature addresses a wide range of thin-layer flow problems, suitable for geophys-
ical, biological and industrial applications. The corresponding approximation leads to reduce a
tridimensional time-dependent and free-surface flow problem to a bidimensional one with an
explicit description of the elevation of the free-surface. The problem is then much simpler, from
both theoretical and numerical points of view.

This approach was first introduced in 1871 by Saint-Venant [12] for the so-called shallow-water
equations that approximate the Euler’s fluid equations. Since then, significant progress has been
made in obtaining reduced equations. Especially, asymptotic analysis allows a rigorous formal
development, up to an arbitrary order, of quantities with respect to ϵ, the small aspect ratio of the
thin geometry (see Figure 1). Among others, it has allowed to obtain thin-layer approximations of
Navier–Stokes model [8,10], of the Bingham viscoplastic fluid model [1,2,7,9], and more recently
of the Maxwell viscoelastic model [4]. See e.g. [5] for a recent review, including slowly varying
topography effects. Note that the reduced equations obtained after asymptotic analysis strongly
depend upon the boundary conditions imposed on the substrate on which the fluid is moving.
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In the literature, two main cases are considered: a slip-friction together with a no-penetration
condition [4, 5, 7, 8, 10] and a no-slip condition [1, 9].

Our aim is to propose a general framework for facilitating the formal derivation of the thin-
layer approximation of incompressible fluids, either Newtonian or non-Newtonian, with slip-
friction and no-penetration boundary condition on a flat substrate. It allows both to avoid re-
dundant mathematical hypotheses and to dramatically reduce most tedious formal calculations.
While we focus on fluid mechanics applications, the present framework could be suitable to
a wider class of partial differential equations from mathematical physics. The idea to provide
some kind of generalization has already been suggested in the literature. In 2004, Bouchut and
Westdickenberg [6] studied general varying topographies and, in 2016, Bouchut and Boyaval [5]
proposed for the first time a unified framework for deriving thin-layer models for shallow free-
surface flows driven by gravity, with slip-friction and no-penetration boundary condition, and
under the motion by slices hypothesis. The present framework requires a minimal number of
assumptions. In particular, we neither assume that the system is driven by gravity nor that the
motion by slices hypothesis is satisfied.

The viscoelastic Maxwell model is studied as a proof of concept for the proposed framework.
It writes [11]: 

λ

(
∂τ

∂t
+ (v ·∇)τ−∇v ·τ−τ ·∇v⊤

)
+τ= 2ηD(v ),

ρ

(
∂v

∂t
+ (v ·∇) v

)
−divσ= ρg ,

div v = 0,

(1a)

(1b)

(1c)

where the total stress tensor isσ=τ−p I , and the three unknowns are τ, the elastic stress tensor,
v , the velocity field and p, the pressure. Here, ρ is the density of the fluid, assumed to be constant,
and g is the constant gravity vector. The parameter η is a viscosity and λ is a relaxation time. The
notation D(v ) stands for the rate of deformation tensor, that is the symmetric part of the velocity
gradient, defined by D(v ) := (∇v +∇v⊤)

/2. Note that when λ= 0, the Maxwell model reduces to
the Navier–Stokes one. Rather than directly performing the asymptotic analysis of the system (1),
we propose in this paper to treat the following general equation:

A (u)−div j = 0, (2)

where A is a given scalar operator depending on the scalar unknown u and j is the equivalent
of a flux. This equation is scalar but it can correspond component by component to vectorial
conservation equations such as (1b), and tensorial evolution equations such as (1a), and, in
general, to a large class of equations from mathematical physics.

After a presentation of the general mathematical setting in Section 2, the asymptotic analysis
of (2) will be presented along with sufficient conditions for the motion by slices. This section
ends with the asymptotic analysis of the general objective Gordon–Schowalter derivatives of both
vector and tensor fields. Finally, Section 4 turns to applications to Navier–Stokes and Maxwell
systems. To the best of our knowledge, the tools presented here are new and we hope that they
will (i) help to clarify the mathematical hypothesis required for asymptotic analysis, and (ii) make
formal calculations easier for future applications in the study of complex materials.

2. Mathematical setting

2.1. Geometry

We consider here a thin-layer fluid domain B ⊂R3 moving at velocity v : B×R+ →R3, with a free
surface characterized by its height h : B×R+ →R+, assumed small compared to the flow length.
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Let Σs be the three-dimensional rigid substrate on which the fluid flows. It is defined as the set
of points x with x3 = 0, and Ω ⊂ R2 its two-dimensional counterpart such that Σs :=Ω× {0}, see
Figure 1. The free surface is defined as the set Σ f (t ) :=Ω× {h(t )}. The thin-layer approximation
aims at obtaining a two-dimensional problem defined overΩ.

O x1

x2

x3

Σs := {x3 = 0}

Σ f (t ) := {x3 = h}

B(t ) Σ

v (x , t )

h(x , t )

O x1

x2

x3.
L

Ω
v s (x s , t )

ε := H/L → 0

Figure 1. Asymptotic analysis of a free-surface flow of a shallow fluid.

2.2. Evolution equations

A large part of the equations derived from mechanics can be written as one of the following
equations:

λ
Dϕ

Dt
+b(ϕ)−div j = f , (3a)

λ
Da u

D t
+b(u)−divσ= f , (3b)

or λ
Daτ

D t
+β(τ)−divJ=φ, (3c)

where λ is a time relaxation, b (resp. b and β) is a generic scalar-valued (resp. vector and
symmetric tensor) source term, j (resp. σ and J) is a vector-valued (resp. tensor-valued and
order 3 tensor-valued) flux and f (resp. f and φ) is a scalar-valued (resp. vector and symmetric
tensor) source term independent of the scalar (resp. vector and symmetric tensor) unknown ϕ

(resp. u and τ). Three time derivatives have also been introduced. The first one is the Lagrangian
derivative D□/Dt := ∂□/∂t + (v ·∇)□. The two others are the vector and the tensor Gordon–
Schowalter derivatives, parameterized by a ∈R and defined by

Da u

D t
:= Du

Dt
− (W (v )+aD(v )) ·u,

Daτ

D t
:= Dτ

Dt
−2sym

(
(W (v )+aD(v )) ·τ

)
,

where sym( · ) is the tensor symmetric part operator and W (v ) := (∇v −∇v⊤)/2 is the vorticity
tensor, i.e. the skew-symmetric part of the velocity gradient. Note that these time derivatives are
defined for a general velocity field v , not necessarily divergence-free.

Note that all the three variants of (3) reduce component-by-component to the general case (2)
for a suitable choice of the A that includes both the time derivative, the source and the right-
hand-side terms. This approach leads to split the difficulties for the asymptotic analysis of the
next Section 3: we first study (2) with a general operator A before we deal with the complicated
terms involved by Gordon–Schowalter derivatives.
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2.3. Boundary conditions

Only the boundary conditions satisfied on the free surface and on the substrate are involved by
the asymptotic analysis. Indeed, conditions on vertical boundary walls have no effects on the
reduced models.

2.3.1. On the free surface

For fluid flow systems such as Navier–Stokes or Maxwell (1), the boundary conditions on the
free surface Σ f (t ) write [5, 10]:

σ ·n −γκn = 0, (4a)

and
∂h

∂t
+ v1

∂h

∂x1
+ v2

∂h

∂x2
= v3 (4b)

where n is the unit outward normal vector, along the direction (−∂h/∂x1,−∂h/∂x2,1). Eqn. (4a)
expresses the normal-stress continuity condition where γ is the surface tension at the air/fluid
interface and κ :=−divn is the local mean curvature while (4b) is the usual free surface kinematic
equation. Note that (4a) is a non-homogeneous Neumann boundary condition. By extension, for
our general scalar equation (2), we consider the general condition on free surface Σ f (t ):

j ·n = q. (5)

2.3.2. On the substrate

On the substrate Σs , we consider:

v ·n = 0, (6a)

σnt = kv t , (6b)

where σnt :=σ ·n − (n ·σ ·n)n is the tangential part of the normal stress, v t := v − (v ·n)n is the
tangential part of the velocity. Relation (6a) expresses the no-penetration of the flow material
across the substrate surface while (6b) is the tangential slip-friction condition, where k is the
friction coefficient, which is constant for laminar flows.

Condition (6) is the usual starting point of most motion by slices approximate models. Note
that a popular alternative is the no-slip condition v = 0, which is the starting point of the so-
called lubrication approximate models [1,2,9]. For simplicity, the later will not be considered and
we assume (6) all along this paper.

3. The framework

3.1. Notations

3.1.1. Asymptotic analysis

Let H , L and U be the characteristic height, length and velocity, respectively. For instance L
is the substrate length. The asymptotic analysis consists in exploiting the small, yet fixed, aspect
ratio

ϵ := H/L

in order to reduce the three-dimensional problem to a bidimensional one. For this purpose, we
are going to scale the spatial coordinates with this parameter, distinguishing the contribution
from planar and horizontal dimensions. We then assume each dimensionless unknown admits a
Taylor expansion with respect to ϵ at second order, which, to fix ideas, writes

ϕ=ϕ(0) +ϕ(1)ϵ+ϕ(2)ϵ2 +O(ϵ3). (7)
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By convention, we consider that both the height and the x3-coordinate are exactly of order one
while both the x1-coordinate and x2-coordinate do not depend on ϵ:

x s = Lx (0)
s , x3 = Lx(1)

3 ϵ, t = L

U
t (0), (8)

where the s index refers to the planar components of a given variable, e.g. x s := (x1, x2). We deduce
the following scaling for differential operators:

∇s =
1

L
∇(0)

s ,
∂

∂x3
= 1

ϵL

∂

∂x(1)
3

,
∂

∂t
= U

L

∂

∂t (0)
, (9)

where ∇s := (∂/∂x1,∂/∂x2)⊤ is the planar gradient. We also define the planar divergence opera-
tor divs□ := ∂□i1...ip−11/∂x1 +∂□i1...ip−12/∂x2, where p is the order of the given tensor, and the pla-
nar Laplacian∆s :=∇s ·∇s . Similarly, we assume that the dimensionless velocity field v/U and the
dimensionless height field h/L satisfy an expansion of the form (7) with v (0)

3 = 0 and h(0) = 0. This
choice is justified by our wish to have ϵU as the characteristic vertical speed and H = ϵL as the
characteristic height.

Observe that the notation ϕ(k) makes it possible to immediately recognise the order with
respect to ϵ of the considered term. For instance, the productϕ(k)ψ(l ) will be associated to a term
of order O

(
ϵk+l

)
, while the quotient ϕ(k)/ψ(l ) will be associated to a term of order O

(
ϵk−l

)
.

From now until Section 4, we assume that every field, parameter and differential operator
is dimensionless, for convenience. In particular, when we refer to the dimensionless height
(resp. vertical velocity), we mean the height scaled by L (resp. U ), in order to keep the property
presented in the previous paragraph.

3.1.2. Depth averaging

Depth averaging is the final stage of the reduction of equations. It is defined through the
following operator:

Definition 1 (depth average). Let ϕ : B×R+ → R a continuous scalar field with respect to x3. Its
depth average is defined by the quantity

〈ϕ〉h(x s , t ) :=


1

h

∫ h

0
ϕ((x s , x3), t )dx3, ∀ (x s , t ) ∈Ω×R+ when h(x s , t ) ̸= 0,

ϕ((x s ,0), t ) otherwise.

This linear operator extends componentwise to any vector or tensor field. We also define the
depth variance and covariance:

Definition 2 (depth variance and covariance). Letϕ andψ be two scalar fields defined in B×R+,
continuous with respect to x3.

• The depth variance of ϕ is defined by the quantity

varh(ϕ) := 〈(ϕ−〈ϕ〉h)2〉h .

• The depth covariance of ϕ and ψ is defined by the quantity

covh(ϕ,ψ) := 〈(ϕ−〈ϕ〉h)(ψ−〈ψ〉h)〉h .

In particular, covh(ϕ,ϕ) = varh(ϕ).

Those operators satisfy the Cauchy–Schwartz inequality

|covh(ϕ,ψ)|2 É varh(ϕ)varh(ψ), (10a)
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and the König–Huygens theorem-like

varh(ϕ) = 〈ϕ2〉h −〈ϕ〉2
h , (10b)

covh(ϕ,ψ) = 〈ϕψ〉h −〈ϕ〉h〈ψ〉h . (10c)

Note the following useful identities:

〈x3〉h = h/2 and varh x3 = h2/12. (11)

3.2. Analysis of the general scalar problem

Considering equation (2) together with the Neumann condition (5), let us perform the asymptotic
analysis of the following general scalar problem:

Problem 3 (general scalar). Find u, defined in B×R+, such that for any time t ∈R+{
A (u(t ))−div j (t ) = 0 in B(t ),

j (t ) ·n = q on Σ f (t ).

(12a)

(12b)

Recall that this scalar problem extends componentwise to a vector or a tensor one. Assume
that u is a solution of (12) and that the following expansions hold:

A =A (−1) 1

ϵ
+A (0) +A (1)ϵ+O(ϵ2), (13a)

j = j (−1) 1

ϵ
+ j (0) + j (1)ϵ+ j (2)ϵ2 +O(ϵ3), (13b)

q = q (−1) 1

ϵ
+q (0) +q (1)ϵ+q (2)ϵ2 +O(ϵ3) (13c)

Then (12a) leads to

−∂ j (−1)
3

∂x(1)
3

1

ϵ2 +
1∑

k=−1

(
A (k) −divs j (k)

s − ∂ j (k+1)
3

∂x(1)
3

)
ϵk +O(ϵ2) = 0,

while the boundary condition (12b) becomes(
j (−1)

3 −q (−1)
) 1

ϵ
+

1∑
k=−1

(
j (k+1)

3 − j (k)
s ·∇s h(1) −q (k+1)

)
ϵk+1 +O(ϵ2) = 0 on Σ f (t ).

By identification, we get, for any k ∈ {−1,0,1}

∂ j (−1)
3

∂x(1)
3

= 0, (14a)

A (k) −divs j (k)
s = ∂ j (k+1)

3

∂x(1)
3

, (14b)

j (−1)
3 = q (−1) on Σ f (t ), (14c)

j (k+1)
3 =∇s h(1) · j (k)

s +q (k+1) on Σ f (t ). (14d)

From (14a) and (14c), we also deduce j (−1)
3 = q (−1) inΩ×R+.

Definition 4 (hypotheses H (k)). For any k ∈ {−1,0,1}, we say hypothesis H (k) holds if and only
if A (k) = 0 and j (k)

s = 0.
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Lemma 5 (vertical flux and Neumann BC). Assume expansions (13) are satisfied. Then,

• the term of order −1 of the vertical flux is given by

j (−1)
3 = q (−1) inΩ×R+. (15a)

• if hypothesis H (k) also holds, for k ∈ {−1,0,1},

j (k+1)
3 = q (k+1) inΩ×R+. (15b)

Proof. The first point has already been proven in the main text. Under hypothesis H (k), (14b)
reduces to

∂ j (k+1)
3

∂x(1)
3

= 0 inΩ×R+,

whence the result, from the boundary condition (14d). □

This lemma is the starting point for obtaining the property of motion by slices (see Corollary 8).
It remains to average in depth the problem defined by equations (14a)–(14b) together with

boundary conditions (14c)–(14d). This can be performed thanks to Corollary 26 in the appendix,
which gives the

Problem 6 (reduced general scalar). Find 〈u(0)〉h and 〈u(1)〉h , defined inΩ×R+, such that for any
time t ∈R+ and any index k ∈ {−1,0,1}

h(1)〈A (k)〉h −divs

(
h(1)〈 j (k)

s 〉h

)
= q (k+1) − j (k+1)

3 (x3 = 0). (16)

Theorem 7 (asymptotic analysis of the general problem). Let u be the solution of Problem 3,
which is assumed to be statisfying expansion (13), and 〈u(0)〉h and 〈u(1)〉h be solutions of Problem 6.
Then,

〈u〉h = 〈u(0)〉h +〈u(1)〉hϵ+O(ϵ2). (17)

In other words, the reconstructed solution 〈u(0)〉h +〈u(1)〉hϵ is an approximation of order O(ϵ2) of
the averaged exact solution 〈u〉h .

Corollary 8 (motion by slices). Under the same assumptions than the above Theorem 7, let us
assume in addition that j = ν∇u +m, where ν > 0 and m is a vector field that does not depend
on ∇u. If m expands as m = m(0) +m(1)ϵ+O(ϵ2), q (−1) = 0 and ν=O(1), then

∂u(0)

∂x(1)
3

= 0.

Proof. By construction, j (−1)
3 = ν∂u(0)/∂x(1)

3 . The result follows then from (15a). □

Remark 9 (no-slip condition). More generally, if m expands as m = m(−1)/ϵ+ m(0) + m(1)ϵ+
m(2)ϵ2 +O(ϵ3) and ν=O(ϵn), with n ∈ {0, . . . ,3}, then

∂u(0)

∂x(1)
3

= 1

ν

(
q (n−1) −m(n−1)

3

)
, that is 〈u(0)〉h = u(0)(x3 = 0)+ h(1)

2ν
q (n−1) −

〈∫ x3

0

1

ν
m(n−1)

3 dx3

〉
h

.

(18)
Instead of the Neumann boundary condition (12b), we could consider a Dirichlet condition on u.
In that case, we do no more have information on the normal flux j ·n on the substrate. This could
be a difficulty since this term is involved in the right-hand-side of (16). Note that a popular case
of such Dirichlet condition is the no-slip condition on the substrate, which the starting point of
lubrication shallow models. In that case, there is no more motion by slices, but this asymptotic
expansion still allows to obtain an explicit expression of the zeroth order depth average of u.
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Moreover, from (15b) and under assumption H (k) (see Lemma 5), it is possible to extend the
result to any k ∈ {−1,0,1} as

〈u(k+1)〉h = u(k+1)(x3 = 0)+ h(1)

2ν
q (n+k) −

〈∫ x3

0

1

ν
m(n+k)

3 dx3

〉
h

, (19)

See e.g. [1, §3.1] or [2] for practical examples of lubrication problems.

Corollary 10 (asymptotic analysis of the pressure). For any i ∈ {1,2,3}, assume the i -th compo-
nent of a vector field u is solution of a problem of the form (12) with vector flux (σi j )1É jÉ3 and
operator Ai . Assume in addition that these three problems satisfy the expansion (13). Assume also
that the tensor flux writes σ=τ−p I , where τ is a tensor field and p is a scalar field, called the
pressure, both of them being of order at most O(1/ϵ). Then the depth average of the pressure p is
given by

〈p(−1)〉h = 〈τ(−1)
33 〉h −q (−1),

〈p(k+1)〉h = 〈τ(k+1)
33 〉h −q (k+1) −

〈∫ h

x3

(
divsτ

(k)
3s −A (k)

3

)
dx3

〉
h
−τ(k)

3s (x3 = h) ·∇s h(1),

for any k ∈ {−1,0,1}.

Proof. The first result is immediate from (15a). From (14b), we get

∂p(k+1)

∂x3
= ∂τ(k+1)

33

∂x3
+divsτ

(k)
3s −A (k)

3 ,

and then, by integrating between x3 and h

p(k+1)(x3 = h)−p(k+1) = τ(k+1)
33 (x3 = h)−τ(k+1)

33 +
∫ h

x3

(
divsτ

(k)
3s −A (k)

3

)
dx3.

From the Neumann boundary condition (14d), we obtain the relation

τ(k+1)
33 (x3 = h)−p(k+1)(x3 = h) =τ(k)

3s (x3 = h) ·∇s h(1) +q (k+1).

A depth integration allows then to conclude. □

Remark 11 (simplifications). If τ(k)
3s is independent upon x3, we have the much simpler result

〈p(k+1)〉h = 〈τ(k+1)
33 〉h −q (k+1) −divs

(
h(1)τ(k)

3s

)
+ h(1)

2
divsτ

(k)
3s +

〈∫ h

x3

A (k)
3 dx3

〉
h

.

Similarly, if A (k)
3 is also independent of x3, we have the even simpler result

〈p(k+1)〉h = 〈τ(k+1)
33 〉h −q (k+1) −divs

(
h(1)τ(k)

3s

)
+ h(1)

2
divsτ

(k)
3s + h(1)

2
A (k)

3 .

3.3. Time derivatives

The aim of this section is to derive the depth average of the time derivatives that we introduced in
Section 2.2, namely the material derivative D/Dt and the vector and tensor Gordon–Schowalter
derivatives Da/D t , and express them as functions of their equivalents in the planeΩ. We will do
so under the assumptions that lead to motion by slices (see Corollary 8):

∂v (0)
s

∂x(1)
3

= 0, (20)

and the fact that the velocity field v is divergence-free (incompressibility) and satisfies to the
no-penetration constraint on the substrate. To exploit this, we will first need to perform the
asymptotic analysis of the divergence-free condition.
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3.3.1. Divergence-free condition

Let us start by the asymptotic analysis of the divergence-free condition

div v = 0, (21)

under the boundary conditions

v ·n = 0 ⇐⇒ v3 = 0 on Σs , (22a)

Ds h

Dt
= v3 on Σ f (t ), (22b)

where we noted
Ds

Dt
:= ∂

∂t
+ (v s ·∇s ) the material derivative advected by the velocity v s .

Proposition 12 (averaged vertical velocity). Assume that v is divergence-free and that the
property of motion by slices (20) and the boundary conditions (22) are satisfied. Then the vertical
velocity v3 is given by:

v3 =−divs
(
v (0)

s

)
x3 −〈divs

(
v (1)

s

)〉x3ϵ+O(ϵ3), that is v (1)
3 =−divs

(
v (0)

s

)
x(1)

3 . (23)

Proof. Note that div v = divs v s + ∂v3/∂x3 = 0. Therefore, the result follows directly from an
integration of the equation (21) using the hypothesis of motion by slices and the boundary
condition (22a). □

Corollary 13 (averaged free surface evolution). Under the same conditions as in the above
proposition, the height h is solution of the equation

∂h

∂t
+divs

(
hv (0)

s

)+divs
(
h〈v (1)

s 〉h
)
ϵ=O(ϵ3). (24)

Proof. Immediate from Proposition 12, Corollary 26 (see Appendix A) and boundary condi-
tion (22b). □

By identification, we immediately obtain the equation satisified by the height at order O(ϵ):

∂h(1)

∂t
+divs

(
h(1)v (0)

s

)= 0. (25)

Solving (25) instead of (24) leads to an error of order O(ϵ) since1 h/ϵ= h(1) +O(ϵ).

3.3.2. Lagrangian derivative

The depth average of the Lagrangian derivative is expressed as a function of the planar
material derivative, advected by the velocity v (0)

s , noted

D (0)
s ϕ

Dt
:= ∂ϕ

∂t
+ (

v (0)
s ·∇s

)
ϕ,

for any scalar field ϕ defined in Ω×R+. It extends componentwise to any vector or tensor field.
Thanks to the new mass conservation law (24), we deduce the

Proposition 14 (averaged Lagrangian derivative). Assume that v is divergence-free and that the
property of motion by slices (20) and the boundary conditions (22) are satisfied. Then, any scalar
field u defined in B×R+ satisfies the relation〈

Du

Dt

〉
h
= D (0)

s 〈u〉h

Dt
+O(ϵ), (26)

1As a reminder, the height was scaled by the characteristic length L, not by the characteristic height H , as mentioned
in Section 3.1.1.



1776 Nathan Shourick, Ibrahim Cheddadi and Pierre Saramito

Moreover, if we assume covh(∇s u, v (1)
s ) =O(ϵ), then we have a better approximation:〈

Du

Dt

〉
h
= D (0)

s 〈u〉h

Dt
+ (〈v (1)

s 〉h ·∇s
)〈u〉hϵ+O(ϵ2), (27)

Proof. We show this property in the second case, the first result being independent of the
assumption covh(∇s u, v (1)

s ) = O(ϵ). The calculation is performed in two steps, by noting that
D/Dt = Ds /Dt + v3∂/∂x3 = Ds /Dt + v (1)

3 ∂/∂x(1)
3 +O(ϵ) and by using the linearity of the opera-

tor 〈 ·〉h .

(1) Two direct applications of the Leibniz formula (Corollary 25 in Appendix A) and one of
the formula (10c) gives

h

〈
Ds u

Dt

〉
h
= D (0)

s

Dt
(h〈u〉h)−u(x3 = h)

D (0)
s h

Dt
+h〈(v (1)

s ·∇s
)

u〉hϵ+O(ϵ3)

= h

(
D (0)

s 〈u〉h

Dt
+ (〈v (1)

s 〉h ·∇s
)〈u〉hϵ

)
+hcovh(∇s u, v (1)

s )ϵ

+ (〈u〉h −u(x3 = h))

(
D (0)

s h

Dt
+ (〈v (1)

s 〉h ·∇s
)

hϵ

)
+O(ϵ3).

(2) A direct application of the appendix formula (47e), after expansion of the vertical velocity
using the Proposition 12 and use of the hypothesis of motion by slices, gives

h

〈
v3

∂u

∂x3

〉
h
=−(

hdivs v (0)
s +h〈divs v (1)

s 〉hϵ
)〈

x3
∂u

∂x3

〉
h
+O(ϵ3)

= (
hdivs v (0)

s +h〈divs v (1)
s 〉hϵ

)
(〈u〉h −u(x3 = h))+O(ϵ3).

The sum of the two above results and the application of equality (24) allow to conclude. □

This result still holds true when replacing u with a vector or a tensor field, in particular with
the velocity field v .

3.3.3. Gordon–Schowalter derivative of a vector

First, the depth average of the Gordon–Schowalter derivative of a vector is expressed as a
function of its plane equivalent, with respect to the zeroth-order planar velocity v (0)

s :

D (0)
a w s

D t
:= D (0)

s w s

Dt
−Ws (v (0)

s ) ·w s −aDs (v (0)
s ) ·w s , (28)

for any planar vector w s defined inΩ×R+.

Theorem 15 (Gordon–Schowalter derivative of a vector). Let u be a vector field defined in B×R+
such that varh(u) = O(ϵ) (closure assumption). Assume that v is divergence-free and that the
property of motion by slices (20) and the boundary conditions (22) are satisfied. Then the depth-
average of the Gordon–Schowalter derivative of u is given by(〈

Da u

D t

〉
h

)
s
= D (0)

a 〈us〉h

D t
− 1+a

2

〈
∂v (1)

s

∂x(1)
3

u3

〉
h

−
(〈[

Ws
(
v (1)

s

)+aDs
(
v (1)

s

)] ·us
〉

h

+ 1+a

2

〈
∂v (2)

s

∂x(1)
3

u3

〉
h

+ (1−a)h(1)

4
〈u3〉h∇s divs v (0)

s

)
ϵ+O(ϵ2), (29a)
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(〈
Da u

D t

〉
h

)
3
= D (0)

s 〈u3〉h

Dt
+ 1−a

2

〈
∂v (1)

s

∂x(1)
3

·us

〉
h

+adivs (v (0)
s )〈u3〉h

+
(

1−a

2

〈
∂v (2)

s

∂x(1)
3

·us

〉
h

+ (1+a)h(1)

4
∇s divs v (0)

s · 〈us〉h +a〈divs (v (1)
s )u3〉h

)
ϵ+O(ϵ2). (29b)

Proof. Recall that
Da u

D t
:= Du

Dt
−W (v ) ·u −aD(v ) ·u.

As in the previous demonstration, we will treat each of the terms separately, and we use the
previous result for the first term. The expansions (7), (8) and (9) applied to the velocity field, and
the motion by slices assumption lead to

2W (v ) =


2Ws (v (0)

s )+2Ws (v (1)
s )ϵ

∂v (1)
s

∂x(1)
3

+
(
∂v (2)

s

∂x(1)
3

−∇s v (1)
3

)
ϵ(

∇s v (1)
3 − ∂v (2)

s

∂x(1)
3

)
ϵ− ∂v (1)

s

∂x(1)
3

0

+O(ϵ2),

2D(v ) =


2Ds (v (0)

s )+2Ds (v (1)
s )ϵ

∂v (1)
s

∂x(1)
3

+
(
∂v (2)

s

∂x(1)
3

+∇s v (1)
3

)
ϵ(

∇s v (1)
3 + ∂v (2)

s

∂x(1)
3

)
ϵ+ ∂v (1)

s

∂x(1)
3

2
∂v (1)

3

∂x(1)
3

+2
∂v (2)

3

∂x(1)
3

ϵ

+O(ϵ2).

Therefore, the second and third terms in the definition of the Gordon–Schowalter derivative are

W (v ) ·u =


Ws (v (0)

s ) ·us +
1

2

∂v (1)
s

∂x(1)
3

u3 +
(

Ws (v (1)
s ) ·us +

∂v (2)
s

∂x(1)
3

u3

2
−∇s v (1)

3

u3

2

)
ϵ+O(ϵ2)

−1

2

∂v (1)
s

∂x(1)
3

·us +
ϵ

2

(
∇s v (1)

3 − ∂v (2)
s

∂x(1)
3

)
·us +O(ϵ2)

 ,

D(v ) ·u =


Ds (v (0)

s ) ·us +
1

2

∂v (1)
s

∂x(1)
3

u3 +
(

Ds (v (1)
s ) ·us +

∂v (2)
s

∂x(1)
3

u3

2
+∇s v (1)

3

u3

2

)
ϵ+O(ϵ2)

1

2

∂v (1)
s

∂x(1)
3

·us +
∂v (1)

3

∂x(1)
3

u3 +
(

1

2

[
∇s v (1)

3 + ∂v (2)
s

∂x(1)
3

]
·us +

∂v (2)
3

∂x(1)
3

u3

)
ϵ+O(ϵ2)

 ,

where we used the Proposition 12. Depth averaging is easily done using the motion by slices as-
sumption. However, it is necessary to treat the terms consisting in a product of two terms, a priori

dependent on the coordinate x3, carefully. We deal with the term u3∇s v (1)
3 =−x(1)

3 ∇s divs

(
v (0)

s

)
u3

for the example, whose average can be calculated through 〈x(1)
3 u3〉h . By successively applying the

formulas (10c) and (11), we get

〈x(1)
3 u3〉h = h(1)

2
〈u3〉h +covh(x(1)

3 ,u3) ≈ h(1)

2
〈u3〉h .

The closure assumption allows then to prove the approximation since, from the result (10a) and
the formula (11), ∣∣∣covh(x(1)

3 ,u3)
∣∣∣2
É varh(x(1)

3 )varh(u3) = h(1)2

12
varh(u3) =O(ϵ).

The linearity of 〈 ·〉h and the Proposition 14 on the asymptotic analysis of the Lagrangian deriva-
tive finally lead to the conclusion. □

Remark 16 (average of a product). The expression of the depth-average of the Gordon–
Schowalter derivative involves averages of products, which is not desirable for closing the re-
duced problem: we would prefer instead a product of averaged quantities. The simplification of
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those products is actually case-dependent: one at least of the two quantities involved by the prod-
uct should be independent upon x3. For instance, either the first-order planar velocity v (1)

s or the
vector field u involved by the Gordon–Schowalter derivative should be independent upon x3.

3.3.4. Gordon–Schowalter derivative of a tensor

Then, the depth average of the Gordon–Schowalter derivative of a tensor is expressed as a
function of its plane equivalent, with respect to the zeroth-order planar velocity v (0)

s :

D (0)
a σss

D t
:= D (0)

s σss

Dt
−2sym

[
Ws (v (0)

s ) ·σss −aDs (v (0)
s ) ·σss

]
, (30)

for any planar tensor σss inΩ×R+.

Theorem 17 (Gordon–Schowalter derivative of a tensor). Let τ be a symmetric tensor field
defined in B ×R+, whose zeroth order vertical variation with respect to ϵ is negligible, that is
varh(τ(0)) = O(ϵ) (closure assumption). Assume that v is divergence-free and that the property of
motion by slices (20) and the boundary conditions (22) are satisfied. Then the depth-average of the
Gordon–Schowalter derivative of τ is given by

(〈
Daτ

D t

〉
h

)
ss
= D (0)

a 〈τss〉h

D t
− (1+a)sym

(〈
∂v (1)

s

∂x(1)
3

⊗τ3s

〉
h

)

−
[

sym

(〈{
Ws

(
v (1)

s

)+aDs
(
v (1)

s

)} ·τss
〉

h + (1+a)

〈
∂v (2)

s

∂x(1)
3

⊗τ3s

〉
h

+ (1−a)h(1)

2
∇s divs v (0)

s ⊗〈τ3s〉h

)]
ϵ+O(ϵ2), (31a)

(〈
Daτ

D t

〉
h

)
s3
= D (0)

a 〈τs3〉h

D t
+ 1−a

2

〈
∂v (1)

s

∂x(1)
3

·τss

〉
h

− 1+a

2

〈
∂v (1)

s

∂x(1)
3

τ33

〉
h

+adivs
(
v (0)

s

)〈τs3〉h

+
{
−〈[

Ws
(
v (1)

s

)+aDs
(
v (1)

s

)] ·τs3
〉

h + h(1)

4
[(1+a)〈τss〉h − (1−a)〈τ33〉h Iss ] ·∇s divs v (0)

s

+ 1−a

2

〈
τss ·

∂v (2)
s

∂x(1)
3

〉
h

− 1+a

2

〈
∂v (2)

s

∂x(1)
3

τ33

〉
h

+a〈divs
(
v (1)

s

)
τ3s〉h

}
ϵ+O(ϵ2), (31b)

(〈
Daτ

D t

〉
h

)
33

= D (0)
s 〈τ33〉h

Dt
+ (1−a)

〈
∂v (1)

s

∂x(1)
3

·τs3

〉
h

+2adivs
(
v (0)

s

)〈τ33〉h

+
[〈(

(1+a)h(1)

2
∇s divs v (0)

s + (1−a)
∂v (2)

s

∂x(1)
3

)
·τs3

〉
h

+2a〈divs
(
v (1)

s

)
τ33〉h

]
ϵ+O(ϵ2), (31c)

Proof. By noticing that we just need to develop the expression of the tensor product (W (v )+
aD(v )) ·τ and to use the decomposition

2sym(ξ ·ζ) =
(
2sym(ξss ·ζss +ξs3 ⊗ζ3s ) ξss ·ζs3 +ξ3s ·ζss +ξs3ζ33 +ξ33ζ3s

" 2(ξ3s ·ζs3 +ξ33ζ33)

)
,

we can return to the proof of the previous theorem and conclude. □
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4. Examples

4.1. From Navier–Stokes equations to viscous shallow water equations

4.1.1. Problem statement

The constitutive equation of an incompressible Newtonian fluid write:

σ= 2ηD(v )−p I , (32)

whereσ is the symmetric Cauchy stress tensor and p a contribution to the pressure. The constant
material parameter is the viscosity η> 0. These constitutive equations are coupled with standard
conservation of mass (33a) and momentum (33b) equations. Assuming that the density ρ is
constant, i.e. the fluid is incompressible, the conservation equations write:

div v = 0,

ρ
Dv

Dt
−divσ= ρg ,

(33a)

(33b)

where g =−g û is the constant gravity vector, with û some given unit vector. The previous set of
equations is closed by initial and boundary conditions. For the latter, we use, on the free surface,
the conditions (4) with no surface tension (γ = 0), and, on the substrate, the conditions (6) with
no friction (k = 0).

4.1.2. Asymptotic analysis

With Σ := ηU /L as characteristic stress, the dimensionless problem writes:

Problem 18. Find v defined inΩ such that

Re
Dv

Dt
−divσ=− Re

Fr2 û,

div v = 0,

(34a)

(34b)

with σ = 2D(v )−p I , where Re := ρU L/η is the Reynolds number and Fr :=U /
√

g L is the Froude
number.

The same notation is used for dimensioned and dimensionless field for convenience.
We would like to use the framework developed in Section 3.2 to get a shallow formulation of

the above Navier–Stokes problem. To do so, A (u) is identified with ReDvi /Dt + (Re/Fr2)ûi and
j with

(
σi j

)
1É jÉ3, for i successively taken in {1,2,3}. Then, the condition of motion by slices is

satisfied, up to order 1 at least, for each component of the velocity, thanks to Corollary 8. As a
consequence, the rate of deformation expands with respect to ϵ as

2D(v ) =
(

2Ds (v (0)
s ) 0

0 −2divs v (0)
s

)
+


2Ds (v (1)

s )
∂v (2)

s

∂x(1)
3

−∇s divs v (0)
s x(1)

3

∂v (2)
s

∂x(1)
3

−∇s divs v (0)⊤
s x(1)

3 −2divs v (1)
s

ϵ+O(ϵ2), (35)

where we used Proposition 12.
Following the literature, we make the fundamental assumption that Re/Fr2 = O(1/ϵ). There-

fore, due to the form of the deformation rate tensor (35), applying the Corollary 10 leads to

p(−1) = 0, 〈p(0)〉h =−2divs (v (0)
s )+ û3

2

ϵRe

Fr2 h(1). (36)

We can now apply Theorem 7, Proposition 14 and Corollary 13 to get a shallow formulation of the
above Navier–Stokes problem.
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Problem 19. Find v (0)
s and h(1) defined inΩ such that

∂h

∂t

(1)

+divs
(
h(1)v (0))= 0,

Reh(1) D (0)
s v (0)

s

Dt
−divs

(
h(1)〈σ(0)

ss 〉h
)=−ϵRe

Fr2 h(1)ûs ,

〈σ(0)
ss 〉h = 2Ds (v (0)

s )+2divs (v (0)
s )I ss −

û3

2

ϵRe

Fr2 h(1)I ss .

(37a)

(37b)

(37c)

This reduced model was first obtained in 2006 by Marche [10] after substantial formal calcu-
lations. In comparison, our approach requires less than one page. Solving Problem 19 instead of
Problem 18 leads to an error of order O(ϵ) on velocity and height (cf. Theorem 7 or end of Sec-
tion 3.3.1).

4.2. Maxwell viscoelastic model

We use the constitutive equations of a Maxwell viscoelastic fluid (1) along with initial and
boundary conditions. For the latter, we use, on the free surface, the conditions (4) with no surface
tension (γ= 0), and, on the substrate, the conditions (6) with no friction (k = 0).

With Σ := ηU /L again as characteristic stress, the dimensionless problem writes:

Problem 20. Find v and τ defined inΩ such that

Re
Dv

Dt
−divσ=− Re

Fr2 û,

div v = 0,

We
D1τ

D t
+τ= 2D(v ),

(38a)

(38b)

(38c)

with σ=τ−p I , where We :=λV /L is the Weissenberg number.

The same notation is used for dimensioned and dimensionless field for convenience.

4.2.1. Sufficient conditions for the motion by slices

With the help of our formalism, we can derive a new sufficient condition for the motion by
slices in the context of the Maxwell model:

Corollary 21 (motion by slices for the Maxwell model). Let τ be the elastic stress defined in the
Maxwell model (1), and assume that it expands as τ=τ(0) +τ(1)ϵ+O(ϵ2) and that the Weissenberg
number We is of order O(1), then

∂u(0)
s

∂x(1)
3

= ∂u(1)
s

∂x(1)
3

= 0.

Proof. Let us write the components s3 and 33 of the equation (38c):

We

(
Dτs3

Dt
−τ33

∂v s

∂x3
−

(
∇s v s +

∂v3

∂x3
I
)
·τs3 −τss ·∇s v3

)
+τs3 =

∂v s

∂x3
+∇s v3,

We

(
Dτ33

Dt
−2∇s v3 ·τs3 −2

∂v3

∂x3
τ33

)
+τ33 = 2

∂v3

∂x3
.

(39a)

(39b)

By assumption, we know the only term of order O(1/ϵ) in (39a) satisfies

−Weτ(0)
33

∂v (0)
s

∂x(1)
3

= ∂v (0)
s

∂x(1)
3

. (39c)
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Now, We = 0 leads to the result. Assume the opposite and that τ(0)
33 = −1/We. Then, from

equation (39b), we have

τ(0)
33 =− 1

We
= 0 (40)

since −2Weτ(0)
33 = 2 and 2∇s v3 ·τs3 is at most of order O(ϵ). This leads to a contradiction: τ(0)

33
cannot be uniformly constant equal to−1/We. We finally conclude from (39c) that ∂v (0)

s /∂x(1)
3 = 0.

Note that if τ(0)
33 = 0 is assumed, then the proof is still valid.

Hypothesis H (−1) is satisfied then, from Lemma 5, there holdsσ(0)
s3 = 0, which leads to τ(0)

s3 = 0,
and then, from (39a) (

Weτ(0)
33 +1

) ∂v (1)
s

∂x(1)
3

= 0, (41)

which leads to the second result, since τ(0)
33 cannot be uniformly constant equal to −1/We. □

4.2.2. Asymptotic analysis

In what follows, we assume that τ asymptotic expansion is of the form τ=τ(0)+τ(1)ϵ+τ(2)ϵ2+
O(ϵ3), whereas Re/Fr2 is of order O(1/ϵ), as in the previous example. Corollary 21 ensures that
the property of motion by slices is satisfied.

Momentum equation – Asymptotic. The asymptotic analysis of the momentum equation
has already been done in the previous example. Similar to what was done to deduce the
pressure in the previous example, the zeroth order of the averaged pressure is given by
〈p(0)〉h = 〈τ(0)

33 〉h + û3ϵRe/(2Fr2)h(1), whence

〈σ(0)
ss 〉h = 〈τ(0)

ss 〉h −〈τ(0)
33 〉h I ss −

û3

2

ϵRe

Fr2 h(1)I ss . (42)

In addition, assumption H (−1) (see Lemma 5) is satisfied for both planar velocity components,
then

σ(0)
s3 =τ(0)

s3 = 0. (43)

Maxwell equation – Asymptotic. Taking into account the very last result (43) and applying Theo-
rem 17 and Proposition 12 lead to the shallow formulation of the Maxwell equation (1):

We
D (0)

1 〈τ(0)
ss 〉h

D t
+〈τ(0)

ss 〉h = 2Ds (v (0)
s ), (44a)

We

(
D (0)

s 〈τ(0)
33 〉h

Dt
+2divs (v (0)

s )〈τ(0)
33 〉h

)
+〈τ(0)

33 〉h =−2divs (v (0)
s ). (44b)

Remark 22. From a microscopic perspective, it is known [3, p. 90] that the elastic stress can be
expressed in terms of the conformation tensor c ∝〈ℓ⊗ℓ〉 defined as an average over all possible
directions ℓ of molecules constituting the considered fluid:

τ= η

λ
(c − I ) . (45)

On the reasonable assumption thatℓ expands with respect to ϵ asℓ=
(

O(1)
O(ϵ)

)
, we deduce a possible

expansion for the conformation tensor as c =
(

O(1) O(ϵ)
O(ϵ) O(ϵ2)

)
. Thus, at zeroth order, the component

33 of the elastic stress reads τ(0)
33 = −1/We, but it would lead to the contradiction −1/We = 0,

according to equation (44b). If this expansion does not work for c , does it at least work for τ?
Assume τ(0)

33 = 0, then divs (v (0)
s ) = 0 from equation (44b). If this does not lead to a contradiction,

it implies a strong physical constraint, which does not hold in most situations. We therefore
understand that the order with respect to ϵ of a given quantity (here τ) must be componentwise
at least of the order of the second member (here D(v )).
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Summary. The shallow formulation of the Maxwell problem writes

Problem 23. Find v (0)
s , h(1), 〈τ(0)

ss 〉h and 〈τ(0)
33 〉h defined inΩ such that

∂h

∂t

(1)

+divs
(
h(1)v (0))= 0,

Reh(1) D (0)
s v (0)

s

Dt
−divs

(
h(1)〈σ(0)

ss 〉h
)=−ϵRe

Fr2 h(1)ûs ,

〈σ(0)
ss 〉h = 〈τ(0)

ss 〉h −〈τ(0)
33 〉h I ss −

û3

2

ϵRe

Fr2 h(1)I ss ,

We
D (0)

1 〈τ(0)
ss 〉h

D t
+〈τ(0)

ss 〉h = 2Ds (v (0)
s ),

We

(
D (0)

s 〈τ(0)
33 〉h

Dt
+2divs (v (0)

s )〈τ(0)
33 〉h

)
+〈τ(0)

33 〉h =−2divs (v (0)
s ).

(46a)

(46b)

(46c)

(46d)

(46e)

It is consistent with what has been derived in [4]. When We = 0, it reduces to the same
asymptotic (37) as the Navier–Stokes equation. Solving Problem 23 instead of Problem 20 leads
to an error of order O(ϵ) on velocity, height and all other averaged quantities (cf. Theorem 7 or
end of Section 3.3.1).

5. Conclusion

A new framework for asymptotic analysis has been presented in this paper. We have proposed
a set of tools for performing thin-layer approximations of free-surface fluid models with flat to-
pography and no-penetration boundary condition. The motion by slices is no more an arbitrary
assumption, and minimal assumptions for obtaining it have been pointed out. Moreover, for first
time, to the best of our knowledge, the first-order expansion of the Gordon–Schowalter deriva-
tives has been developed. The proposed framework makes it possible to clarify the necessary as-
sumptions and to simplify the asymptotic analysis of a wide variety of partial differential equa-
tions from continuum physics, whether they are scalar, vector or tensor, with objective derivative
and/or diffusive, reactive or advective terms. This framework has been illustrated by two appli-
cations: the Navier–Stokes and the Maxwell models. In perspective, a generalisation of this work
would be to consider here an arbitrary topography, following the work made in [6] for the Saint-
Venant system.

Appendix A. Leibniz formulas

Proposition 24 (Leibniz’s Integral Rule). Let X and I be two intervals of R and
f : (x, t ) ∈X × I 7→ f (x, t ) ∈RN , N ∈ N\{0}, a sufficiently smooth function. Let also a and b two
differentiable functions defined from X to I . Then the parameterized integral function F , defined
in X by

F (x) =
∫ b(x)

a(x)
f (x, t )dt ,

is differentiable and

F ′(x) =
∫ b(x)

a(x)

∂ f

∂x
dt + f (x,b(x))b′(x)− f (x, a(x))a′(x).

Corollary 25 (Leibniz’s Integral Rule for depth average). Let L be a first order differential linear
operator, depending only on partial derivatives ∂t , ∂x1 and ∂x2 . For any sufficiently smooth scalar
field ϕ, the following formula is satisfied:

L (h〈ϕ〉h) = h〈Lϕ〉h +ϕ(x3 = h)L h. (47a)
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Corollary 26. For any sufficiently smooth vector field u, the following formulas are satisfied:

divs (h〈u〉h) = h〈divs u〉h +us (x3 = h) ·∇s h, (47b)

∆s (h〈u〉h) = h〈∆s u〉h +2∇s us (x3 = h) ·∇s h +us (x3 = h)∆s h, (47c)

h〈∆s u〉h = divs (h〈∇s u〉h)−∇s us (x3 = h) ·∇s h. (47d)

We close this section by giving a last relation that will be useful:

〈x3∂x3ϕ〉h +〈ϕ〉h =ϕ(x3 = h). (47e)
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