
Article

Linking bulk modulus to an
unilateral damage yield
criterion: A thermodynamic
modeling approach
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Abstract

This work presents a new damage criterion suitable for elastic, elastic-plastic/viscous or elastic-viscous-

plastic materials involving rupture effects. Its derivation, made here within a thermodynamic framework,

follows previous scalar-valued damage mechanics approaches. Such approaches are appropriate to many

geophysical problems involving quasi-brittle materials for which there is no clear physical justification for

the level of complexity of a tensorial damage variable. Distinction between the mechanical response to

compressive and tensile stresses is therefore not introduced by the damage itself but via a special

definition of the Helmholtz free energy. This scheme differs from previous ones in that it combines

with an evolution of Poisson’s ratio with the level of damage, which allows expressing the damage

criterion in the principal stresses space. Moreover, there is no need to compute the stress eigensystem,

which makes it simpler to implement than the Mohr–Coulomb damage criterion. Here we derive this

damage criterion and compare it to observations of the variations of the bulk modulus in damaged

geomaterials. We also compare it to in-situ stress measurements and find a good agreement in terms

of the shape of the criterion in the stress space. We tentatively interpret the results in the context of

previous studies of rock and ice mechanics.
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Introduction

Modern continuum damage mechanics is funded on the seminal work of Kachanov (1958), who, in
order to predict the creep rupture of metals, introduced the concept of a macroscopic, continuous
damage scalar field, d, that describes the evolution of cracks at the microscopic scale and their
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impact on macroscopic elasticity. This continuous approach was rapidly applied to many materials

such as concrete, polymers and rocks, then combined with various local failure criteria to model

progressive damage within heterogeneous materials. In geosciences, in particular, the combination

of the damage mechanics of Kachanov (1958) and of the Mohr–Coulomb criterion (Coulomb, 1773;

Jaeger et al., 2007; Mohr, 1900) is widely used to predict the localization of damage and subsequent

failure of natural materials at the laboratory or geophysical scale (see e.g. Amitrano, 2003;

Amitrano et al., 1999; Girard et al., 2011; Riva et al., 2018).
Continuum damage mechanics, initially funded on phenomenology, evolved in the last decades

towards a more complete theory thanks to the thermodynamics of irreversible processes, which

introduced internal variables together with the concept of the dissipation potential (see Lemaitre,

1985; Lemaitre and Chaboche, 1990; Murakami, 2012). In thermodynamics, the strain energy

release rate, Y, used for the damage criterion is elegantly introduced by duality from the damage

variable d. This concept, set forth by Erdogan and Sih (1963), is a natural and obvious generaliza-

tion of Griffith’s (1921) original energy release rate that explains the extension of cracks in a

material. It constitutes an important change of paradigm in the context of the previous Mohr–

Coulomb damage criterion, which is rather formulated in terms of stresses and is derived from a

theory of the friction along already existing interfaces that does not clearly explain the formation of

new cracks.
Initial thermodynamically-based damage theories have postulated that damage evolves in the

same way under tensile and compressive stresses. This is a strong shortcoming, as micro-crack

nucleation and propagation mechanisms strongly differs between tensile and compressive stress

states, for both porous (e.g. Sammis and Ashby, 1986) and non-porous (Ashby and Sammis,

1990) materials. In addition, in materials such as concrete and rocks, however, the effect of pre-

existing crack closure, due to compression, on elastic stiffness, i.e. on damage, can not be disre-

garded (Lemaitre, 1985: 84). Ladev�eze and Lemaitre (1984) first proposed an original unilateral

thermodynamically-based criterion based on a scalar damage field, which distinguished between

traction and compression (see also Lemaitre (1996: 80); Murakami (2012: 101) or Besson et al.

(2010: 163)). More sophisticated anisotropic approaches have been considered. These take into

account the orientation of cavities and micro-cracks through the introduction of second rank

damage symmetric tensors that replace the scalar damage variables d and Y (see Hayakawa and

Murakami, 1997; Kondo et al., 2007; Murakami, 2012). Such tensor-valued damage approaches

however introduce new internal material parameters that can be hard to quantify and therefore

make them difficult to constrain from experimental data and to implement in practice.
The aim of the present paper is to extend, within a thermodynamic framework, the simpler

scalar-valued damage field approach proposed by Ladev�eze and Lemaitre (1984). Here, the distinc-

tion between traction and compression is combined with an evolution of the Poisson’s ratio with the

level of damage. We base this evolution on the experimental observations of Heap et al. (2009,

2010), who revisited for various rocks the link between the evolution of the Young’s modulus and

the evolution of the Poisson’s ratio at the macroscopic, i.e., continuum, scale.
The first section presents the mathematical model in the thermodynamic framework. The evo-

lution equation for the scalar damage variable is obtained by differentiating the dissipation poten-

tial and is shown to satisfy the second principle of thermodynamics. Then, introducing the free

energy, we obtain an expression of the stress tensor which involves the Poisson’s ratio. The next

section explores the proposed theoretical model in view of experimental measurements of the evo-

lution of the Poisson’s ratio versus the damage. The obtained damage criterion is finally expressed

in the stress space (compression/shear) and compared with the well known but not
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thermodynamically based Mohr–Coulomb criterion. The paper closes with a comparison of both
Mohr–Coulomb and the present criteria with in-situ internal stress data within sea ice.

Thermodynamic modeling

The dissipation potential

In the thermodynamic framework of generalized standard materials, damaged materials can be
represented by an Helmholtz free energy and a dissipation potential (see Halphen and NGuyen
(1975) or Saramito (2016: 222)). Here, we consider two thermodynamic variables: the strain tensor
and the damage variable. Extensions to temperature-dependent processes are standard in such
thermodynamic framework, but are not considered here, as the focus is on damage.

Let w : ðe; dÞ 2 R3�3
s �R 7!wðe; dÞ 2 R [ f1g be the Helmholtz free energy where e 2 R3�3

s

denotes the symmetric tensor of small strains, d 2 R is the damage variable, represented by a
scalar field, and R3�3

s denotes the set of symmetric 3​ � ​ 3 real matrices. The practical choice of
Helmholtz free energy, which introduces a distinction between traction and compression, will be
discussed in the next section. At this stage, we only assume that w is lower semi-continuous with
respect to the two thermodynamic variables ðe; dÞ and convex with respect to e. The dissipation
potential is denoted by / : ð_e; _dÞ 2 R3�3

s �R 7!wðe; dÞ 2 R [ f1g where ð_e; _dÞ are the rates of the
two thermodynamic variables. In the present paper, we are interested by damage criteria involving
yield effects. One of the simplest dissipation potential involving a yield value writes as

/ð½d�; _e; _dÞ ¼ bd
ð1þ nÞð1​ � ​ dÞ

_d
�� ��1þn þ Yc

_d
�� �� (1)

where Yc � 0 is the yield strain energy release rate value, that has the dimension of a stress, n> 0 is a
power index and bd > 0 is a damage constant that has the dimension of a viscosity. For a discussion
upon Yc, see e.g. Lemaitre (1996: 69), Murakami (2012: 98), or recently, Berthier et al. (2017). In
equation (1), the notation with square brackets ½d� in the left-hand-side indicates a dependence of
the dissipation potential upon d as parameters: it is distinct from _d which is a thermodynamic rate
variable of the dissipation potential.

Remark 1 (Additional dissipative processes).
Note that the dissipation potential / given by equation (1) does not depend on the rate of

deformation tensor _e. Indeed, / vanishes when _d ¼ 0 for any value of the rate of deformation
tensor _e. This implies that here the dissipation takes its origin in the damage process only. There
is therefore no dissipation due to viscous or plastic effects: the material is hyperelastic with damage
effects. This choice is done for the sake of simplicity, as the focus here is on damage itself.
Additional dissipative terms such as ryj_ej or g0j_ej2, where g0 > 0 and ry > 0 are the viscosity and
yield stress constants, respectively, could be easily added to / in the right-hand-side of equation (1)
to take into account elastoplastic or viscoelastic effects. Both these terms could also be added to
represent an elastoviscoplastic damageable materials (see e.g. Saramito (2016): chapter 5).
Moreover, since / is independent upon _e. we simply denote /ð½d�; _dÞ. This implies that damage
can occur even if no deformation occurs, for instance, if the material is purely incompressible.

Theorem 2. Second principle.
Let a material be defined by its free energy w and its dissipation potential / be given by equation

(1) then the material satisfies the second principle of thermodynamics

Saramito et al. 3



Proof. Note that / is convex with respect to the two thermodynamic rate variables ð_e; _dÞ because the
absolute value function is convex. Then, from Saramito (2016: 223), the present material satisfies

the second principle of thermodynamics.

Note that, by its definition, which is based on a dissipation potential, the material also satisfies an

extended Onsager symmetry principle (see equation (5) in Halphen and NGuyen (1975)).
The constitutive equations are obtained by derivation of the specific free energy and the potential

of dissipation

r ¼ q
@w
@e

ðe; dÞ (2a)

0 2 q
@w
@d

ðe; dÞ þ @/

@ _d
½d�; _e; _d
� �

(2b)

where q > 0 is the density.
Here, equation (2a) defines the Cauchy stress tensor, r, and is the usual definition of an hypere-

lastic material. Classically, the strain energy release rate Y is defined from the Helmholtz free energy

by (see e.g. Lemaitre (1996: 41) or Murakami (2012: 96))

Y 2 �q
@w
@d

ðe; dÞ (3)

The damage evolution relation (2b) can also be expressed in an explicit manner by introducing

the convex conjugate /� of the dissipation potential /, defined for all Y 2 R by the Fenchel

transformation

/�ð½d�; YÞ ¼ inf
_d2R

_d Y� / ½d�; _d
� �� �

(4)

From equation (4), we have classically (Rockafellar, 1974: 35)

Y 2 @/

@ _d
½d�; _d
� �

() _d 2 @/�

@Y
ð½d�; YÞ (5)

With the choice (1) for the dissipation potential /, we obtain an explicit expression of its

subdifferential

@/

@ _d
½d�; _d
� �

¼

½�Yc;Yc� when _d ¼ 0

Y ¼ bd
1� d

j _dj�1þn _d þ Yc

_d

j _dj

( )
otherwise

8>>>><
>>>>:

(6)

Note also that the subdifferential is multi-valued when _d ¼ 0. Conversely, when _d 6¼ 0, it con-

tains only one value and / is differentiable. From equations (5) and (6), we obtain after few
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computations that the subdifferential @/�=@ _d ½d�; _d
� �

of the convex conjugate /� contains exactly
one element. Then, by definition, /� is differentiable and this element is precisely its gradient,
denoted by r/�ð½d�; YÞ which is given by

r/�ð½d�; YÞ ¼
0 when Y � Yc

1�d
bd

jYj � Ycð Þ
� �1

n Y

jYj otherwise

8>>><
>>>:

(7a)

Note again that, by integration, we obtain an explicit expression of the convex conjugate /�:

/�ð½d�; YÞ ¼ 1

1þ 1
n

1� d

bd

� �1
n

max 0; jYj � Ycð Þ1þ1
n

Combining equations (2b), (3) and (5) leads to an explicit expression of the damage evolution
equation

_d ¼ r/�ð½d�; YÞ (7b)

Note that the damage criterion appears now explicitly in the previous damage evolution equa-
tion, via the expression (7a) of its right-hand-side. Indeed, when jYj � Yc, from equations (7a) and
(7b), we get _d ¼ 0 i.e. damage ceases to evolve.

Proposition 3. Explicit expression of the dissipation.
The dissipation, defined by D ¼ Y _d, is always positive. It expresses as

D ¼ bd
1� d

j _dj1þn þ Yc
_d
�� �� ¼ 1� d

bd
max 0; jYj � Ycð Þ

� �1
n

jYj � 0 (8)

Proof. From the Clausius–Duhem principle (see e.g. Saramito (2016: 221)), and because the process
is here considered isotherm, the dissipation reads

D ¼ r​ : ​_e� q _wðe; dÞ
¼ r​ :​ _e� q

@w
@e

ðe; dÞ​ :​ _e� q
@w
@d

ðe; dÞ _d by expansion of _w

¼ �q
@w
@d

ðe; dÞ _d from ð2aÞ
¼ Y _d from ð3Þ

The second expression of the dissipation in equation (8) is a direct consequence from equation (6)
that gives Y in terms of _d. The last expression is obtained from equations (7a) and (7b), which give _d
in terms of Y.
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Remark 4 Additional dissipative processes.
Following 1, additional dissipative terms could be inserted in the expression of the dissipation

potential /, to account, for instance, for plastic ryj_ej or viscous g0j_ej2 effects. These terms would

then appears in the previous expression (8) of the dissipation.
The present damage yield criterion Y > Yc, involved in the damage evolution equations (7a) and

(7b), is easy to handle from a thermodynamics point of view, as it directly satisfies the second

principle. On an experimental point of view, other damage criteria based on stress can however be

practical as they are directly comparable to experimental stress measurements in the principal

Cauchy stress space. Weiss et al. (2007) for instance interpreted such measurements within the

sea ice cover in terms of the Mohr–Coulomb damage criterion (see Figure 2(a)). In the following,

we therefore express the derived damage yield criterion, Y > Yc, in terms of the principal Cauchy

stress rather than the energy release rate, and aim to verify if it agrees with experimental data. The

impatient reader could observe directly Figure 7 below. The main tool for obtaining an agreement

with experimental data is a customization of the Helmholtz free energy, w, and more precisely, of

the Poisson’s ratio, as a damage-dependent function.

The free energy

The Helmholtz free energy is split in two parts

wðe; dÞ ¼ weðe; dÞ þI½0;1�ðdÞ (9)

Here we : ðe; dÞ 2 R3�3
s �R ! wðe; dÞ 2 R [ f1g represents the contribution to elasticity of the

free energy, and is called here the elastic energy, while I½0;1� denotes the indicator function of the set

½0; 1�, defined by:

I½0;1�ðdÞ ¼ 0 when d 2 ½0; 1�
1 otherwise

(

The term I½0;1�ðdÞ in the expression (9) of the Helmholtz free energy acts as a barrier for main-

taining d in ½0; 1�. Recall that the indicator function is convex but not differentiable. For an isotropic

elastic material, we expresses classically as

weðe; dÞ ¼
EðdÞ

2qð1þ �0Þ e​ :​ eþ �0
1� 2�0

ðtr eÞ2
� �

(10)

where E : R ! R is the Young modulus, that is a positive and strictly decreasing function of the

damage d, and �0 is the constant Poisson’s ratio. Also, trðnÞ denotes the trace of any matrix n 2
R3�3

s and n​ : ​ d denotes the double contracted product of any matrices n; d 2 R3�3
s . Let us intro-

duce the convex conjugate w�
e of the elastic energy we with respect to the strain tensor variable,

defined for all r 2 R3�3 and d 2 R by a Fenchel transformation:

w�
eðr; dÞ ¼ inf

n2R3�3
s

n​ :​ r
q

� weðn; dÞ
� �
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This convex conjugate w�
e is also referred to as the Gibbs elastic energy. By duality (Rockafellar,

1974: 35), we have

r 2 q
@we

@e
ðe; dÞ () e 2 q

@w�
e

@r
ðr; dÞ (11)

With the isotropic choice (10) for we, the convex conjugate is

w�
eðr; dÞ ¼

1

2qEðdÞ ð1þ �0Þr​ :​ r� �0 ðtr rÞ2
� �

¼ 1

2qEðdÞ ð1þ �0Þ ðdev rÞ​ :​ ðdev rÞ þ 1� 2�0
3

ðtr rÞ2
� � (12)

where dev n ¼ n� ð1=3Þðtr nÞI denotes the deviator of any matrix n 2 R3�3
s and I is the identity

matrix. Since the deviator dev n and the spherical part ð1=3Þðtr nÞI are orthogonal in R3�3
s , the

quadratic function w�
e is convex if and only if �0 2 ½�1; 1=2� and EðdÞ � 0 for any d 2 ½0; 1�. In

this case, by duality, we is also convex with respect to the strain tensor variable, and so is the
Helmholtz free energy w given by equation (9). Recall that traction corresponds to tr e > 0 while
compression is characterized by tr e < 0. Conversely, tr r > 0 represents a tensile stress while
tr r < 0 is a compressive stress. In this isotropic material, damage evolves in the same way
under tensile or compressive stresses: the value of the previous expression for w�

e is indeed inde-
pendent upon the sign of trðrÞ. However, as pointed out by several authors (see e.g. Lemaitre,
1996; Murakami, 2012), in materials such as concrete and rocks, the effect of the closure of
microcracks within the material on its macroscopic mechanical behavior can not be disregarded.
Besides, the evolution of the damage in most materials, metals and composites in particular,
differs between tensile and and compressive stresses. In 1984, at the UCTAM conference,
Ladev�eze and Lemaitre (1984) therefore proposed to split the energy in two parts, depending
upon the sign of the stress components (see also Lemaitre (1996: 80), Murakami (2012: 101), and
Besson et al. (2010: 163)).

This splitting approach is modified here and adapted to the sign of the trace of the Cauchy stress
tensor. The previous expression (12) of the convex conjugate w�

e is replaced by

w�
eðr;dÞ¼

1

2qEðdÞ ð1þ �0ÞðdevrÞ : ðdevrÞþ 1� 2�þðdÞ
3

maxð0; trrÞ2þ 1� 2��ðdÞ
3

maxð0;�trrÞ2
� �

(13a)

¼ 1​ þ ​ �0
2qEðdÞ ðdev rÞ​ :​ ðdev rÞ þ

1

18qKðd; tr rÞ ðtr rÞ
2 (13b)

where �� : d 2 ½0; 1� 7! ��ðdÞ 2 ½�1; 1=2� are two continuous expressions for the Poisson’s ratio as
a function of the damage, which are associated to tensile and compressive stresses according to
the sign (�). We assume that �þð0Þ ¼ ��ð0Þ and denote by �0 ¼ ��ð0Þ. For convenience, in the
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second expression (13b) we have introduced the bulk modulus K, defined for all d 2 ½0; 1� and
q 2 R by

Kðd; qÞ ¼ EðdÞ
3ð1​ � ​ 2�ðd; qÞÞ ¼

KþðdÞ when q > 0

K�ðdÞ when q < 0

minðKþðdÞ;K�ðdÞÞ when q ¼ 0

8><
>: (14a)

with �ðd; qÞ ¼
�þðdÞ when q > 0

��ðdÞ when q < 0

minð�þðdÞ; ��ðdÞÞ when q ¼ 0

8><
>: (14b)

and K�ðdÞ ¼ EðdÞ
3ð1​ � ​ 2��ðdÞÞ (14c)

where q denotes the formal parameter in the previous K and � functions that stands for tr r in

equation (13b). Note that both � and K, as given by equations (14b) and (14a), are not differentiable

with respect to d when q¼ 0. Nevertheless, these functions admit a generalized Clarke (1990) deriv-

ative. For all ðd; qÞ 2 ½0; 1� �R, the generalized Clarke derivative of � versus d is defined as the

convex hull of all directional derivatives, i.e.:

@�

@d
ðd; qÞ ¼

f�þ0ðdÞg when q > 0

f��0ðdÞg when q < 0

minð��0ðdÞ; �þ0ðdÞÞ; maxð��0ðdÞ; �þ0ðdÞÞ½ � when q ¼ 0

8>>><
>>>:

(15)

When q 6¼ 0, the set @�
@d ðd; qÞ contains only one value, which is the usual derivative. Otherwise,

when q¼ 0, this derivative is multi-valued and represented by an interval bounded by the left and

right derivatives ��0ðdÞ at q¼ 0.
When the Poisson’s ratio is constant, i.e. ��ðdÞ ¼ �0 for all d 2 ½0; 1�, then this modified version

of w�
e as given by equation (13a), coincides with equation (12). Note that w�

e , as given by equation

(13a), coincides with equation (12).
The present approach shares some conceptual similarities with that proposed by Ladev�eze and

Lemaitre (1984). In practice however, it is different in two main aspects:

• Ladev�eze and Lemaitre (1984) based their splitting on the sign of each principal stress, which

requires to compute all eigenvalues and eigenvectors of the stress tensor in each point of the

domain of computation. Here, there is no need to compute the stress eigensystem. This makes the

present approach simpler to implement.
• The expression w�

e proposed by Ladev�eze and Lemaitre (1984) is incompatible with experimental

observations of the dependence of the Poisson’s ratio in compression versus the damage d. Here,

the present expression (13a) can be based on experimental measurements of ��ðdÞ, as shown in

the next section.
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From equation (11) and by derivation of equation (13 b), the strain tensor e expresses in terms of
the Cauchy stress tensor r as

e ¼ 1 ​ þ ​ �0
EðdÞ dev rþ tr r

9Kðd; tr rÞ I (16)

() r ¼ EðdÞ
1​ þ ​ �0

dev eþ Kðd; tr rÞ ðtr eÞ I

Tacking the trace of the previous expression leads to

tr r ¼ 3Kðd; tr rÞ tr e

and then trðrÞ and trðeÞ share the same sign. Thus, from the definition (14b) of the bulk modulus K
function, we have Kðd; tr rÞ ¼ Kðd; tr eÞ and we obtain the following expression of the Cauchy stress
tensor r in terms of the strain tensor e only

r ¼ EðdÞ
1 ​ þ ​ �0

dev eþ Kðd; tr eÞ ðtr eÞ I

Then, from equation (11) and the previous expression for r, we obtain by integration the fol-
lowing explicit expression for we

weðe; dÞ ¼
EðdÞ

2qð1 ​ þ ​ �0Þ ðdev eÞ​ :​ ðdev eÞ þ
Kðd; tr eÞ

2q
ðtr eÞ2 (17)

Theorem 5. The Helmholtz free energy.
Assume that both the Young E and the bulk moduli K� are convex with respect to the damage

variable d. Then, the Helmholtz free energy w is convex with respect to its two state variables e and d
separately
Proof. Recall that the Helmholtz free energy w is given by equation (9). Since the indicator I½0;1� is
convex, the proof reduces to the study of the elastic energy we, given by equation (17) and that
expands as

qweðe; dÞ ¼
EðdÞ

2qð1​ þ ​ �0Þ ðdev eÞ​ :​ ðdev eÞ þ
KþðdÞ
2q

maxð0; tr eÞ2

þK�ðdÞ
2q

maxð0;�tr eÞ2

As a linear combination of convex functions with positive coefficients, the elastic energy is clearly
convex with respect to e. Let us now turn to its convexity with respect to d. The elastic energy
involves three independent terms that should be all convex with respect to d. The first term involves

Saramito et al. 9



E(d) which is convex by assumption. The second and third terms are convex if and only if the bulk

moduli K� are convex.

Remark 6. The Helmholtz free energy.
From theorem 5, the Helmholtz free energy w is not necessarily convex with respect to its full

argument ðe; dÞ, but only to e and d separately. Indeed, for damaged materials, there is no warranty

for the symmetric matrix of second order derivatives of w to be positive. In consequence, stationary

states of damaged materials are not necessary stable.

Linking bulk modulus and damage criterion

Theorem 7. Shape of the damage criterion in the stress space.
The shape of the damage criterion in the stress space is an ellipse (resp. an hyperbola) if and only

the derivative of the bulk modulus K is decreasing (resp. increasing) versus the damage d. Moreover,

when K is strictly convex, there are exactly three possibilities, represented on Figure 1.

Proof. From equations (3) and (17), the strain energy release rate expresses as

Y ¼ � E0ðdÞ
2ð1 ​ þ ​ �0Þ jdev ej

2 � 1

2

@K

@d
ðd; tr eÞ ðtr eÞ2

We also have introduced the matrix norm jsj2 ¼ s​ :​ s for all s 2 R3�3. Note that while @K=@d is

multi-valued when tr e ¼ 0, the second term in the previous expression vanishes and then Y is uni-

valued. In order to express the damage criterion Y > Yc in the stress space, it remains to replace in

the previous expression of Y the occurrence of e by its expression (16) in terms of r. Doing so, we

obtain

Y ¼ �ð1​ þ ​ �0ÞE0ðdÞ
2E2ðdÞ jdev rj2 � 1

18K2ðd; tr rÞ
@K

@d
ðd; tr rÞ ðtr rÞ2

The equation Y¼Yc of the damage envelope then writes in the stress space as

jdevðrÞj
aðdÞ

� �2

þ sðd; tr rÞ trðrÞ
bðd; tr rÞ
� �2

¼ 1 (18)

Figure 1. Variation of the bulk modulus K: three possible cases when it is strictly convex.
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It corresponds either to an ellipse or an hyperbola in the stress space ðdev r; tr rÞ. The radii are

here denoted by a and b, while s is the sign, switching from ellipse to hyperbola

aðdÞ ¼
ffiffiffiffiffiffiffiffi
2Yc

p
EðdÞ

f�ð1​ þ ​ �0ÞE0ðdÞg1
2

(19a)

bðd; qÞ ¼ 3
ffiffiffiffiffiffiffiffi
2Yc

p
Kðd; tr rÞ

@K
@d ðd; tr rÞ
�� ��12 (19b)

sðd; qÞ ¼ �sgn
@K

@d
ðd; qÞ

� �
(19c)

for all d 2 ½0; 1� and q 2 R.

Kachanov’s damage

Since the Young modulus E is a strictly decreasing function of the damage d, it is a bijection

between ½0; 1� and its image by E, i.e. ½Eð1Þ;Eð0Þ�. Then, the quantities d and E(d) store an equiv-

alent information when d varies in ½0; 1�. Consequently, and without loss of generality, it is possible

to chose, as a definition of the damage, any strictly decreasing function E in ½0; 1�.
Kachanov (1958) proposed to choose the Young modulus varying linearly versus damage as

EðdÞ ¼ ð1 ​ � ​ dÞE0 (20)

where E0 > 0 is the Young modulus of the undamaged material. Note that this choice of a linear

dependence is not a restrictive assumption, as it can be considered as the definition of the damage

variable d itself: for any damaged material with a given Young modulus �E 2 ½0;E0�, damage is

defined as d ¼ 1� �E=E0.
Replacing the Kachanov’s expression (20) of the Young modulus E(d) in the expressions (19a) to

(19c) of the radii, we get

aðdÞ ¼ 2E0Yc

ð1​ þ ​ �0ÞE0

� �1
2

ð1� dÞ (21a)

bðd; qÞ ¼ 3E0Ycð Þ12 1� d

1
2 � �ðd; qÞÞ � ð1� dÞ @�@d ðd; qÞ
�� ��12 (21b)

sðd; qÞ ¼ sgn
1

2
� �ðd; qÞ � ð1� dÞ @�

@d
ðd; qÞ

� �
(21c)

for all d 2 ½0; 1� and q 2 R.

Remark 8. Some common situations.
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Assume that the Young modulus E(d) is defined by equation (20). When Poisson’s ratio is either
decreasing or constant versus damage, then, from equation (21c), the shape of the damage envelope
in the stress space is always an ellipse.

Results and discussion

Bulk modulus derived from experiments in compression

Observations of the evolution of Poisson’s ratio in compression were first made by Heap et al.
(2009) (Figure 7). See also Heap et al. (2010) (Figure 3), Eslami et al. (2010) (Figure 8), Grindrod
et al. (2010) (Figure 9), and Yang et al. (2015) (Figure 23). Abe (2016) (Figures 4 and 9) observed a
behavior similar to these experiments in their discrete simulations. Several authors also reported
open domains similar to hyperbolas (see e.g. Weiss et al. (2007), Figure 13) or shifted conic domains,
suggesting Mohr–Coulomb-like criteria. Our aim here is to reinterpret these experimental observa-
tions in terms of the variation of the bulk modulus versus the damage variable. Then, based on the
present theory, we deduce the shape of the damage criterion in the stress space.

Figure 2 top-left represents experimental data from Heap et al. (2010), Figure 3(f), where a
cylindrical sample of westerly granite undergoes cycles of compression. After the i-th cycle, i � 1,
both the Young modulus, �Ei, and the Poisson’s ratio, �i, of the damaged sample are measured.
Assume that the Young modulus E(d) is defined by equation (20). Then, we deduce the damage
variable after the ith cycle as

di ¼ 1�
�Ei

E0

We can therefore plot Poisson’s ratio �i and the corresponding bulk modulus Ki ¼ Ei=ð3ð1�
2�iÞÞ as functions of the damage di. Figure 2 top-right and middle-right represent the obtained bulk
modulus and Poisson’s ratio versus the damage variable for westerly granite. Note that the bulk
modulus K� is convex and therefore, from theorem 5, the free energy is convex with respect to the
two state variables separately. Note also that the bulk modulus is a strictly increasing function of
the damage: from theorem 7, the damage criterion in the compression stress half-space is always an
hyperbola. This corresponds to the case 3 on Figure 1.

The experimental measurements of Poisson’s ratio as a function of damage are approximated by
a third order polynomial denoted as ��ðdÞ and represented with a line Figure 2 middle-right. The
third order polynomial approximation is uniquely determined by its values and derivative at
d 2 f0; dfg, provided in Table 1. Next, relation (14c) is applied in order to obtain, from ��ðdÞ, an
approximation K�ðdÞ of the bulk modulus. Finally, we compute �� and its derivative for any d 2
½0; df� and then evaluate the radii a�ðdÞ and b�ðdÞ from equations (21a) and (21b): Figure 2 middle-
left presents the envelope of the damage criterion for various damage values while Figure 2 bottom
shows the radii. In traction, experiment shows that the damage envelopes present an ellipsoidal
shape (see e.g. Lemaitre and Chaboche, 1990: 183). Consequently, we consider here, for simplicity,
that the Poisson’s ratio is constant in traction, i.e. �þðdÞ ¼ �0. Indeed, from remark 8, we recover in
this case an ellipsoidal shape of the damage criterion. Observe the ellipse shape in the traction half-
plane, which shrinks when damage increases. Conversely, in the compression half-plane, the shape is
an hyperbola: the opening angle of this hyperbola increases with damage. Note that the damage
envelop is open and unbounded in the compression half-plane: the situation is similar to the case of
the Mohr–Coulomb criterion and qualitatively in agreement with experimental observations, as
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pointed out in the introduction. This asymmetry of the damage envelop between dilatation and
compression half-planes is the major feature of the present unilateral damage model.

Let us turn to an other material, an Etna basalt, presented on Figure 3. Poisson’s ratio, shown on
Figure 3 middle-right, is approximated here by a spline function. This spline function is composed
of two third order polynomials with a continuously derivable junction at d¼ dc

��ðdÞ ¼ a1d
3 þ b1d

2 þ c1dþ e1 when d 2 ½0; dc½
a2d

3 þ b2d
2 þ c2dþ e2 when d 2 ½dc; 1�

(
(22)

Figure 2. Westerly granite (experimental data from Heap et al. (2010), Figure 3(f)). (top-left) experimental mea-
surement of the Young modulus Ei and the Poisson’s ratio �i versus compression cycle i; (top-right) Bulk modulus
3K ¼ ð1� 2�Þ=E vs d; (middle-left) Envelope of the damage criterion vs d; (middle-right) Poisson’s ratio versus the
damage variable ð� i; diÞ: experimental data and its spline approximation �ðdÞ; (bottom) Radius a(d) and b(d, q) vs d in
traction (q> 0) and compression (q< 0).
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where dc 2 �0; 1½ and with the following continuity conditions at d 2 f0; dc; 1g:

��ð0Þ ¼ �0 and ��0ð0Þ ¼ 0

Figure 3. Similar analysis for the Etna basalt (experimental data from Heap et al. (2009), Figure 7(a)).

Table 1. Model parameters used for the considered materials.

E0 ðGPaÞ Ef ðGPaÞ df �0 �f �0
0 �f

0 dc �c

Westerly granite 64.0 56.3 0.120 0.275 0.5 0.416 4.16 – –

Etna basalt 32.1 22.7 0.293 0.185 0.5 0 3.76 0.176 0.220

Darley sandstone 20.9 17.4 0.167 0.076 0.5 0 8.96 0.0519 0.09

Icelandic basalt 66.1 52.9 0.200 0.097 0.097 0 0 – –
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��ðd�c Þ ¼ ��ðdþc Þ ¼ �c and ��0ðd�c Þ ¼ ��0ðdþc Þ ¼ �c
0

��ðdfÞ ¼ 1=2 and ��0ðdfÞ ¼ �f
0

Note that there are eight unknowns ðai; bi; ci; eiÞi¼1;2 and eight necessary continuity conditions for

the corresponding problem to be well-posed. Here, we adjust the values dc to the minimum of the

bulk modulus K� from the experimental data ðdi;KiÞ1� i� n while �c is adjusted from the Poisson’s

ratio ðdi; �iÞ1� i� n. The derivative �c
0 is given by the condition K�0ðdcÞ ¼ 0 i.e. from a change of sign

in equation (19c): �c
0 ¼ ð1� 2�cÞE0=ð2EðdcÞÞ. Finally, we adjust �f

0 based on the Poisson’s ratio

data for the slope of �� at d¼ df. Results are shown on Figure 3 and the adjustment parameters are

provided in Table. 1. Using this fit, we are able to compute �� and its derivative for any d 2 ½0; df�
and then to evaluate the radii a�ðdÞ and b�ðdÞ from equations (21a) and (21b): Figure 2 middle-left

presents the envelope of the damage criterion for various damage values while Figure 2 bottom plot

the radii. Ellipses are obtained in the traction half-plane, which shrink when damage increases. In

the compression half-plane, the obtained envelope is an ellipse for d 2 ½0; dc½. At the transition

d¼ dc, the bulk modulus K� is minimal and its derivative vanishes while the damage criterion

(18) degenerates to

jdevðrÞj � aðdÞ

This means that the damage criterion reduces to a von Mises criterion on the deviatoric part of

the stress tensor. The shape of the envelope changes to an hyperbola for d 2 �dc; df�. This corre-

sponds to the case 2 on Figure 1.
Figure 4 shows similar results for a Darley Dale sandstone. As for the previous Etna basalt, there

is a transition of the damage envelope from an ellipse to an hyperbola in the compression stress half-

space.
Finally, we consider the Icelandic basalt presented on Figure 5 top-left by its experimental

measurements of the Young modulus and Poisson’s ratio during a similar experiment, where a

cylindrical sample undergoes cycles of compression. Figure 5 top-right and 5 middle-right plots the

bulk modulus K� and the Poisson’s ratio �� versus d. Poisson’s ratio is approximately a constant

function of d. Thus, by its definition (14c), the bulk modulus K� is linear and also convex. From

theorem 5 the Helmholtz free energy is also convex with respect to the two state variables separately.

Next, from theorem 7, the damage criterion in the stress space is always an ellipse. This corresponds

to the case 1 on Figure 1. Figure 5 middle-left plots the damage criterion in the stress space, while

Figure 5 bottom shows the radii.

Bulk modulus derived from theory in traction

In traction, as pointed out in the previous paragraph, experimental observations show that the

damage envelopes present an ellipsoidal shape (see e.g. Lemaitre and Chaboche, 1990: 183).

Choosing a constant Poisson’s ratio �þðdÞ ¼ �0 is consistent with these observation: thanks to

remark 8, we recover an ellipsoidal shape of the damage criterion. Nevertheless, more involved

choices are possible in traction. Ponte-Casta~neda and Willis (1995) (equation (4.16)), proposed

explicit expressions for the shear G(d) and bulk modulus K(d) versus damage d from a micro-

mechanical analysis, considering a distribution of randomly oriented penny-shaped
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micro-cracks with a spherical spatial distribution (see also Kondo et al., 2007, equations (32)
and (33))

GþðdÞ ¼ G0 1� 120ð1� �0Þð5� �0Þd
225pð2� �0Þ þ 16ð4� 5�0Þð5� �0Þd

� �
(23a)

KþðdÞ ¼ K0 1� 12 1� �20
� 	

d

9pð1� 2�0Þ þ 4ð1þ �0Þ2d

 !
(23b)

where G0 ¼ E0=ð2ð1þ �0ÞÞ and K0 ¼ E0=ð3ð1� 2�0ÞÞ are respectively the shear and bulk modulus
of the undamaged material. An investigation of expression (23b) shows that Kþ is strictly convex
versus d for any �0 2 �0; 1=2½ (see also Figure 6 top-right). Recall that the Young modulus and
Poisson’s ratio write respectively from bulk and shear modulus as E ¼ 9KG=ð3Kþ GÞ and

Figure 4. Similar analysis for the Darley Dale sandstone (experimental data from Heap et al. (2010), Figure 3(e)).
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� ¼ ð3K� 2GÞ=ð6Kþ 2GÞÞ, see e.g. Slaughter (2002: 215). Another investigation of the obtained

expression for the Young modulus E shows that it is always positive and also strictly convex versus

d, for any �0 2 ½0; 1=2� (see also Figure 6 top-left). Note that E is here non-affine: thus the definition

of the damage variable d do not coincides Kachanov’s definition (20). From the convexity of both E

and Kþ, from theorem 5, in traction, the Helmholtz free energy is convex with respect to the two

state variables separately. Figure 6 middle-right plots Poisson’s ratio: observe that it is decreasing,

as expected in traction. Next, from equations (19a) and (19b), we deduce expressions of the radii aþ
and bþ in traction. An exploration of these expressions shows that both aþ � 0 and bþ � 0 for any

d 2 ½0; 1� and �0 2 ½0; 1=2� (see also Figure 6 bottom). Consequently, the shape of the damage

criterion is an ellipse, as shown on Figure 6 middle-left. Note that this model prediction is consistent

with experimental observations (see e.g. Lemaitre and Chaboche, 1990: 183).

Interpretation and discussion

To interpret the results of Figures 2 to 5, rocks properties, and particularly their initial porosity, are

worth considering. At first glance, the increase in bulk modulus, K, with the damage, d, observed

Figure 5. Similar analysis for the Icelandic basalt (experimental data from Heap et al. (2010), Figure 3(c)).
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after an initial stage in which K is almost constant or weakly decreasing in most of the rocks
analyzed here (case 2 on Figure 1), (with the exception of the Icelandic basalt, Figure 5), appears
surprising.

A possible interpretation for this behavior is a damage-induced collapse of pores in rocks under
compression. In rocks with a significant initial porosity, such as sandstones or Etna basalt, the
closing of pores during compression is expected to lead to local contracting strains, to a decrease in
porosity, i.e. to compaction (Fortin et al., 2009), and to an increase of P and S seismic wave
velocities (Fortin et al., 2011). Recent X-ray micro-tomography observations of damage and defor-
mation of rocks during multiaxial compression evidenced these mechanisms in various porous rocks
(Renard et al., 2017), including Etna basalt (McBeck et al., 2019). In these materials, when the
confining pressure is large, this compaction phase can last almost until the so-called cataclastic
compaction failure (Fortin et al., 2009) phase. Compaction is however much reduced under small
(or zero) confinement conditions, for which failure occurs through shear localization and faulting

Figure 6. Traction: expressions derived from micro-crack theory (top) shear E and bulk modulus Kþ versus d;
(middle-left) envelopes of the damage criterion vs d for �0 ¼ 0:2; (middle-right) Poisson’s ratio versus d; (bottom)
radius aþðdÞ and bþðdÞ versus d.
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accompanied by dilatancy. Such a compaction phase induced by pore collapse could explain the

increase of K above dc.
In materials following case 2 on Figure 1, this would indicate that in the initial stage of damage

(d < dc), another damage mechanism inducing a decrease of K, such as micro-cracking, competes

with the pore collapse mechanism. Note that this initial stage is accompanied in these materials by a

sharp decrease of the Young’s modulus, E, with the number of loading cycles (see e.g. Figure 3(a)),

while the evolution above dc is much slower. During the increase of K, the damage envelope in the

compression half-space expands, meaning that further damaging becomes more and more unlikely

as damage accumulates. This could be interpreted as a progressive closure of the pores, the weakest

closing first, under relatively smaller stresses, and the strongest requiring much larger stresses.
This scenario would imply that damage events (pore collapses) are not significantly interacting

mechanically and therefore are randomly distributed (as opposed to correlated) within the rock. It is

supported by X-ray tomography observations, at least in the pre-faulting phase (McBeck et al.,

2019). In this context, the particular behavior of Icelandic basalt (case 1 on Figures 1 and 5), for

which this K-increasing phase is not observed, could be related to its low porosity (1.2%) and

extremely homogeneous crystalline structure that does not present visible pre-existing micro-

cracks (Heap et al., 2010).
Several questions remains open, however. First, the proposed interpretation hardly explains the

behavior of Westerly granite, a low-porosity material of about 0.8% that nevertheless belongs to

case 3 on Figure 1. In addition, the compression experiments of Heap et al. (2009, 2010) that we

used to build Figures 2 to 5 were performed under uni-axial loading, without confinement. In this

case, one would expect a shear faulting failure, with a limited compaction and pore collapse phase

before the onset of dilatancy due to localized micro-cracking (Fortin et al., 2009). Such dilatant

phase should be accompanied by a decreasing bulk modulus K in the latest stages of damage and

deformation, which is not recovered in our analysis. Overall, an increasing bulk modulus as

approaching compressive failure, such as cases 2 and 3 of Figure 1 above, appear unphysical.
To explain these shortcomings, we note that our approach assumes (i) a spatially homogeneous

and (ii) isotropic damage. Isotropy is a rough assumption for compressive failure under low con-

finement. Indeed, at least in the first stages of deformation and damage, microcracks tends to align

along the maximum principal compressive stress (Renard et al., 2018). Such anisotropic damage

might explain a large increase of � when measured perpendicularly to this axis (Heap et al., 2010). In

addition, except for cataclastic compaction failure under high confinement, compressive failure is

generally preceded by a progressive localization of damage and deformation along an inclined fault

(Lockner et al., 1991; Renard et al., 2017), including for contracting strains in porous rocks

(McBeck et al., 2019). Such localization is not taken into account in our approach, which therefore

likely fails to describe these final stages of compressive failure.

Comparison of the damage criterion with stress measurements

In this section, we compare our derived damage yield criterion, Y < Yc, as expressed in the Cauchy

stress space to available measurements of stresses in another geomaterial, sea ice, and discuss its

agreement with the previously deducted damage criteria.
Over certain time and space scales, ice behaves in the quasi-brittle regime in a manner very

similar to rocks (Marsan and Weiss, 2010; Schulson et al., 2006b; Weiss et al., 2007). Both fresh

ice at the laboratory scale and sea ice at the scale of the Arctic ocean have therefore been modeled

using a combination of damage mechanics and stress yield criterion (Girard et al., 2010, 2011).
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In the last decades, measurements of in-situ stresses within the sea ice cover have been made to

study its mechanical behavior (Richter-Menge et al., 2002). While reconstructing failure envelopes

in the laboratory require making repetitive estimates of principal stresses at failure under different

compressive ratios over many samples (Haied et al., 2000; Haimson and Rudnicki, 2010; Schulson,

2001; Schulson et al., 2006a,b), such in situ measurements allow deducting the failure envelope of ice

over the entire Cauchy stress space.
Here, in situ stress measurements made using biaxial stressmeters specifically designed for sea ice

applications (Johnson and Cox, 1982) are presented. Owing to the huge aspect ratio between lateral

extension and thickness of the sea ice cover, plane stress conditions are fulfilled, therefore local in-

plane stresses are recorded. The data reported on Figure 7 is from two stressmeters deployed on the

Beaufort Sea from October 1997 to July 1998 (Richter-Menge et al., 2002). Measurements per-

formed on other sensors gave similar results. Each data point represents a one-minute averaged

measure, with a sampling frequency of one hour. Overall, about 6500 stress states are represented

on each plot. As the sea ice cover experienced a large variety of external forcings (essentially due to

the winds) both in terms of intensity and direction over the one year period covered by the measure-

ments, we can reasonably assume that the data fills the local failure envelope of sea ice.
Figure 7 represents these in situ measurements together with the envelope of the derived damage

criterion, Y < Yc, in the space of the two eigenvalues, r1 > r2 of the Cauchy stress tensor in the

bidimensional geometry of the sea ice cover. Here b� denotes the second radius of the ellipse and of

the hyperbola. The radii of the envelope are adjusted to the data.
Figure 7 also compares the envelope with the Mohr–Coulomb criterion, which in the view of this

stress data was interpreted by Weiss et al. (2007) and Weiss and Schulson (2009) as a suitable

damage criteria for sea ice.
However here, we observe that both damage criteria are in good agreement with the measure-

ments. As the shape of both envelopes are analogous, one can argue that they would lead to similar

Figure 7. The Y¼ Yc damage criterion graphically expressed in terms of the Cauchy stress tensor r (continuous blue
line). Comparison with experimental data from Weiss et al. (2007), Figure 2(a) where units are in megapascal. The
radii of the ellipse and the hyperbola are adjusted to the data: (left) Baltimore:

ffiffiffi
2

p
a ¼ 90 MPa, bþ ¼ 100 MPa, b� ¼

80 MPa; (right) simi-strs321:
ffiffiffi
2

p
a ¼ 31 MPa, bþ ¼ 63 MPa, b� ¼ 58 MPa. The Mohr–Coulomb damage criterion

used in Weiss et al. (2007) is also indicated by the dotted red line.
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results in numerical simulations of progressive damage. However, the physical concepts behind both

criteria differ dramatically.
While the Mohr–Coulomb (Coulomb, 1773; Mohr, 1900) criterion is based on the ill-defined

concept of internal friction (Savage et al., 1996), the criterion derived here is thermodynamically-

based and uses the strain energy release rate Y. By this fact, this new criterion presents several

advantages.
Unlike the Mohr–Coulomb criterion, it indeed links to the evolution of the Poisson’s ratio with

damage observed in laboratory experiments. Unlike the Mohr–Coulomb criterion also, the theory

of which is restricted to compressive stresses, it includes an unilateral extension that distinguishes

between traction and compression. It also allows for friction and plasticity to be introduced in

equation (1): this would generate additional dissipation terms but the damage mechanism would

remains linked to the strain energy release rate. The present comparison with in situ stress measure-

ments therefore suggests that the damage criterion derived here can constitute a valuable alternative

to the Mohr–Coulomb criterion in geophysical applications.

Conclusion

In this work, we have derived a new damage criterion that (1) verifies the second principle of

thermodynamics, (2) distinguishes between compressive and tensile states of stress and (3) accounts

for the evolution of the Poisson’s ratio with the level of damage of the material. We have expressed

this criterion in the stress space and compared it with in-situ stress measurements. Under compres-

sion, the good agreement found between the criterion, the data and the Mohr–Coulomb criterion

compels to a reinterpretation of the concept of damage criterion. Comparisons of the derived

evolution of the Poisson’s ratio and bulk modulus as a function of the damage with laboratory

experiments on rocks has however shown that the criterion fails to capture some of the aspects of

the evolution of the bulk modulus, in particular, the observed decrease in the dilatant phase that

characterizes the final stages of compressive failure. These shortcomings are likely the consequence

of the isotropic damage assumption made here and call for a future extension of this work to

anisotropic damage. Nevertheless, we argue that the criterion derived here presents several advan-

tages over the widely used Mohr–Coulomb criterion and is more physically sound is several aspects.

Future work will consider numerical simulations of progressive damage, in order to assess the

present model in traction and compression.
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