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A B S T R A C T

During a nuclear reactor severe accident such as those of Three Mile Island, Chernobyl or Fukushima, it is
crucial to contain the radiological consequences to the power plant. A severe accident of a Pressurized Water
Reactor (PWR) occurs when the nuclear fuel, in case of loss of cooling, melts and mixes with the core structures
(assemblies and internal structures) to form a high temperature (∼3000 K) and density magma so-called corium.
Several strategies are studied to cool the corium and to limit its propagation in the power plant in order to
avoid the outside contamination. The Ex-Vessel Retention (EVR) strategy consists in spreading the corium on
a basemat to promote its cooling and prevent basemat significant ablation by increasing the corium cooling
surface and thus reducing the thermal load on the reactor structure. This paper is dedicated to tridimensional
modeling corium spreading with gas released from a substrate using an anisotherm viscoplastic multiphase
shallow water approximation. It is reduced to an height-averaged bidimensional model and its use for molten
nuclear core spreading is argued with dimensionless numbers. Using an adaptive finite element method based
on C++ library Rheolef, simulations are ran. A sensitivity analysis on the numerical parameters and the
gas inflow rate are conducted. Tridimensional solution of the problem is computed from the bidimensional
height-averaged solution.
1. Introduction

High density and temperature fluid spreading is an issue met in
many situations such as volcanic lava flows (Roult et al., 2012; Vil-
leneuve et al., 2008) and nuclear severe accidents (Weisshäupl, 1999;
Journeau et al., 2003). These are described by complex multiphase
flows characterized by coupled multi-physics phenomena such as so-
lidification due to heat transfers (at the surface by radiation or by
convection in the presence of water, with the substrate by conduction),
the rheology of the fluid (possibly non Newtonian) or interactions with
the substrate (ablation, degassing). A viscoplastic (non Newtonian)
description of corium has been gathering interest since the viscosity
and yield stress measurements made by Roche et al. (1994). They
lead us to consider a greater range of fluid behavior. Fig. 1 presents
the stress tensor according to the deformation rate tensor and allows
illustrating the different behaviors of a fluid according to the Herschel
and Bulkley (1926) viscoplastic model that depends on two parameters:
the fluid index, 𝑛, and yield stress, 𝜏𝑦. For 𝑛 = 1 and 𝜏𝑦 = 0, this
fluid is considered as Newtonian, for 𝑛 = 1 and 𝜏𝑦 ≠ 0 as viscoplastic
Binghamian (Bingham, 1922), and for 𝑛 ≠ 1 and 𝜏𝑦 ≠ 0 as general
viscoplastic.

∗ Corresponding author.
E-mail address: barbara.bigot@cea.fr (B. Bigot).

As pointed out by Saramito and Wachs (2017), the regularization
approach currently used in industrial codes lacks a general convergence
result of the solution with the regularization parameter and cannot
follow the unyielded regions of a yield stress fluid flow with the
deformation rate tensor 𝜸̇ = 0.

The use of asymptotic analysis to provide shallow approximations
for free surface viscoplastic flows has been introduced by Liu and
Mei (1989) and further experimental and mathematical analysis was
performed by Balmforth et al. (2007). Spread over an arbitrary to-
pography was studied by Bernabeu et al. (2014). Adding thermal
effects has shown to be more complex as the energy equation does not
reduce to a bidimensional one using the asymptotic analysis approach.
Bercovici and Lin investigated this particular issue for Newtonian fluids
in Bercovici and Lin (1996) and Balmforth et al. (2004) built upon
it to propose a model with temperature-dependent consistency and
temperature-independent yield stress for shallow viscoplastic flows.
Then, Bernabeu et al. (2016) proposed a model with height-averaged
temperature-dependent consistency and yield-stress comparing second
and third order polynomial vertical distribution of temperature.
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Fig. 1. Stress tensor according to deformation rate tensor illustrating the different
behaviors of a fluid according to the Herschel–Bulkley model with two parameters:
the fluid index, 𝑛, and yield stress, 𝜏𝑦. For 𝑛 = 1 and 𝜏𝑦 = 0, fluid is considered as
Newtonian, for 𝑛 = 1 and 𝜏𝑦 ≠ 0 as Binghamian, and for 𝑛 ≠ 1 as viscoplastic.

Here, we propose to adapt this latter viscoplastic model (Bernabeu
et al., 2016) to shallow anisotherm multiphase spreading with a second-
order temperature polynomial approximation with non-constant viscos-
ity using a model based on Shaw law (Shaw, 1969) and first-order
volume fraction polynomial approximation.

To account for the effect of degassing, we base our method on the
phase field method which has been introduced by Cahn and Hilliard
(1958) then enhanced in Allen and Cahn (1979). We use a mixture
model as described in Damián and Nigro (2014), Meng et al. (2022),
using relative velocity models from the works of Ishii (1977), Ishii and
Zuber (1979), Hibiki and Ishii (2003) and the continuum surface force
model by Brackbill et al. (1992).

We first present the tridimensional model, then perform a dimen-
sional analysis on it before giving its reduced form by expanding
on the process provided by Bernabeu et al. (2016). Then, using the
C++ library (Saramito, 2019), sensitivity analysis is performed on
numerical parameters and gas inflow velocity. Finally, we discuss the
tridimensional reconstructed results.

2. Mathematical model

In this section, we present the multiphase viscoplastic model. Fig. 2
shows the spreading scheme with the melt spread. It involves three
domains, denoted by the indices 𝑓 , 𝑠 and 𝑒𝑥𝑡 that represent respectively
the melt, the substrate and the ambient environment of the spread.
Let 𝑄, the whole domain, be an open set of R3 of regular border 𝜕𝑄. It
splits as 𝑄 = 𝑄𝑓 (𝑡) ∪𝑄𝑠 where 𝑄𝑓 (𝑡) is the melt flow region, and 𝑄𝑠
the substrate. The boundary of the melt flow region also splits as
𝜕𝑄𝑓 (𝑡) = 𝛤𝑓 (𝑡) ∪ 𝛤𝑠 ∪ 𝛤𝑤 where 𝛤𝑓 (𝑡) is the free surface of the flow, 𝛤𝑠
the horizontal plane where the melt is in contact with the substrate
where degassing happens and 𝛤𝑤 the vertical walls. Finally, a part 𝛤𝑒 ⊂
𝛤𝑠 corresponds to the melt alimentation region, where there is an
inflow.

2.1. Tridimensional mixture model

We use the phase field method equation used by Chiu (2011),
replacing the curvature proportional term by a relative velocity depen-
dent one in order to track the volume fraction of the melt 𝜙, such as:

𝜕𝑡𝜙 + 𝒖.∇𝜙 + ∇.(𝜙(1 − 𝜙)𝒘) = 0 (1a)

where 𝒖 = 𝜙𝒖1 + (1 − 𝜙)𝒖2 is the volumetric mixture velocity with
𝒖1 and 𝒖2 respectively the continuous phase velocity and dispersed
phase velocity (e.g.) the velocity of the liquid and vapor phases) and
𝒘 = 𝒖 −𝒖 is the relative velocity between phases, following the model
2

1 2
from Damián and Nigro (2014), we model it by neglecting relative
velocity along the 𝑥 and 𝑦 directions with a constitutive law:

𝑤𝑧 = 𝑤𝑠𝜙(1 − 𝜙) (1b)

the 𝑤𝑠 constant can be interpreted as in Damián and Nigro (2014)
by the terminal velocity of a single bubble moving in a continuous
phase and we can determine it using the drag laws provided by Hibiki
and Ishii in Hibiki and Ishii (2003) for bubbly flows from which we
use 𝑤𝑠 =

√

2( |𝑔|𝜎𝑐𝑎𝑝(𝜌1−𝜌2)
𝜌21

)1∕4, with 𝜌1 and 𝜌2 the density of media 1
and 2 and 𝜎𝑐𝑎𝑝 the surface tension. This assumption is justified for our
application in section Section 3.

We model the two phases using a mixture model that uses the
Herschel–Bulkley constitutive equation, which expresses the deviatoric
part 𝝉 of the Cauchy stress tensor in the melt as

⎧

⎪

⎨

⎪

⎩

𝝉 =
(

𝐾(𝜃, 𝜙)𝜸̇𝑛−1 +
𝜏𝑦(𝜃, 𝜙)
|𝜸̇|

)

𝜸̇ when 𝜸̇ ≠ 0,

|𝝉| ≤ 𝜏𝑦(𝜃, 𝜙) otherwise,
(1c)

where 𝜸̇ = ∇𝒖 + ∇𝒖𝑇 is the shear rate tensor and 𝜃 is the temperature.
Also 𝐾(𝜃, 𝜙) is the temperature and volume fraction-dependent consis-
tency index, 𝜏𝑦(𝜃, 𝜙), the temperature-dependent yield stress and 𝑛 is
the power-law index, As depicted on Fig. 1, for 𝜏𝑦 = 0 and 𝑛 = 1,
the fluid is Newtonian, and 𝐾(𝜃, 𝜙) is the temperature and volume
fraction-dependent viscosity. Here, the temperature dependence of both
consistency index and yield stress follow the Shaw model with the same
coefficient (Shaw, 1969):

𝐾(𝜃, 𝜙) = 𝜙𝐾𝑒 exp
(

𝐴𝑟𝑟
(

𝜃𝑒 − 𝜃
𝜃𝑒 − 𝜃𝑎

))

+ (1 − 𝜙)𝐾2

𝜏𝑦(𝜃, 𝜙) = 𝜙𝜏𝑦,𝑒 exp
(

𝐴𝑟𝑟
(

𝜃𝑒 − 𝜃
𝜃𝑒 − 𝜃𝑎

))

with 𝐾𝑒 and 𝜏𝑦,𝑒, the value of 𝐾(𝜃, 𝜙) and 𝜏𝑦(𝜃, 𝜙) at the inlet reference
temperature 𝜃𝑒 and with 𝜙 = 1. The values of the constants 𝜏𝑦,𝑒, 𝐾𝑒
and 𝐴𝑟𝑟 are determined through the viscosity and yield stress mea-
surements of Roche et al. (1994) and Ramacciotti et al. (2001) for the
application in this article. 𝐾2 is the value of 𝐾(𝜃, 𝜙) for 𝜙 = 0. Assuming
a constant density for both phases for the continuous phase and the
dispersed phase and a mixture density of 𝜌(𝜙) = 𝜙𝜌1 + (1 − 𝜙)𝜌2, the
mass conservation equation of the mixture yields:

∇.𝒖 = 0 (1d)

and using the continuum surface force (CSF) model by Brackbill et al.
(1992), the momentum conservation equation becomes :

𝜕𝑡(𝜌(𝜙)𝒖) +∇.(𝜌(𝜙)𝒖⊗𝒖) = ∇.(−𝑝I+ 𝝉) −𝜎𝑐𝑎𝑝∇.
(

∇𝜙
|∇𝜙|

)

∇𝜙+ 𝜌(𝜙)𝒈 (1e)

where p is the pressure and 𝒈 the gravity vector. The energy conserva-
tion equation reads:

𝑐𝑝(𝜕𝑡(𝜃𝜌(𝜙)) + 𝒖.∇𝜃𝜌(𝜙)) − ∇. (𝑘(𝜙)∇𝜃) = 0 (1f)

with 𝑐𝑝 the specific heat capacity and 𝑘 the volume fraction-dependent
heat conduction coefficient, with 𝑘(𝜙) = 𝜙𝑘𝑒 +(1−𝜙)𝑘2, 𝑘𝑒 its value for
the first phase and 𝑘2 its value for the second one. As in Bernabeu et al.
(2016) and Schiano et al. (2023), we neglect the friction dissipation
term and temperature-driven buoyancy. Considering the substrate 𝑄𝑠
as a rigid solid that is not ablated, the energy conservation equation in
the substrate is:

𝜌𝑠𝑐𝑝𝑠𝜕𝑡𝜃 − ∇.(𝑘𝑠∇𝜃) = 0 (1g)

where 𝜌𝑠 is the density of the substrate, 𝑐𝑝𝑠, its specific heat capacity,
and 𝑘𝑠, its heat conduction coefficient. Finally, we close the set of
Eqs. (1c)–(1g) with initial and boundary conditions. We assume that
the free surface 𝛤𝑓 (𝑡) can be explicitly described by the mixture height
function ℎ by:

𝛤 (𝑡) =
{

(𝑥, 𝑦, 𝑧) ∈ R3 ; 𝑧 = ℎ(𝑡, 𝑥, 𝑦)
}

𝑓
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Fig. 2. Multiphase spreading: its geometry and notations.
where, by convention, the plane 𝑧 = 0 coincides with the melt-substrate
interface 𝛤𝑠, see Fig. 2. Note that the height ℎ(𝑡, 𝑥, 𝑦) is defined for
all 𝑡 > 0 and (𝑥, 𝑦) ∈ 𝛤𝑠 ∪ 𝛤𝑒. We introduce a level set function
𝜑ℎ = 𝑧 − ℎ(𝑡, 𝑥, 𝑦), such that 𝜑ℎ = 0 is exactly the free surface. It is
transported by the flow : 𝜕𝑡𝜙ℎ + 𝒖.∇𝜙ℎ = 0. Then, the transport of the
free surface by the flow writes:

𝜕𝑡ℎ + 𝑢𝑥𝜕𝑥ℎ + 𝑢𝑦𝜕𝑦ℎ − 𝑢𝑧 = 0 (1h)

The initial conditions on velocity, height, temperature and volume
fraction read:

𝒖(𝑡=0) = 𝒖0 in 𝑄𝑓 (𝑡=0) (1i)

ℎ(𝑡=0) = ℎ0 on 𝛤𝑠 (1j)

𝜃(𝑡=0) = 𝜃0 in 𝑄𝑓 (𝑡=0) ∪ 𝛤𝑠 ∪𝑄𝑠 (1k)

𝜙(𝑡=0) = 𝜙0 in 𝑄𝑓 (𝑡=0) ∪ 𝛤𝑠 ∪𝑄𝑠 (1l)

where 𝒖0, ℎ0, 𝜃0 and 𝜙0 are known from experimental measurements.
In the following study, they correspond to ℎ0 = 0, 𝒖0 = 0, 𝜃0 = 𝜃𝑎, the
atmospheric temperature and 𝜙0 = 0. A Dirichlet condition for velocity
on the substrate plane 𝛤𝑠 and the inlet plane 𝛤𝑒 is used, as they are
considered as no-slip boundaries. It is completed with the inlet velocity
condition for the 𝑧-component:

𝑢𝑥 = 𝑢𝑦 = 0 and 𝑢𝑧 = 𝑤𝑒 on (𝛤𝑒 ∪ 𝛤𝑠) ∩ 𝜕𝑄𝑓 (𝑡) (1m)

where 𝑤𝑒 is the inlet velocity, which is deduced from the measured flow
rate for the region 𝛤𝑒 ∩ 𝜕𝑄𝑓 (𝑡) and from the degassing flow rate for the
substrate contact region 𝛤𝑠∩𝜕𝑄𝑓 (𝑡). On the vertical walls 𝛤𝑤, the no-slip
boundary condition simply becomes 𝒖 = 0. On the free surface 𝛤𝑓 (𝑡),
surface tension effects are neglected, so the normal Cauchy stress is
just zero, i.e.:

(𝝉 − 𝑝𝑰).𝒏 = 0 on 𝛤𝑓 (𝑡) (1n)

where 𝒏 denotes the outward unit normal at 𝑄𝑓 (𝑡) on the free sur-
face 𝛤𝑓 (𝑡). A Dirichlet condition for temperature on 𝛤𝑠 is given to model
inlet temperature in its inlet region 𝛤𝑒:

𝜃 = 𝜃𝑒 on 𝛤𝑒 (1o)

On 𝛤𝑠 but outside of this inlet region 𝛤𝑒, the melt is in contact with
the substrate: the temperature is continuous across 𝛤𝑠 while the heat
transfer is considered to be dominantly conductive:

𝜃
|𝑄𝑓 = 𝜃

|𝑄𝑠 on 𝛤𝑠∖𝛤𝑒 (1p)

𝑘𝒏.∇(𝜃
|𝑄𝑓 ) = 𝑘𝑠𝒏.∇(𝜃|𝑄𝑠 ) on 𝛤𝑠∖𝛤𝑒 (1q)

where 𝜃
|𝑄𝑓 (resp. 𝜃

|𝑄𝑠 ) denotes the restriction of the temperature 𝜃
in the melt (resp. substrate) region and 𝒏 is the outward unit normal
3

at 𝑄𝑓 (𝑡) on the substate plane 𝛤𝑠. On the free surface 𝛤𝑓 (𝑡), both
radiative and convective heat transfers with the environment are taken
into account:

𝑘𝒏.∇𝜃 + 𝜖𝜎𝑆𝐵
(

𝜃4 − 𝜃4𝑎
)

+ 𝜆(𝜃 − 𝜃𝑎) = 0 on 𝛤𝑓 (𝑡) (1r)

with 𝜖 is the emissivity, 𝜎𝑆𝐵 , the Stefan–Boltzmann constant and 𝜆,
the convective heat transfer coefficient. Finally, the temperature at the
bottom of the substrate is assumed to tend to the atmospheric one:

𝜃(𝑧=−∞) = 𝜃𝑎. (1s)

A Dirichlet condition for volume fraction is given on 𝛤𝑠 and 𝛤𝑒,
presuming that each border can release only one type of phase:

𝜙 = 1 on 𝛤𝑒 (1t)

𝜙 = 0 on 𝛤𝑠 (1u)

The set of Eqs. (1c)–(1u) defines the tridimensional multiphase
viscoplastic melt spreading problem with six unknowns (𝝉 , 𝒖, 𝑝, ℎ, 𝜃, 𝜙)
that is time and space-dependent, while the computational space is
time-dependent since it involves a free-surface.

2.2. Dimensional analysis

In 2013, Bernabeu et al. (2014) has shown that the tridimensional
isothermal viscoplastic free-surface problem could be reduced as a
bidimensional one in terms of the height ℎ only as unknown. This
reduction bases on a dimensional and asymptotic analysis, assuming
that the aspect ratio of the height versus the horizontal length is
small. This result was extended in 2016 in Bernabeu et al. (2016)
for anisotherm viscoplastic free-surface flows, with the height ℎ and
the height-averaged temperature 𝜃 as unknowns. We define the height
average 𝜉 of any quantity 𝜉 by:

𝜉(𝑡, 𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

1
ℎ(𝑡, 𝑥, 𝑦) ∫

ℎ(𝑡,𝑥,𝑦)

0
𝜉(𝑡, 𝑥, 𝑦, 𝑧)d𝑧 when ℎ(𝑡, 𝑥, 𝑦) ≠ 0

0 otherwise

Here we perform the same reduction process for tridimensional
anisotherm multiphase viscoplastic free-surface flows. We neglect the
effect of temperature and volume fraction vertical variation on density,
consistency index, yield stress and heat conduction coefficient, so they
depend only on the vertical averaged temperature and volume fraction:
𝜌(𝜙) = 𝜌(𝜙), 𝐾(𝜃, 𝜙) = 𝐾(𝜃, 𝜙), 𝜏𝑦(𝜃, 𝜙) = 𝜏𝑦(𝜃, 𝜙) and 𝑘(𝜙) = 𝑘(𝜙).
The problem is rewritten using dimensionless quantities and unknowns
that are compared in order to simplify it using physical arguments.
Those dimensionless unknowns are denoted with tildes. Let 𝐻 be the
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𝜕

characteristic flow height and 𝐿 its characteristic horizontal length, we
introduce the aspect ratio:

𝜀 = 𝐻
𝐿
.

Temperature is written as 𝜃 = 𝜃(𝜃𝑒 − 𝜃𝑎) + 𝜃𝑎, volume fraction is al-
eady dimensionless. Hence density, consistency index, yield stress and
eat conduction coefficient are expressed as 𝜌(𝜙) = 𝜌1𝜌̃(𝜙̃), 𝐾(𝜃, 𝜙) =
𝐾𝑒𝐾(𝜃, 𝜙̃) and 𝜏𝑦(𝜃, 𝜙) = 𝜏𝑦,𝑒𝜏𝑦(𝜃, 𝜙̃), 𝑘(𝜙) = 𝑘𝑒𝑘(𝜙̃) with 𝜌𝑒 = 𝜌(𝜙̃ = 1),
𝐾𝑒 = 𝐾(𝜃 = 1, 𝜙̃ = 1), 𝜏𝑦,𝑒 = 𝜏𝑦(𝜃 = 1, 𝜙̃ = 1) and 𝑘𝑒 = 𝑘(𝜙̃ = 1).
Horizontal velocity scaling is taken from viscous gravity balance as in
Huppert (1982) and Bernabeu et al. (2014):

𝑈 =
(

𝜌𝑒𝑔𝐻2

𝐾𝑒𝐿

)1∕𝑛

𝐻

nd the vertical velocity scaling is 𝑊 = 𝜀𝑈 . A characteristic viscosity
s also given in Huppert (1982), 𝜂 = 𝐾𝑒(𝑈∕𝐻)𝑛−1. We also consider

the time scale 𝑡 = 𝑇 𝑡 with 𝑇 = 𝐿
𝑈 and the pressure scale 𝑝 = 𝑃 𝑝̃ with

𝑃 = 𝜌𝑒𝑔𝐻 . Using the variable change:

𝑥 = 𝐿𝑥̃, 𝑦 = 𝐿𝑦̃, 𝑧 = 𝐻𝑧̃, ℎ = 𝐻ℎ̃, 𝑢𝑥 = 𝑈𝑢̃𝑥, 𝑢𝑦 = 𝑈𝑢̃𝑦, 𝑢𝑧 = 𝑊 𝑢̃𝑧,

we rewrite the set of Eqs. (1c)–(1u) in a dimensionless manner, omitting
the tildes thereafter.

2.2.1. Dimensionless constitutive equation
Following the work in Bernabeu et al. (2014), we introduce the

Bingham number 𝐵𝑖:

𝐵𝑖 =
𝜏𝑦,𝑒𝐻
𝜂𝑈

,

and we give the non-dimensional version of Herschel–Bulkley constitu-
tive Eq. (1c):

⎧

⎪

⎨

⎪

⎩

𝜏𝑖𝑗 =
(

𝐵(𝜃,𝜙)
𝜀|𝛾̇| + 𝜀|𝛾̇|𝑛−1

)

𝛾̇𝑖𝑗

𝜀|𝝉| < 𝐵𝑖
(2a)

ith 𝐵(𝜃, 𝜙) = 𝐵𝑖𝜏𝑦(𝜃, 𝜙).

.2.2. Dimensionless conservation equations
To write the dimensionless conservation equations, the dimension-

ess quantities related to transient and advection terms are set equal
o 1. Consequently, each volumic and surfacic term in the right side
f these equations is multiplied by 𝐿∕(𝜌 𝑈2). The dimensionless mass

conservation Eq. (1d) becomes:

∇.𝐮 = 0 (2b)

Introducing the Reynolds 𝑅𝑒, Froude 𝐹𝑟 and Weber 𝑊 𝑒 numbers:

𝑅𝑒 =
𝜌𝑒𝑈𝐿
𝐾𝑒

,

𝐹 𝑟 = 𝑈
√

𝑔𝐿
,

𝑊 𝑒 =
𝜌𝑒𝑈2𝐿
𝜎𝑐𝑎𝑝

,

the momentum conservation equation along 𝑥𝑖-axis with 𝑖 ∈ {𝑥, 𝑦}
becomes:

(𝜕𝑡(𝜌(𝜙)𝑢𝑖) + 𝑢𝑥𝜕𝑥(𝜌(𝜙)𝑢𝑖) + 𝑢𝑦𝜕𝑦(𝜌(𝜙)𝑢𝑖) + 𝑢𝑧𝜕𝑧(𝜌(𝜙)𝑢𝑖)) = − 1
𝐹𝑟2

𝜕𝑖𝑝

+ 1
𝑅𝑒

(

𝜕𝑥𝜏𝑖𝑥 + 𝜕𝑦𝜏𝑖𝑦 +
1
𝜀2
𝜕𝑧𝜏𝑖𝑧

)

+ 1
𝜀𝑊 𝑒

(

−∇. ∇𝜙
|∇𝜙|

)

𝜕𝑖𝜙, (2c)

and the momentum equation along 𝑧-axis is:

(𝜕𝑡(𝜌(𝜙)𝑢𝑧) + 𝑢𝑥𝜕𝑥(𝜌(𝜙)𝑢𝑧) + 𝑢𝑦𝜕𝑦(𝜌(𝜙)𝑢𝑧) + 𝑢𝑧𝜕𝑧(𝜌(𝜙)𝑢𝑧))

= 1
(

𝑔
𝜌(𝜙) − 𝜕𝑧𝑝

)

4

𝜀2𝐹𝑟2 |𝑔|
+ 1
𝜀2𝑅𝑒

(

𝜕𝑥𝜏𝑧𝑥 + 𝜕𝑦𝜏𝑧𝑦 + 𝜕𝑧𝜏𝑧𝑧
)

+ 1
𝜀3𝑊 𝑒

(

−∇. ∇𝜙
|∇𝜙|

)

𝜕𝑧𝜙 (2d)

Using the Peclet number 𝑃𝑒:

𝑃𝑒 =
𝐿𝑈𝜌𝑒𝑐𝑝
𝑘𝑒

,

we have the dimensionless energy conservation equation:

(𝜕𝑡(𝜃𝜌(𝜙)) + 𝑢.∇(𝜃𝜌(𝜙))) =
1
𝑃𝑒

(

𝑘(𝜙)(𝜕𝑥𝑥𝜃 + 𝜕𝑦𝑦𝜃)
)

+ 1
𝜀2𝑃𝑒

(𝑘(𝜙)𝜕𝑧𝑧𝜃). (2e)

The volume fraction conservation Eq. (1a) and the transport Eq. (1h)
are left unchanged by this process. Henceforth, we consider that the
flow is gravitational, so 𝐹𝑟2 = (𝜀) and moreover that 𝑅𝑒 = (1) and
𝐵𝑖 = (1) in 𝜀 and thus neglect the inertial term of the momentum
equation. We also make the hypothesis that 𝑊 𝑒 = (𝜀−4) in order
o neglect the surface tension term. In order to keep part of the
emperature diffusion, we also assume that 𝑃𝑒 = (𝜀−2).

Using this set of equations, we reduce the tridimensional problem to
bidimensional one by reducing the equation to the 0th order in terms
f 𝜀 and then by integrating along the vertical direction the equations.
he process for obtaining the bidimensional equations solving ℎ and 𝜃

is given in Bernabeu et al. (2016).

2.2.3. Dimensionless initial and boundary conditions
The initial and boundary conditions follow the same process of

anisotropic dimensionless rewriting. The initial conditions and the
Dirichlet conditions and left unchanged by this. After expanding the
dot product with the outbound normal, the dimensionless free-surface
condition on the Cauchy stress at 𝑧 = ℎ becomes:

−(𝜀2𝜏𝑥𝑥 − 𝑝)𝜕𝑥(ℎ) − 𝜀2𝜏𝑥𝑦𝜕𝑦(ℎ) + 𝜏𝑥𝑧 = 0 (2f)

−𝜀2𝜏𝑥𝑦𝜕𝑥(ℎ) − (𝜀2𝜏𝑦𝑦 − 𝑝)𝜕𝑦(ℎ) + 𝜏𝑦𝑧 = 0 (2g)

−𝜀2𝜏𝑥𝑧𝜕𝑥(ℎ) − 𝜀2𝜏𝑦𝑧𝜕𝑦(ℎ) + 𝜀2𝜏𝑧𝑧 + 𝑝 = 0 (2h)

The conductive heat transfer equation at the 𝛤𝑠 boundary expresses
as:

𝜀2(𝜕𝑥(ℎ)𝜕𝑥(𝜃|𝑄𝑓 ) + 𝜕𝑦(ℎ)𝜕𝑦(𝜃|𝑄𝑓 )) − 𝜕𝑧(𝜃|𝑄𝑓 )

= −
𝑘𝑠
𝑘
𝜀2(𝜕𝑥(ℎ)𝜕𝑥(𝜃|𝑄𝑠 ) + 𝜕𝑦(ℎ)𝜕𝑦(𝜃|𝑄𝑠 )) − 𝜕𝑧(𝜃|𝑄𝑠 ) (2i)

nd for 𝛤𝑒, 𝜃 = 1. The heat transfer condition at the free-surface 𝛤𝑓 (𝑡)
ields:

𝜀2
(

𝜕𝑥(ℎ)𝜕𝑥(𝜃) + 𝜕𝑦(ℎ)𝜕𝑦(𝜃)
)

+ 𝜕𝑧(𝜃) + 𝑅𝑝𝜓 (𝜃)𝜃 +𝑁𝑢𝜃 = 0, (2j)

here 𝑅 = 𝐻𝜖𝜎𝑆𝐵 (𝜃𝑒−𝜃𝑎)3

𝑘 a radiation number, 𝑁𝑢 = 𝜆𝐻
𝑘 the Nüsselt

umber, 𝜓 = 𝜃𝑎
𝜃𝑒−𝜃𝑎

a temperature ratio and 𝑝𝜓 = (𝜃)3+4𝜓(𝜃)2+6𝜓2(𝜃)+
4𝜓3 a polynomial used to linearize the radiation term.

.2.4. Dimensionless heat transfer in the substrate
Considering purely vertical conduction in the substrate, we have in

𝑠:

𝑡𝜃𝑠 = 𝐹𝑜 𝜕𝑧𝑧𝜃𝑠 (2k)

with the Fourier number 𝐹𝑜 = 𝑘𝑇
𝐿2 and the initial and boundary

conditions:

𝜃𝑠 = 𝜃 𝑜𝑛 𝛤𝑠 (2l)

𝜃𝑠(𝑧 = −∞) = 0 (2m)

𝜃𝑠(𝑡 = 0) = 0 (2n)

According to Carslaw and Jaeger (1959, p. 58–64), this problem has

a time-discrete solution, for all (𝑥, 𝑦) ∈ 𝛺 and 𝑧 < 0:
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𝜇

ℎ

𝜕

a

𝜁

𝜃(𝑡𝑛, 𝑥, 𝑦, 𝑧) =
𝑛
∑

𝑘=1
𝜃(𝑡𝑘, 𝑥, 𝑦, 0)

[

I]𝑡𝑘−1 ,𝑡𝑘[(𝑡𝑛)

{

1 − erf

(

𝑧
√

𝐹𝑜

2
√

(𝑡𝑛−𝑡𝑘−1)

)}

+ I]𝑡𝑘 ,+∞[(𝑡𝑛)

{

erf

(

𝑧
√

𝐹𝑜

2
√

(𝑡𝑛−𝑡𝑘)

)

− erf

(

𝑧
√

𝐹𝑜

2
√

(𝑡𝑛−𝑡𝑘−1)

)}]

(2o)

where I𝑆 (𝜉) denotes the indicator function, which is one when its
argument 𝜉 belongs to the set 𝑆 and zero otherwise.

2.3. Bidimensional reduction

We rewrite the bidimensional reduced non-isotherm single-phase
model from Bernabeu et al. (2016) by using the height-averaged vol-
ume fraction dependent parameters 𝜌(𝜙), 𝐾(𝜃, 𝜙), 𝜏𝑦(𝜃, 𝜙) and 𝑘(𝜙). The
model reduces to:

(P) Let 𝛺 be the bidimensional domain. Find ℎ, 𝜃 and 𝜙 satisfying:

𝜕𝑡ℎ −∇2𝐷(𝜇𝑛(𝐾,𝐵, ℎ, 𝜃, 𝜙, |∇2𝐷ℎ|)∇2𝐷ℎ) = 𝑢𝑧(𝑧 = 0) in ]0; +∞[ ×𝛺 (3a)

𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑛𝜌(𝜙)1∕𝑛𝐾(𝜃,𝜙)−1∕𝑛
[

(𝑛+1)ℎ𝜓+𝑛𝐵(𝜃,𝜙)
][

ℎ𝜓−𝐵(𝜃,𝜙)
](𝑛+1)∕𝑛

(𝑛+1)(2𝑛+1)𝜓3 if ℎ𝜓 > 𝐵(𝜃, 𝜙)

0 otherwise.
(3b)

(𝑡 = 0) = ℎ0 on 𝛺 (3c)

𝜕ℎ
𝜕𝐧

= 0 sur ]0; +∞[ × 𝜕𝛺 (3d)

ℎ(𝜕𝑡𝜃 + 𝒖2𝐷.∇𝜃) − 𝑢𝑧(𝑧 = 0)(1 − 𝜃) −
𝑘(𝜙)

[

𝜕𝑧𝜙
]

𝜌(𝜙)𝑃𝑒
𝜃 = 0 in ]0; +∞[ ×𝛺

(3e)

𝜃(𝑡 = 0) = 𝜃0 sur 𝛺 (3f)

𝜕𝜃
𝜕𝐧

= 0 sur ]0; +∞[ × 𝜕𝛺 (3g)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜑 = 1

𝜕𝑧𝜑 + 𝑅𝑝𝜇(𝜃𝜑)𝜑 +𝑁𝑢𝜑 = 0 sur 𝛤𝑓 (𝑡)

−𝜕𝑧𝜑 + 𝑘𝑠
𝑘

√

𝑃𝑒𝑠
𝜋𝑡 𝜑 = 0 sur 𝛤𝑠 et 𝜃𝜑 = 1 sur 𝛤𝑒

𝜑𝑢2𝐷 = 𝑢2𝐷

(3h)

𝑡𝜙 + 𝒖.∇𝜙 + ∇.(𝜙(1 − 𝜙)𝑤𝑧) = 0 in ]0; +∞[ ×𝑄(𝑡) (3i)

𝜙(𝑡=0) = 𝜙0 in 𝑄(𝑡) (3j)

𝜙 = 1 on ]0; +∞[ × 𝛤𝑒 (3k)

𝜙 = 0 on ]0; +∞[ × 𝛤𝑠 (3l)

with 𝒖2𝐷 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛
𝑛+1

|∇2𝐷ℎ|
1∕𝑛𝜌(𝜙)1∕𝑛𝐾(𝜃, 𝜙)−1∕𝑛 ∇2𝐷ℎ

|∇2𝐷ℎ|

[

(ℎ𝑐 − 𝑧)(𝑛+1)∕𝑛 − ℎ
(𝑛+1)∕𝑛
𝑐

]

si 𝑧 ∈ [0;ℎ𝑐[

− 𝑛
𝑛+1

|∇2𝐷ℎ|
1∕𝑛𝜌(𝜙)1∕𝑛𝐾(𝜃, 𝜙)−1∕𝑛 ∇2𝐷ℎ

|∇2𝐷ℎ|
ℎ(𝑛+1)∕𝑛𝑐 si 𝑧 ∈ [ℎ𝑐 ;ℎ],

and the

plug height ℎ𝑐 (𝑡, 𝑥, 𝑦) = 𝑚𝑎𝑥
(

0, ℎ − 𝐵(𝜃,𝜙)
𝜌(𝜙)|∇2𝐷ℎ|

)

. The subscript 2𝐷 de-
notes the vectors in the (0𝑥𝑦) planes, such that 𝒖2𝐷 = (𝑢𝑥, 𝑢𝑦).

It remains to reduce the equations on the volume fraction (3i)–(3l)
s they are still defined in the tridimensional domain 𝑄(𝑡). Integrating

Eq. (3i) and using the mass conservation Eq. (2b) and the transport
Eq. (3a), we have:

ℎ𝜕𝜙 + ∇2𝐷(ℎ𝜙𝑢2𝐷) − ∇2𝐷(ℎ𝑢2𝐷)𝜙 + 𝑢𝑧(𝑧 = 0)(𝜙 − 𝜙(𝑧 = 0))

+
[

(1 − 𝜙)𝜙𝑤𝑧
]ℎ
0 = 0 (3m)

In order to have a fully bidimensional equation in 𝜙, we follow the
process used by Bernabeu et al. (2016) for the vertical distribution of
𝜃 for the volume fraction by introducing a similar unknown function
5

𝜁 satisfying 𝜁 = 1 and 𝜁𝒖2𝐷 = 𝑢2𝐷 chosen so that 𝜙(𝑡, 𝑥, 𝑦, 𝑧) =
𝜁 (𝑡, 𝑥, 𝑦, 𝑧)𝜙(𝑡, 𝑥, 𝑦). With this notation, the boundary conditions become:

(𝑧 = 0)𝜙 = 1 on 𝛤𝑒 (3n)

𝜁 (𝑧 = 0)𝜙 = 0 on 𝛤𝑠 (3o)

Assuming that due to high viscosity and density of the continuous
phase, the gas will remain stuck towards the bottom of the spread and
transported, thus we apply a polynomial first order by parts for its
vertical distribution:

𝜁 (𝑡, 𝑥, 𝑦, 𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑧 + 𝑏 for 𝑧 ∈ [0; 𝑧𝑐[
1
𝜙

for 𝑧 ∈ [𝑧𝑐 ;ℎ].
(3p)

Where 𝑧𝑐 is the height below which there is a two phase mixture.
Finally, the multiphase bidimensional reduced problem is obtained

by replacing in (P) Eq. (3i)–(3l) by:

ℎ(𝜕𝜙 + 𝑢2𝐷.∇2𝐷(𝜙)) + 𝑢𝑧(0)𝜙(1 − 𝜁 (0)) +
[

(1 − 𝜙𝜁 )𝜙𝜁𝑤𝑧
]ℎ

0

= 0 in ]0; +∞[×𝛺 (3q)

𝜙(𝑡 = 0) = 𝜙𝑖𝑛𝑖𝑡 on 𝛺 (3r)

𝜕𝜙
𝜕𝐧

= 0 on ]0; +∞[ × 𝜕𝛺 (3s)

As shown in Bernabeu et al. (2016), ignoring the conditions on
the vertical profiles 𝜁𝒖2𝐷 = 𝑢2𝐷 and 𝜑𝒖2𝐷 = 𝑢2𝐷 to simplify their
expressions yields acceptable error, thus here we use respectively first
order by parts and second order polynomials.

2.4. Numerical resolution

Firstly, the problem (P) is discretized versus time using a, implicit
second-order variable step finite difference scheme (BFD2) as in Bern-
abeu et al. (2014, 2016), Schiano et al. (2023). At each time step,
an under-relaxed fixed point algorithm is used to solve the nonlin-
ear subproblems in ℎ, 𝜃 and 𝜙. Finally, these equations are spatially
discretized using a finite element method based on the C++ library
Rheolef (Saramito, 2019) on a rectangular geometry (see Fig. 3). We
use the adaptive meshing option this library provides based on the
BAMG code (Hecht, 2006) by refining the mesh around the front of
the flow, where our variables gradients are the greatest.

For the inlet velocity 𝑢𝑧(𝑧 = 0), we use a spatial distribution so
that it annuls around the line 𝑥 = 0, where the vertical boundary
conditions on 𝜑 and 𝜁 change, in order to reduce numerical instabilities.
For the region 𝑥 > 0, corresponding to where degassing takes place, we
consider that gas is provided from the substrate due to energy transfer
from the melt, thus 𝑢𝑧(𝑡, 𝑥 > 0, 𝑦, 𝑧 = 0) > 0 only if the melt is present
(ℎ(𝑡, 𝑥, 𝑦) > 0).

To prevent numerical instabilities around 𝑥 = 0, the boundary
conditions (3n) and (3o) have been modified around the line 𝑥 = 0
by instead using the following continuous boundary condition:

𝜙(𝑧 = 0) = 𝑓 (𝑥)|𝑥𝑐 =
1
2

erfc(𝑥∕𝑥𝑐 ). (4a)

In the region −𝑥𝑐 < 𝑥 < 𝑥𝑐 , the first order polynomial by parts
vertical distribution 𝜁 (𝑡, 𝑥, 𝑦, 𝑧) becomes:

𝜁 =

⎧

⎪

⎨

⎪

⎩

𝑎𝑧 +
𝑓𝑥𝑐 (𝑥)

𝜙
for 𝑧 ∈ [0; 𝑧𝑐[

𝑏 = 1
𝜙

for 𝑧 ∈ [𝑧𝑐 ;ℎ]
(4b)

using the same conditions on 𝜁 as in the system (3p), we obtain:

⎧

⎪

⎨

⎪

𝑎 = 1
𝑧𝑐𝜙

(1 − 𝑓𝑥𝑐 (𝑥))

𝑏 = 1
(4c)
⎩
𝜙
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Fig. 3. (a) Auto-generated mesh and (b) Zoom of mesh (a) at the front of the spread.
Fig. 4. Spatial distribution for the inlet condition 𝑢𝑧(𝑧 = 0) and the boundary smoothing function 𝑓 (𝑥)𝑥𝑐 .
By replacing 𝑤𝑧 and 𝜁 by their values in Eq. (3q), we have the
following equation that is implemented in our simulation:

ℎ(𝜕𝜙+𝜁𝑢2𝐷.∇2𝐷(𝜙))+𝑢𝑧(0)𝜙(1−
𝑓𝑥𝑐 (𝑥)

𝜙
)−

𝑐0
𝑐𝑓

(1−𝑓𝑥𝑐 (𝑥))
2𝜙𝑓 2

𝑥𝑐
(𝑥) = 0 (4d)

Those two numerical approximations are depicted on Fig. 4.

3. Application to corium

We apply this model to a case based on the VEU7 corium spreading
experiment (Journeau et al., 2006) with a simplified geometry, corium
being the material produced by melting nuclear power plants core and
their surroundings in severe accidents. We use the geometry depicted
on Fig. 3, and material properties issued from previous studies on
corium spreading, such as Roche et al. (1994), Ramacciotti et al.
(2001), Journeau et al. (2006), Chawla et al. (1981). The volumetric

−4 3 −1
6

melt flow rate of the melt is 8.4 10 m s (Journeau et al., 2006)
during 5 s, with 𝑡 = 0 s corresponding to the start of inlet feeding. As
argued in Schiano et al. (2023), this experiment could be modeled using
the previous equations for the single phase case, here we aim to observe
the influence of degassing on spreading, as it was observed on the
experiment as described in Journeau et al. (2003). Thereafter, Tables 1
and 2 present the main flow and material properties of the VEU7
spreading test. Dimensionless parameters using these are computed
in Table 3, characterizing the flow regimes, enabling the use of the
preceding model. The high value of Weber number confirms here that
we can neglect the surface tension forces in this application.

4. Results and discussion

4.1. Numerical convergence analysis

We first perform a sensitivity analysis on numerical parameters: the

time step 𝑑𝑡, the minimal mesh size ℎ𝑚𝑖𝑛, to ensure proper temporal
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d

Table 1
Flow properties of the VEU7 corium spreading test (Journeau et al., 2003; Roche et al.,
1994; Ramacciotti et al., 2001; Journeau et al., 2006; Wittmaack, 2002; Journeau et al.,
1999; Sudreau and Cognet, 1997; Piluso et al., 2002).

Quantity Symbol Corium

Characteristic height m 𝐻 6.5 10−2

Characteristic length m 𝐿 4.0 10−1

Aspect ratio 𝜀 = 𝐻
𝐿

0.15
Characteristic velocity m s−1 𝑈 1.53
Inlet fluid temperature K 𝜃𝑒 2450
Initial substrate and air temperature K 𝜃𝑎 303

Table 2
Material properties of the VEU7 corium spreading test (Journeau et al., 2003; Roche
et al., 1994; Ramacciotti et al., 2001; Journeau et al., 2006; Wittmaack, 2002; Journeau
et al., 1999; Sudreau and Cognet, 1997; Piluso et al., 2002).

Quantity Symbol Corium

Spread density (kg m−3) 𝜌1 7500
Air density (kg m−3) 𝜌2 1.2
Dynamic viscosity at temperature 𝜃𝑒 (Pa s) 𝐾𝑒 2.24 101

Yield stress at temperature 𝜃𝑒 (Pa) 𝜏𝑦,𝑒 102

Emissivity (-) 𝜖 0.8
Thermal conductivity (W m−1 K−1) 𝑘 3
Specific heat (J kg−1 K−1) 𝑐𝑝 995.6
Convective heat transfer coefficient with air (W m−2 K−1) 𝜆 300
Surface tension (N m−1) 𝜎𝑐𝑎𝑝 0.58

Table 3
Dimensionless parameters for experiment
VEU7.

VEU7

Froude = 𝑈
√

𝑔𝐿
7.06 10−1

Reynolds = 𝜌1𝑈𝐿
𝐾𝑒

1.40 102

Weber = 𝜌1𝑈 2𝐿
𝜎𝑐𝑎𝑝

9.79 103

Péclet = 𝐿𝑈𝜌1𝑐𝑝
𝑘𝑒

1.69 105

Fig. 5. Simulated front progress for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, ℎ𝑚𝑖𝑛 = 5.10−4 m,
a degassing velocity of 𝑢𝑧(𝑧 = 0) = 10−4 m s−1 and different values of time step.

and spatial convergence and the aforementioned smoothing parameter
𝑥𝑐 around 𝑥 = 0 for 𝜙 boundary condition. Fig. 5 shows that computa-
tion is sufficiently resolved in terms of time step, we thus use the value
𝑑𝑡 = 5.10−2 s to reduce computation time.

The parameter ℎ𝑚𝑖𝑛 is given in the adaptive meshing routine: it
gives a lower limit to mesh size. We observe on Fig. 6 that the
convergence using this parameter is non linear and that a value of
7

Fig. 6. Simulated front progress for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, 𝑑𝑡 = 5.10−2 m, a
egassing velocity of 𝑢𝑧(𝑧 = 0) = 10−4 m s−1 and different values of minimal mesh size.

Fig. 7. Simulated front progress for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, a degassing
velocity of 𝑢𝑧(𝑧 = 0) = 10−4 m s−1 and different values of lower volume fraction
boundary condition transition region size 𝑥𝑐 .

ℎ𝑚𝑖𝑛 ≤ 5 10−4 m is a good compromise in terms of convergence and
computation time.

We then conduct a sensitivity analysis on the numerical parameter
𝑥𝑐 from Eq. (4a), corresponding to the size of the transition region
between the boundary conditions on 𝜙(𝑧 = 0). No difference is found
for 𝑥𝑐 < 1.10−3 m as seen on Fig. 7. We will thus use these values for
further computations.

4.2. 3D visualization of velocity and volume fraction

Using the expression of 𝒖2𝐷 and the mass conservation equation,
we can depict the tridimensional velocity field, as in Fig. 8. Fig. 8(a)
shows this 3D representation without the inlet velocity and with the
height-average volume fraction of the melt 𝜙 on the free-surface at
a snapshot during the spreading. From these two results, profiles at
different time steps are given on Figs. 8(b–d): the maximum velocity
corresponds at every time step with a local minimum in gas fraction,
indicating that it has been locally transported to the front of the spread,

as seen by the subsequent local maximum. This explains in part the
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Fig. 8. (a) 3D reconstruction of the velocity field. The upper surface represents 𝜙 and (b–d) 1−𝜙 the height-averaged gas volume fraction and |𝒖| along the 𝑥-axis for (b) 𝑡 = 5.5 s
(c) 𝑡 = 7.5 s and (d) 𝑡 = 9.65 s for 𝑢𝑧(𝑧 = 0) = 10−4 m s−1. The velocity norm is taken at 𝑦 = 0.125 m and 𝑧 = 0.03 m.
Fig. 9. Gas volume fraction distribution for 𝑦 = 0.125 m at 𝑡 = 100 s for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, and 𝑢𝑧(𝑧 = 0) = 10−4 m s−1.
observation on Fig. 9 that at the end of the simulation, there is more
gas fraction towards the front. We can also remark on this figure that
at the leading edge of the spread, we have 𝜙 = 1, which is due to the
lack of degassing boundary condition to our model at the free surface
and vertical distribution of volume fraction used. Using the temperature
vertical distribution 𝜑, we can compute the tridimensional temperature
field by definition 𝜃(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑡)𝜑(𝑥, 𝑦, 𝑧, 𝑡). Fig. 10 shows limited
8

internal cooling of the flow, with is coherent with the large Peclet
number.

4.3. Sensitivity analysis

Fig. 11 compares the single phase case with the multiphase one,
showing a greater velocity before reaching the viscoplastic regime
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Fig. 10. Temperature at 𝑦 = 10 cm and 𝑡 = 5 s, in both the flow and the substrate.
Fig. 11. Simulated front progress for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, 𝑢𝑧(𝑧 = 0) =
1 10−5 m s−1 and no degassing.

Fig. 12. Simulated front progress for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, and different
degassing velocities 𝑢𝑧(𝑧 = 0).

around 𝑡 = 10 s characterized by the curve inflexion. Since the gas
distribution described by 𝜁 confines the gas to the lower parts of the
medium, we expect the dynamic to be similar to that of a fluidized
bed, though the equations solved are height-averaged. A non averaged
approach would probably see greater differences between the two
cases. The lack of agitation model by the bubble in the flow as described
9

Fig. 13. Front position at 𝑡 = 100 s for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, and different
degassing velocities 𝑢𝑧(𝑧 = 0). The continuous line is a linear regression of the points
for 1.10−6 ≤ 𝑢𝑧(𝑧 = 0) ≤ 1.10−4 with 𝑅2 = 0.9996.

in Jubaidah et al. (2020) is also coherent with this observation. Such
a model would increase the effective viscosity and slow down the
spreading.

Sensitivity analysis on the degassing velocity 𝑢𝑧(𝑧 = 0) results are
shown on Fig. 12 During the melt feeding period (𝑡 < 5 s), gas addition
seems to have little influence, due to higher momentum from the melt
than the gas and the low proportion of the latter as it has yet to
reach the degassing surface. To quantify the nature of the influence
of degassing velocity on final spreading length, we performed a linear
regression shown on Fig. 13. We found a linear relation between
them, with a coefficient of determination 𝑅2 > 0.999, for the range
10−6 m s−1 ≤ 𝑢𝑧(𝑧 = 0)|ℎ>0 ≤ 10−4 m s−1. For higher degassing
velocities, the added gas stress surpasses the yield stress, enabling
further spread and an increase in degassing surface, corresponding to
a non-linear behavior.

Gas volume fraction (1 − 𝜙) behaves almost linearly with respect
to time for degassing velocities 𝑢𝑧(𝑧 = 0) < 3.10−5 m s−1 after melt
inlet feeding as shown on Fig. 14. In this condition, the added stress
from the gas is not enough to surpass yield stress. Consequently, the
degassing surface remains constant when the flow is stopped, explain-
ing the linear progression of gas volume fraction. For higher degassing
velocities such as 𝑢𝑧(𝑧 = 0) = 1.10−3 m s−1, this behavior is non linear as
added stress from the gas is higher than the yield stress, increasing the
degassing surface by preventing stoppage. Zoom on Fig. 14 indicates
clearly the influence from the boundary condition smoothing function
Eq. (4a): gas volume fraction rises both due to the spread progressing
on the degassing substrate, and due to a source of a mix of melt and
gas in the region −𝑥 < 𝑥 < 𝑥 .
𝑐 𝑐
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Fig. 14. Simulated gas volume fraction for 𝐴𝑟𝑟 = 7.10−3, 𝜏𝑦 = 200 Pa, 𝑛 = 0.66, and different degassing velocities 𝑢𝑧(𝑧 = 0) and zoom at the beginning of the spread.
. Conclusions

A new asymptotic model for free surface multiphase viscoplas-
ic anisotherm flows has been presented, based on the single phase
nisotherm model developed by Bernabeu et al. (2016). A sensitivity
nalysis has been conducted on the numerical parameters and the
mount of gas injected in the mixture that is spreading over a surface.

tridimensional representation of velocity and species volume frac-
ion has been computed respectively from an explicit solution and an
rbitrary vertical distribution with the result found to be coherent with
he theory. Future work include the use of more representative vertical
oundary conditions for the volume fraction, notably to enable gas
elease at the free-surface and to provide better quantitative degassing
ate through a phase change model of the substrate and a germination
odel for the gas at the interface between the mixture and the sub-

trate, which would change the vertical volume fraction distribution.
he model also could be improved by removing the hypothesis that
here is thermal equilibrium between the phases. Further developments
n the modeling of free surface flows for nuclear safety would be
o include chemical description to the model to take into account
olten core-concrete interaction (such as substrate ablation), and in-

rtial regime turbulence description to describe large scale accidents in
uclear power plants.
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