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A B S T R A C T

A new brittle-elastoviscoplastic (BEVP) fluid model is presented in this paper. This model is relatively simple
to use, as it contains few material parameters and a simple fixed-point algorithm is effective for solving
the coupled system of equations. The model combines some existing fundamental features such as elasticity,
plasticity and brittle damage. The combination of them is based on thermodynamics that ensures the positivity
of the dissipation and the Onsager symmetry. Moreover, thermodynamics allows to point out the link between
thixotropy and damage in the context of elastoviscoplastic (EVP) fluids. Theoretical results on the Drucker–
Prager plasticity criterion are completed in order to use it here. Preliminary results with the proposed
BEVP model are very encouraging: it is able to represent the pre-failure, failure and post-failure behavior
of quasi-brittle materials.
ntroduction

Materials that present microstructure of particles with frictional
ontacts and a large scale rearrangements are very common in nature.
ypical examples are dry or wet granular flows and concentrated
uspensions. Also, rocks and cements undergoing large and unbounded
eformations share this microstructural aspect. At a larger scale, the
ynamic of earthquakes and the sea ice, for predicting the climate evo-
ution, are potential applications of the present work. The development
f efficient rheological models for the flow of dense granular maters and
uspensions is also a challenge for continuous models, where discrete
imulations are still more relevant for applications, but limited in terms
f the particle number. The most popular continuous description of
ranular flows is certainly the viscoplastic 𝜇(𝐼) rheology [1], despite
ts mathematical issues [2,3]. The 𝜇(𝐼) pressure-dependent yield stress
eature was recently revisited by Daviet and Bertails [4,5], based on the
legant de Saxcé mathematical formalization [6] of the Drucker–Prager
lasticity criterion [7]. The present paper is a contribution in this
irection, in order to develop continuous models that take into account
icrostructural frictional contacts and large scale rearrangements. For

hat purpose, theoretical results on the Drucker–Prager plasticity crite-
ion are completed in order to use it for general elastoviscoplastic (EVP)
luids.

During the flow, the properties of these materials are likely to
evelop. Indeed, large stresses tend to break grains. For instance, during
he sea ice flow, the floes are broken, as shown on Fig. 1.left, but

healing process due to freezing tends to collapse neighbors floes
ith a time scale of few days [9]. A similar effect is observed with
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earthquakes, where faults could slowly heal. Developed in the context
of elastoplastic solids, the damage theory [10,11] is widely used from
years, with applications to rocks, concretes and steels. Damage mechan-
ics for modeling strongly elastic, but not brittle, solid materials such
as bread dough was also used by Phan-Thien et al. [12]. Conversely,
thixotropy [13–15] is a different kind of approach, used mostly in
the context of viscoelastic fluids, such as suspensions of colloidal and
non-colloidal particles that form flocculated systems, as well as gels
that form cross-linked systems. Such materials are handled in the food,
petroleum and cosmetic industries. One of the main characteristics of
both damage and thixotropic effects is the time-dependent change in
the material parameters associated to elasticity, viscosity and plasticity.

Thus, the proposed brittle-elastoviscoplastic (BEVP) model, repre-
sented on Fig. 1.right, shares some structural similarities with some
existing thixo-elastoviscoplastic models (TEVP, see e.g. [15–17]). By in-
troducing an abstract mathematical model suitable for such soft-solids
and complex fluids, the present paper points out these similarities. Us-
ing this abstract model, three main features, namely elasticity, plasticity
and damage could be combined together, as a Lego game, with the
fundamental viscous effects. This abstraction is first illustrated with
the BMP [18] thixotropic model before to develop the present BEVP
model. Our abstract framework bases on the thermodynamics with
internal variables and a potential of dissipation, known as the gener-
alized standard materials (GSM). GSM was introduced by Halphen and
Nguyen [19] in the context of elastoplasticity of solids and previously
used by the present author for the development of elastoviscoplastic
(EVP) fluids [20,21]. While thermodynamics is popular in the elasto-
plastic solid’s community, observe that its usage is much less advanced
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Fig. 1. (left) The damage variable 𝑑 ∈ [0, 1] is defined by Kachanov [8] as the density of micro-cracks and comminution of the fractured material at the macroscopic level.
The background image is a SPOT satellite aerial picture of a 59×59 km2 portion of the Arctic sea ice cover centered around 80.18◦ N, 108.55◦ W. (right) The rheological model
combines two viscous elements 𝜂(𝑑) and 𝜂𝑠 with a dry-friction element including both yield stress and Coulomb friction 𝜇, together with a compressible elastic element with a
Poisson ratio 𝜈(𝑑).
in the complex fluid’s community. Remarkable contributions are those
of Leonov [22], which was based on thermodynamics to propose a vis-
coelastic fluid and Beris and Edwards [23], who proposed the Poisson
bracket tool for the development of new fluid models. Thus, to the
author’s best knowledge, the present theoretical approach is new in the
context of these TEVP and BEVP complex fluids.

The outline of the paper is as follows: Section 1 presents the ther-
modynamic framework that leads to the mathematical expression of the
rheological model. At this stage, the obtained model still contains three
black-boxes, namely the elasticity, the plasticity and the damage, that
will be chosen in Section 2 for obtaining the new BEVP model. Section 3
presents preliminary results on the uniaxial compression benchmark.
The paper contains two appendices. The first one is the complete
and self-contained proof of a theoretical result on the Drucker–Prager
plasticity criterion in order to use it for general EVP fluids. The second
one is the details of the numerical method used in Section 3.

1. Abstract problem statement

In this section, the thermodynamic framework is defined. First, the
free energy and the potential of dissipation are introduced. Next, con-
stitutive equations are obtained by differentiation of these two previous
fundamental functions. A thorough discussion about the dissipation
is developed before to expand the abstract problem statement. This
section closes with a practical example: the thixotropic BMP model and
its dissipative effects are discussed. Recall that the abstract mathemat-
ical model still contains three black-boxes, namely the elasticity, the
plasticity and the damage, that will be chosen in a forthcoming section
for obtaining the new BEVP model.

The impatient reader – and the reader who is unfamiliar with the
thermodynamic framework – could jump directly to Section 1.4 where
the complete set of equations governing such a flow is presented, before
reading Section 1.5 where the BMP model is discussed.

1.1. Thermodynamic framework

The total deformation tensor 𝜸 is assumed to split as the sum of 𝜸𝑒,
the elastic deformation, and 𝜸𝑝, its complement:

𝜸 = 𝜸 + 𝜸 (1)
2

𝑝 𝑒
Following Kachanov [8], let us introduce the progressive damage
variable 𝑑: it quantifies the density of micro-cracks and comminution
of the fractured material at the macroscopic level (see Fig. 1.left). It
evolves between 𝑑 = 0 for an undamaged and 𝑑 = 1 for a completely
damaged material. As in most previous progressive damage models [8,
24–26], and based on the notion of effective stress, we choose to let the
elasticity operator A(𝑑) of the material vary with the level of damage.

The thermodynamic framework of standard generalized materi-
als [19] (see also [27, p. 222]) is considered here. Let (𝜸, 𝜸𝑝, 𝑑) be the
three independent thermodynamic state variables of our material. At
any time, we assume that we are able to impose some arbitrarily value
to the rate variables (�̇�, �̇�𝑝, �̇�) without changing the values of the state
variables (𝜸, 𝜸𝑝, 𝑑), so state variables and rate variables are considered
as independent thermodynamic variables. The specific Helmholtz free
energy 𝜓 and the dissipation potential 𝜙 are defined by

𝜓(𝜸, 𝜸𝑝, 𝑑) = 1
2𝜌

|

|

|

𝜸 − 𝜸𝑝
|

|

|

2

A(𝑑)
(2a)

𝜙
(

[𝜸, 𝜸𝑝, 𝑑]; �̇�, �̇�𝑝, �̇�
)

= ℐker(tr)(�̇�) + 𝜂𝑠|�̇�|2 + 𝜙𝑝
(

[𝑑]; �̇�𝑝
)

+𝜙𝑑
(

[𝜸 − 𝜸𝑝, 𝑑]; �̇�
)

(2b)

In (2a), the density of the material is denoted by 𝜌 and is assumed
to be constant. The notations used all along the paper are summa-
rized in Table 1. Let us denote by |𝜹| the tensor norm: |𝜹|2 = 𝜹∶𝜹,
for any 𝜹 ∈ R𝑁×𝑁𝑠 , where 𝑁 ≥ 1 is the physical space dimension,
and R𝑁×𝑁𝑠 the space of symmetric 𝑁 ×𝑁 real matrix. For any ma-
trix 𝜹, 𝝉 ∈ R𝑁×𝑁𝑠 , the associated dot product is 𝜹∶𝝉 =

∑𝑁
𝑖,𝑗=1 𝛿𝑖,𝑗𝜏𝑖,𝑗 . For

convenience, the notation |𝜹|A(𝑑) represents the tensor norm in the A
metric: |𝜹|2A(𝑑) = (A(𝑑)𝜹)∶𝜹. The elasticity operator A(𝑑) is assumed to
be symmetric definite positive and thus it is invertible: its inverse is
called the compliance operator. The term ℐker(tr)(�̇�) in (2b) imposes
the incompressibility of the material: ker(tr) denotes the set of traceless
tensors. For any convex set 𝐶, the indicator function ℐ𝐶 is defined by:

ℐ𝐶 (𝜉) =

{

0 when 𝜉 ∈ 𝐶

+∞ otherwise

The indicator function of a convex set is also convex but not
differentiable.

In (2b), the notation with square brackets [.], as in 𝜙([𝜸, 𝜸𝑝, 𝑑];
�̇�, �̇� , �̇�) indicates a dependence of the dissipation potential upon the
𝑝
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Table 1
Table of notations.

Notation Description

𝑁 dimension of the physical space

R𝑁×𝑁
𝑠 set of real symmetric 𝑁×𝑁 matrix

𝑰 identity tensor

tr 𝝉, 𝐝𝐞𝐯 𝝉 trace and deviator of a tensor 𝝉

𝑑 damage (scalar)

𝑌 strain energy release rate (scalar)

𝒖 velocity

𝜸 total deformation

𝜸𝑒 elastic deformation

𝜸𝑝 plastic deformation

𝝈 Cauchy total stress

𝝈𝑒 elastic stress

𝑊 𝑒 Weissenberg number, viscoelasticity

𝛾𝑦 elastoplastic yield deformation

𝑊 𝑒𝑑 for damage relaxation

𝛾𝑐 elastodamage yield deformation

𝜌 density

𝜂0, 𝜂𝑠 viscosities

𝜂𝑡𝑜𝑡 = 𝜂0 + 𝜂𝑠, total viscosity

𝜂𝑑 damage-related viscosity

𝜎𝑦 viscoplastic cohesion (yield stress)

𝜎𝑐 damage cohesion

𝜇 friction coefficient (dimensionless)

𝜈, 𝐸 Poisson ratio and elastic modulus

𝐺, 𝜆 Lamé coefficients

A elasticity fourth order operator

𝜓 Helmholtz free energy

𝜙 dissipation potential

𝜙𝑝 viscoplastic dissipation potential

𝜙𝑑 damage dissipation potential

𝑤 total dissipation

𝑤𝑝 viscoplastic dissipation

𝑤𝑑 damage dissipation

𝐾𝜇 Drucker–Prager cone

𝑇𝜇,𝜎𝑦 translated Drucker–Prager cone

ℐ𝐶 indicator function of the set 𝐶

state variables 𝜸, 𝜸𝑝 and 𝑑 as parameters: it is distinct from �̇�, �̇�𝑝 and �̇�
which are the thermodynamic rate variables of the dissipation potential.

Finally, the potentials 𝜙𝑝 and 𝜙𝑑 describe respectively the viscoplas-
ticity and the damage and 𝜂𝑠 is the bulk viscosity. We assume that
both 𝜙𝑝 and 𝜙𝑑 are positive, convex and vanish in zero. Some practical
choices for them will be discussed in details in the next paragraph. We
are now able to prove the following major result.

Theorem 1 (Second Principle of Thermodynamics and Onsager Symme-
tries). Assume that the dissipation potential 𝜙 is convex, positive and
vanishes when the rate variables are zero. Then, the rheological model
defined by (2a)–(2b) satisfies both the second principle of thermodynamics
and a generalized Onsager symmetry principle.

Proof. The second principle of thermodynamics is directly obtained
from [27, p. 223]. From [19, p. 40], the generalized Onsager symmetry
principle is obtained as a direct consequence of the present formalism
based on the dissipation potential. ■
3

𝜂

1.2. Constitutive equations

The constitutive equations are obtained by derivation of the specific
free energy and the potential of dissipation by (see [27, p. 223]):

𝝈 = 𝜌
𝜕𝜓
𝜕𝜸

(𝜸, 𝜸𝑝, 𝑑) +
𝜕𝜙
𝜕�̇�

(

�̇�, �̇�𝑝, �̇�
)

= A(𝑑)𝜸𝑒 + 𝜕ℐker(tr)(�̇�) + 2𝜂𝑠�̇�

∈ 𝜌
𝜕𝜓
𝜕𝜸𝑝

(𝜸, 𝜸𝑝, 𝑑) +
𝜕𝜙
𝜕�̇�𝑝

(

�̇�, �̇�𝑝, �̇�
)

= −A(𝑑)𝜸𝑒 + 𝜕𝜙𝑝
(

[𝑑], �̇� − �̇�𝑒
)

0 ∈ 𝜌
𝜕𝜓
𝜕𝑑

(𝜸, 𝜸𝑝, 𝑑) +
𝜕𝜙
𝜕�̇�

(

�̇�, �̇�𝑝, �̇�
)

= (A′(𝑑)𝜸𝑒)∶𝜸𝑒 + 𝜕𝜙𝑑
(

[𝜸𝑒, 𝑑]; �̇�
)

here 𝝈 denotes the total Cauchy stress tensor and we have used
𝑒 = 𝜸 − 𝜸𝑝 from (1). Also, A′(𝑑) denotes the derivative of the elasticity
perator versus 𝑑. Here 𝜕𝜙𝑑

(

[𝜸𝑒, 𝑑]; �̇�
)

is the subdifferential of 𝜙𝑑 with
espect to the variable �̇�. From Proposition 17 in appendix:

ℐker(tr)(�̇�) = {−𝑝𝑰 ; 𝑝 ∈ R}

.e. the set of spherical tensors. After rearrangements, the three consti-
utive equations become:

= −𝑝𝑰 + 2𝜂𝑠�̇� + A(𝑑)𝜸𝑒 (3a)
𝜙𝑝

(

[𝑑], �̇� − �̇�𝑒
)

∋ A(𝑑)𝜸𝑒 (3b)

𝜙𝑑
(

[𝜸𝑒, 𝑑]; �̇�
)

∋ (−A′(𝑑)𝜸𝑒)∶𝜸𝑒 (3c)

he first equation (3a) expresses the total Cauchy stress tensor 𝝈
s the sum of a pressure term, a viscous one and an elastic extra
tress contribution. This third contribution involves both the elastic
eformation 𝜸𝑒 and the damage 𝑑, which are provided by the two last
onstitutive relations Let us review them.

The second constitutive relation (3b) appears as an implicit differ-
ntial relation for 𝜸𝑒, for any given �̇�. It can be rearranged in a more
onvenient way, suitable for numerical computations. Let us introduce
he elastic stress 𝝈𝑒 as the dual variable associated to the state vari-
ble �̇�𝑝, i.e. 𝝈𝑒 = −𝜌 𝜕𝜙𝑝∕𝜕�̇�𝑝 = A(𝑑)𝜸𝑒. Then (3b) writes equivalently
𝑒 ∈ 𝜕𝜙𝑝([𝑑], �̇�𝑝) or also equivalently �̇�𝑝 ∈ 𝜕𝜙∗

𝑝([𝑑], 𝝈𝑒) thanks to the
enchel–Young Theorem 4 and where 𝜙∗

𝑝 denotes the convex conjugate
f 𝜙𝑝, defined for any 𝝉 ∈ R𝑁×𝑁𝑠 by the Legendre transformation (see
efinition 18). We assume that 𝜙∗

𝑝 is continuously differentiable, which
s the case for our practical choices of this potential. Thus (3b) becomes
̇ 𝑝 = ∇𝜙∗

𝑝([𝑑]; 𝝈𝑒), or equivalently, using (1):

̇ 𝑒 + ∇𝜙∗
𝑝
(

[𝑑]; A(𝑑)𝜸𝑒
)

= �̇� (3d)

Note that, for some given 𝑑 and �̇�, relation (3d) appears to be
n explicit nonlinear time-differential equation in terms of 𝜸𝑒, which
s suitable to numerical computations. Thanks to the continuity of
𝜙∗
𝑝 , the existence of a solution for (3d), for some given 𝑑 and �̇�, is

uaranteed by the Cauchy-Peano-Arzelà theorem.
The third relation (3c) also appears as an implicit evolution equa-

ion for 𝑑. The strain energy release rate 𝑌 is defined as the dual variable
ssociated to the state variable 𝑑, i.e. 𝑌 = −𝜌 𝜕𝜓∕𝜕𝑑 = (−A′(𝑑)𝜸𝑒)∶𝜸𝑒.
his concept, set forth by Erdogan and Sih [28], is a natural and
bvious generalization of Griffith’s [29] original energy release rate
hat explains the extension of cracks in a material (see e.g. [30, p. 41]).
hen, (3c) writes 𝑌 ∈ 𝜕𝜙𝑑

(

[𝜸𝑒, 𝑑]; �̇�
)

or equivalently �̇� ∈ 𝜕𝜙∗
𝑑 ([𝜸𝑒, 𝑑]; 𝑌 )

ith the convex conjugate 𝜙∗
𝑑 . Assuming that 𝜙∗

𝑝 is continuously differ-
ntiable, which is the case for our practical choices of this potential,
hen (3c) expresses as an explicit time-differential equation in terms of
he damage 𝑑:

̇ = ∇𝜙∗
𝑑
(

[𝜸𝑒, 𝑑];
{

−A′(𝑑)𝜸𝑒
}

∶𝜸𝑒
)

(3e)

emark 1 (Undamaged Maxwell Model). Let us choose the damage
otential 𝜙𝑑 = 0. Then, from (3e), assuming 𝑑 = 0 at 𝑡 = 0, the
aterial remains undamaged at any time. Moreover, choosing the

lasticity operator A𝜸𝒆 = 𝐺𝜸𝒆 and the viscoplastic potential 𝜙𝑝(𝜹) =
2 𝑁×𝑁
|𝜹| for any 𝜸𝒆 and 𝜹 ∈ R𝑠 , with 𝐺 > 0 and 𝜂 > 0, then the
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rheological model (2a)–(2b) coincides with the Maxwell viscoelastic
model [31], as extended by Oldroyd [32] in a tensor framework, and
with a characteristic relaxation time equal to 𝜂∕𝐺.

.3. Clausius-Duhem inequality

An equivalent expression of the second principle of thermodynam-
cs, stated in Theorem 1, is the Clausius–Duhem inequality (see e.g. [27,
. 221]), that writes here, since the process is isothermal, as:

= −𝜌�̇� + 𝝈 ∶ �̇� ≥ 0

here 𝑤 denotes the total dissipation. From (1) and (2a), the first term
xpands as:

𝜌�̇� = −𝜌
𝜕𝜓
𝜕𝜸

∶ �̇� − 𝜌
𝜕𝜓
𝜕𝜸𝑝

∶ ̇𝜸𝑝 − 𝜌
𝜕𝜓
𝜕𝑑

�̇� = −𝝈𝑒 ∶ �̇�𝑒 + 𝑌 �̇�

where 𝝈𝑒 is the elastic stress and 𝑌 the strain energy release rate. Then,
using (3a), the dissipation becomes 𝑤 = 2𝜂𝑠|�̇�|2 + 𝝈𝑒 ∶ �̇�𝑝 + 𝑌 �̇�. Observe
that

𝑤𝑝 = 2𝜂𝑠|�̇�|2 + 𝝈𝑒 ∶ �̇�𝑝 = 2𝜂𝑠|𝝈𝑒|2|�̇�|2 + 𝝈𝑒 ∶∇𝜙∗
𝑝([𝑑], 𝝈𝑒) ≥ 0 (4a)

𝑤𝑑 = 𝑌 �̇� = 𝑌 ∇𝜙∗
𝑑
(

[𝜸𝑒, 𝑑]; 𝑌
)

≥ 0 (4b)

where we have used (3b) and (3c). Note that the positivity of both 𝑤𝑝
and 𝑤𝑑 is a direct consequence of the convexity of the two positive
potentials 𝜙𝑝 and 𝜙𝑑 vanishing in zero. Then 𝑤 = 𝑤𝑝 +𝑤𝑑 ≥ 0. The
irst term 𝑤𝑝 represents the dissipation due to viscoplastic effects and
he second one 𝑤𝑑 , the dissipation due to damage. For the present
athematical model, we finally obtain a stronger proposition than the

econd principle (Theorem 1): each of the two contributions to the
issipation are separately positive.

.4. General problem statement

The three constitutive Eqs. (3a), (3d) and (3e) are coupled here
ith the conservation of mass and momentum. The deformation rate �̇�

is identified as the symmetric part of the velocity gradient tensor
𝐷(𝒖) = (∇𝒖 + ∇𝒖𝑇 )∕2, where 𝒖 denotes the velocity of the material and
∇𝒖 =

(

𝜕𝑢𝑖∕𝜕𝑥𝑗
)

1≤𝑖,𝑗≤𝑁 is the gradient of velocity tensor. Conversely, the
time derivative �̇�𝑒 is replaced by the upper-convected tensor deriva-
tive

∇
𝜸𝑒. Assuming a constant density 𝜌, the mass conservation coin-

cides with the incompressibility constraint. The problem expresses as a
system of four equations for four unknowns:

(𝑃 ): find the elastic deformation 𝜸𝑒, the damage 𝑑, the velocity 𝒖 and
the pressure 𝑝 satisfying

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇
𝜸𝑒 +∇𝜙∗

𝑝
(

[𝑑]; A(𝑑)𝜸𝑒
)

−𝐷(𝒖) = 0 (a)
𝜕𝑑
𝜕𝑡

+ (𝒖.∇)𝑑 = ∇𝜙∗
𝑑
(

[𝜸𝑒, 𝑑]; (−A′(𝑑)𝜸𝑒)∶𝜸𝑒
)

(b)

𝜌
( 𝜕𝒖
𝜕𝑡

+ (𝒖.∇)𝒖
)

− div
(

−𝑝𝑰 + 2𝜂𝑠𝐷(𝒖) + A(𝑑)𝜸𝑒
)

= 𝒇 (c)

div 𝒖 = 0 (d)

(5)

where 𝒇 is some given external force applied. This set of equations
is closed by suitable initial and boundary conditions. The material
functions A, 𝜙𝑝 and 𝜙𝑑 are still quite general. In the rest of the paper,
possible choices for these material functions are discussed.

Remark 2 (Objective Tensor Derivatives). Note that, in (5a), a Gordon–
Schowalter [33] tensor derivative could be used instead of the upper-
convected one (see also [27, p. 150])). The Gordon–Schowalter deriva-
tive introduces an additional material parameter that interprets as a
control of the slip of the micro-structure with respect to the macro-
scale frame. Recall that both the upper-convected and the Jaumann
tensor derivatives are obtained as a special case of it. See e.g. [34] for
some discussion about material derivatives in the context of plasticity
of solids in large deformations and [35,36] for some numerical experi-
ences of the Gordon–Schowalter derivative in the context of viscoelastic
fluids.
4

Remark 3 (Plastic Strain Rate). Observe that (1) leads to �̇�𝑒 + �̇�𝑝 = �̇�,
i.e. a decomposition of the deformation rate. Since the deformation
rate �̇� is identified as the symmetric part of the velocity gradient
tensor 𝐷(𝒖) while the elastic deformation rate �̇�𝑒 is replaced by

∇
𝜸𝑒, then,

from the constitutive equation (5a), the plastic deformation rate �̇�𝑝
coincides with ∇𝜙∗

𝑝
(

[𝑑]; A(𝑑)𝜸𝑒
)

. Remark that this plastic deformation
rate mainly depends upon the elastic stress 𝝈𝑒 = A(𝑑)𝜸𝑒. See e.g. [37]
for a discussion on the plastic deformation rate for elastoviscoplastic
materials and its possible dependence upon other fields.

1.5. Example: the BMP thixotropic model

This model, first introduced in [18], combines the Maxwell vis-
coelatic model with the kinetic equation proposed by [38], for de-
struction and construction of structure. It presents three independent
thermodynamic variables: the total deformation 𝜸, the plastic defor-
mation 𝜸𝑝, and the fluidity 𝜑, that has the dimension of the inverse
of a viscosity. The fluidity acts here similarly to the previous damage
variable 𝑑: indeed, it describes the microscopic state of the material.
The free energy and the dissipation potential are given by

𝜓([�̇�]; 𝜸, 𝜸𝑝, 𝜑) =
𝐺
𝜌
|

|

|

𝜸 − 𝜸𝑝
|

|

|

2

+ 𝛼
𝜌

(

𝜑2

2
− 𝜑0𝜑

)

+
𝛽
𝜌

(

𝜑2

2
− 𝜑∞𝜑

)

(𝜸 − 𝜸𝑝)∶ �̇�

(

[𝜑]; �̇�, �̇�𝑝, �̇�
)

= ℐker(tr)(�̇�) + 𝜑−1 |
|

|

�̇�𝑝
|

|

|

2
+
𝑐𝑓
2
�̇�2

where 𝐺, 𝜑0, 𝜑∞, 𝛼, 𝛽 and 𝑐𝑓 are given positive constants with
≤ 𝜑0 < 𝜑∞. Recall the notation with square brackets: it indicates

the dependence of the free energy and the dissipation potential upon
parameters. The ℐker(tr) term imposes a traceless rate of deformation �̇�,
i.e. an incompressible fluid (see Proposition 17 in appendix).

Observe that Theorem 1 applies and then both the second principle
of thermodynamics and the Onsager symmetry are satisfied. Moreover,
results of paragraph 1.3 apply and, from (4a)–(4b), the dissipation
writes 𝑤 = 4𝐺2𝜑|𝜸𝑒|2 + 𝑐𝑓 �̇�2 ≥ 0. Note that 𝑌 = 𝜕𝜙∕𝜕�̇� = 𝑐𝑓 �̇� is the
dual variable associated to the fluidity �̇�. The first term in the expres-
sion of 𝑤 represents the dissipation due to viscoelastic effects and the
second one, those due to changes in the microstructure. Note that both
are positive. To our best knowledge, these results was not yet stated for
the BMP model.

Next, let us expand the constitutive equations. Using 𝜸𝑒 = 𝜸 − 𝜸𝑝, the
constitutive equations write (see [27, p. 223]):

𝝈 = −𝑝𝑰 + 2𝐺𝜸𝑒
0 = −2𝐺𝜸𝑒 + 2𝜑−1(�̇� − �̇�𝑒)

0 = 𝛼(𝜑 − 𝜑0) + 𝛽(𝜑 − 𝜑∞) (𝜸 − 𝜸𝑝)∶ �̇� + 𝑐𝑓 �̇�

here 𝑝 is the pressure that acts as a Lagrange multiplier for imposing
he fluid incompressibility (see Proposition 17 in appendix). These
quations write equivalently

= −𝑝𝑰 + 𝝉
�̇�
𝐺

+ 𝜑𝝉 = 2�̇�

�̇� +
𝜑 − 𝜑0
𝜆

+ 𝑘(𝜑 − 𝜑∞) 𝝉 ∶ �̇� = 0

here we have introduced the notations 𝝉 = 2𝐺𝜸𝑒, 𝜆 = 𝑐𝑓∕𝛼 and
𝑘 = 𝛽∕(𝑐𝑓𝐺). Finally, replacing 2�̇� by𝐷(𝒖) and �̇� by the upper-convected
tensor derivative, we exactly obtain relations (1)-(2) of the BMP model,
as formulated in [18]. See also [39] for a different thermodynamic
approach of the BMP model and [40] for an investigation of the yield

stress limit 𝜑0 = 0.
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2. Practical choices for the material functions

In this section, the previous theoretical framework is instantiated
for building a practical rheological model that combines viscous effects
with elasticity, plasticity and damage. The elasticity is presented first,
with a discussion on the Poisson ratio. Then, plasticity effects are
introduced, with a in-depth exploration of the Drucker–Prager criterion
which describes at the macroscopic level the friction between grains at
the microscopic one. Damage evolution is then introduced, with a yield
criterion similar to the plasticity one. Merging all together, the obtained
rheological model is compared with previous existing models and could
be considered an extension of several of them.

2.1. Choosing the elasticity operator A versus the damage

Here, we assume the material to be isotropic. Then, from [41], the
inear elasticity operator A(𝑑) expresses, for any 𝜹 ∈ R𝑁×𝑁𝑠 , as:

A(𝑑)𝜹 = 2𝐺(𝑑)𝜹 + 𝜆(𝑑)(tr 𝜹)𝑰 (6a)

where 𝜆(𝑑) and 𝐺(𝑑) are the Lamé coefficients of the damaged material
and tr(.) denotes the trace of a matrix. The Lamé coefficients express
equivalently in terms of the elastic modulus 𝐸(𝑑) and the Poisson ratio
𝜈(𝑑) (see e.g. [42, p. 107]):

𝜆(𝑑) =
𝐸(𝑑) 𝜈(𝑑)

(1 + 𝜈(𝑑))(1 − 2𝜈(𝑑))
and 𝐺(𝑑) =

𝐸(𝑑)
2(1 + 𝜈(𝑑))

(6b)

Kachanov [8] defined the damage variable 𝑑 from the elastic mod-
ulus 𝐸(𝑑), assumed to vary linearly versus 1 − 𝑑, i.e.

𝐸(𝑑) = (1 − 𝑑)𝐸0 (6c)

where 𝐸0 > 0 is the elastic modulus associated to the undamaged
material. The simplest choice for the Lamé coefficients would be to
choose them proportional to (1 − 𝑑), with the proportionality constants
i.e. 𝜆(𝑑) = (1 − 𝑑)𝜆0 and 𝐺(𝑑) = (1 − 𝑑)𝐺0 where 𝜆0 and 𝐺0 are the Lamé
coefficients associated to the undamaged material. With this choice,
observe that A(𝑑) = (1 − 𝑑)A(0) and then (−A′(𝑑)𝜸𝑒)∶𝜸𝑒 = 2|𝜸𝑒|2A(0) ≥ 0.

his quantity, involved in the right-hand-side of the damage equa-
ion (3e), represents the elastic energy of the undamaged material.

This simple choice leads to a constant Poisson ratio 𝜈(𝑑), which
s in disagreement with many experimental observations, as pointed
ut by Ju [43]. Indeed, the Poisson ratios is expected to increase
nder increasing damage [44,45], as a result of micro-cracking. For this
eason, this author suggested extending the damage variable 𝑑 from a

scalar to a tensor quantity (see also [46]). See [47] for a discussion
about the variation of the Poisson ratio versus damage. We consider
here the Poisson ratio to depends linearly upon 𝑑 i.e

𝜈(𝑑) = 𝜈0 + (𝜈1 − 𝜈0)𝑑 (6d)

with −1 < 𝜈0 ≤ 𝜈1 < 1∕2. Observe also that when 𝜈1 = 𝜈0, this choice
coincides with the previous one, when are simply 𝜆(𝑑) and 𝐺(𝑑) pro-
ortional to 1 − 𝑑. Otherwise, when 𝜈1 > 𝜈0, then the Poisson ratio is
n increasing function of the damage, which is the expected behavior.

.2. Choosing the viscoplastic potential 𝜙𝑝

The Drucker–Prager [7] plasticity criterion considers the translated
one defined by

𝜇,𝜎𝑦 = {𝝉 ∈ R𝑁×𝑁𝑠 ; |𝐝𝐞𝐯 𝝉| − 𝜎𝑦 ≤
𝜇

√

𝑁
tr 𝝉}

where 𝜎𝑦 is the cohesion and 𝜇 ∈ [0,∞[ is the friction coefficient. The
notation 𝐝𝐞𝐯 𝜹 = 𝜹 − (1∕𝑁)(tr 𝜹)𝑰 represents the deviatoric part of any
matrix 𝜹. This cone is represented in the stress plane on Fig. 2.left.
Its boundary defines a straight line that intercepts the vertical axis at
−
√

𝑁 𝜎𝑦∕𝜇 and has slope
√

𝑁∕𝜇. The angle 𝜃 that this line makes with
the vertical axis is given by 𝜃 = tan−1(𝜇∕

√

𝑁) and is known as the angle
5

Fig. 2. (left) The viscoplastic Drucker–Prager translated cone 𝑇𝜇,𝜎𝑦 . (right) The
Drucker–Prager translated cone 𝑇𝜇,𝜎𝑦 together with experimental data represented by
ircles (from [48], Fig. 13, Baltimore in-situ sea ice station). Adjusted parameters
re 𝜇 = 1∕

√

2 and 𝜎𝑦 = 56 kPa for 𝑁 = 2.

f internal friction [49, p. 90]. Fig. 2.right represents in-situs sea ice ob-
ervation [48] together with the Drucker–Prager cone. When the elastic
tress goes outside of this cone, the material develops irreversible
eformations, and then the elastic stress relaxes and goes back inside
f the cone. Observe for 𝑁 = 2 that 𝜇 ≈ 1∕

√

2 and 𝜃 = tan−1(1∕2) ≈ 27◦.
The viscoplastic part 𝜙𝑝 of the total dissipation potential 𝜙 is then

defined for all 𝜹 ∈ R𝑁×𝑁𝑠 by

𝜙𝑝 ([𝑑]; 𝜹) = 𝜂(𝑑) |𝜹|2 +
(

ℐ−𝑇𝜇,𝜎𝑦

)∗(𝜹) (6e)

The first term represents viscous effects. The second term is the
expression in terms of convex analysis of the classical Drucker–Prager
plasticity criterion [7] with cohesion [50]. This formalism was first
introduced by Saxcé and coworkers [6, p. 1116] for applications to
solid elastoplastic materials. Here, ℐ−𝑇𝜇,𝜎𝑦

denotes the indicator to the
translated Drucker–Prager cone (see Proposition 41). Note that the
evolution equation (3d) for the elastic deformation 𝜸𝑒 involves ∇𝜙∗

𝑝
which is provided by the following result.

Theorem 2 (Viscoplastic Drucker–Prager). Let 𝜙𝑝 be the viscoplastic
Drucker–Prager potential defined by (6e). Its convex conjugate 𝜙∗

𝑝 is con-
tinuous and differentiable, and its gradient ∇𝜙∗

𝑝 is also continuous and
expresses, for all 𝝉 ∈ R𝑁×𝑁𝑠 , as

∇𝜙∗
𝑝(𝝉) =

𝜅𝜇,𝜎𝑦 (𝝉)

2𝜂
(

1 + 𝜇2
)

(

𝝉 −
𝜉𝜇,𝜎𝑦 (𝝉)
√

𝑁 𝜇
𝑰

)

(6f)

where

𝜅𝜇,𝜎𝑦 (𝝉) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 + 𝜇2 when − 𝜇2|𝐝𝐞𝐯 𝝉|
≥ 𝜎𝑦 −

𝜇
√

𝑁
tr 𝝉

1 −

𝜎𝑦 −
𝜇

√

𝑁
tr 𝝉

|𝐝𝐞𝐯 𝝉|
when − 𝜇2|𝐝𝐞𝐯 𝝉|

< 𝜎𝑦 −
𝜇

√

𝑁
tr 𝝉 < |𝐝𝐞𝐯 𝝉|

0 otherwise

(6g)

𝜉𝜇,𝜎𝑦 (𝝉) = min

(

𝜎𝑦,
𝜇 tr 𝝉
√

𝑁
− 𝜇2|𝐝𝐞𝐯 𝝉|

)

(6h)
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Fig. 3. Representation of the viscoplastic constitutive equation �̇�𝑝 = ∇𝜙∗
𝑝 (𝝈𝑒). (top-left) The three flow regimes, depending upon the pressure −tr 𝝈𝑒∕𝑁 . (right) Representation in

he stress plane. (bottom-left) Elevation of the 𝜅𝜇,𝜎𝑦 function in the stress plane.
m
(

𝜸

While the expression (6f) of ∇𝜙∗
𝑝 is quite concise, the proof of

heorem 2 requires some technical developments and is postponed
n Appendix A. The elevation view on Fig. 3.bottom-left shows that 𝜅𝜇,𝜎𝑦
s continuous except at the junction between the three cones and is
ifferentiable except along the cone boundaries. At this junction, the
econd factor in (6f) vanishes and finally, ∇𝜙∗

𝑝 is continuous every-
here. Recall that the potential 𝜙𝑝 involves three parameters: 𝜂, 𝜎𝑦
nd 𝜇. Note that, for simplicity, the dependence of the coefficients 𝜂
nd 𝜎𝑦 upon the damage 𝑑 has been omitted in the statement of this
esult. When 𝜇 = 0, the present potential describes the viscoplastic
ingham constitutive equation (see e.g. [20], eqn (2)):

𝜙∗
𝑝(𝝉) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 −
𝜎𝑦

|𝐝𝐞𝐯 𝝉|

)

𝝉
2𝜂

when |𝐝𝐞𝐯 𝝉| > 𝜎𝑦

0 otherwise

and then, the cohesion 𝜎𝑦 coincides with the usual yield stress. Finally,
in the case 𝜇 = 0, the evolution equation (3d) for �̇�𝑒 coincides with the
elastoviscoplastic model, as introduced in [20].

When 𝜇 > 0, from Theorem 2, the constitutive equation �̇�𝑝=∇𝜙∗
𝑝(𝝈𝑒)

develops three flow regimes, as represented on Fig. 3.top-left. As ex-
pected, in compression and when the elastic stress 𝝈𝑒 belongs to the
Drucker–Prager translated cone (in red on Fig. 3.right), the material
behaves as a solid i.e. the irreversible deformation rate �̇�𝑝 = 0 and
his is the sticking regime. In that case, the material behaves as an
ncompressible Kelvin–Voigt viscoelastic solid and, from (1) and (3a)
e get 𝝈 = −𝑝𝑰 + 2𝜂𝑠�̇� + A𝜸. When the elastic stress 𝝈𝑒 lives outside of

the Drucker–Prager translated cone, material behaves as a fluid, i.e. the
irreversible deformation rate �̇�𝑝 ≠ 0. In that case, the situation is here
more subtle than for Bingham viscoplasticity as there are now still two
distinct flow regimes. When the elastic stress 𝝈 belongs to the blue
6

𝑒

cone on Fig. 3.right, i.e. when the traction is sufficient, this is the losing
contact regime. We then have 𝝈𝑒 = 2𝜂�̇�𝑝 + (𝜎𝑦∕(

√

𝑁 𝜇))𝑰 = A𝜸𝑒 i.e. the
aterial is a viscoelastic fluid of Oldroyd kind. Indeed, from (1) and

3a) we obtain 𝝈 = −𝑝𝑰 + 2𝜂𝑠�̇� + A𝜸𝑒 and, from (5a):

∇
𝑒 +

1
2𝜂

(

A𝜸𝑒 −
𝜎𝑦

√

𝑁 𝜇
𝑰

)

= �̇�

Observe that, in that case, the elastic stress 𝝈𝑒 = A𝜸𝑒 relaxes to
𝜎𝑦∕(

√

𝑁 𝜇)𝑰 which locates on the vertical axis, exactly at the junction
between the three cones on Fig. 3.right. Finally, when the elastic
stress 𝝈𝑒 lives in the white cone between the sticking and the losing con-
tact regions, the material behaves as a complex nonlinear viscoelastic
fluid.

This material could be interpreted in terms of a granular microstruc-
ture suspended in a bulk fluid (see Fig. 3.top-left). In the sticking
regime, the grains are sticking together and the collective behavior
is a solid one. For the sliding regime, the grains are moving while
maintaining frictional contacts. For the losing contact regime, the
microstructure corresponds to a granular gas suspended in a bulk fluid.

Note that the viscoplastic potential 𝜙𝑝 introduced here shares many
similarities with the viscoplastic model developed by Daviet and
Bertails [4] (see also [5]). These authors introduced a truncated cone
(see [4, p. 18], Fig. 2) while the cone 𝑇𝜇,𝜎𝑦 is here not truncated, similar
to those of Saxcé and coworkers [6, p. 1116]. For instance, when 𝜇 = 0,
these authors obtained a variant of the Bingham model with a dilatancy
constraint div 𝒖 ≥ 0.

Finally, let us turn to damage effects. While 𝜇 is considered here as
constant, the viscosity 𝜂 and the cohesion 𝜎𝑦 are assumed to vary upon
the damage as

𝜂(𝑑) = (1 − 𝑑)𝜂0 (6i)
𝜎 (𝑑) = (1 − 𝑑)𝜎 (6j)
𝑦 𝑦0
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Fig. 4. A hierarchy of rheological models, where new models are in blue.
where 𝜂0 > 0 is the viscosity of the undamaged material and 𝜎𝑦0 ≥ 0 its
ohesion. The next paragraph develops the evolution equation for the
amage.

.3. Choosing the brittle-damage potential 𝜙𝑑

A simple damage function — The simplest choice for the dam-
ge potential would be 𝜙𝑑 ([𝑑]; �̇�) = 𝜂𝑑 �̇�2∕(1 − 𝑑) where 𝜂𝑑 ≥ 0 has the

dimension of a viscosity. Recall that 𝑑 and �̇� are considered as inde-
pendent variable: here, the rate �̇� acts as a variable while 𝑑 is a pa-
rameter of the potential. Then 𝜙∗

𝑑 ([𝑑]; 𝑌 ) = (1 − 𝑑)𝑌 2∕(4𝜂𝑑 ) is such that
the Fenchel–Young relation 𝑌 = ∇𝜙𝑑 (�̇�) ⟺ �̇� = ∇𝜙∗

𝑑 (𝑌 ) is satisfied.
Replacing in (3c), we would obtain:

�̇� =
(1 − 𝑑)
2𝜂𝑑

(−A′(𝑑)𝜸𝑒)∶𝜸𝑒

Note that the ratio 𝜂𝑑∕𝐸0 represents a characteristic time associated
o the damage while the 1 − 𝑑 prefactor assures that ∇𝜙∗

𝑑 smoothly van-
shes at the limit 𝑑 = 1. Others expressions of 𝑑 that vanishes at 𝑑 = 1

could be considered similarly. See e.g. [51, p. 211] for alternative
power-law index or [30, chap. 3].

Brittle damage based on a yield criterion — Experimental ob-
servations showed that the previous damage criterion is unrealistic:
damage develops only when the stress goes outside of a given cone. See
again Fig. 2.right that represents in-situs sea ice observation [48]. The
proposed criterion bases again on the translated Drucker–Prager cone.
We now consider that the brittle-damage potential 𝜙𝑑 is expressed by
defining its convex conjugate:

𝜙∗
𝑑
(

[𝜸𝑒, 𝑑]; 𝑌
)

=
(1 − 𝑑) 𝜅𝜇,𝜎𝑐 (A(𝑑)𝜸𝑒)

4𝜂𝑑 (1 + 𝜇2)
𝑌 2 (6k)

where 𝜅𝜇,𝜎𝑐 is expressed by (6g). Here, 𝜎𝑐 is the yield stress in pure
shear, or material cohesion, 𝜇 is the friction coefficient, as for the
Drucker–Prager cone. and 𝜂𝑑 > 0 is a constant that has the dimension
of a viscosity. Observe that 𝜙∗

𝑑 is differentiable and

∇𝜙∗
𝑑
(

[𝜸𝑒, 𝑑]; 𝑌
)
(1 − 𝑑) 𝜅𝜇,𝜎𝑐 (A(𝑑)𝜸𝑒)

2𝜂𝑑 (1 + 𝜇2)
𝑌

The evolution equation (3e) becomes:

�̇� =
(1 − 𝑑) 𝜅𝜇,𝜎𝑐 (A(𝑑)𝜸𝑒) (−A′(𝑑)𝜸𝑒)∶𝜸𝑒 (6l)
7

2𝜂𝑑 (1 + 𝜇2)
where 𝑌 has been replaced by its expression. Note that the ratio 𝜂𝑑∕𝐸0
still represents a characteristic time associated to the damage. This
damage criterion is represented on Fig. 2.right together with in-situs
sea ice observation [48]. When the elastic tensor 𝝈𝑒 = A(𝑑)𝜸𝑒 belongs
to the translated Drucker–Prager cone −𝑇𝜇,𝜎𝑐 , then 𝜅𝜇,𝜎𝑐 (𝝈𝑒) = 0 and,
from (6l), the damage do not develop. Otherwise, 𝜅𝜇,𝜎𝑐 (𝝈𝑒) > 0 and
some damage will occur. For the damage to nicely interact with plastic-
ity, we also assume 𝜎𝑐 ≥ 𝜎𝑦0. Note that, for bidimensional problems,
the Drucker–Prager criterion coincides with the Mohr–Coulomb one,
defined in terms of the two real eigenvalues 𝜎1, 𝜎2 of the elastic stress
(see e.g. [50]). Indeed |𝐝𝐞𝐯𝝈𝑒| =

√

2(𝜎1 − 𝜎2) and 𝐭𝐫 𝝈𝑒 = 𝜎1 + 𝜎2. This
criterion is widely used in models representing the progressive failure
of brittle materials (see e.g. [48]). It recently has been used in the
sea-ice coupled viscoelastic-damage model [9,52].

2.4. The new brittle-elastoviscoplastic model

Let us group the previous choices (6b) for the elasticity operator
and (6e) and (6l) for the viscoplastic and damage the dissipation poten-
tials, respectively. The rheological model is represented on Fig. 1.right.
It shares many similarities with a previous elastoviscoplastic (EVP)
model [20]: it consists in a dash-pot and a dry-friction elements con-
nected in parallel, together with a spring connected in series. The main
differences are (i) the dependence of the rheological parameters upon
the damage variable 𝑑, (ii) the introduction of a Coulomb friction
coefficient 𝜇 and (iii) the Poisson ratio 𝜈(𝑑) for an elastic compress-
ibility. This model shares some similarities with several existing ones,
as shown on Fig. 4. When the damage effects are not considered, the
present model reduces to an elastoviscoplastic model that extends with
a Coulomb friction the authors’ previous one [20], and represented on
the center axis of Fig. 4. When cohesion and friction are not considered
(𝜎𝑦 = 𝜇 = 0), the present model reduces to a brittle-viscoelastic one,
similar to the MEB one [52], and represented on the left side of
Fig. 4. Note that the mathematical structure then shares some simi-
larities with the BMP model, the damage variable being replaced by
the fluidity for the description of thixotropic effects. Both MEB and
BMP reduce to the Maxwell viscoelastic model by neglecting damage
or thixotropy, respectively. Conversely, on the right side of Fig. 4,
when elastic effects are not considered (1∕𝐸 = 0), the present model

reduces to a brittle-viscoplastic material (BVP). This BVP model bases
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Fig. 5. (left) The uniaxial compression experiment. (right) Family of quasi-uniform unstructured meshes.
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on a new Drucker–Prager viscoplastic (DP-VP) model by including
damage effects. This new DP-VP model itself extends the usual Bingham
viscoplastic model and shares many similarities with the Daviet and
Bertails [4] viscoplastic model based on a truncated translated Drucker–
Prager cone (see [4, p. 18], Fig. 2). When neglecting Coulomb friction
(𝜇 = 0), the present model then reduces to the usual incompressible
Bingham model while the Daviet and Bertails one reduces to a dilatant
Bingham (div 𝒖 ≥ 0 while here div 𝒖 = 0).

. Results and discussion

This last section is dedicated to a preliminary exploration of the
reviously obtained model: the uniaxial compression benchmark is
onsidered. The boundary conditions are described and the material
arameters are chosen in order to be representative of applications
n geosciences. Next, numerical approximation parameters, such as
eshes and time step, are introduced. This section closes with an

xploration of the time-dependent solution.

.1. Material parameters and flow conditions

Our aim is to study the interplay between the main nonlinearities
ntroduced by the two dissipation potentials 𝜙𝑝 and 𝜙𝑑 , expressed

by (6e) and (6k), respectively, while the elasticity operator A is given
by (6a). In that purpose, let us consider the transition between an
elastic solid to a damaged elastoviscoplastic material that undergoes
permanent deformations. A simple test-case is considered: the uniaxial
compression of a rectangular sample of an initially undamaged elastic
solid. This benchmark permits to point out both the pre- and post-
failure behavior of materials. Since the flow is slow, inertia terms
could be neglected. Since deformations are small, convective and tensor
upper derivative terms are also neglected. See Appendix B.1 for the
complete problem statement after these simplifications.

The horizontal dimensions of the sample are taken much larger
than its thickness, hence the problem could be considered as two-
dimensional. Let 𝛺 = ]0, 𝐿∕2[×]0, 𝐿[ be the computational domain where
𝐿 > 0 is the characteristic length (see Fig. 5.left) and (0, 𝑥1, 𝑥2) denotes
the Cartesian coordinate system. Compression is applied by prescribing
at any time 𝑡 > 0 a constant vertical velocity, −𝑈 , where 𝑈 > 0, on the
top edge of the plate, while, on the bottom edge, the plate is maintained
by imposing a vertical velocity to zero and no confinement is applied
on the lateral edges:

𝑢2(𝑡, 𝑥1, 𝐿) = −𝑈 and 𝜎12(𝑡, 𝑥1, 𝐿) = 0, ∀𝑥1 ∈ [0, 𝐿∕2]
8

𝑢2(𝑡, 𝑥1, 0) = 0 and 𝜎12(𝑡, 𝑥1, 0) = 0, ∀𝑥1 ∈ [0, 𝐿∕2]
Table 2
Table of physical dimensional (left) and dimensionless (right) parameters.

Parameter Value Dimension

𝐿 200 × 103 m

𝑈 2 × 10−3 m s−1

𝐸0 28 × 106 Pa

𝜎𝑦0 50 × 103 Pa

𝜎𝑐 56 × 103 Pa

𝜂0 1.4 × 1012 Pa s

𝜂𝑠 1.4 × 108 Pa s

𝜂𝑑 2.8 × 108 Pa s

Number Value Expression

𝑊 𝑒 5 × 10−4 U(𝜂𝑠+𝜂0)∕(𝐿𝐸0)

𝑊 𝑒𝑑 10−7 U𝜂𝑑∕(𝐿𝐸0)

𝛾𝑦 1.8 × 10−3 𝜎𝑦0∕𝐸0

𝛾𝑐 2 × 10−3 𝜎𝑐∕𝐸0

𝜈0 0.30

𝜈1 0.49

𝜇 0.7

1-𝛼 10−4

𝜎11(𝑡, 𝑥1, 𝑥2) = 𝜎12(𝑡, 𝑥1, 𝑥2) = 0, ∀𝑥1 ∈ {0, 𝐿∕2}, 𝑥2 ∈ [0, 𝐿]

The initial conditions for both the elastic deformation 𝜸𝑒 and the
damage 𝑑 are zero.

Recall that the practical choices for A, 𝜙𝑝 and 𝜙𝑑 are given by (6k),
(6e) and (6k), respectively. A dimensionless analysis (see Appendix B.2)
shows that there are eight dimensionless numbers involved in the
problem: 𝑊 𝑒, 𝑊 𝑒𝑑 , 𝛾𝑦, 𝛾𝑐 , 𝜈0, 𝜈1, 𝜇 and 𝛼, given in Table 2 together with
ractical values for the dimensional parameters. Dimensional values are
hosen in order to be representative of a natural quasi-brittle material
rock or ice). Indeed, such large values for 𝐿 and 𝑈 correspond to

geophysical applications. Values for both the friction coefficient 𝜇 and
the damage yield stress parameter 𝜎𝑐 base on experimental measure-
ments on the Baltimore in-situ sea ice station presented on Fig. 2. The
viscoplastic cohesion 𝜎𝑦0 is about 10% smaller than 𝜎𝑐 in order for the
viscoplastic cone 𝑇𝜇,𝜎𝑦 to be included in the damage one 𝑇𝜇,𝜎𝑐 . The
elastic modulus 𝐸0 and the Poisson ratio 𝜈0 are also representative of
some undamaged rocks and ice, while 𝜈1, associated to a fully damaged
one, is close to 1∕2. See [47] for a thorough discussion about the
variation of the Poisson ratio versus damage. The characteristic time
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Fig. 6. Averaged value of (top-left) the viscoplastic dissipation 𝑤𝑝 ; (top-right) the damage dissipation 𝑤𝑑 ; (bottom-left) the viscoplastic deformation rate |�̇�𝑝| ; (bottom-right) the
amage rate.
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or damage propagation 𝜂𝑑∕𝐸0 is much smaller than both the time
cale 𝐿∕𝑈 of loading and the time scale 𝜂0∕𝐸0 of viscoelasticity and
he viscosities 𝜂0 and 𝜂𝑑 are chosen accordingly. This large separation
f scales ensures quasi-static conditions for damage. Finally, note that
he fully damaged material (𝑑 = 1) is represented here by a Newtonian
luid with a very weak viscosity 𝜂𝑠, i.e. 𝜂𝑠 is small compared to 𝜂0.

Observe that the geometry of the material is symmetric: this uniaxial
ompression problem admits several solutions, e.g. left- or right-shaped
olutions. Conversely, asymmetric geometries or the presence or mate-
ial heterogeneities suppress this indetermination. A typical example of
uch non-unicity of the solution is the buckling of a beam. Here, both
he viscoplastic 𝜎𝑦0 cohesion and its damage counterpart 𝜎𝑐 are assumed
o contain an uniform random spatial heterogeneity of 30% around
heir respective mean values. The final computational time 𝑡𝑓 is chosen
ufficiently large for the post-failure to be reached: (𝑈∕𝐿)𝑡𝑓 = 3×10−2.

.2. Space and time discretizations

The flow domain is discretized by a family of quasi-uniform un-
tructured meshes composed of triangular elements and generated by
he gmsh mesh generator [53]. The characteristic mesh size is denoted
9

able 3
able of numerical parameters.

h/L # elements (U/L)Δ t # time steps

1/20 508 1.2 × 10−5 2500

1/40 2 064 0.6 × 10−5 5000

1/80 8 518 0.3 × 10−5 10000

1/160 33 858 1.5 × 10−6 20000

as ℎ: 𝐿∕ℎ is the number of elements along the vertical edge of the di-
mensionless computational domain. Computations are performed with
both ℎ = 𝐿∕20, 𝐿∕40, 𝐿∕80 and 𝐿∕160 (see Fig. 5.right). The time step
𝛥𝑡 is chosen in order to solve the smallest dimensionless time scale
associated to damage. For the first mesh, associated with ℎ = 𝐿∕20,
we choose (𝑈∕𝐿)𝛥𝑡 = 1.2×10−5. Then, the time step is divided by two
for each mesh refinement, as shown on Table 3. The system of equation
is then solved by a numerical algorithm postponed in Appendix B and
implemented by using the Rheolef finite elements [54]. Note that the
mesh size grows by a factor four at each mesh refinement while the
number of time steps grows by a factor two. Thus, the computing time

is expected to grow at least by a factor eight at each refinement. Indeed,
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Fig. 7. Isocontours of the solution for increasing mesh resolution: (top) damage 𝑑 at the end of the failure regime (𝛾 = 𝛾3) ; (bottom) norm of the deformation rate |�̇�| at the end
of the process (𝛾 = 0.03).
the resolution on a workstation running ten CPUs (Intel-9 at 3.70 GHz)
requires about 7 mn on the first mesh and about 70 hours for the fourth
one: the effective growth factor of computing time for each refinement
is of about 8.4.

3.3. Interpretation of the solutions

Recall that the dissipation splits as 𝑤 = 𝑤𝑝 +𝑤𝑑 , where 𝑤𝑝 and 𝑤𝑑
are its two positive contributions, associated respectively to viscoplas-
ticity and damage and defined by (4a)–(4b). Fig. 6 plots the aver-
aged value of these two terms during all the process. The averaged
quantities, denoted as 𝑤𝑝 and 𝑤𝑑 , are simply defined by

𝑤𝛽 (𝑡) =
1

meas(𝛺) ∫𝛺
𝑤𝛽 (𝑡,𝒙) d𝑥, 𝛽 ∈ {𝑝, 𝑑}

For convenience, a dimensionless time 𝛾 = (𝑈∕𝐿)𝑡 is introduced.
Note that, in the context of the present uniaxial compression bench-
mark, 𝛾 interprets as the amplitude of the deformation on the top
boundary, which justifies the notation. Also 𝜂𝑡𝑜𝑡 = 𝜂𝑠 + 𝜂0 denotes the
total viscosity. Observe first on Fig. 6 that 𝑤𝑝 and 𝑤𝑑 present similar
global variations, while the maximums differ by about one order of
magnitude. Let us study with details the different flow regimes.

(i) For small times, the elastic stress 𝝈𝑒 is still small, it belongs to
the translated Drucker–Prager cone 𝑇 . Thus, the viscoplastic
10

𝜇,𝜎𝑦
deformation rate �̇�𝑝 is zero (Fig. 6.bottom-left) and, from (1),
we get �̇� = �̇�𝑒. Then, from its definition (4a), the viscous dissi-
pation 𝑤𝑝 reduces to bulk viscous effects i.e. 𝑤𝑝 = 2𝜂𝑠|�̇�|2, which
is small, as shown on Fig. 6.top-left, since both 𝜂𝑠 and �̇� are
small. Next, observe on Fig. 6.top-right that 𝑤𝑑 = 0. Indeed,
since 𝜎𝑦 < 𝜎𝑐 , we have 𝝈𝑒 ∈ 𝑇𝜇,𝜎𝑦 ⊂ 𝑇𝜇,𝜎𝑐 and then damage is not
yet able to develop. It means that, during this first regime, the
material behaves as an undamaged solid Kelvin–Voigt viscoelastic
one. Moreover, since the bulk viscosity 𝜂𝑠 is small, the behavior
is close to those of a pure solid elastic and undamaged material:
this is the quasi-elastic flow regime.

(ii) This first regime stops at the dimensionless time 𝛾1 ≈ 5.16×10−3

when a first plastic even appears and a viscoplastic deforma-
tion �̇�𝑝 starts to develop. Indeed, the elastic stress 𝝈𝑒 goes outside
of the translated Drucker–Prager cone 𝑇𝜇,𝜎𝑦 . Note that, during
this second flow regime, 𝝈𝑒 still lives inside second translated
Drucker–Prager cone 𝑇𝜇,𝜎𝑐 associated to damage. Recall that 𝜎𝑐 >
𝜎𝑦 and then 𝑤𝑝 = 0 i.e. the material is still undamaged. This
regime stops at 𝛾2 ≈ 5.73×10−3 when a first damage even ap-
pears (Fig. 6.top-right). Here, 𝜎𝑐 is only 10% larger than 𝜎𝑦 and
then, this second flow regime is short. Since �̇�𝑝 ≠ 0 the material
behaves as an undamaged elastoviscoplastic one. Both the two
quasi-elastic and elastoviscoplastic flow regimes correspond to a
global pre-failure regime.
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Fig. 8. (left) Averaged value of normal stress on the top boundary ; (right) On the deformed geometry, separation line of the solid/fluid together with isocontours of |�̇�| at the
end of the process (𝛾 = 0.03).
(iii) The third flow regime starts at 𝛾2, when a first damage even
appears. Now, the elastic stress 𝝈𝑒 lives outside of the second
translated Drucker–Prager cone 𝑇𝜇,𝜎𝑐 . Observe on Fig. 6 the fast
grown of both the damage dissipation 𝑤𝑑 and the damage rate �̇�.
Both viscoplastic 𝑤𝑝 and damage 𝑤𝑑 dissipation grow in this third
flow regime: this is the failure regime.

(iv) The fourth and last flow regime starts at 𝛾3 ≈ 1.83×10−2 when
both 𝑤𝑑 and 𝑤𝑝 reach a maximum and start a fast decrease: this
is the post-failure regime.

After this interpretation of the process in terms of global flow
regimes, let us turn to a local representation of the solution. Fig. 7
shows the isocontours of the damage 𝑑 at 𝛾3, when the damage rate
is maximum, and of the deformation rate |�̇�| at the end of the process
(𝛾 = 0.03). Observe the correspondence of the localization for these two
quantities: damage develops where stress and deformation are impor-
tant and, correspondingly, the deformation rate localizes in damaged
regions. For all the four meshes, the corresponding numerical solution
are represented.

First, observe that the damage 𝑑 develops a dense network of frac-
ture at all scales: the finer the mesh is, the denser the fracture network
appears, with new small scales features. As a result, the network of
fracture presents a fractal-like pattern. See [52, p. 1354] for a thorough
analysis of scale invariance for such damage processes. Simultaneously,
observe on the |�̇�| maps that the deformation rate localizes and tends
to collapse on few main fractures that enforce the existing damage in a
coupled mechanism. Second, observe that the main localization of the
deformation rate �̇� develops from top-right to bottom-left for the second
mesh ℎ = 𝐿∕40, while solutions based on other meshes present an
alternative direction. The mesh-based space discretization introduces
an additional heterogeneity that induces a different direction for the
main failure. Recall that the behavior of approximate solutions depends
upon all local heterogeneities, including the mesh discretization. Third,
observe on Fig. 7.right the direction of the localization for both the
damage and the deformation: the present model predicts an angle of
about 30◦ with the vertical axis, which is in good agreement with
experimental observations (see e.g. [49], pages 76 and 88). This could
be considered as an improvement of a previous work on the MEB
11
model, where an angle of about 40◦ was predicted (see [52], Fig. 5
p. 1352).

The behavior of the material on the top boundary, where the
normal velocity is imposed, is of major importance: the normal stress
component 𝜎𝑦𝑦 on the top boundary of the domain is averaged as

𝜎𝑛(𝑡) =
2
𝐿 ∫

𝐿∕2

𝑥=0
𝜎22(𝑡, 𝑥1, 𝐿)d𝑥1

Fig. 8.left shows that 𝜎𝑛 grows linearly during the first regime, as
expected. In the second flow regime, the stress continues to increase,
and reaches a maximum in the third flow regime. The last regime is
related to a fast decrease of the normal stress: cracks collapse and the
deformation localizes on global directions that cross all the domain.

Finally, Fig. 8.right shows the deformed geometry at the end of
the process (𝛾 = 0.03) together with the isoline separating the fluid
and solid regions. Recall that, in the solid regions, the material is not
rigid: it behaves as a Kelvin–Voigt viscoelastic solid. Observe that the
geometry is now spitted in several bricks separated by cracks. The
grayscale represents the norm |�̇�| of the deformation rate.

The results presented on Figs. 6, 7 and 8.left show a convergence
versus mesh refinement that looks random to a certain extent, e.g. for
the location of fluid regions during the last flow regime. Recall that
the geometry of the material is symmetric: this uniaxial compression
problem admits several solutions, e.g. left- or right-shaped solutions
and a typical similar problem is the buckling of a beam. The introduc-
tion of material heterogeneities suppresses this indetermination: here,
both the viscoplastic 𝜎𝑦0 cohesion and its damage counterpart 𝜎𝑐 are
assumed to contain an uniform random spatial heterogeneity of 30%
around their respective mean values. Finally, note that others kind of
data heterogeneities could be introduced similarly: instead of 𝜎𝑦0 and
𝜎𝑐 cohesions, we could consider varying e.g. boundary conditions. The
unstructured mesh-based discretization also introduces an additional
kind of heterogeneity. Observe first that global quantities such as those
shown on Fig. 6 clearly converge with mesh refinement until time 𝛾3:
during the last flow regime, Figs. 6 and 8.left show that the behavior
is only qualitatively similar when changing the mesh. Indeed, during
the last flow regime, the process is characterized by the formation of
local bricks separated by cracks, as shown on Fig. 8.right, and these
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features are sensible to the local heterogeneities of both 𝜎𝑦0 and 𝜎𝑐 .
Nevertheless, some mesoscale features, such as the 30◦ angle for the
direction of the localization for both the damage and the deformation,
appear to be robust with mesh refinement, as shown on Fig. 7.

Conclusion and perspectives

A new brittle-elastoviscoplastic (BEVP) fluid model is presented in
this paper. This model is relatively simple to use, as it contains few
material parameters and a simple fixed-point algorithm is effective
for solving the coupled system of equations. The model combines
some existing fundamental features such as elasticity, plasticity and
brittle damage. The combination of them bases on thermodynamics
that ensures the positivity of the dissipation and the Onsager symmetry.
Moreover, thermodynamics points out the link between thixotropy and
damage in the context of elastoviscoplastic (EVP) fluids. Theoretical
results on the Drucker–Prager plasticity criterion are completed in order
to use it for general EVP fluids. Preliminary results with the proposed
BEVP model are very encouraging. Indeed, the model allows both the
representation of the pre-failure, failure and post-failure behavior of
quasi-brittle materials. Future works will consider applications in geo-
sciences, namely sea ice flows and earthquake modeling. Finally, the
new theoretical results on Drucker–Prager plasticity presented in this
paper open new paths for the mathematical modeling of a large class
of materials that presents microstructure of particles with frictional
contacts and large scale rearrangements, e.g. dry or wet granular flows,
concentrated suspensions and rocks and cements undergoing large and
unbounded deformations.
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Appendix A. Convex analysis applied to viscoplasticity

The aim of this appendix is to present the complete proof of The-
orem 2, in a self-contained way. This appendix starts with several
well-known results from convex analysis due to Rockafellar [55] and
Moreau [56]. Next, new results are established concerning von Mises
and Drucker–Prager plasticity criteria. These new results extend pre-
vious works from Saxcé and coworkers [6] and Daviet [5, app. A] on
Drucker–Prager plasticity.

A.1. Notations and definitions

Let 𝑁 ≥ 1 be the physical space dimension. The space of symmetric
real 𝑁×𝑁 matrix is denoted by R𝑁×𝑁𝑠 . Its scalar product is 𝜹∶𝝉 for all
𝜹, 𝝉 ∈ R𝑁×𝑁𝑠 and |𝜹| = (𝜹∶𝜹)

1
2 is the associated norm.

Definition 4 (Convex Set). A set 𝐶 ⊂ R𝑁×𝑁 is convex when

𝜃𝜹1 + (1 − 𝜃)𝜹2 ∈ 𝐶, ∀𝜹1, 𝜹2 ∈ 𝐶, ∀𝜃 ∈ [0, 1]

The set 𝐶 is strictly convex if and only if

𝜃𝜹1 + (1 − 𝜃)𝜹2 ∈ int(𝐶), ∀𝜹1, 𝜹2 ∈ 𝐶, 𝜹1 ≠ 𝜹2, ∀𝜃 ∈ ]0, 1[

where int(𝑆) = 𝑆∖𝜕𝑆 denotes the interior of 𝑆.
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F

Definition 5 (Convex Function). A function 𝜑 ∶ R𝑁×𝑁 → R is convex if
nd only if

(𝜃𝜹1 + (1 − 𝜃)𝜹2) ≤ 𝜃𝜑(𝜹1) + (1 − 𝜃)𝜑(𝜹2), ∀𝜹1, 𝜹2 ∈ R𝑁×𝑁 , ∀𝜃 ∈ [0, 1]

The function 𝜑 is strictly convex if and only if

𝜑(𝜃𝜹1 + (1 − 𝜃)𝜹2) < 𝜃𝜑(𝜹1) + (1 − 𝜃)𝜑(𝜹2), ∀𝜹1, 𝜹2 ∈ R𝑁×𝑁 ,

𝜹1 ≠ 𝜹2, ∀𝜃 ∈ ]0, 1[

efinition 6 (Proper Function). For any function 𝜑 ∶ R𝑁×𝑁 → R, let

dom(𝜑) =
{

𝜹 ∈ R𝑁×𝑁 ∕ 𝜑(𝜹) <∞
}

Then, 𝜑 is said to be proper if and only if

dom(𝜑) ≠ ∅ and 𝜑(𝜹) ≠ −∞, 𝜹 ∈ R𝑁×𝑁

Definition 7 (Closed Function). For any function 𝜑 ∶ R𝑁×𝑁 → R, let
us introduce the epigraph of 𝜑, defined by

epi(𝜑) =
{

(𝜹, 𝑧) ∈ R𝑁×𝑁×R ∕ 𝜑(𝜹) ≤ 𝑧
}

Then, 𝜑 is said to be closed if and only if the set epi(𝜑) is closed.

Definition 8 (Lower Semi-Continuous Function). A function 𝜑 ∶ R𝑁×𝑁 →
R is said to be lower semi-continuous at 𝜹0 ∈ R𝑁×𝑁 if and only if

∀𝜀 > 0, ∃𝛼 > 0 such that |𝜹 − 𝜹0| < 𝛼 ⇒ 𝜑(𝜹) ≥ 𝜑(𝜹0) − 𝜀, ∀𝜹 ∈ R𝑁×𝑁

roposition 9 (Lower Semi-Continuous). The following propositions are
equivalent

• 𝜑 is lower semi-continuous
• 𝜑 is closed
• the set

{

𝜹 ∈ R𝑁×𝑁 ∕ 𝜑(𝜹) ≤ 𝑧
}

is closed for all 𝑧 ∈ R.

Proof. See [56], paragraph 4.a. ■

Definition 10 (Indicator). Let 𝐶 ⊂ R𝑁×𝑁𝑠 . Then, the indicator to 𝐶,
denoted by ℐ𝐶 is defined for all 𝜹 ∈ R𝑁×𝑁𝑠 by

ℐ𝐶 (𝜹) =

{

0 when 𝜹 ∈ 𝐶

+∞ when 𝜹 ∉ 𝐶

Proposition 11 (Indicator).

ℐ𝐶 is convex ⟺ 𝐶 is convex
ℐ𝐶 is proper ⟺ 𝐶 ≠ ∅

ℐ𝐶 is closed ⟺ 𝐶 is closed

A.2. Subdifferentials

Lemma 12 (Differentiable Convex Function). Let 𝐸 ⊂ R𝑁×𝑁 and
𝜑 ∶ 𝐸 → R be a differentiable convex function. Then

𝜑(𝜹0) +
𝜕𝜑
𝜕𝜹

(𝜹0)∶(𝜹 − 𝜹0) ≤ 𝜑(𝜹), ∀𝜹, 𝜹0 ∈ 𝐸 (A.1)

roof. See [57, p. 24], proposition 5.4. ■

Definition 13 (Subdifferential). Let 𝜑 ∶ R𝑁×𝑁 → R be a convex
unction and 𝜹0 ∈ R𝑁×𝑁 . If there exists 𝝉 ∈ R𝑁×𝑁 such that

(𝜹0) + 𝝉 ∶(𝜹 − 𝜹0) ≤ 𝜑(𝜹), ∀𝜹 ∈ R𝑁×𝑁

hen 𝝉 is a subdifferential of 𝜑 at 𝜹0.
The subdifferential at 𝜹0, denoted by 𝜕𝜑(𝜹0), is the set of all subdif-

erentials at 𝜹0.
It interprets as a generalization of the usual derivative and it co-

ncides with the convex envelop of all directional derivatives (see
ig. A.9.left).
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Theorem 3 (Subdifferential of a Sum). Let 𝜑1, 𝜑2 ∶ R𝑁×𝑁 → R be two
onvex functions.

If there exists 𝜹0 ∈ dom(𝜑1) ∩ dom(𝜑2) such that 𝜑1 is continuous at 𝜹0,
hen

(𝜑1 + 𝜑2) = 𝜕𝜑1 + 𝜕𝜑2

roof. See [56], proposition 10.7, page 62. It always holds
(𝜑1 + 𝜑2) ⊂ 𝜕𝜑1 + 𝜕𝜑2, but the additional condition is required for the
quality to be achieved. ■

orollary 14 (Subdifferential of Sum). Let 𝜑,𝜓 ∶ R𝑁×𝑁 → R be two
convex functions with 𝜑 proper and closed.

If int(dom(𝜑)) ∩ dom(𝜓) ≠ ∅ then

𝜕(𝜑 + 𝜓) = 𝜕𝜑 + 𝜕𝜓

Proof. From Theorem 3. ■

Corollary 15 (Subdifferentials and Equality). Let 𝜑,𝜓 ∶ R𝑁×𝑁 → R
be two convex functions such that 𝜕𝜑(𝛿) ⊂ 𝜕𝜓(𝛿) for all 𝜹 ∈ R𝑁×𝑁 . Then 𝜑
nd 𝜓 differ from a finite constant.

roof. See [56], paragraph 10.j, page 70. ■

roposition 16 (Subdifferential and Affine Map). Let F ∶ R𝑁×𝑁 → R𝑁×𝑁
e and affine map, i.e. F(𝜹) = A∶𝜹 + 𝑭 ∗, for all 𝜹 ∈ R𝑁×𝑁 and where A

is a fourth-order tensor and 𝑭 ∗ ∈ R𝑁×𝑁 . Let 𝜑 ∶ R𝑁×𝑁 → R be a convex
function.

∙ Then, for all 𝜹 ∈ R𝑁×𝑁

𝜕(𝜑◦F)(𝜹) ⊃ A𝑇 ∶𝜕𝜑(F(𝜹))

where A𝑇 denotes the transpose of A.
∙ Moreover, if 𝜑 is proper and closed, and if there exists 𝜹∗ ∈ dom(𝜑◦F)

such that 𝜑 is continuous at F(𝜹∗), then, for all 𝜹 ∈ R𝑁×𝑁

𝜕(𝜑◦F)(𝜹) = A𝑇 ∶𝜕𝜑(F(𝜹))

roof. See [5], page 215, property A.12. ■

roposition 17 (Indicator to Deviatoric and Spherical Matrix). Let us
onsider the following sets:

ker(tr) =
{

𝜹 ∈ R𝑁×𝑁 ; tr 𝜹 = 0
}

er(𝐝𝐞𝐯) =
{

𝝉 ∈ R𝑁×𝑁 ; 𝐝𝐞𝐯 𝝉 = 0
}

= {𝑝𝑰 ; 𝑝 ∈ R}

hen
∗
ker(tr) = ker(𝐝𝐞𝐯) and ∗

ker(𝐝𝐞𝐯) = ker(tr)

ker(tr) = ker(𝐝𝐞𝐯) and 𝜕ker(𝐝𝐞𝐯) = ker(tr)
13
Proof. Observe first that both ker(tr) and ker(𝐝𝐞𝐯) are convex cones, as
introduced in Definition 20. Then, from Proposition 23, the conjugate
is the indicator to the polar, and from by Definition 22 of the polar:
(ker tr)◦ = ker(𝐝𝐞𝐯) and (ker 𝐝𝐞𝐯)◦ = ker(tr).

Next, from Proposition 26.c, we have 𝜕ker(tr) = 𝒩ker(tr) and, from
Definition 24, we easily check that 𝒩ker(tr) = ker(𝐝𝐞𝐯). Finally, the last
computation of 𝜕ker(𝐝𝐞𝐯) is similar. ■

A.3. Convex conjugate

Definition 18 (Convex Conjugate). Let 𝜑 ∶ R𝑁×𝑁 → R be a
convex function. The convex conjugate of 𝜑 also called the Legendre
transformation of 𝜑, denoted by 𝜑∗, is defined for all 𝝉 ∈ R𝑁×𝑁 by

𝜑∗(𝝉) = sup
𝜹∈R𝑁×𝑁

𝜹∶𝝉 − 𝜑(𝜹)

Proposition 19 (Convex Conjugate). The convex conjugate 𝜑∗ of a convex
function 𝜑 is always convex and closed. Moreover, if 𝜑 is proper and closed,
then 𝜑∗∗ = 𝜑 i.e. it is equal to its biconjugate.

Proof. See [56], paragraphs 6.b and 6.d. ■

Theorem 4 (Fenchel–Young Relations). For any convex function 𝜑 ∶
R𝑁×𝑁 → R, and all 𝜹, 𝝉 ∈ R𝑁×𝑁 , we have

(𝜹) + 𝜑(𝝉) ≥ 𝜹∶𝝉

Moreover, if 𝜑 is proper and closed:

(𝜹) + 𝜑(𝝉) = 𝜹∶𝝉 ⟺ 𝝉 ∈ 𝜕𝜑(𝜹) ⟺ 𝜹 ∈ 𝜕𝜑∗(𝝉)

Proof. From Definition 18 of the convex conjugate:

𝜑(𝜹)+𝜑∗(𝝉) = 𝜑(𝜹)+ sup
𝝁∈R𝑁×𝑁

(

𝝁∶𝝉−𝜑(𝝁)
)

≥ 𝜑(𝜹)+
(

𝜹∶𝝉−𝜑(𝜹)
)

= 𝜹∶𝝉

Then

𝜑(𝜹) + 𝜑∗(𝝉) = 𝜹∶𝝉 ⟺ 𝜑∗(𝝉) = 𝜹∶𝝉 − 𝜑(𝜹)
⟺ 𝝁∶𝝉 − 𝜑(𝝁) ≤ 𝜹∶𝝉 − 𝜑(𝜹), ∀𝝁 ∈ R𝑁×𝑁

⟺ 𝜑(𝜹) + (𝝁 − 𝜹)∶𝝉 ≤ 𝜑(𝝁), ∀𝝁 ∈ R𝑁×𝑁

⟺ 𝝉 ∈ 𝜕𝜑(𝜹)

The second part of the equivalence is obtained, when 𝜑 is proper
and closed, by replacing 𝜑 by 𝜑∗ and using 𝜑∗∗ = 𝜑 from Proposi-
tion 19. ■

A.4. Convex and normal cones

Definition 20 (Convex Cone). A subset 𝐾 ⊂ R𝑁×𝑁 is a convex cone if
and only if 𝑎1𝜹1 + 𝑎2𝜹2 ∈ 𝐾 for all 𝜹1, 𝜹2 ∈ 𝐾 and 𝑎1, 𝑎2 ≥ 0.
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Proposition 21 (Convex Cone). Let 𝐾 ⊂ R𝑁×𝑁 be convex cone. Then
∈ 𝐾 if and only if 𝐾 ≠ ∅.

roof. Assume that 𝐾 ≠ ∅. Then, from the definition of the convex
one and taking zero coefficients, we obtain 0 ∈ 𝐾. ■

efinition 22 (Polar and Dual Cones). For all convex cone 𝐾 ⊂ R𝑁×𝑁 ,
e define the polar cone 𝐾◦ and the dual cone 𝐾∗ by
◦ = {𝝉 ∈ R𝑁×𝑁 ; 𝜹∶𝝉 ≤ 0, ∀𝜹 ∈ 𝐾}
∗ = −𝐾◦

roposition 23 (Convex Conjugate of the Indicator to a Convex Cone).
Let 𝐾 ≠ ∅ be a convex cone. Then
(

𝐾
)∗ = 𝐾◦

Proof. Following Definition 18 of the convex conjugate, we have, for
ll 𝜹, 𝝉 ∈ R𝑁×𝑁 :

𝐾
)∗ (𝝉) = sup

𝜹∈R𝑁×𝑁

(

𝜹∶𝝉 − 𝐾 (𝜹)
)

= sup
𝜹∈𝐾

𝜹∶𝝉

As 𝐾 is a non-empty cone, then 0 ∈ 𝐾, from Proposition 21, and
then, from the previous relation,

(

𝐾
)∗ (𝝉) ≥ 0. Moreover, if 𝜹0 ∈ 𝐾

uch that 𝜹0 ∶𝝉 > 0, then, for all 𝛽 ≥ 0, we can choose 𝛼 = 𝛽∕(𝜹0 ∶𝝉) and
we have both (𝛼𝜹0)∶𝝉 = 𝛽 ≥ 0 and 𝛼𝜹0 ∈ 𝐾. By taking the supremum on
any 𝛽 ≥ 0, we obtain

(

𝐾
)∗ (𝝉) = ∞. This means

(

𝐾
)∗ (𝝉) =

{

∞ when ∃𝜹0 ∈ 𝐾 ∕ 𝜹0 ∶𝝉 > 0

0 othewise

}

=

{

∞ when 𝝉 ∈ 𝐾◦

0 othewise

}

= 𝐾◦

rom Definition 22 of the polar. ■

efinition 24 (Normal Cone). Let 𝐶 ⊂ R𝑁×𝑁𝑠 be a convex set. Then, the
normal cone to 𝐶, denoted by 𝒩𝐶 is defined for all 𝜹 ∈ R𝑁×𝑁𝑠 by (see
Fig. A.9.right):

𝒩𝐶 (𝜹) =
⎧

⎪

⎨

⎪

⎩

{

𝝉 ∈ R𝑁×𝑁𝑠 ; (𝝃 − 𝜹)∶𝝉 ≤ 0, ∀𝝃 ∈ 𝐶
}

when 𝜹 ∈ 𝐶

∅ when 𝜹 ∉ 𝐶

Remark 25 (Normal Cone). The name normal cone takes its origin from
the fact that it belongs to the class of convex cones, which possesses
interesting properties with respect to the convex conjugate.

We can easily check that 𝒩𝐶 (𝜹) = {0} when 𝜹 ∈ int(𝐶). Conversely,
when 𝜹 ∈ 𝜕𝐶, the normal cone 𝒩𝐶 (𝜹) interprets as the cone of outward
normals to 𝐶, as shown on Fig. A.9.right.

Proposition 26 (Normal Cone). Let 𝐶 ⊂ R𝑁×𝑁𝑠 be a convex set and any
𝜹 ∈ R𝑁×𝑁𝑠 . We have:

1. 0 ∈ 𝒩𝐶 (𝜹) ⟺ 𝜹 ∈ 𝐶
2. if 𝐶 ≠ ∅ then 𝒩𝐶 (𝜹) = 𝜕ℐ𝐶 (𝜹)
3. if 𝜹 ∈ int(𝐶) then 𝒩𝐶 (𝜹) = {0}

Proof. 1. is trivial from the definition of the normal cone.
2. if 𝐶 ≠ ∅ then ℐ𝐶 is proper. Assume first 𝜹 ∉ 𝐶. Then

𝐶 (𝜹) = 𝜕ℐ𝐶 (𝜹) = ∅. Next, assume 𝜹 ∈ 𝐶. Then

∈ 𝜕ℐ𝐶 (𝜹) ⟺ ℐ𝐶 (𝝃) ≥ ℐ𝐶 (𝜹) + (𝝃 − 𝜹)∶𝝉 , ∀𝝃 ∈ R𝑁×𝑁𝑠

⟺ ℐ𝐶 (𝝃) ≥ (𝝃 − 𝜹)∶𝝉 , ∀𝝃 ∈ R𝑁×𝑁𝑠

⟺ 0 ≥ (𝝃 − 𝜹)∶𝝉 , ∀𝝃 ∈ 𝐶
14

⟺ 𝝉 ∈ 𝒩𝐶 (𝜹)
3. Let 𝜹 ∈ int(𝐶). There exists 𝜀 > 0 such that ℐ𝐶 (𝜹) is zero on
he closed ball 𝐵(𝜹, 𝜀). Then ℐ𝐶 (𝜹) is Gâteaux-differentiable at 𝜹 and
ℐ𝐶 (𝜹) = 0. Then 𝜕ℐ𝐶 (𝜹) = {0}. ■

roposition 27 (Normal Cone to a Convex Cone). Let 𝐾 be a convex
cone. Then, the normal cone 𝒩𝐾 admits the following expression, for all
∈ 𝐾:

𝒩𝐾 (𝜹) =

{

𝐾◦ ∩ {𝜹}⟂ when 𝜹 ∈ 𝐾

∅ when 𝜹 ∉ 𝐾

roof. The second case holds for any normal cone on any convex set.
et us prove the first one. Let 𝜹 ∈ 𝐾 and 𝝉 ∈ 𝒩𝐾 (𝜹). By definition, we
ave

𝝃 − 𝜹)∶𝝉 ≤ 0, 𝝃 ∈ 𝐾

hoosing 𝝃 = 0 ∈ 𝐾 we get −𝜹∶𝝉 ≤ 0. Next, choosing 𝝃 = 2𝜹 ∈ 𝐾 we get
lso 𝜹∶𝝉 ≤ 0. Then 𝜹∶𝝉 = 0 or equivalently 𝝉 ∈ {𝜹}⟂. Moreover, for all
= 0 ∈ 𝐾, we have 𝜹 + 𝜻 = 0 ∈ 𝐾 and then 𝜻 ∶𝝉 ≤ 0 i.e. 𝝉 ∈ 𝐾◦. Thus,

we have 𝒩𝐾 (𝜹) ⊂ 𝐾◦ ∩ {𝜹}⟂. Now, let us prove the reciprocal inclusion.
et 𝝉 ∈ 𝐾◦ ∩ {𝜹}⟂ and 𝝃 ∈ 𝐾. Then 𝜹∶𝝉 = 0 since 𝝉 ∈ {𝜹}⟂ and 𝝃 ∶𝝉 ≤ 0
or any 𝝃 ∈ 𝐾 since 𝝉 ∈ 𝐾◦. Then 𝝃 ∶𝝉 − 𝜹∶𝝉 ≤ 0 for any 𝝃 ∈ 𝐾. By

definition, it means 𝝉 ∈ 𝒩𝐾 (𝜹) and then 𝒩𝐾 (𝜹) = 𝐾◦ ∩ {𝜹}⟂. ■

roposition 28 (Bipolar and Bidual of a Convex Cone). For any non-
mpty closed convex cone 𝐾 we have
∗∗ = 𝐾◦◦ = 𝐾

roof.

∈ 𝐾◦◦ ⟺ 𝜹 ∈ 𝒩𝐾◦ (0) from Proposition 27
⟺ 𝜹 ∈ 𝜕𝐾◦ (0) from Proposition 26.c
⟺ 𝜹 ∈ 𝜕

(

𝐾
)∗ (0) from Proposition 23

⟺ 0 ∈ 𝜕
(

𝐾
)∗∗ (𝜹) from Theorem 4

⟺ 0 ∈ 𝜕𝐾 (𝜹) from Proposition 19
⟺ 0 ∈ 𝒩𝐾 (𝜹) from Proposition 26.c
⟺ 𝜹 ∈ 𝐾 from Proposition 26.b ■

Proposition 29 (Conic Complementarity). For any non-empty closed
convex cone 𝐾 and any 𝜹, 𝝉 ∈ R𝑁×𝑁 , we have

𝐾 ∋ 𝜹 ⟂ 𝝉 ∈ 𝐾◦ ⟺ 𝝉 ∈ 𝒩𝐾 (𝜹) ⟺ 𝜹 ∈ 𝒩𝐾◦ (𝝉)

where 𝜹 ⟂ 𝝉 denotes 𝜹∶𝝉 = 0.

Proof.

𝝉 ∈ 𝒩𝐾 (𝜹) ⟺ 𝝉 ∈ 𝜕𝐾 (𝜹) from Proposition 26.c
⟺ 𝐾 (𝜹) + ∗

𝐾 (𝝉) = 𝜹∶𝝉 from Theorem 4
⟺ 𝐾 (𝜹) + 𝐾◦ (𝝉) = 𝜹∶𝝉

The equality is only possible on the effective domain of the left-
hand-side, on which 𝐾 (𝜹) + 𝐾◦ (𝝉) = 0. This means

𝐾 (𝜹) + 𝐾◦ (𝝉) = 𝜹∶𝝉 ⟺ 𝜹 ∈ 𝐾 and 𝝉 ∈ 𝐾◦ and 𝜹∶𝝉 = 0

The rightmost equivalence follows from Proposition 28. ■

A.5. Von Mises plasticity criterion

Lemma 30 (Subdifferential of the Matrix Norm). The subdifferential of
the function 𝜑 ∶ R𝑁×𝑁𝑠 → R is defined for all 𝜹 ∈ R𝑁×𝑁𝑠 by
𝜑(𝜹) = |𝜹|
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𝜕𝜑(𝜹) =
⎧

⎪

⎨

⎪

⎩

{

𝝉 = 𝜹
|𝜹|

}

when 𝜹 ≠ 0

{

𝝉 ∈ R𝑁×𝑁𝑠 ∕ |𝝉| ≤ 1
}

otherwise

Proof. We have 𝜑0(𝜹) = 𝑓◦𝑔(𝜹) with 𝑓 (𝜉) =
√

𝜉, for all 𝑥 ∈ R, and
𝑔(𝜹) = |𝜹|2. Observe that 𝑓 ′(𝜉) = 1∕(2

√

𝜉) and 𝑔′(𝜹) = 2𝜹. Assume first
that 𝜹 ≠ 0. Then, 𝜑 is differentiable in 𝜹 and

∇𝜑(𝜹) = 𝑓 ′◦𝑔(𝜹) 𝑔′(𝜹) = 𝜹∕|𝜹|

ext, assume 𝜹 = 0 and let us show that 𝜕𝜑(0) =
{

𝝉 ∈ R𝑁×𝑁𝑠 ∕ |𝝉| ≤ 1
}

.
The proof of this result is done in two steps. We first assume that |𝝉| ≤ 1
and show that then 𝝉 ∈ 𝜕𝜑(0). Next, we will show the reciprocal.

step 1: assume |𝝉| ≤ 1. By definition of the subdifferential:

𝝉 ∈ 𝜕𝜑(0) ⟺ 𝜑(0) + 𝝉 ∶𝝁 ≤ 𝜑(𝝁), ∀𝝁 ∈ R𝑁×𝑁𝑠

⟺ 𝝉 ∶𝝁 ≤ |𝝁|, ∀𝝁 ∈ R𝑁×𝑁𝑠

From the Cauchy–Schwartz inequality 𝝉 ∶𝝁 ≤ |𝝉| |𝝁| ≤ |𝝁| by as-
sumption, and then |𝝉| ≤ 1 ⇒ 𝝉 ∈ 𝜕𝜑(0).

step 2: let us turn to the reciprocal. By contraposition:

𝝉 ∈ 𝜕𝜑(0) ⟹ |𝝉| ≤ 1

⟺ 𝝉 ∉ 𝜕𝜑(0) ⟸ |𝝉| > 1

By definition of the subdifferential:

𝝉 ∈ 𝜕𝜑(0) ⟺ 𝜑(0) + 𝝉 ∶(𝝁 − 0) ≤ 𝜑(𝝁), ∀𝝁 ∈ R𝑁×𝑁𝑠

⟺ 𝝉 ∶𝝁 ≤ |𝝁|, ∀𝝁 ∈ R𝑁×𝑁𝑠

𝝉 ∉ 𝜕𝜑(0) ⟺ ∃𝝁 ∈ R𝑁×𝑁𝑠 ∕ 𝝉 ∶𝝁 > |𝝁|

Assume |𝝉| > 1. We have 𝝉 ≠ 0 𝝁 = 𝝉∕|𝝉|. Observe that |𝝁| = 1 and
then

𝝉 ∶𝝁 − |𝝁| = 𝝉 ∶𝝉
|𝝉|

− 1 = |𝝉| − 1 > 0

Finally 𝝉 ∈ 𝜕𝜑(0) ⟹ |𝝉| ≤ 1 and the proof is complete. ■

Definition 31 (von Mises Dissipation Potential). The von Mises dissipa-
tion potential 𝜑𝑚 ∶ R𝑁×𝑁𝑠 → R is defined for all 𝜹 ∈ R𝑁×𝑁𝑠 by

𝜑𝑚(𝜹) = 𝜎𝑦|𝐝𝐞𝐯 𝜹| (A.2a)

where 𝜎𝑦 ≥ 0 is the yield stress.

Proposition 32 (Subdifferential of the Von Mises Dissipation Potential).
Let 𝜑𝑚 denotes the von Mises viscoplastic dissipation potential, as introduced
in Definition 31. Its subdifferential expresses, for all 𝜹 ∈ R𝑁×𝑁𝑠 , as

𝜕𝜑𝑚(𝜹) =
⎧

⎪

⎨

⎪

⎩

{

𝝉 = 𝜎𝑦
𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

}

when 𝐝𝐞𝐯 𝜹 ≠ 0
{

𝝉 ∈ R𝑁×𝑁𝑠 ∕ tr 𝝉 = 0 and |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦
}

when 𝐝𝐞𝐯 𝜹 = 0

(A.2b)

Proof. Observe that the von Mises potential writes also as
𝜑𝑚(𝜹) = 𝜎𝑦𝜑(𝐝𝐞𝐯 𝜹) where 𝜑(𝜹) = |𝜹| is the matrix norm. Then, applying
Proposition 16 and Lemma 30, we get
𝜕𝜑𝑚(𝜹) = 𝜎𝑦𝐝𝐞𝐯 𝜕𝜑(𝜎𝑦𝐝𝐞𝐯 𝜹)

=

⎧

⎪

⎨

⎪

⎩

{

𝝉 = 𝜎𝑦
𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

}

when 𝐝𝐞𝐯 𝜹 ≠ 0

{

𝜎𝑦𝐝𝐞𝐯 𝝉 ; 𝝉 ∈ R𝑁×𝑁𝑠 and |𝝉| ≤ 1
}

otherwise

hich leads to (A.2b) after rearrangements. ■
15
efinition 33 (von Mises Set). For all 𝜎𝑦 ≥ 0, the von Mises set is
efined by

𝜎𝑦 =
{

𝝉 ∈ R𝑁×𝑁𝑠 ; |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦
}

Note that the von Mises set is a convex cone, that corresponds
o a vertical band of width 𝜎𝑦 in the deviatoric-trace stress plane
epresentation.

roposition 34 (von Mises Set). For all 𝜎𝑦 ≥ 0, we have

−𝐵𝜎𝑦

)∗
= ker(tr) + 𝜑𝑚

Proof. From Corollary 15, the equality could be shown from the
equality of the subdifferentials. From Definition 24 and Proposition 26,
a necessary condition for 𝜕ℐker(tr)(𝜹) to be non-empty is 𝜹 ∈ ker(tr)

i.e. tr 𝜹 = 0. Next, Proposition 17, gives 𝜕ℐker(tr)(𝜹) = ker(𝐝𝐞𝐯).
∙ forward inclusion: 𝜕

(

ℐ−𝐵𝜎𝑦

)∗ ⊂ ker(𝐝𝐞𝐯) + 𝜕𝜑𝑚
Let 𝝉 ∈ 𝜕

(

ℐ−𝐵𝜎𝑦

)∗(𝜹) or equivalently 𝜹 ∈ 𝜕ℐ−𝐵𝜎𝑦
(𝝉) = 𝒩−𝐵𝜎𝑦

(𝝉)
where we have used the Fenchel–Young Theorem 4 and Proposition 26.
From Definition 24, for 𝒩−𝐵𝜎𝑦

(𝝉) to be non-empty, we necessarily have
𝝉 ∈ −𝐵𝜎𝑦 i.e., by Definition 40, |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦. Expanding Definition 24 of
a normal cone, we have

tr 𝜹 = 0 (A.3)

|𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦 (A.4)

(𝝃 − 𝝉)∶𝜹 ≤ 0, ∀𝝃 ∕ |𝐝𝐞𝐯 𝝃| ≤ 𝜎𝑦 (A.5)

First, observe that tr 𝝉
𝑁

𝑰 ∈ ker(𝐝𝐞𝐯). Assume first that 𝐝𝐞𝐯 𝜹 = 0,
which means from (A.3) that 𝜹 = 0, then, from Proposition 32, we ob-
tain 𝐝𝐞𝐯 𝝉 ∈ 𝜕𝜑𝑚(𝜹). Next, assume 𝐝𝐞𝐯 𝜹 ≠ 0. Suppose, by reductio ad ab-
surdum that 𝝉 ∉ 𝜕𝜑𝑚(𝜹). Since we necessarily have |𝝉| = 𝜎𝑦 for (A.5) to

be satisfied, there exists 𝜹2 such that 𝐝𝐞𝐯 𝝉 = 𝜎𝑦
𝐝𝐞𝐯 𝜹2
|𝐝𝐞𝐯 𝜹2|

and
(𝐝𝐞𝐯 𝜹2)∶(𝐝𝐞𝐯 𝜹) < |𝐝𝐞𝐯 𝜹2| |𝐝𝐞𝐯 𝜹| i.e. 𝐝𝐞𝐯 𝜹 and 𝐝𝐞𝐯 𝜹2 are not aligned.

hen, choosing 𝐝𝐞𝐯 𝝃 = 𝜎𝑦
𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

in (A.5) leads to
(𝐝𝐞𝐯 𝜹2)∶(𝐝𝐞𝐯 𝜹) ≥ |𝐝𝐞𝐯 𝜹2| |𝐝𝐞𝐯 𝜹| which is impossible. Then 𝝉 ∈ 𝜕𝜑𝑚(𝜹)

nd the forward inclusion is complete.
∙ backward inclusion: 𝜕

(

ℐ−𝐵𝜎𝑦

)∗ ⊃ ker(𝐝𝐞𝐯) + 𝜕𝜑𝑚
Let any 𝝉 ∈ ker(𝐝𝐞𝐯) + 𝜕𝜑𝑚(𝜹) with tr 𝝉

𝑁
𝑰 ∈ ker(𝐝𝐞𝐯) and

𝐝𝐞𝐯 𝝉 ∈ 𝜕𝜑𝑚(𝜹). Then, from Proposition 32, we have |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦 and
thus, by Definition 40 we obtain 𝝉 ∈ 𝐵𝜎𝑦 . From Definition 24, note
also that 𝒩−𝐵𝜎𝑦

(𝝉) ≠ ∅. Assume first that 𝐝𝐞𝐯 𝜹 ≠ 0. Then, from Propo-

sition 32, and since 𝝉 ∈ 𝜕𝜑𝑚(𝜹) we get 𝐝𝐞𝐯 𝝉 = 𝜎𝑦
𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

. Note that
𝝉 ∶𝜹=𝜎𝑦|𝐝𝐞𝐯 𝜹|. For all 𝝃 such that |𝐝𝐞𝐯 𝝃| ≤ 𝜎𝑦 we have

𝝃 ∶𝜹 = (𝐝𝐞𝐯 𝝃)∶(𝐝𝐞𝐯 𝜹) ≤ |𝐝𝐞𝐯 𝝃| |𝐝𝐞𝐯 𝜹| ≤ 𝜎𝑦|𝐝𝐞𝐯 𝜹| = 𝝉 ∶𝜹

(𝝃 − 𝝉)∶𝜹 ≤ 0 (A.6)

Assume next that 𝐝𝐞𝐯 𝜹 = 0. Since we also have tr 𝜹 = 0 we get
= 0 and (A.6) is also trivially satisfied. It means that 𝜹 ∈ 𝒩−𝐵𝜎𝑦

(𝝉) or
quivalently 𝝉 ∈ 𝜕

(

ℐ−𝐵𝜎𝑦

)∗(𝜹) where we have used the Fenchel–Young
heorem 4 and Proposition 26. Then the proof of the subdifferentials
quality is complete. ■



Journal of Non-Newtonian Fluid Mechanics 294 (2021) 104584P. Saramito

P

𝐾

a

t

a

P
[

𝐾

𝐾

P
a
t
𝐾
t

N
𝜹

𝝉

w

0

−

P
C

A.6. Drucker–Prager plasticity criterion

Definition 35 (Drucker–Prager Cone). For all 𝜇 ∈ [0,∞], the Drucker–
rager cone, denoted by 𝐾𝜇 is the second-order cone defined by:

𝜇 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ker(𝐝𝐞𝐯) when 𝜇 = 0

{

𝝉 ∈ R𝑁×𝑁𝑠 ; |𝐝𝐞𝐯 𝝉| ≤ 𝜇 tr 𝝉
√

𝑁

}

when 𝜇 ∈ ]0,∞[

ker(tr) when 𝜇 = ∞

Proposition 36 (Drucker–Prager Cone is Convex). For all 𝜇 ∈ [0,∞], the
Drucker–Prager cone 𝐾𝜇 is a convex cone.

Proof. Consider any 𝝉1, 𝝉2 ∈ 𝐾𝜇 and 𝛽1, 𝛽2 ≥ 0. Assume first 𝜇 ∈ [0,∞[.
We have:

|𝐝𝐞𝐯(𝛽1𝝉1 + 𝛽2𝝉2)| ≤ 𝛽1|𝐝𝐞𝐯 𝝉1| + 𝛽2|𝐝𝐞𝐯 𝝉2|

≤
𝛽1𝜇 tr 𝝉1
√

𝑁
+
𝛽2𝜇 tr 𝝉2
√

𝑁

=
𝜇 tr(𝛽1𝝉1 + 𝛽2𝝉2)

√

𝑁

nd then 𝛽1𝝉1 + 𝛽2𝝉2 ∈ 𝐾𝜇 . Next, assume 𝜇 = ∞. We have:

r(𝛽1𝝉1 + 𝛽2𝝉2) = 𝛽1tr 𝝉1 + 𝛽2tr 𝝉2 = 0

nd then 𝛽1𝝉1 + 𝛽2𝝉2 ∈ 𝐾∞. Then, from Definition 20, 𝐾𝜇 is a convex
cone for all 𝜇 ∈ [0,∞]. ■

roposition 37 (Polar and Dual Drucker–Prager Cones). For all 𝜇 ∈
0,∞], the polar and dual of the Drucker–Prager cone 𝐾𝜇 are respectively:
◦
𝜇 = −𝐾 1

𝜇
∗
𝜇 = 𝐾 1

𝜇

roof. When 𝜇 = 0, from Proposition 17 we have (ker 𝐝𝐞𝐯)◦ = ker(tr)
nd from Definition 35 we deduce immediately 𝐾◦

0 = −𝐾∞. Taking
he polar of the previous relation and using Proposition 28, we get
◦
∞ = −𝐾◦◦

0 = −𝐾0 which completes the proof for 𝜇 = ∞. The rest of
he proof is devoted to the case 𝜇 ∈ ]0,∞[.

∙ forward inclusion 𝐾◦
𝜇 ⊂ −𝐾 1

𝜇
.

Let 𝜹 ∈ 𝐾◦
𝜇 and let us prove that 𝜹 ∈ −𝐾 1

𝜇
. If 𝜹 = 0 then 𝜹 ∈ −𝐾 1

𝜇
.

ext, assume 𝜹 ≠ 0. By Definition 22, for all 𝝉 ∈ 𝐾𝜇 , the inequality
∶𝝉 ≤ 0 holds. Then, let us choose:

= 𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

+ 1
√

𝑁 𝜇
𝑰

such that |𝐝𝐞𝐯 𝝉| = 𝜇 tr 𝝉
√

𝑁
and then 𝝉 ∈ 𝐾𝜇 . With this choice, we get:

𝜹∶𝝉 ≤ 0 ⟺
(tr 𝜹) (tr 𝝉)

𝑁
+ (𝐝𝐞𝐯 𝜹)∶(𝐝𝐞𝐯 𝝉) ≤ 0 by expansion

⟺ |𝐝𝐞𝐯 𝜹| ≤ − tr 𝜹
√

𝑁 𝜇
⟺ 𝜹 ∈ −𝐾 1

𝜇

∙ backward inclusion 𝐾◦
𝜇 ⊃ −𝐾 1

𝜇
.

Conversely, let 𝜹 ∈ −𝐾 1
𝜇

and let us prove that 𝜹 ∈ 𝐾◦
𝜇 . For all 𝝉 ∈ 𝐾𝜇

e have:

0 ≤ |𝐝𝐞𝐯 𝜹| ≤ − tr 𝜹
√

𝑁𝜇

≤ |𝐝𝐞𝐯 𝝉| ≤ 𝜇 tr 𝝉
√

16

𝑁 c
Then

𝜹∶𝝉 = (𝐝𝐞𝐯 𝜹)∶(𝐝𝐞𝐯 𝝉) + (tr 𝜹) (tr 𝝉)
𝑁

by expansion in deviatoric and spherical parts

≤ |𝐝𝐞𝐯 𝜹| |𝐝𝐞𝐯 𝝉| + (tr 𝜹) (tr 𝝉)
𝑁

from the Cauchy–Schwartz inequality

≤ − tr 𝜹
√

𝑁 𝜇
×
𝜇 tr 𝝉
√

𝑁
+

(tr 𝜹) (tr 𝝉)
𝑁

since 𝜹 ∈ −𝐾 1
𝜇

and 𝝉 ∈ 𝐾𝜇

= 0

By Definition 22, it means that 𝜹 ∈ 𝐾◦
𝜇 . Thus, we have 𝐾◦

𝜇 = −𝐾 1
𝜇

for all 𝜇 ∈ [0,∞]. Finally, from Definition 22,
(

𝐾𝜇
)∗ = −

(

𝐾𝜇
)◦ = 𝐾 1

𝜇
and the proof is complete. ■

Corollary 38 (Conjugate of the Indicator to the Drucker–Prager Cone). For
all 𝜇 ∈ [0,∞], we have
(

ℐ−𝐾𝜇

)∗ = ℐ𝐾 1
𝜇

As a consequence, for all 𝜹, 𝝉 ∈ R𝑁×𝑁𝑠 ,

𝝉 ∈ 𝜕ℐ𝐾 1
𝜇
(𝜹) ⟺ −𝜹 ∈ 𝜕ℐ𝐾𝜇 (𝝉)

⟺ 𝐾 1
𝜇
∋ 𝜹 and 𝜹∶𝝉 = 0 and 𝝉 ∈ 𝐾𝜇

Proof. From Corollary 15, the equality could be shown from the equal-
ity of the differentials. The equality of the differentials
𝜕
(

ℐ−𝐾𝜇

)∗ = 𝜕ℐ𝐾 1
𝜇

is obtained by using the Fenchel–Young Theo-

rem 4, and then successively Propositions 23, 37 and 26. The conse-
quence is then deduced from Proposition 29. ■

Proposition 39 (Disjunctive Formulation). For all 𝜇 ∈ ]0,∞[, and all 𝜹,
𝝉 ∈ R𝑁×𝑁𝑠 , we have 𝝉 ∈ 𝜕ℐ𝐾 1

𝜇
(𝜹), or equivalently −𝜹 ∈ 𝜕ℐ𝐾𝜇 (−𝝉), if and

only if one of the three condition is satisfied (see Fig. A.10):

(𝐢) 𝐬𝐭𝐢𝐜𝐤𝐢𝐧𝐠 ∶ |𝐝𝐞𝐯 𝝉| ≤ −
𝜇 tr 𝝉
√

𝑁
and 𝜹 = 0 (A.7a)

(𝐢𝐢) 𝐬𝐥𝐢𝐝𝐢𝐧𝐠 ∶ 𝐝𝐞𝐯 𝝉 = −
𝜇 tr 𝝉
√

𝑁

𝐝𝐞𝐯 𝜹
|𝐝𝐞𝐯 𝜹|

tr 𝝉 ≤ 0

⎫

⎪

⎬

⎪

⎭

and |𝐝𝐞𝐯 𝜹| = tr 𝜹
√

𝑁 𝜇
≠ 0 (A.7b)

(𝐢𝐢𝐢) 𝐥𝐨𝐬𝐢𝐧𝐠 𝐜𝐨𝐧𝐭𝐚𝐜𝐭 ∶ 𝝉 = 0 and |𝐝𝐞𝐯 𝜹| < tr 𝜹
√

𝑁 𝜇
(A.7c)

When 𝜇 = 0: 𝝉 ∈ 𝜕ℐ𝐾∞
(𝜹) ⟺ tr 𝜹 = 0 and 𝐝𝐞𝐯 𝝉 = 0.

When 𝜇 = ∞: 𝝉 ∈ 𝜕ℐ𝐾0
(𝜹) ⟺ 𝐝𝐞𝐯 𝜹 = 0 and tr 𝝉 = 0.

roof. The case 𝜇 ∈ {0,∞} is a direct consequence of Definition 35 and
orollary 38, so let assume 𝜇 ∈ ]0,∞[. From Corollary 38, 𝝉 ∈ 𝜕ℐ𝐾 1

𝜇
(𝜹)

if and only if 𝐾 1
𝜇
∋ 𝜹 and 𝜹∶𝝉 = 0 and −𝝉 ∈ 𝐾𝜇 i.e.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|𝐝𝐞𝐯 𝜹| ≤ tr 𝜹
√

𝑁 𝜇
(a)

(𝐝𝐞𝐯 𝜹)∶(𝐝𝐞𝐯 𝝉) + (tr 𝜹) (tr 𝝉)
𝑁

= 0 (b)

|𝐝𝐞𝐯 𝝉| ≤ −
𝜇 tr 𝝉
√

𝑁
(c)

(A.8)

It is easy to check, from the definition of the Drucker–Prager cone,
that any of the three case of the disjunctive formulation is a sufficient
condition for 𝝉 ∈ 𝜕ℐ𝐾 1

𝜇
(𝜹). So, let us turn to show that it is a necessary

ondition.
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Fig. A.10. Disjunctive formulation of the Drucker–Prager plasticity condition 𝝉 ∈ 𝜕ℐ𝐾 1
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∙ Let us first assume 𝜹 = 0. Then (A.8c) directly gives the sticking
ase (A.7a).

∙ Next, assume 𝜹 ≠ 0 and tr 𝜹 =
√

𝑁 𝜇 |𝐝𝐞𝐯 𝜹|. Then 𝐝𝐞𝐯 𝜹 ≠ 0. From
A.8b) and (A.8c), we have:

𝐝𝐞𝐯 𝜹)∶(𝐝𝐞𝐯 𝝉) = −
(tr 𝜹) (tr 𝝉)

𝑁
from (A.8b)

≥ |𝐝𝐞𝐯 𝜹| |𝐝𝐞𝐯 𝝉| from (A.8a) and (A.8c)

nd from the Cauchy–Schwartz inequality, the equality occurs. Thus,
here exists a constant 𝑘 ∈ R such that 𝐝𝐞𝐯 𝝉 = 𝑘𝐝𝐞𝐯 𝜹. From (A.8b)
nd since 𝐝𝐞𝐯 𝜹 ≠ 0, we obtain an expression for 𝑘

= −
(tr 𝜹) (tr 𝝉)
𝑁|𝐝𝐞𝐯 𝜹|2

= −

√

𝑁 𝜇 tr 𝝉
𝑁|𝐝𝐞𝐯 𝜹|

since tr 𝜹 =
√

𝑁 𝜇 |𝐝𝐞𝐯 𝜹|

Note that 𝑘 ≥ 0 since tr 𝝉 ≤ 0 from (A.8c) and finally, the sliding
case (A.7b) is complete.

∙ Finally, assume 𝜹 ≠ 0 and tr 𝜹 ≠
√

𝑁 𝜇 |𝐝𝐞𝐯 𝜹|. From (A.8a), we
hen have tr 𝜹 >

√

𝑁 𝜇 |𝐝𝐞𝐯 𝜹| and thus tr 𝜹 ≠ 0. From (A.8c), we
btain tr 𝝉 ≤ 0 and suppose, by reductio ad absurdum that tr 𝝉 < 0. Then,
rom the Cauchy–Schwartz inequality:

𝐝𝐞𝐯 𝜹)∶(𝐝𝐞𝐯 𝝉) ≤ |𝐝𝐞𝐯 𝜹| |𝐝𝐞𝐯 𝝉| < − tr 𝜹
√

𝑁 𝜇

𝜇 tr 𝝉
√

𝑁
= −

(tr 𝜹) (tr 𝝉)
𝑁

This implies 𝜹∶𝝉 < 0 which is in contradiction with (A.8b). Then
r 𝝉 = 0. Again from (A.8c) we obtain 𝐝𝐞𝐯 𝝉 = 0 and finally 𝝉 = 0. Then,
he losing contact case (A.7c) is complete. ■

.7. Translated Drucker–Prager plasticity criterion

This criterion extends the original Drucker–Prager one [7] by incor-
orating the cohesion 𝜎𝑦 ≥ 0 (see e.g. [50]).

efinition 40 (Translated Drucker–Prager Cone). For all 𝜇 ∈ [0,∞] and
𝜎𝑦 ≥ 0, the translated Drucker–Prager cone, denoted by 𝑇𝜇,𝜎𝑦 , is defined
by:

𝑇𝜇,𝜎𝑦 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

𝝉 ∈ R𝑁×𝑁𝑠 ; |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦
}

= 𝐵𝜎𝑦 when 𝜇 = 0

{

𝝉 ∈ R𝑁×𝑁𝑠 ; |𝐝𝐞𝐯 𝝉| ≤ 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

}

when 𝜇 ∈ ]0,∞[

{𝝉 ∈ R𝑁×𝑁𝑠 ; tr 𝝉 = 0} = ker(tr) when 𝜇 = ∞

(A.9)

Proposition 41 (Translated Drucker–Prager Cone). For all 𝜇 ∈ [0,∞]
and 𝜎 ≥ 0, the translated Drucker–Prager cone 𝑇 is a convex set and
17

𝑦 𝜇,𝜎𝑦
the dual of its indicator function writes: for all 𝜹 ∈ R𝑁×𝑁𝑠 :

(

ℐ−𝑇𝜇,𝜎𝑦

)∗(𝜹) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℐker(tr)(𝜹) + 𝜑𝑚(𝜹) when 𝜇 = 0

ℐ𝐾 1
𝜇
(𝜹) +

𝜎𝑦
√

𝑁 𝜇
tr 𝜹 when 𝜇 ∈ ]0,∞[

ℐker(𝐝𝐞𝐯)(𝜹) when 𝜇 = ∞

Proof. Note that when 𝜎𝑦 = 0, we have 𝑇𝜇,𝜎𝑦 = 𝐾𝜇 which is a convex set

nd the result is given by Corollary 38. Thus, the present result extends

orollary 38.

Let us turn now to the general case 𝜎𝑦 ≥ 0. The convexity of 𝑇𝜇,𝜎𝑦
s established by using an argument similar to those of the proof of

roposition 36. For establishing the main result, we then successively

onsider the three cases 𝜇 = 0, 𝜇 = ∞ and 𝜇 ∈ ]0,∞[. When 𝜇 = 0,

ince 𝑇0,𝜎𝑦 = 𝐵𝜎𝑦 , the result is directly obtained from Proposition 34.

hen 𝜇 = ∞, from Definition 35, we have −𝑇∞,𝜎𝑦 = ker(tr) and then,

rom Proposition 17 we get (ℐ−𝑇∞,𝜎𝑦
)∗ = ℐ ∗

ker(tr) = ℐker(𝐝𝐞𝐯) and then, the
roof is also complete when 𝜇 = ∞. The rest of the proof is dedicated

o the case 𝜇 ∈ ]0,∞[.

From Corollary 15, the equality could be shown from the equal-

ty of the differentials. Assume first that 𝜹 ∉ 𝐾 1
𝜇

then both 𝜕ℐ𝐾 1
𝜇

and 𝜕
(

ℐ−𝑇𝜇,𝜎𝑦

)∗ are empty and the equality is satisfied. Then, assume
𝜹 ∈ 𝐾 1

𝜇
such that 𝜕ℐ𝐾 1

𝜇
(𝜹) ≠ ∅. For the equality, we successively prove

the forward and reverse inclusions of the subdifferentials.
∙ forward inclusion: 𝜕

(

ℐ−𝑇𝜇,𝜎𝑦

)∗ ⊂ 𝜕ℐ𝐾 1
𝜇
+

𝜎𝑦
√

𝑁 𝜇
𝑰

Let 𝝉 ∈ 𝜕
(

ℐ−𝑇𝜇,𝜎𝑦

)∗(𝜹) or equivalently 𝜹 ∈ 𝜕ℐ−𝑇𝜇,𝜎𝑦
(𝝉) = 𝒩−𝑇𝜇,𝜎𝑦

(𝝉)
where we have used the Fenchel–Young Theorem 4 and Proposition 26.

From Definition 24, we necessarily have 𝝉 ∈ −𝑇𝜇,𝜎𝑦 for 𝒩−𝑇𝜇,𝜎𝑦
(𝝉) to

be non-empty. Expanding 𝜹 ∈ 𝐾 1
𝜇

, 𝝉 ∈ −𝑇𝜇,𝜎𝑦 and Definition 24 of a
ormal cone, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

|𝐝𝐞𝐯 𝜹| ≤ tr 𝜹
√

𝑁 𝜇
(a)

|𝐝𝐞𝐯 𝝉| ≤ −
𝜇 tr 𝝉
√

𝑁
+ 𝜎𝑦 (b)

(𝝃 − 𝝉)∶𝜹 ≤ 0, ∀𝝃 ∕ |𝐝𝐞𝐯 𝝃| ≤ −
𝜇 tr 𝝃
√

+ 𝜎𝑦 (c)

(A.10)
⎩ 𝑁
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w

t

By Definition 40 of 𝑇𝜇,𝜎𝑦 , note that 𝝉 ∈ −𝑇𝜇,𝜎𝑦 is equivalent to

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰 ∈ −𝐾𝜇 . Next, let us expand

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰

)

∶𝜹 = (𝐝𝐞𝐯 𝝉)∶(𝐝𝐞𝐯 𝜹) + (tr 𝝉)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

≤ |𝐝𝐞𝐯 𝝉| |𝐝𝐞𝐯 𝜹| + (tr 𝝉)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

from the Cauchy–Schwartz inequality

≤

(

−
𝜇 tr 𝝉
√

𝑁
+ 𝜎𝑦

)

tr 𝜹
√

𝑁 𝜇
+

(tr 𝝉)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

from (A.10a) and (A.10b)
= 0

Conversely, choosing 𝝃 =
𝜎𝑦

√

𝑁 𝜇
𝑰 ∈ −𝑇𝜇,𝜎𝑦 in (A.10c) leads to

(

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰

)

∶𝜹 ≤ 0 and then
(

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰

)

∶𝜹 = 0. Then

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰 ∈ −𝐾𝜇 ∩ {𝜹}⟂ =

(

𝐾 1
𝜇

)◦ ∩ {𝜹}⟂ = 𝜕ℐ𝐾 1
𝜇
(𝜹) where we have

used Proposition 26, 27 and 37. This means that 𝝉 ∈ 𝜕ℐ𝐾 1
𝜇
(𝜹) +

𝜎𝑦
√

𝑁 𝜇
𝑰

nd the forward inclusion is complete.
∙ backward inclusion: 𝜕

(

ℐ−𝑇𝜇,𝜎𝑦

)∗ ⊃ 𝜕ℐ𝐾 1
𝜇
+

𝜎𝑦
√

𝑁 𝜇
𝑰

Let any 𝝉 ∈ 𝜕ℐ𝐾 1
𝜇
(𝜹) +

𝜎𝑦
√

𝑁 𝜇
𝑰 . We have

⎧

⎪

⎨

⎪

⎩

𝜹 ∈ 𝐾 1
𝜇

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰 ∈ 𝜕ℐ𝐾 1

𝜇
(𝜹) = 𝒩𝐾 1

𝜇
(𝜹) =

(

𝐾 1
𝜇

)◦ ∩ {𝜹}⟂ = −𝐾𝜇 ∩ {𝜹}⟂

here we have used Proposition 26, 27 and 37. Expanding Defini-
ion 35, this writes equivalently

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|𝐝𝐞𝐯 𝜹| ≤ tr 𝜹
√

𝑁 𝜇
(a)

|𝐝𝐞𝐯 𝝉| ≤ −
𝜇 tr 𝝉
√

𝑁
+ 𝜎𝑦 (b)

𝜹∶𝝉 =
𝜎𝑦

√

𝑁 𝜇
tr 𝜹 (c)

(A.11)

Let any 𝝃 ∈ −𝑇𝜇,𝜎𝑦 . From Definition 40 of 𝑇𝜇,𝜎𝑦 , we have

|𝐝𝐞𝐯 𝝃| ≤ −
𝜇 tr 𝝃
√

𝑁
+ 𝜎𝑦 (A.12)

Then, expanding

𝝃 − 𝝉)∶𝜹 = 𝝃 ∶𝜹 −
𝜎𝑦

√

𝑁 𝜇
tr 𝜹 from (A.11c)

= (𝐝𝐞𝐯 𝝃)∶(𝐝𝐞𝐯 𝜹) + (tr 𝝃)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

≤ |𝐝𝐞𝐯 𝝃| |𝐝𝐞𝐯 𝜹| + (tr 𝝃)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

from the Cauchy–Schwartz inequality

≤ |𝐝𝐞𝐯 𝝃| tr 𝜹
√

𝑁 𝜇
+

(tr 𝝃)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹 from (A.11a)

≤

(

−
𝜇 tr 𝝃
√

𝑁
+ 𝜎𝑦

)

tr 𝜹
√

𝑁 𝜇
+

(tr 𝝃)(tr 𝜹)
𝑁

−
𝜎𝑦

√

𝑁 𝜇
tr 𝜹

from (A.12) and since tr 𝜹 ≥ 0 from (A.11a)
= 0

Thus (𝝃 − 𝝉)∶𝜹 ≤ 0 for all 𝝃 ∈ −𝑇𝜇,𝜎𝑦 while (A.11b) means that
𝝉 ∈ −𝑇 . Recalling Definition 24 of the normal cone, this means
18

𝜇,𝜎𝑦
that 𝜹 ∈ 𝒩−𝑇𝜇,𝜎𝑦
(𝝉). From Proposition 26, we have 𝒩−𝑇𝜇,𝜎𝑦

= 𝜕ℐ−𝑇𝜇,𝜎𝑦
nd then 𝜹 ∈ 𝜕ℐ−𝑇𝜇,𝜎𝑦

(𝝉) or, thanks to the Fenchel–Young Theorem 4,
∈ 𝜕

(

ℐ−𝑇𝜇,𝜎𝑦

)∗(𝜹) which proves the backward inclusion and then com-
letes the proof when 𝜇 ∈ ]0,∞[. ■

.8. Viscoplastic Drucker–Prager potential

roof. of Theorem 2.
Let 𝜹 ∈ 𝜕𝜙∗

𝑝(𝝉) or equivalently 𝝉 ∈ 𝜕𝜙𝑝(𝜹), thanks to the Fenchel–
oung Theorem 4. Then, from the definition (6e) of 𝜙𝑝, we have
∈ 2𝜂𝜹 + 𝜕

(

ℐ−𝑇𝜇,𝜎𝑦

)∗(𝜹).
Assume first 𝜇 ∈ ]0,∞[. Using Proposition 41, for expanding

ℐ−𝑇𝜇,𝜎𝑦

)∗, we get

− 2𝜂𝜹 −
𝜎𝑦

√

𝑁 𝜇
𝑰 ∈ 𝜕ℐ𝐾 1

𝜇
(𝜹) (A.13a)

Next, let us turn to the expansion of 𝜕ℐ𝐾 1
𝜇

by using Proposition 39:

the three cases of the disjunction are successively considered.
∙ sticking. Injecting (A.13a) in (A.7a) and rearranging, we get

⎧

⎪

⎨

⎪

⎩

𝜹 = 0 (b)

𝜎𝑦 −
𝜇 tr 𝝉
√

𝑁
≥ |𝐝𝐞𝐯 𝝉| (c) (A.13b,c)

From (A.13b), the subdifferential 𝜕𝜙∗
𝑝(𝝉) = {0}. Since it contains

exactly one element, 𝜙∗
𝑝 is differentiable in that case and ∇𝜙∗

𝑝(𝝉) = 0. Let
s check that the right-hand-side of (6f) coincides with the expected re-
ult. Using (A.13c) we obtain 𝜎𝑦 −

𝜇 tr 𝝉
√

𝑁
≥ |𝐝𝐞𝐯 𝝉| ≥ 0 ≥ −𝜇2|𝐝𝐞𝐯 𝝉|

and then (6g) gives 𝜅𝜇,𝜎𝑐 (𝝉) = 0. Finally (6f) leads to ∇𝜙∗
𝑝(𝝉) = 0 which

s the expected result since 𝜹 = 0.
∙ sliding. Injecting (A.13a) in (A.7b), we get, after rearrangements

𝐝𝐞𝐯 𝝉 =

{

2𝜂 + 1
|𝐝𝐞𝐯 𝜹|

(

𝜎𝑦 −
𝜇

√

𝑁
tr(𝝉 − 2𝜂 𝜹)

)}

𝐝𝐞𝐯 𝜹 (d)

tr 𝜹 =
√

𝑁 𝜇 |𝐝𝐞𝐯 𝜹| ≠ 0 (e)

𝜎𝑦 −
𝜇

√

𝑁
tr (𝝉 − 2𝜂𝜹) ≥ 0 (f)

(A.13d,e,f)

Let us take the norm of (A.13d). Using (A.13f) for solving the sign,
e obtain successively

|𝐝𝐞𝐯 𝝉| = 2𝜂|𝐝𝐞𝐯 𝜹| + 𝜎𝑦 −
𝜇 tr(𝝉 − 2𝜂 𝜹)

√

𝑁

= 2𝜂
(

1 + 𝜇2
)

|𝐝𝐞𝐯 𝜹| + 𝜎𝑦 −
𝜇 tr 𝝉
√

𝑁
from (A.13e)

⟺ |𝐝𝐞𝐯 𝜹| = 1
2𝜂

(

1 + 𝜇2
)

(

|𝐝𝐞𝐯 𝝉| − 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

)

Note that (A.13e) leads to |𝐝𝐞𝐯 𝜹| > 0 that also expresses as a condition
upon 𝝉 only as

𝜎𝑦 −
𝜇 tr 𝝉
√

𝑁
< |𝐝𝐞𝐯 𝝉| (A.13g)

Replacing the previous expression of |𝐝𝐞𝐯 𝜹| in (A.13e), we get

r 𝜹 =

√

𝑁 𝜇
2𝜂

(

1 + 𝜇2
)

(

|𝐝𝐞𝐯 𝝉| − 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

)

The condition (A.13f) could now be expressed in terms of 𝝉 only by
replacing the previous expression of tr 𝜹. After rearrangements, we get

𝜎𝑦 −
𝜇 tr 𝝉
√

≥ −𝜇2|𝐝𝐞𝐯 𝝉| (A.13h)

𝑁



Journal of Non-Newtonian Fluid Mechanics 294 (2021) 104584P. Saramito

G

𝜹

i
h
i
𝜉

𝜅

T

𝜎

t
𝜉
o

t
l
t
t
c

A

B

p

s

a
o
o
d
f
s

B

c

w
t
T
o

a
o
t
o
e
b
R

t
d
(

w

Note that satisfying together (A.13g) and (A.13h) implies |𝐝𝐞𝐯 𝝉| ≠ 0.
Observe from (A.13d) that 𝐝𝐞𝐯 𝝉 and 𝐝𝐞𝐯 𝜹 are two collinear tensors and
then

𝐝𝐞𝐯 𝜹 = |𝐝𝐞𝐯 𝜹| 𝐝𝐞𝐯 𝝉
|𝐝𝐞𝐯 𝝉|

= 1
2𝜂

(

1 + 𝜇2
)

(

|𝐝𝐞𝐯 𝝉| − 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

)

𝐝𝐞𝐯 𝝉
|𝐝𝐞𝐯 𝝉|

rouping the two previous expressions yields

= 𝐝𝐞𝐯 𝜹 + tr 𝜹
𝑁

𝑰

= 1
2𝜂

(

1 + 𝜇2
)

(

|𝐝𝐞𝐯 𝝉| − 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

)(

𝐝𝐞𝐯 𝝉
|𝐝𝐞𝐯 𝝉|

+
𝜇

√

𝑁
𝑰

)

(A.13i)

Thus, the subdifferential 𝜕𝜙∗
𝑝(𝝉) contains exactly one element, i.e. 𝜙∗

𝑝
s differentiable in the sliding case also. Let us check that the right-
and-side of (6f) coincides with the expected result. Using the inequal-
ties (A.13g) and (A.13h), we obtain successively from (6g)–(6h) that
𝜇,𝜎𝑦 (𝝉) =

𝜇 tr 𝝉
√

𝑁
− 𝜇2|𝐝𝐞𝐯 𝝉| and

𝜇,𝜎𝑦 (𝝉) =

(

|𝐝𝐞𝐯 𝝉| − 𝜎𝑦 +
𝜇 tr 𝝉
√

𝑁

)

∕|𝐝𝐞𝐯 𝝉| > 0. Finally (6f) furnishes

an expression of ∇𝜙∗
𝑝(𝝉) that coincides with (A.13i).

∙ losing contact. Injecting (A.13a) in (A.7c), we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝝉 − 2𝜂𝜹 −
𝜎𝑦

√

𝑁 𝜇
𝑰 = 0 (j)

|𝐝𝐞𝐯 𝜹| < tr 𝜹
√

𝑁 𝜇
(k)

(A.13j,k)

and (A.13j) yields

𝜹 = 1
2𝜂

(

𝝉 −
𝜎𝑦

√

𝑁 𝜇
𝑰

)

(A.13l)

Thus, 𝜕𝜙∗
𝑝(𝝈) contains exactly one element and 𝜙∗

𝑝 is differentiable.
he condition (A.13k) expresses equivalently in terms of 𝝉 as

𝑦 −
𝜇 tr 𝝉
√

𝑁
< −𝜇2|𝐝𝐞𝐯 𝝉| (A.13m)

Let us check again that the right-hand-side of (6f) coincides with
he expected result. Using (A.13m), we obtain from (6g)–(6h) that
𝜇,𝜎𝑦 (𝝉) = 𝜎𝑦 and 𝜅𝜇,𝜎𝑦 (𝝉) = 1 + 𝜇2. Finally (6f) furnishes an expression
f ∇𝜙∗

𝑝(𝝉) that coincides with (A.13i).
For all these three cases, 𝜕𝜙∗

𝑝(𝝉) contains exactly one element and
hus 𝜙∗

𝑝 is globally differentiable. The elevation view on Fig. 3.bottom-
eft shows that 𝜅𝜇,𝜎𝑦 is continuous except at the junction between the
hree cones and is differentiable except along the cone boundaries. At
his junction, the second factor in (6f) vanishes and finally, ∇𝜙∗

𝑝 is
ontinuous everywhere. ■

ppendix B. Numerical resolution

.1. Problem simplification

Before its numerical resolution, the full problem (5a)–(5d) is sim-
lified as:

(𝑄): find the elastic deformation 𝜸𝑒, the damage 𝑑 and the velocity 𝒖
atisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜸𝑒
𝜕𝑡

+ ∇𝜙∗
𝑝
(

[𝑑]; A(𝑑)𝜸𝑒
)

−𝐷(𝒖) = 0 (a)

𝜕𝑑
𝜕𝑡

= ∇𝜙∗
𝑑
(

[𝜸𝑒, 𝑑];
{

−A′(𝑑)𝜸𝑒
}

∶𝜸𝑒
)

(b)

− 𝐝𝐢𝐯
(

2𝜂𝑠𝐷(𝒖) + A(𝑑)𝜸𝑒
)

= 𝒇 (c)

(B.1)

Note that, in (B.1a), the upper-convected tensor derivative is re-
placed by a simple time derivative. Correspondingly, in (B.1b), the
19

a

Lagrange derivative of the damage is also replaced by a simple time
derivative. In the conservation of momentum (B.1c), the inertia terms
are neglected, since only slow flows are considered here. Finally, the
original incompressibility constraint (5d) is not considered here and the
corresponding Lagrange multiplier, the pressure 𝑝, disappears in (B.1c).
All these simplifications are very classical when only small deforma-
tions are considered, which is the case for the uniaxial compression
benchmark considered here. The system (B.1a)–(B.1c) is closed by
suitable initial and boundary conditions.

Such simplifications allow us to focus on the interplay between the
main nonlinearities introduced by the two dissipation potentials 𝜙𝑝
nd 𝜙𝑑 , expressed by (6e) and (6k), respectively, while the elasticity
perator A is given by (6a). Note that the numerical procedure devel-
ped in this appendix could be easily adapted to others choices of the
issipation potentials and to the reintroduction of incompressibility and
ull time derivatives. While the final numerical algorithm is relatively
imple, its correct derivation requires some technical computations.

.2. Dimensionless procedure

Let 𝐿 and 𝑈 be characteristic length and velocity, respectively. The
haracteristic time is 𝐿∕𝑈 and the characteristic stress is (𝜂𝑠 + 𝜂0)𝑈∕𝐿.

The dimensionless variables and unknown are denoted with tildes and
defined by

�̃� = 𝑥
𝐿
, 𝑡 = 𝑈 𝑡

𝐿
, �̃� = 𝒖

𝑈
, �̃� = 𝐿𝝈

(𝜂𝑠 + 𝜂0)𝑈
, �̃� = 𝐿2

(𝜂𝑠 + 𝜂0)𝑈2
𝑤

hile 𝑑 and 𝜸𝑒, which are already dimensionless, are unchanged. In
he rest of this appendix, only dimensionless variables are considered.
hus, for simplicity and since there is no ambiguity, tildes are omitted
n the dimensionless variables.

Recall that 𝐸, 𝜂 and 𝜎𝑦 are defined by (6c), (6i) and (6j) respectively,
nd all of them present a singular factor 1 − 𝑑. Thus, in expression(6f)
f ∇𝜙∗

𝑝 , both the numerator and the denominator involve this 1 − 𝑑 fac-
or that is zero at the limit of a fully damaged material. The expression
f ∇𝜙∗

𝑝 could be nicely extended by continuity at this limit: for this, all
xpressions, both in the numerator and the denominator, are divided
y 1 − 𝑑, and the corresponding coefficients are denoted with a hat.
elation (3d) writes in dimensionless form:

𝜕𝑡𝜸𝑒 +
𝜅𝜇,𝛾𝑦 (𝝈𝑒)

2𝛼𝑊 𝑒
(

1 + 𝜇2
)

(

𝝈𝑒 −
𝜉𝜇,𝛾𝑦 (𝝈𝑒)
√

𝑁 𝜇
𝑰

)

= 𝐷(𝒖)

where 𝝈𝑒 = Â(𝑑)𝜸𝑒 = 2𝐺(𝑑)𝜸𝑒 + 𝜆(𝑑) (tr 𝜸𝑒) 𝑰

𝜆(𝑑) =
𝜈(𝑑)

(1 + 𝜈(𝑑))(1 − 2𝜈(𝑑))
and 𝐺(𝑑) = 1

2(1 + 𝜈(𝑑))

Recall that, from (6d), the Poisson ratio writes 𝜈(𝑑) = 𝜈0 + (𝜈1 − 𝜈0)𝑑.
The dimensionless numbers involved in the previous equations are
given by

𝑊 𝑒 =
𝑈 (𝜂𝑠 + 𝜂0)
𝐿𝐸0

and 𝛾𝑦 =
𝜎𝑦0
𝐸0

, 𝛼 =
𝜂0

𝜂𝑠 + 𝜂0
Here, 𝑊 𝑒 is the Weissenberg number, 𝛾𝑦 is a plastic yield deforma-

ion and 𝛼 is a viscosity ratio. Note that the usual Bingham number,
efined by 𝐵𝑖 = 𝐿𝜎𝑦0∕(𝑈 (𝜂𝑠 + 𝜂0)) is such that 𝛾𝑦 = 𝐵𝑖𝑊 𝑒. Relation
3e) writes in dimensionless form:

𝜕𝑑
𝜕𝑡

=
(1 − 𝑑) 𝜅𝜇,𝛾𝑐 (𝝈𝑒)

2𝑊 𝑒𝑑 (1 + 𝜇2)
(−A′(𝑑)𝜸𝑒)∶𝜸𝑒

ith the dimensionless elasticity operator A(𝑑) = (1 − 1)Â(𝑑) and where
the dimensionless numbers are defined by

𝑊 𝑒𝑑 =
𝑈𝜂𝑑
𝐿𝐸0

and 𝛾𝑐 =
𝜎𝑐
𝐸0

Here, 𝑊 𝑒𝑑 is a damage-related Weissenberg number, and 𝛾𝑐 is
damage yield deformation. Conversely, by introducing a damage
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related Bingham dimensionless number 𝐵𝑖𝑑 = 𝐿𝜎𝑐∕(𝜂𝑑𝑈 ), we have
𝛾𝑐 = 𝑊 𝑒𝑑𝐵𝑖𝑑 . The dimensionless Cauchy stress writes:

𝝈 = 2(1 − 𝛼)𝐷(𝒖) + (1 − 𝑑)
𝑊 𝑒

𝝈𝑒

and the dimensionless dissipation writes

𝑤𝑝 = 2(1 − 𝛼)|𝐷(𝒖)|2 + (1 − 𝑑)
𝛼𝑊 𝑒2

𝜅𝜇,𝛾𝑦 (𝝈𝑒)

2(1 + 𝜇2)
𝝈𝑒 ∶

(

𝝈𝑒 −
𝜉𝜇,𝛾𝑦 (𝝈𝑒)
√

𝑁 𝜇
𝑰

)

𝑤𝑑 =
(1 − 𝑑)
𝑊 𝑒𝑊 𝑒𝑑

𝜅𝜇,𝛾𝑐 (𝝈𝑒)

2(1 + 𝜇2)
{

(−A′(𝑑)𝜸𝑒)∶𝜸𝑒
}2

Finally, the present model contains eight independent dimensionless
numbers: 𝑊 𝑒, 𝑊 𝑒𝑑 , 𝛾𝑦 𝛾𝑐 , 𝜇, 𝜈0, 𝜈1 and 𝛼.

B.3. Implicit time discretization and fixed-point algorithm

Let 𝛥𝑡 > 0 be the dimensionless time step and 𝑡𝑛 = 𝑛𝛥𝑡, 𝑛 ≥ 0. The
two constitutive equations are discretized with respect to time by using
a fully implicit first order scheme. At time step 𝑡𝑛, 𝑛 ≥ 1, assume that
𝜸𝑒,𝑛−1, 𝐮𝑛−1 and 𝑑𝑛−1 are known. Then, the first order time discretization
of the problem leads to compute 𝜸𝑒,𝑛, 𝑑𝑛 and 𝐮𝑛 by a fixed-point inner
loop for solving the nonlinearities. Let 𝑘 denotes the index of this inner
loop. The fixed point algorithm writes:

∙ When 𝑘 = 0, let
(

𝜸𝑒,𝑛,0, 𝑑𝑛,0, 𝒖𝑛,0
)

=
(

𝜸𝑒,𝑛−1, 𝑑𝑛−1, 𝒖𝑛−1
)

∙ When 𝑘 ≥ 1, assume that (𝜸𝑒,𝑛,𝑘−1, 𝑑𝑛,𝑘−1,𝐮𝑛,𝑘−1) are known.
∙ step 1: find 𝜸𝑒,𝑛,𝑘 and 𝒖𝑛,𝑘 such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜸𝑒,𝑛,𝑘 − 𝜸𝑒,𝑛−1
𝛥𝑡

+ V(𝑑𝑛,𝑘−1, 𝜸𝑒,𝑛,𝑘−1; 𝜸𝑒,𝑛,𝑘) −𝐷(𝒖𝑛,𝑘) = 0 (a)

− 𝐝𝐢𝐯
(

2(1 − 𝛼)𝐷(𝒖𝑛,𝑘) +
(1 − 𝑑)
𝑊 𝑒

Â(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘
)

= 𝒇 (𝑡𝑛) (b)

𝒖𝑛,𝑘 = 𝒖𝛤 (𝑡𝑛) on 𝜕𝛺 (c)

(B.2a,b,c)

∙ step 2: compute explicitly

𝑌𝑛,𝑘−1 = (−A′(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘)∶𝜸𝑒,𝑛,𝑘 (B.2d)

𝑑𝑛,𝑘 = 𝑑𝑛−1 +
𝛥𝑡 (1 − 𝑑𝑛,𝑘−1) 𝜅𝜇,𝛾𝑐

(

Â(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘
)

2𝑊 𝑒𝑑 (1 + 𝜇2)
𝑌𝑛,𝑘−1 (B.2e)

𝑑𝑛,𝑘 = max(0, min(1, 𝑑𝑛,𝑘)) (B.2f)

∙ The fixed point loop stops when the residual terms drops below a
prescribed tolerance and then we set (𝜸𝑒,𝑛, 𝑑𝑛,𝐮𝑛) = (𝜸𝑒,𝑛,𝑘, 𝑑𝑛,𝑘,𝐮𝑛).

In (B.2a), the notation V(𝑑, 𝜸𝑒,𝑛,𝑘−1; 𝜸𝑒,𝑛,𝑘) stands for

V(𝑑𝑛,𝑘−1, 𝜸𝑒,𝑛,𝑘−1; 𝜸𝑒,𝑛,𝑘) =
𝜅𝑛,𝑘−1

2𝛼𝑊 𝑒 (1 + 𝜇2)

(

Â(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘 −
𝜉𝑛,𝑘−1
√

𝑁 𝜇
𝑰

)

(B.3)

where 𝜅𝑛,𝑘−1 = 𝜅𝜇,𝛾𝑦
(

Â(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘−1
)

𝜉𝑛,𝑘−1 = 𝜉𝜇,𝛾𝑦
(

Â(𝑑𝑛,𝑘−1)𝜸𝑒,𝑛,𝑘−1
)

Observe that V(., .; .) is affine with respect to its last variable: it
epresents a rearrangement of ∇𝜙∗

𝑝([𝑑], A(𝑑)𝜸𝑒,𝑛,𝑘) by re-balancing the
valuation of terms from the 𝑘 − 1 and 𝑘 iterations of the fixed point.
ote that, after this splitting between 𝜸𝑒,𝑛,𝑘−1 and 𝜸𝑒,𝑛,𝑘, the consistency
f the fixed point is still satisfied, i.e.:

(𝑑, 𝜸𝑒; 𝜸𝑒) = ∇𝜙∗
𝑝([𝑑]; 𝜸𝑒), ∀𝑑 ∈ [0, 1] and 𝜸𝑒 ∈ R𝑁×𝑁𝑠

Observe that the first subproblem (B.2a)–(B.2c) is now linear: the two
unknowns 𝜸𝑒,𝑛,𝑘 and 𝒖𝑛,𝑘 are highlighted in blue for clarity. The second
one (B.2d)–(B.2e) is now explicit. An additional projection on [0, 1]
has been introduced, since, after time discretization, there is no more
guaranty for 𝑑𝑛,𝑘 to belongs in [0, 1].

The constitutive (B.2a) and momentum (B.2b) equations are solved
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simultaneously for the elastic deformation 𝜸𝑒,𝑛,𝑘 and the velocity 𝒖𝑛,𝑘,
using the known damage 𝑑𝑛,𝑘−1. Then, using (B.2d)–(B.2f), the damage
is re-evaluated as 𝑑𝑛,𝑘, based on this value of 𝜸𝑒,𝑛,𝑘.

The linear subproblem (B.2a)–(B.2c) is solved in two steps. First,
(B.2a) writes equivalently as

(

1 + 2𝛥𝑡𝐺𝑛,𝑘−1
)

𝜸𝑒,𝑛,𝑘 + 𝛥𝑡
(

𝜆𝑛,𝑘−1(tr 𝜸𝑒,𝑛,𝑘) − 𝜉𝑛,𝑘−1
)

𝑰

= 𝜸𝑒,𝑛−1 + 𝛥𝑡𝐷(𝒖𝑛,𝑘)

where 𝐺𝑛,𝑘−1 = 𝑐𝑛,𝑘−1𝐺(𝑑𝑛,𝑘−1), 𝜆𝑛,𝑘−1 = 𝑐𝑛,𝑘−1𝜆(𝑑𝑛,𝑘−1),

𝜉𝑛,𝑘−1 = 𝑐𝑛,𝑘−1
𝜉𝑛,𝑘−1
√

𝑁 𝜇

and 𝑐𝑛,𝑘−1 =
𝜅𝑛,𝑘−1

2𝛼𝑊 𝑒 (1 + 𝜇2)
for convenience.

aking the deviatoric and trace parts of the previous equation, it
xplicitly solves as

𝐝𝐞𝐯 𝜸𝑒,𝑛,𝑘 = 𝑎𝑛,𝑘−1𝐝𝐞𝐯
(

𝜸𝑒,𝑛−1 + 𝛥𝑡𝐷(𝒖𝑛,𝑘)
)

tr 𝜸𝑒,𝑛,𝑘 = 𝑏𝑛,𝑘−1
{

tr
(

𝜸𝑒,𝑛−1 + 𝛥𝑡𝐷(𝒖𝑛,𝑘)
)

+𝑁𝛥𝑡 𝜉𝑛,𝑘−1
}

with 𝑎𝑛,𝑘−1 =
(

1 + 2𝛥𝑡𝐺𝑛,𝑘−1
)−1

𝑏𝑛,𝑘−1 =
(

1 + 2𝛥𝑡
(

𝐺𝑛,𝑘−1 +
𝑁
2
𝜆𝑛,𝑘−1

))−1

and then 𝜸𝑒,𝑛,𝑘 = 𝐝𝐞𝐯 𝜸𝑒,𝑛,𝑘 + (tr 𝜸𝑒,𝑛,𝑘)
𝑰
𝑁

= 𝑎𝑛,𝑘−1𝐝𝐞𝐯
(

𝜸𝑒,𝑛−1 + 𝛥𝑡𝐷(𝒖𝑛,𝑘)
)

+ 𝑏𝑛,𝑘−1
{

tr
(

𝜸𝑒,𝑛−1 + 𝛥𝑡𝐷(𝒖𝑛,𝑘)
)

+𝑁𝛥𝑡 𝜉𝑛,𝑘−1
} 𝑰
𝑁

(B.4)

This explicit expression of 𝜸𝑒,𝑛,𝑘 in terms of the unknown veloc-
ity 𝒖𝑛,𝑘 is then replaced in (B.2b), in order to obtain a problem for 𝒖𝑛,𝑘
only:

(S): find 𝒖𝑛,𝑘 such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝐝𝐢𝐯
(

2𝜂1,𝑛,𝑘−1𝐝𝐞𝐯𝐷(𝒖𝑛,𝑘) + 2𝜂2,𝑛,𝑘−1(div 𝒖𝑛,𝑘)
𝑰
𝑁

)

= 𝒇 (𝑡𝑛) + 𝐝𝐢𝐯𝝌𝑛,𝑘−1 (a)

𝒖𝑛,𝑘 = 𝒖𝛤 (𝑡𝑛) on 𝜕𝛺 (b)

(B.5)

where

𝜂1,𝑛,𝑘−1 = 1 − 𝛼 +
(1 − 𝑑𝑛,𝑘−1)𝛥𝑡

𝑊 𝑒
𝑎𝑛,𝑘−1𝐺(𝑑𝑛,𝑘−1)

𝜂2,𝑛,𝑘−1 = 1 − 𝛼 +
(1 − 𝑑𝑛,𝑘−1)𝛥𝑡

𝑊 𝑒
𝑏𝑛,𝑘−1

(

𝐺(𝑑𝑛,𝑘−1) +
𝑁
2
𝜆(𝑑𝑛,𝑘−1)

)

𝝌𝑛,𝑘−1 =
2(1 − 𝑑𝑛,𝑘−1)

𝑊 𝑒

{

𝑎𝑛,𝑘−1𝐺(𝑑𝑛,𝑘−1)𝐝𝐞𝐯 𝜸𝑒,𝑛−1

+𝑏𝑛,𝑘−1
(

𝐺(𝑑𝑛,𝑘−1) +
𝑁
2
𝜆(𝑑𝑛,𝑘−1)

)(

tr 𝜸𝑒,𝑛−1 +𝑁𝛥𝑡 𝜉𝑛,𝑘−1
) 𝑰
𝑁

}

Remark that 𝝌𝑛,𝑘−1 depends upon both tr 𝜸𝑒,𝑛−1 and tr 𝜸𝑒,𝑛,𝑘−1 via 𝑎𝑛,𝑘−1
nd 𝑏𝑛,𝑘−1. Assuming 𝛼 < 1, observe that 𝜂1,𝑛,𝑘−1 and 𝜂2,𝑛,𝑘−1 are always
trictly positive, even in the full damaged case 𝑑𝑛,𝑘−1 = 1. Then, sub-

problem (B.5a)–(B.5b) is always well-posed: this elliptic system can
be solved by completely standard methods (see e.g. [54, chap 2]).
After this resolution, 𝒖𝑛,𝑘 is known and then 𝜸𝑒,𝑛,𝑘 can be computed
explicitly from (B.4). Finally, the right-hand-side of (B.2f) can therefore
be evaluated: this leads to an explicit computation for 𝑑𝑛,𝑘 that solves
the second step of the fixed point loop.

B.4. Space discretization

Let us turn to the numerical resolution of subproblem (B.5a)–(B.5b).
Consider the following bilinear form 𝑎 and linear form 𝓁, defined for
all 𝒖, 𝒗 ∈

(

𝐻1(𝛺)
)𝑁 by:

𝑎𝑛,𝑘−1(𝒖, 𝒗)

=
(

2𝜂1,𝑛,𝑘−1𝐝𝐞𝐯(𝐷(𝒖))∶𝐝𝐞𝐯(𝐷(𝒗)) +
2𝜂2,𝑛,𝑘−1 div(𝒖)div(𝒗)

)

d𝒙
∫𝛺 𝑁
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s

𝑉

𝓁𝑛,𝑘−1(𝒗) = ∫𝛺

(

𝒇 (𝑡𝑛).𝒗 − 𝝌𝑛,𝑘−1 ∶𝐷(𝒗)
)

d𝒙

For all 𝒖𝑏 ∈
(

𝐻
1
2 (𝜕𝛺)

)𝑁
, we also introduce the following function

pace:

(𝒖𝑏) =
{

𝒗 ∈
(

𝐻1(𝛺)
)𝑁 ; 𝒗 = 𝒖𝑏 on 𝜕𝛺

}

Then, the variational formulation of (B.5a)–(B.5b) writes: find 𝒖𝑛,𝑘 ∈
𝑉 (𝒖𝛤 (𝑡𝑛)) such that

𝑎𝑛,𝑘−1(𝒖𝑛,𝑘, 𝒗) = 𝓁𝑛,𝑘−1(𝒗), ∀𝒗 ∈ 𝑉 (0)

The space for the velocities
(

𝐻1(𝛺)
)𝑁 is approximated by piece-

wise linear and continuous functions on a finite element mesh of
the flow domain 𝛺. Conversely, the elastic deformation 𝜸𝑒 and the
damage 𝑑 are approximated by piecewise constant functions. The nu-
merical resolution is implemented by using the Rheolef finite element
library [54].
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