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A B S T R A C T

A two-velocity fluid model is presented to describe particle migration in mono-disperse suspensions of
neutrally buoyant particles. In contrast to previous migration models, the proposed formulation allows us
to impose explicit boundary conditions on particle velocity, and thereby to satisfy strict mass conservation
for the particle phase. In addition, the upper bound on particle volume fraction (jamming limit) is strictly
enforced through a non-smooth complementarity condition and the introduction of a particle jamming pressure.
The model is applied to an axisymmetric Poiseuille flow and solved using a finite-element method. For that
purpose, a specific, fully implicit algorithm based on non-smooth optimisation tools is developed and validated.
Preliminary comparisons with experimental data from the literature show promising agreement. In particular,
the model properly captures the formation of an inner plug region, in which the suspension is saturated and
jammed.
. Introduction

Last decade saw the introduction of granular concepts to describe
he rheology and flow of suspensions of rigid particles [1,2]. While
ydro-dynamical effects are prominent in dilute mixtures, inter-particle
ontacts and friction start to play a role as soon as particle vol-
me fraction 𝜙 exceeds values of 0.2–0.25, typically [3]. Contacts
nd friction, in particular, appear to be responsible for a number of
pecific rheological properties of concentrated suspensions, such as ex-
stence normal stress differences, particle pressure and micro structure
nisotropy [3,4]. Contacts and friction can also lead to shear-thickening
ffects, and influence the value of the critical particle volume fraction
𝑚 above which the suspension is jammed and behaves as a solid [5,6].
arious constitutive models have been proposed to describe these
roperties, either through phenomenological expressions of the particle
tresses [6–8], inclusion of auxiliary conformation tensors related to mi-
ro structure evolution [9–13], or by explicitly accounting for granular
rocesses [14,15].

Among the specific properties of concentrated suspensions, shear-
nduced particle migration received a lot of attention since the seminal
tudy of Leighton and Acrivos [16]. This process is responsible for the
pontaneous development of particle volume fraction heterogeneities
n sheared suspensions and can lead, for sufficiently large values of the
verage volume fraction, to the formation of jammed plugs in which 𝜙
eaches 𝜙𝑚 [17,18]. While some recent approaches explore the direct
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E-mail address: Pierre.Saramito@imag.fr (P. Saramito).

numerical simulation of the fluid containing a discrete distribution of
particles (see e.g. [19]), most numerical simulations of the migration
process base on a continuous mathematical model for the fluid–particle
mixture. Since the first phenomenological modelling attempt by Phillips
et al. [20], various models based on two-phase mixture theory [21]
have been proposed. Formulation of a closed system of conservation
laws for a two-phase continuous medium requires closure assumptions
to express the contributions of each phase to the Cauchy stress tensor of
the mixture as well as the forces on the particle phase [22,23]. Specific
attention should be paid to the contribution of particles and contacts
to stresses, as it is now clear that shear-induced migration is driven by
the existence of normal stress gradients in the suspension [3,4]. The
classical suspension balance model (SBM), which is based on empirical
expressions for the particle stress and inter-phase drag, expresses, in
absence of inertia, as a closed system of equations for the mixture
velocity and particle volume fraction [7,24]. Qualitatively, this model
proved successful in capturing migration effects in different flow config-
urations [8,25]. However, difficulties arise when 𝜙 approaches the limit
𝜙𝑚 and the strain rate vanishes. In practice, these issues are usually
dealt with by considering unrealistically large values of 𝜙𝑚, and by
adding an ad-hoc non-local term that effectively prevents the strain rate
from vanishing [25]. As a consequence the model cannot capture the
formation of truly jammed plugs. Note however that a recent extension
vailable online 18 April 2022
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of SBM, implementing a process of inelastic compressibility through
which the particle volume fraction can increase beyond the limit 𝜙𝑚
in jammed regions, has been shown to overcome this limitation, and
to effectively predict realistic plugs [15]. Physically, such solid com-
pressibility of jammed regions can arise due to non-local effects and
fluctuations induced by the neighbouring sheared regions [15,26,27].
Finally, another drawback of such single velocity models is the diffi-
culty to impose proper conditions on the particle flux at the boundaries
of the domain. As a consequence, conservation of particle mass might
not always be satisfied in numerical implementations [25].

In this paper, we propose an alternative migration model that
explicitly integrates the saturation of the mixture when the volume
fraction reaches the limit 𝜙𝑚. A unilateral constraint is added to the
system of conservation laws through a complementarity condition to
ensure that 𝜙 remains effectively bounded by 𝜙𝑚. In addition, the model
is based on a two-velocity formulation, and embodies an explicit com-
putation of the difference between the mixture velocity and the particle
phase velocity (i.e. the migration velocity). Boundary conditions on the
particle flux can be explicitly imposed, such that strict conservation
of particle mass is satisfied . Since the study is primarily devoted to
the formulation and numerical solution of the system of conservation
laws, particle stress is modelled using the classical phenomenological
constitutive relation proposed by Morris and Boulay [7]. Inter-particle
friction or effects of micro structure are not directly taken into account
at this stage, although they might be included in further versions of
the model by using more sophisticated constitutive models [10,13,15].
As explained below, we do however introduce an additional pressure
term that can be interpreted as a jamming pressure, to properly deal
with the complementarity condition. Compared to SBM, our model also
involves an additional inter-phase stress term required for the stability
of the two-velocity formulation and to enforce boundary conditions on
particle velocity.

From a mathematical standpoint, flow models involving a comple-
mentarity condition are usually referred to as congested problems [28,
29]. The mathematical properties of such systems were first studied
by Lions and Masmoudi [30], and more recently by Bresch et al.
[28]. Hyperbolic variants of these models, without diffusive terms,
were first applied to road traffic [31,32] using the asymptotic pre-
serving numerical method [33]. Later, these models were also applied
to crowd motion [34], granular media [35,36], and shallow flows in
cavities [37]. A general overview of hyperbolic systems with unilateral
constraints was exposed by Bouchut et al. [38], and specific solutions
were studied by Berthelin [39] and Berthelin and Bouchut [40] and
recently Chen and Zhai [41].

The paper is structured as follows. The proposed two-phase model
for the mixture velocity, migration velocity and particle volume frac-
tion is presented in Section 2. Through an asymptotic analysis, a
reduced system is then derived for the case of a uniform axisym-
metric Poiseuille flow (flow in a circular tube). Section 3 proposes
a numerical method to solve the model in the case of the Poiseuille
problem, implementing a specific augmented Lagrangian approach to
handle the nonlinearity associated with the complementarity condition.
Spatial discretisation is performed using finite elements. Results are
presented and discussed in Section 4. After a careful investigation
of the convergence properties of the numerical method, the physical
characteristics of the solutions are described, and direct comparisons
with experimental measurements of Oh et al. [18] are shown. Section 5
presents final discussions and conclusions.

2. Migration model

2.1. Two velocity formulation

Let 𝑟𝑝 be the radius of the rigid spherical particles, and 𝜂0 be the
viscosity of the interstitial Newtonian fluid. For the sake of simplicity,
we assume here a neutral buoyancy: let 𝜌 denote the constant mass
2

t

density of both the fluid and the particles. This assumption is not
fundamental, and the present theory could be extended to also include
different mass densities and sedimentation effects. The dynamics of
the mixture, at a continuous macroscopic scale, is described by two
independent velocities. Without loss of generality, we choose as inde-
pendent variables the velocity of the mixture, denoted by 𝒖, and the
elocity difference between the two phases, hereafter called migration
elocity, denoted by 𝒘. Note that 𝒖 + 𝒘 represents the velocity of the
articles phase.

The volume fraction is denoted by 𝜙 and is bounded by the maximal
olume fraction 𝜙𝑚. When 𝜙 = 𝜙𝑚, the mixture is jammed and behaves
s a solid. For convenience, the reduced volume fraction 𝜓 = 𝜙∕𝜙𝑚

is introduced. The constraint 𝜙 ⩽ 𝜙𝑚, or equivalently 𝜓 ⩽ 1, can be
xpressed as a linear complementarity problem Cottle and Dantzig [42]
nd Duvaut and Lions [43]:

⩽ (1 − 𝜓) ⊥ 𝑝𝑗 ⩾ 0 ⇔

⎧

⎪

⎨

⎪

⎩

1 − 𝜓 ⩾ 0
𝑝𝑗 ⩾ 0

(1 − 𝜓)𝑝𝑗 = 0
(1)

ence, the two quantities 1 − 𝜓 and 𝑝𝑗 should always be positive,
nd the ⟂ notation expresses that their product should also be zero.
hen 𝜓 < 1, we then have 𝑝𝑗 = 0, while 𝑝𝑗 can be nonzero when 𝜓 =

1 in the jammed case. This constraint expresses, at the macroscopic
scale, the microscopic non-penetration between the rigid particles when
contacts occur. The quantity 𝑝𝑗 is a Lagrange multiplier that can be
interpreted as a jamming pressure. Note that (1) should be satisfied
locally, as some regions of the flow can be jammed while others are
not.

Table 1 summarises the main notations used in this paper. Let 𝛺 ⊂
R𝑑 denote the flow domain, where 𝑑 ⩾ 1 is the physical space
imension, and let 𝑇 > 0 be the final time. The problem to solve writes:
𝑃 ): find 𝒖, 𝒘, 𝑝, 𝜓 , 𝑝𝑗 , defined in ]0, 𝑇 [×𝛺, such that

𝜌
( 𝜕𝒖
𝜕𝑡

+ 𝒖.∇𝒖
)

− div
(

−𝑝𝑰 + 2𝜂0𝐷(𝒖) + 𝝉𝑝
)

= 𝒇 in ]0, 𝑇 [×𝛺 (a)

𝜌𝜙𝑚𝜓
(

𝜕(𝒖 +𝒘)
𝜕𝑡

+ (𝒖 +𝒘).∇(𝒖 +𝒘)
)

− div
(

−𝑝𝑗𝑰 + 𝝉𝑝
)

+
𝜂0𝑠(𝜓)
𝑟2𝑝

𝒘 − div
(

2𝜂0𝑠(𝜓)𝐷(𝒘)
)

= 0 in ]0, 𝑇 [×𝛺 (b)

div 𝒖 = 0 in ]0, 𝑇 [×𝛺 (c)
𝜕𝜓
𝜕𝑡

+ div ((𝒖 +𝒘)𝜓) = 0 in ]0, 𝑇 [×𝛺 (d)

0 ⩽ (1 − 𝜓) ⊥ 𝑝𝑗 ⩾ 0 in ]0, 𝑇 [×𝛺 (e)

𝝉𝑝 = 2𝜂0
𝜓

1 − 𝜓

(

5𝜙𝑚
2

+
𝜓

1 − 𝜓
𝐾𝑠

)

𝐷 (𝒖)

−2𝜂0

(

𝜓
1 − 𝜓

)2

𝐾𝑛 |𝐷 (𝒖)|𝑄 in ]0, 𝑇 [×𝛺 (f)

𝒖 = 𝒖𝛤 and 𝒘 = 𝒘𝛤 in ]0, 𝑇 [×𝜕𝛺 (g)
𝜓 = 𝜓𝛤 in ]0, 𝑇 [×𝜕𝛺− (h)

𝒖(𝑡=0) = 𝒖0, 𝒘(𝑡=0) = 𝒘0 and 𝜓(𝑡=0) = 𝜓0 in 𝛺 (i)

(2)

qs. (2)(a) and (2)(c) express the momentum and mass conservation
f the mixture, respectively, while Eqs. (2)(b) and (2)(d) express the
omentum and mass conservation of the particle phase. Note that the

atter has the form of an evolution equation for the reduced volume
raction 𝜓 . Eq. (2)(a) involves the expression of the Cauchy stress tensor
f the mixture 𝝈𝑚 = −𝑝𝑰 + 2𝜂0𝐷(𝒖) + 𝝉𝑝, where 𝐷(𝒖) = (∇𝒖 + ∇𝒖𝑇 )∕2.
he Lagrange multiplier 𝑝, that interprets as the bulk pressure, is

ntroduced to enforce the mixture incompressibility constraint (2)(c).
he quantity 𝝉𝑝 represents the contribution of the particle phase to the
xtra-stress tensor, and will be discussed later. On the right-hand-side,

represents any external body force. Eq. (2)(b) involves the Cauchy
tress of the particle phase −𝑝𝑗𝑰 + 𝝉𝑝, where 𝑝𝑗 is the jamming pressure
elated to the jamming constraint (2)(e), as explained above. Note that

he particle pressure then expresses as 𝑝𝑗 − tr(𝝉𝑝)∕3. Eq. (2)(b) also



Journal of Non-Newtonian Fluid Mechanics 304 (2022) 104805O. Ozenda et al.

t

[
f
t
s
r
I
a
E

p
C
a
𝝉
a
u
a
v
p
o
p

d
b
f

𝜕

Table 1
Notations used in the paper.
Notation Description Notation Description

𝒖 Bulk velocity 𝜌 Fluid and particle density
𝒘 Migration velocity 𝜂0 Fluid viscosity
𝑞 Pipe flow rate 𝝉𝑝 Particle stress tensor
𝑝 Mixture pressure 𝑄 = diag(1, 𝜆2 , 𝜆3) normal stress tensor
𝑝𝑗 Jamming pressure 𝑠(𝜓) Hindrance function
𝜙 Volume fraction 𝛼 Exponent in 𝑠(𝜓)
𝜙𝑚 Maximal volume fraction 𝐾𝑛 , 𝐾𝑠 Reduced viscosities
𝜓 = 𝜙∕𝜙𝑚 Reduced volume fraction 𝜀 = 𝑟𝑝∕𝑅 Dimensionless particle radius
Ω Flow domain 𝑅𝑒 = 2𝜌𝑞∕(𝜋𝑅) Reynolds number
𝑅 Tube radius ℎ Mesh size
𝐿 Tube length 𝛥𝑡 Time step
𝑇 Final time 𝜇 Augmentation parameter
𝑟𝑝 Particle radius
a
t
m
t

g
a
f
f

involves a net force exerted on the particle phase:
𝜂0𝑠(𝜓)
𝑟2𝑝

𝒘 − div
(

2𝜂0𝑠(𝜓)𝐷(𝒘)
)

.

The first term in this force corresponds to the drag force exerted by
he fluid phase, where 𝑠(𝜓) is a hindrance function for which we use the

following expression proposed by Miller and Morris [25]:

𝑠(𝜓) = 9
2(1 − 𝜙𝑚𝜓)𝛼−1(1 − 𝜓)

,

with 𝛼 ∈ [2, 5] a material parameter. As discussed by Miller and Morris
25], this expression is adapted from the classical Richardson–Zaki
unction, with an additional (1−𝜓) factor in the denominator to enforce
hat migration ceases when maximum packing fraction is reached. The
econd term in the particle-phase force, namely div

(

2𝜂0𝑠(𝜓)𝐷(𝒘)
)

,
epresents a second-order correction with respect to particle radius 𝑟𝑝.
t is introduced here in order to allow for the imposition of bound-
ry conditions on particle velocity 𝒖 + 𝒘, or equivalently on 𝒘 (see
q. (2)(g)).

Eq. (2)(f) is the phenomenological constitutive relation for the
article stress tensor 𝝉𝑝 initially proposed by Morris and Boulay [7].
onstants 𝐾𝑠 and 𝐾𝑛 are material parameters that control the shear
nd normal viscosities, respectively. Note that the particle stress tensor
𝑝 diverges when 𝜓 → 1, so that this constitutive model cannot be used
s such in saturated regions. In what follows, a regularisation will be
sed to overcome this limitation (see Section 3). The tensor 𝑄 expresses
s diag(1, 𝜆2, 𝜆3) in the velocity, gradient, vorticity basis associated to
iscosimetric flows (see e.g. [44, p. 158]), where 𝜆2 and 𝜆3 are material
arameters controlling the two normal stress differences. Expressions
f 𝑄 adapted to the case of non-viscosimetric flows have also been
roposed [45], but will not be used here.

Finally, the problem is closed by suitable initial and boundary con-
itions on velocities 𝒖 and 𝒘 and reduced volume fraction 𝜓 , expressed
y Eqs. (2)(g)–(2)(i). Here 𝜕𝛺− denotes the upstream boundary domain
or the particle phase:

𝛺− = {𝒙 ∈ 𝜕𝛺 such that (𝒖 +𝒘)(𝒙) ⋅ 𝒏(𝒙) < 0} ,

and 𝒖𝛤 , 𝒘𝛤 , 𝜓𝛤 , 𝒖0, 𝒘0, 𝜓0, are given boundary and initial data
satisfying div 𝒖0 = 0, ∫𝜕𝛺 𝒖𝛤 d𝑠 = 0 and 𝜓0, 𝜓𝛤 ∈ [0, 1]. Observe that,
from (2)(d) and since 𝜓(𝑡 = 0) ⩾ 0, then 𝜓(𝑡) ⩾ 0 for any 𝑡 ⩾ 0.

Suspension balance model (SBM), which only involves the mix-
ture velocity [25], can be recovered by neglecting inertial terms in
Eqs. (2)(a) and (2)(b), and omitting the complementarity condition
(2)(e) as well as the term 𝐝𝐢𝐯

(

−𝑝𝑗𝑰 + 2𝜂0𝑠(𝜓)𝐷(𝒘)
)

in Eq. (2)(b). Note
that, in SBM, the constraint 𝜓 ⩽ 1 is not strictly imposed, but effectively
verified through the addition of an ad-hoc non-local term to the particle
stress tensor 𝝉𝒑.

Appendix A further expands on the link between the present model
3

and the general mixture theory developed by Jackson [46], including t
Fig. 1. Circular tube geometry for the Poiseuille flow.

formal definitions of the variables in terms of fluid and solid phase
averages. Let us also note that, as an alternative to the stress partition
used in system (2), one could define the total Cauchy stress tensor of
the particle phase as 𝝈𝑝 = 𝝉𝑝 + 𝝉𝑝,𝑛𝑙 − 𝑝𝑗𝑰 , with 𝝉𝑝,𝑛𝑙 = 2𝜂0𝑠(𝜓)𝐷(𝒘).
Physically, the new corrective term 𝝉𝑝,𝑛𝑙 could then be interpreted as

non-local contribution to the particle stress in unjammed regions, in
he same spirit as non-local rheological models proposed for granular
aterials and other complex fluids [47,48]. The total particle pressure

hen expresses as 𝑝𝑝 = 𝑝𝑗 − tr(𝝉𝑝 + 𝝉𝑝,𝑛𝑙)∕3, also involving a contribution
from 𝜏𝑝,𝑛𝑙.

Finally, let us comment on the mathematical structure of problem
(2)(a)–(2)(i). The pair (𝒖, 𝑝) satisfies an incompressible Navier–Stokes-
like subsystem (2)(a), (2)(c), while the triplet (𝒘, 𝜓, 𝑝𝑗 ) satisfies a
variable-density Navier–Stokes-like subsystem (2)(b), (2)(d), associ-
ated to condition (2)(e) that guarantees 𝜓 ∈ [0, 1]. Coupling between
the two subsystems is achieved by the tensor 𝝉𝑝 that depends on 𝒖
and 𝜓 from (2)(f).

2.2. Uniform Poiseuille flow

Let us consider here the circular tube geometry represented on
Fig. 1, with 𝐿 the length of the tube and 𝑅 its radius. Let (𝑟, 𝜃, 𝑧) be
the associated cylindrical coordinate system. We consider axisymmetric
flows independent upon 𝜃. The tube is assumed to be sufficiently long,
i.e. 𝐿 → ∞, such that the flow is also considered to be independent
upon 𝑧. Hence, mixture velocity writes 𝒖(𝑡, 𝑟) = (0, 0, 𝑢𝑧(𝑡, 𝑟)), while mi-
ration velocity can develop a nonzero radial component and expresses
s 𝒘(𝑡, 𝑟) = (𝑤𝑟(𝑡, 𝑟), 0, 𝑤𝑧(𝑡, 𝑟)). The average reduced particle volume
raction 𝜓0 is constant for 𝑡 ⩾ 0, and we also consider that the mixture
low rate 𝑞 is imposed and constant for 𝑡 > 0.

An asymptotic analysis for 𝐿→ ∞, presented in Appendix B, shows
hat problem (2)(a)–(2)(i) then reduces to, in dimensionless form:



Journal of Non-Newtonian Fluid Mechanics 304 (2022) 104805O. Ozenda et al.

v
t

w
l

𝝉

F
n
f

R
p
i
b
r
t
s
t
c
a
T
T
c
t
e
w
i

p
o

3

m
t
s
t
a
w
t
v
r
u

S
i
n
a
o
m
b
b
b
i
f
(
a
t

3

A
(

t
𝑢
i
d
t
(

(

p

s
b
a

(

W
(

(

t
a
(

c

(𝑄): find 𝑢𝑧, 𝑤𝑧, 𝑤𝑟, 𝜓 , 𝑝𝑗 , defined in ]0, 𝑇 [×]0, 1[ and 𝑓𝑧 in ]0, 𝑇 [, s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒 𝜕𝑡𝑢𝑧 −
𝜕𝑟
𝑟
(

𝑟 𝜂𝑎𝑝𝑝(𝜓) 𝜕𝑟𝑢𝑧
)

+ 𝑓𝑧 = 0 in ]0, 𝑇 [×]0, 1[ (a)

𝑅𝑒𝜙𝑚𝜓 𝜕𝑡(𝑢𝑧 +𝑤𝑧) +
𝑠(𝜓)
𝜀2

𝑤𝑧

−
𝜕𝑟
𝑟
(

𝑟 𝑠(𝜓) 𝜕𝑟𝑤𝑧 + 𝑟
(

𝜂𝑎𝑝𝑝(𝜓) − 1
)

𝜕𝑟𝑢𝑧
)

= 0 in ]0, 𝑇 [×]0, 1[ (b)

𝑅𝑒𝜙𝑚𝜓 𝜕𝑡𝑤𝑟 +
𝑠(𝜓)
𝜀2

𝑤𝑟 −
𝜕𝑟
𝑟
(

2 𝑟 𝑠(𝜓) 𝜕𝑟𝑤𝑟
)

+
𝜂𝑛,𝜃(𝜓) |𝜕𝑟𝑢𝑧|

𝑟
−
𝜕𝑟
𝑟
(

𝑟 𝜂𝑛,𝑟(𝜓) |𝜕𝑟𝑢𝑧|
)

+ 𝜕𝑟𝑝𝑗

= 0 in ]0, 𝑇 [×]0, 1[ (c)

𝜕𝑡𝜓 +
𝜕𝑟
𝑟
(𝑟𝑤𝑟𝜓) = 0 in ]0, 𝑇 [×]0, 1[ (d)

0 ⩽ (1 − 𝜓) ⊥ 𝑝𝑗 ⩾ 0 in ]0, 𝑇 [×]0, 1[ (e)

∫

1

0
𝑢𝑧(𝑡, 𝑟) 𝑟d𝑟 = 1

4
, ∀ 𝑡 ∈ ]0, 𝑇 [ (f)

𝜕𝑟𝑢𝑧(𝑡, 𝑟=0) = 𝑢𝑧(𝑡, 𝑟=1) = 0, ∀ 𝑡 ∈ ]0, 𝑇 [ (g)
𝜕𝑟𝑤𝑧(𝑡, 𝑟=0) = 𝑤𝑧(𝑡, 𝑟=1) = 0, ∀ 𝑡 ∈ ]0, 𝑇 [ (h)
𝑤𝑟(𝑡, 𝑟=0) = 𝑤𝑟(𝑡, 𝑟=1) = 0, ∀ 𝑡 ∈ ]0, 𝑇 [ (i)
𝑢𝑧(𝑡=0) = 𝑤𝑧(𝑡=0) = 𝑤𝑟(𝑡=0) = 0, 𝜓(𝑡=0) = 𝜓0 in ]0, 1[ (j)

(3)

where 𝜀 = 𝑟𝑝∕𝑅 and 𝑅𝑒 = 𝜌𝑈𝑅∕𝜂0, with 𝑈 = 2𝑞∕(𝜋𝑅2) the characteristic
elocity scale. Here, 𝑝𝑗 denotes the Lagrange multiplier associated
o the complementarity condition (3)(e). Similarly, 𝑓𝑧 is a Lagrange

multiplier associated to the mixture flow rate constraint (3)(f). Note
that 𝑓𝑧 interprets as the longitudinal gradient of mixture pressure. The
rheological functions 𝜂𝑎𝑝𝑝, 𝜂𝑛,𝑟 and 𝜂𝑛,𝜃 involved are given by

𝜂𝑎𝑝𝑝(𝜓) = 1 +
5𝜙𝑚
2

(

𝜓
1 − 𝜓

)

+𝐾𝑠

(

𝜓
1 − 𝜓

)2

𝜂𝑛,𝑟(𝜓) = −𝛼𝑛,𝑟

(

𝜓
1 − 𝜓

)2

𝜂𝑛,𝜃(𝜓) = −𝛼𝑛,𝜃

(

𝜓
1 − 𝜓

)2

ith 𝛼𝑛,𝑟 = 𝜆2𝐾𝑛 and 𝛼𝑛,𝜃 = 𝜆3𝐾𝑛. With these notations, the dimension-
ess particle stress tensor expresses as:

𝑝 =

⎛

⎜

⎜

⎜

⎝

𝜂𝑛,𝑟(𝜓) |𝜕𝑟𝑢𝑧| 0 (𝜂𝑎𝑝𝑝(𝜓) − 1) 𝜕𝑟𝑢𝑧
0 𝜂𝑛,𝜃(𝜓) |𝜕𝑟𝑢𝑧| 0

(𝜂𝑎𝑝𝑝(𝜓) − 1) 𝜕𝑟𝑢𝑧 0 𝜂𝑛,𝑧(𝜓) |𝜕𝑟𝑢𝑧|

⎞

⎟

⎟

⎟

⎠

(4)

inally, note that, unlike for 2D plane channel flow [15], particle
ormal stress differences are explicitly involved in the circular tube
low considered here.

Let us observe the mathematical structure of problem (3)(a)–(3)(j).
elations (3)(a) and (3)(f) constitute a linear constrained parabolic sub-
roblem for the unknown 𝑢𝑧 and the Lagrange multiplier 𝑓𝑧, where 𝜓
s considered as known. This first linear sub-problem is closed by
oundary and initial conditions (3)(g) and (3)(j) for 𝑢𝑧. Similarly,
elation (3)(b) constitute a second linear parabolic sub-problem for
he unknown 𝑤𝑧 , where both 𝑢𝑧 and 𝜓 are considered as known. This
econd linear sub-problem is closed with boundary and initial condi-
ions (3)(h) and (3)(j) for 𝑤𝑧. Finally, relations (3)(c), (3)(d) and (3)(e)
onstitute a nonlinear constrained sub-problem for the unknowns 𝑤𝑟
nd 𝜓 and the Lagrange multiplier 𝑝𝑗 , where 𝑢𝑧 is considered as known.
his problem will henceforth be called the congested flow sub-problem.
his third nonlinear sub-problem is closed with boundary and initial
onditions (3)(i) and (3)(j) for 𝑤𝑟 and 𝜓 . The Lagrange multiplier 𝑝𝑗
hat imposes the nonlinear constraint 𝜓 ⩽ 1 in (3)(e) acts on 𝑤𝑟 via its
volution equation (3)(c). Then, 𝜓 is convected by 𝑤𝑟 in accordance
ith the mass conservation equation (3)(d). Hence, 𝑝𝑗 acts as a subtle

ndirect control upon 𝜓 via 𝑤 . The numerical solution of the problem
4

𝑟 +
resented in the following section is mainly suggested by observation
f this mathematical structure.

. Numerical resolution

We present in this section a fully implicit algorithm for the nu-
erical resolution of problem (𝑄) (uniform Poiseuille flow). At each

ime step of an outer loop, the three sub-problems outlined above are
olved, and a fixed point inner loop ensures the convergence. Note
hat, unlike Degond et al. [33] and Degond and Tang [49] who solved
n hyperbolic congested flow problem with an explicit time scheme,
e choose here an implicit time discretisation to avoid restrictions on

ime steps due to stability criteria. As the present problem also involves
iscous and diffusion terms, such conditions on time step would be too
estrictive. Particle migration tends to be a slow process, for which the
se of large time steps is required.

Presentation of the numerical algorithm is organised as follows.
ection 3.1 describes the fixed point method that splits problem (𝑄)
nto the three associated sub-problems. Two of these sub-problems,
amely (𝑆1) and (𝑆2), are linear and provide computations of (𝑢𝑧, 𝑓𝑧)
nd 𝑤𝑧, respectively. The three other unknowns, 𝑤𝑟, 𝑝𝑗 , 𝜓 , are solution
f a non smooth optimisation problem (𝑆3). Problem (𝑆3), which imple-
ents a complementarity condition between 𝑝𝑗 and 𝜓 , cannot be solved

y classical optimisation algorithms. This problem is thus approached
y another problem (𝑆3), implementing a complementarity condition
etween 𝑝𝑗 and 𝜕𝑟𝑤𝑟∕𝑟. An optimisation method to solve problem (𝑆3)
s presented in Section 3.2. A corrective term is added to the cost
unction to apply an augmented Lagrangian method. The solution of
𝑆3) then expresses as a critical point of the augmented cost function,
nd is found using an Uzawa algorithm. Finally, Section 3.3 describes
he spatial discretisation used.

.1. Implicit time discretisation

Let 𝛥𝑡 > 0 be the time step and 𝑡𝑛 = 𝑛𝛥𝑡, 𝑛 ∈ N, be the discrete times.
sequence of semi-discrete in time solutions

𝑢(𝑛)𝑧 , 𝑤
(𝑛)
𝑧 , 𝑤

(𝑛)
𝑟 , 𝜓 (𝑛), 𝑓 (𝑛)

𝑧 , 𝑝(𝑛)𝑗
)

𝑛⩾0
is defined by recurrence. When 𝑛 = 0,

he solution is provided by the initial conditions,
(0)
𝑧 = 𝑤(0)

𝑧 = 𝑤(0)
𝑟 = 𝑝(0)𝑗 = 0, 𝜓 (0) = 𝜓0 and 𝑓 (0)

𝑧 = 0 i.e. the material
s at rest and homogeneous and 𝜓0 ∈ [0, 1[ is the given initial re-
uced volume fraction. When 𝑛 ⩾ 1, let us assume by recurrence
hat the numerical solution of system (𝑄) is given at time 𝑡𝑛−1, i.e.
𝑢(𝑛−1)𝑧 , 𝑤(𝑛−1)

𝑧 , 𝑤(𝑛−1)
𝑟 , 𝜓 (𝑛−1), 𝑓 (𝑛−1)

𝑧 , 𝑝(𝑛−1)𝑗

)

is known. Then,

𝑢(𝑛)𝑧 , 𝑤
(𝑛)
𝑧 , 𝑤

(𝑛)
𝑟 , 𝜓 (𝑛), 𝑓 (𝑛)

𝑧 , 𝑝(𝑛)𝑗
)

is computed using the following fixed
oint procedure.

Let 𝑘 ∈ N denotes the index of the fixed point inner loop. At each
tep 𝑛 ⩾ 1, a sequence

(

𝑢(𝑛,𝑘)𝑧 , 𝑤(𝑛,𝑘)
𝑧 , 𝑤(𝑛,𝑘)

𝑟 , 𝜓 (𝑛,𝑘), 𝑓 (𝑛)
𝑧 , 𝑝(𝑛)𝑗

)

𝑘⩾0
is defined

y recurrence. When 𝑘 = 0, this inner loop is initialised from the values
t the previous time step, i.e.
(

𝑢(𝑛,0)𝑧 , 𝑤(𝑛,0)
𝑧 , 𝑤(𝑛,0)

𝑟 , 𝜓 (𝑛,0), 𝑓 (𝑛,0)
𝑧 𝑖, 𝑝(𝑛,0)𝑗

)

=

𝑢(𝑛−1)𝑧 , 𝑤(𝑛−1)
𝑧 , 𝑤(𝑛−1)

𝑟 , 𝜓 (𝑛−1), 𝑓 (𝑛−1)
𝑧 , 𝑝(𝑛−1)𝑗

).

hen 𝑘 ⩾ 1, let us assume by recurrence that
𝑢(𝑛,𝑘−1)𝑧 , 𝑤(𝑛,𝑘−1)

𝑧 , 𝑤(𝑛,𝑘−1)
𝑟 , 𝜓 (𝑛,𝑘−1), 𝑓 (𝑛,𝑘−1)

𝑧 , 𝑝(𝑛,𝑘−1)𝑗

)

is known. Then,

𝑢(𝑛,𝑘)𝑧 , 𝑤(𝑛,𝑘)
𝑧 , 𝑤(𝑛,𝑘)

𝑟 , 𝜓 (𝑛,𝑘), 𝑓 (𝑛,𝑘)
𝑧 , 𝑝(𝑛,𝑘)𝑗

)

is defined by splitting (𝑄) into
hree subsystems, two of them are linear and will be referred as (𝑆1)
nd (𝑆2), the third one is a congested nonlinear problem, referred as
𝑆3).

By introducing two numerical parameters, 𝑘𝑚𝑎𝑥 and 𝜀𝑓𝑝, a stopping
riterion is defined:
‖𝜓 (𝑛,𝑘−1) − 𝜓 (𝑛,𝑘)

‖

2 + ‖𝑤(𝑛,𝑘−1)
𝑟 −𝑤(𝑛,𝑘)

𝑟 ‖

2

(𝑛,𝑘−1) (𝑛,𝑘) 2 (𝑛,𝑘−1) (𝑛,𝑘) 2
√ or 𝑘 > 𝑘𝑚𝑎𝑥 (5)
‖𝑤𝑧 −𝑤𝑧 ‖ + ‖𝑢𝑧 − 𝑢𝑧 ‖ ⩽ 2𝛥𝑡 𝜀𝑓𝑝
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⎪
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⎪

⎪

⎪

⎨
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⎪
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⎪
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r
s
h
(

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓

a
i

𝐾

N
e
a

𝑎

where ‖.‖ denotes the usual 𝐿2 norm with axisymmetric weighting,
defined for all function 𝑓 by

‖𝑓‖ =

(

∫

1

0
𝑓 (𝑟) 𝑟 d𝑟

)
1
2

hen stopping criterion (5) is satisfied, the fixed point loop is ter-
inated and the last element of the sequence is simply denoted as
𝑢(𝑛)𝑧 , 𝑤

(𝑛)
𝑧 , 𝑤

(𝑛)
𝑟 , 𝜓 (𝑛), 𝑓 (𝑛)

𝑧 , 𝑝(𝑛)𝑗
)

, i.e. the second index 𝑘 is omitted.
With the notations defined above, the two linear subsystems solved

t each fixed point iteration write:
𝑆1): find 𝑢(𝑛,𝑘)𝑧 defined in ]0, 1[ and 𝑓 (𝑛,𝑘)

𝑧 ∈ R such that

𝑅𝑒
𝛥𝑡

(

𝑢(𝑛,𝑘)𝑧 −𝑢(𝑛−1)𝑧

)

−
𝜕𝑟
𝑟

(

𝑟 𝜂𝑎𝑝𝑝
(

𝜓 (𝑛,𝑘−1)) 𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

)

+ 𝑓 (𝑛,𝑘)
𝑧 = 0 in ]0, 1[ (a)

∫

1

0
𝑢(𝑛,𝑘)𝑧 𝑟d𝑟 = 1

4
(b)

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧 (𝑟 = 0) = 𝑢(𝑛,𝑘)𝑧 (𝑟 = 1) = 0 (c)

(6)

(𝑆2): find 𝑤(𝑘,𝑛)
𝑧 defined in ]0, 1[ such that

𝑅𝑒𝜙𝑚 𝜓 (𝑛,𝑘−1)

𝛥𝑡

(

𝑤(𝑛,𝑘)
𝑧 −𝑤(𝑛−1)

𝑧

)

+ 𝜀−2𝑠
(

𝜓 (𝑛,𝑘−1))𝑤(𝑛,𝑘)
𝑧

−
𝜕𝑟
𝑟

(

𝑟 𝑠
(

𝜓 (𝑛,𝑘−1)) 𝜕𝑟𝑤
(𝑛,𝑘)
𝑧

)

=
𝑅𝑒𝜙𝑚 𝜓 (𝑛,𝑘−1)

𝛥𝑡

(

𝑢(𝑛,𝑘)𝑧 − 𝑢(𝑛−1)𝑧

)

in ]0, 1[ (a)

𝜕𝑟𝑤
(𝑛,𝑘)
𝑧 (𝑟 = 0) = 𝑤(𝑛,𝑘)

𝑧 (𝑟 = 1) = 0 (b)

(7)

Similarly, the nonlinear congested subsystem write:
(𝑆3): find 𝑤(𝑛,𝑘)

𝑟 , 𝑝(𝑛,𝑘)𝑗 and 𝜓 (𝑛,𝑘) defined in ]0, 1[ such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒𝜙𝑚 𝜓 (𝑛,𝑘−1)

𝛥𝑡

(

𝑤(𝑛,𝑘)
𝑟 −𝑤(𝑛−1)

𝑟

)

+ 𝜀−2𝑠
(

𝜓 (𝑛,𝑘−1))𝑤(𝑛,𝑘)
𝑟

−
𝜕𝑟
𝑟

(

2 𝑟 𝑠
(

𝜓 (𝑛,𝑘−1)) 𝜕𝑟𝑤
(𝑛,𝑘)
𝑟

)

+ 𝜕𝑟𝑝
(𝑛,𝑘)
𝑗

=
𝜕𝑟
𝑟

(

𝑟 𝜂𝑛,𝑟
(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

)

−1
𝑟
𝜂𝑛,𝜃

(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

in ]0, 1[ (a)

0 ⩽
(

𝜓∗ − 𝜓 (𝑛,𝑘)) ⊥ 𝑝(𝑛,𝑘)𝑗 ⩾ 0 in ]0, 1[ (b)
1
𝛥𝑡

(

𝜓 (𝑛,𝑘) − 𝜓 (𝑛−1)◦𝑋(𝑛,𝑘−1)) +
𝜕𝑟
𝑟

(

𝑟𝑤(𝑛,𝑘)
𝑟

)

𝜓 (𝑛,𝑘) = 0 in ]0, 1[ (c)

𝑤(𝑛,𝑘)
𝑟 (𝑟 = 0) = 𝑤(𝑛,𝑘)

𝑟 (𝑟 = 1) = 0 (d)

(8)

here 𝑋(𝑛,𝑘−1)(𝑟) = 𝑟 − 𝛥𝑡 𝑤(𝑛,𝑘−1)
𝑟 (𝑟) in (8)(c) denotes a first order ap-

roximation of the characteristics.
Observe that the original unilateral constraint 𝜓 ⩽ 1 has been

eplaced in (8)(b) by 𝜓 (𝑛,𝑘) ⩽ 𝜓∗, where 𝜓∗ < 1 is a numerical threshold
lose to 1. This threshold is used to ensure that the hindrance function 𝑠
nd the viscosities 𝜂𝑎𝑝𝑝, 𝜂𝑛,𝑟 and 𝜂𝑛,𝜃 remain bounded. This strategy
onstitutes an effective regularisation of the constitutive law in order
o avoid divergence of the stress components and drag force in the
aturated regions.

The two linear systems (𝑆1) and (𝑆2) are standard, while the so-
ution of the congested nonlinear system (𝑆3) requires more work.
bserve that (8)(c) can be explicitly solved in term of 𝜓 (𝑛,𝑘) as:

1 + 𝛥𝑡
𝜕𝑟
𝑟
(

𝑟𝑤(𝑛,𝑘)
𝑟

)

)

𝜓 (𝑛,𝑘) = 𝜓 (𝑛−1)◦𝑋(𝑛,𝑘−1) (9)

Indeed, for sufficiently small 𝛥𝑡 > 0, the first factor of the left-hand
side of (8)(c) is strictly positive in ]0, 1[, and thus 𝜓 (𝑛,𝑘) is well-defined
by an explicit expression. This expression of 𝜓 (𝑛,𝑘) can then be re-
placed in (8)(b). After rearrangements, we obtain a constraint in terms
5

of 𝑤(𝑛,𝑘)
𝑟 :

1
𝛥𝑡

(

𝜓∗ − 𝜓 (𝑛,𝑘−1)◦𝑋(𝑛,𝑘−1)) ⩽
𝜕𝑟
𝑟
(

𝑟𝑤(𝑛,𝑘)
𝑟

)

⊥ 𝑝(𝑛,𝑘)𝑗 ⩾ 0

his complementarity condition means that the compressibility of the
article phase is bounded negatively, depending on the value of the
olume fraction.

Hence, congested subsystem interprets as an obstacle problem cou-
led to an advection equation :
𝑆̃3): find 𝑤(𝑛,𝑘)

𝑟 and 𝑝(𝑛,𝑘)𝑗 , defined in ]0, 1[, such that

𝑅𝑒𝜙𝑚 𝜓 (𝑛,𝑘−1)

𝛥𝑡

(

𝑤(𝑛,𝑘)
𝑟 −𝑤(𝑛−1)

𝑟

)

+ 𝜀−2𝑠
(

𝜓 (𝑛,𝑘−1))𝑤(𝑛,𝑘)
𝑟

−
𝜕𝑟
𝑟

(

2 𝑟 𝑠
(

𝜓 (𝑛,𝑘−1)) 𝜕𝑟𝑤
(𝑛,𝑘)
𝑟

)

+ 𝜕𝑟𝑝
(𝑛,𝑘)
𝑗

=
𝜕𝑟
𝑟

(

𝑟 𝜂𝑛,𝑟
(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

)

−1
𝑟
𝜂𝑛,𝜃

(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

in ]0, 1[ (a)

− 1
𝛥𝑡

(

𝜓∗−𝜓 (𝑛,𝑘−1)◦𝑋(𝑛,𝑘−1)) ⩽
𝜕𝑟
𝑟

(

𝑟𝑤(𝑛,𝑘)
𝑟

)

⊥ 𝑝(𝑛,𝑘)𝑗 ⩾ 0 in ]0, 1[ (b)

𝑤(𝑛,𝑘)
𝑟 (𝑟 = 0) = 𝑤(𝑛,𝑘)

𝑟 (𝑟 = 1) = 0 (c)

(10)

As soon as 𝑤(𝑛,𝑘)
𝑟 is known, 𝜓 (𝑛,𝑘) can be explicitly computed

rom (9).
We recognise in (𝑆̃3) the standard obstacle problem in mathematical

hysics (see e.g. [50–52]). It is expressed here in term of 𝑤(𝑛,𝑘)
𝑟 with

convex constraint (10)(b) on all the interior of the domain ]0, 1[,
here 𝑝(𝑛,𝑘)𝑗 is the associated Lagrange multiplier.

.2. Resolution of the non smooth obstacle sub-problem

Problem (𝑆̃3) defined above can be solved efficiently, without any
egularisation, by an augmented Lagrangian method described in this
ubsection. Since there is no ambiguity, indices 𝑛 and 𝑘 are omitted
ere on the unknowns. The problem becomes:
𝑂): find 𝑤𝑟 and 𝑝𝑗 , defined in ]0, 1[, such that

𝜅𝑤𝑟 −
𝜕𝑟
𝑟
(

𝑟 𝛽 𝜕𝑟𝑤𝑟
)

+ 𝜕𝑟𝑝𝑗 = 𝑓 in ]0, 1[ (a)

𝑔 ⩽
𝜕𝑟
𝑟
(

𝑟𝑤𝑟
)

⊥ 𝑝𝑗 ⩾ 0 in ]0, 1[ (b)
𝑤𝑟(𝑟 = 0) = 𝑤𝑟(𝑟 = 1) = 0 (c)

(11)

where the following notations are introduced for the known data:

𝜅 = 𝑅𝑒𝜙𝑚 𝜓
(𝑛,𝑘−1)

𝛽 = 2 𝑠
(

𝜓 (𝑛,𝑘−1))

= 𝜅𝑤(𝑛−1)
𝑟 +

𝜕𝑟
𝑟

(

𝑟 𝜂𝑛,𝑟
(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

)

− 1
𝑟
𝜂𝑛,𝜃

(

𝜓 (𝑛,𝑘−1)) |

|

|

𝜕𝑟𝑢
(𝑛,𝑘)
𝑧

|

|

|

𝑔 = − 1
𝛥𝑡

(

𝜓∗ − 𝜓 (𝑛,𝑘−1)◦𝑋(𝑛,𝑘−1))

Let 𝐿2, 𝐻1, 𝐻−1, and 𝐻1
0 denote the usual Hilbert functional spaces

ssociated with the weight 𝑟 for the cylindrical coordinates. Let us
ntroduce the following convex subset of 𝐿2:

=
{

𝜉 ∈ 𝐿2 ; 𝜉 ⩾ 𝑔
}

ote that 𝐾 is indeed convex, since each convex combinations of any
lements of 𝐾 belongs to 𝐾. Let us also introduce the following bilinear
nd linear forms, defined for all 𝑤, 𝑣 ∈ 𝐻1 and 𝑞 ∈ 𝐿2 by:

(𝑤, 𝑣) = ∫

1

0

(

𝜅 𝑤𝑣 + 𝛽 𝜕𝑟𝑤𝜕𝑟𝑣
)

𝑟 d𝑟

𝑏(𝑤, 𝑞) = ∫

1

0
𝜕𝑟(𝑟𝑤) 𝑞 d𝑟

𝓁(𝑣) =
1
𝑓 𝑣 𝑟 d𝑟
∫0
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With 𝜅, 𝛽 ∈ 𝐿∞, and 𝑓 ∈ 𝐻−1, where 𝐿∞ denotes the space of
bounded functions. Hence, these forms are well-defined.

Moreover, we assume that 𝑔 ∈ 𝐿2. Let 𝐵 denotes the linear operator
from 𝐻1 to 𝐿2 associated to the bilinear form 𝑏 and defined for all 𝑣 ∈
𝐻1 by

𝐵𝑣 = 𝑟−1𝜕𝑟 (𝑟 𝑣) .

It interprets as the divergence operator in the axisymmetric tube sec-
tion. The quadratic function 𝐽 is defined for all 𝑣 ∈ 𝐻1 by

𝐽 (𝑣) = 1
2
𝑎(𝑣, 𝑣) − 𝓁(𝑣)

Problem (𝑂) then expresses as a convex minimisation problem:

𝑤𝑟 = argmin
𝑣∈𝐻1

0

𝐽 (𝑣)

subject to 𝐵𝑣 ∈ 𝐾

ote that the convex set 𝐾 is not a vector space. Thus, the previous
ptimisation problem is difficult to solve by finite element method,
hich is based on vector space approximations of functional spaces.
or this reason, we introduce the indicator function I𝐾 ∶ 𝐿2 → [0,∞],
efined for all 𝜉 ∈ 𝐿2 by:

𝐾 (𝜉) =
{

0 when 𝜉 ∈ 𝐾
∞ otherwise

bserve that I𝐾 is a convex function since 𝐾 is a convex set. The
roblem can then be rewritten as:

𝑟 = argmin
𝑣∈𝐻1

0

𝐽 (𝑣) + I𝐾 (𝐵𝑣)

he problem now expresses as an unconstrained minimisation problem
f a convex non-differentiable function on a vector space, which is
ore suitable to a finite element approximation. The main difficulty

s to minimise with respect to I𝐾 (𝐵𝑣), which is the non-differentiable
art. A solution is to introduce an auxiliary variable 𝛿, together with
he additional constraint 𝛿 = 𝐵𝑤 and its associated Lagrange multiplier,

which shall coincide with the jamming pressure 𝑝𝑗 . We then introduce
the following augmented Lagrangian (see e.g. [53]):

𝐿(𝑣, 𝜉 ; 𝑞) = 𝐽 (𝑣) + I𝐾 (𝜉) +∫

1

0
(𝜉 − 𝐵𝑣) 𝑞 𝑟d𝑟+ 𝜇

2 ∫

1

0
(𝜉 − 𝐵𝑣)2 𝑟d𝑟 (12)

where 𝜇 > 0 is the augmentation parameter. The problem is equivalent
to finding the following saddle point:

(𝑤𝑟, 𝛿 ; 𝑝𝑗 ) = argmin
𝑣∈𝐻1

0
𝜉∈𝐿2

max
𝑞∈𝐿2

𝐿(𝑣, 𝜉 ; 𝑞)

Observe that the term factored by the augmentation parameter 𝜇 in
(12) is the square of the constraint: the saddle-point of the Lagrangian 𝐿
is thus independent of 𝜇. The numerical parameter 𝜇 only influences the
convergence of minimisation algorithm.

The solution is computed by an Uzawa descent method, fully de-
scribed in Appendix C.

3.3. Finite element spatial discretization

The dimensionless space interval [0, 1] is discretised by a uniform
mesh whose step is denoted ℎ > 0. Components 𝑢𝑧, 𝑤𝑧 and 𝑤𝑟 of the ve-
locities are approximated by continuous and piecewise quadratic func-
tions, while the reduced volume fraction 𝜓 , the jamming pressure 𝑝𝑗
and the divergence 𝛿 are approximated by continuous and piecewise
linear functions. The algorithm described in the previous subsections
is implemented using Rheolef C++ finite element library [54]. Four
different values of dimensionless mesh size ℎ were investigated, namely
ℎ = 1∕200, 1∕400, 1∕800, and 1∕1600. The dimensionless time step 𝛥𝑡 is
adapted according to the value of ℎ as follows: 𝛥𝑡 = 400ℎ. Hence, for
each refinement of the mesh, the time step is divided by two.
6

Table 2
Values of model material parameters.
Smbol Value Unit Symbol Value Unit

𝜌 1056 kg m−3 𝐾𝑠 0.6
𝜂0 3.6 Pa s 𝐾𝑛 1
𝑟𝑝 7 × 10−5 m 𝜆2 0.9
𝑅 3.15 × 10−3 m 𝜆3 0.5
𝑞 3.14 × 10−8 m3 s−1 𝛼 3
𝜙0 0.32 ; 0.5
𝜙𝑚 0.585–0.64

Final computation time 𝑇 is set such that steady-state flow regime
is reached. In practice, the time needed to reach this steady state
depends on the value of average volume fraction 𝜙0. For most of the
numerical tests presented below (Sections 4.2, 4.3, 4.4), an arbitrary
large value 𝑇 = 4000 was chosen. When comparing results obtained for
ifferent values of 𝜙0 (Sections 4.4 and 4.5), the value of 𝑇 was adapted

according to a proper steady-state criterion, as explained later.

4. Results and discussion

This section is dedicated to a preliminary exploration of the pre-
dictions of the new migration model presented in this paper. The
solutions, computed with the algorithm presented in the previous sec-
tion, are compared with experimental results obtained by Oh et al.
[18]. This section starts with a presentation of the experimental setup
and the choice of model material parameters. Then, validations of
our numerical algorithm are presented. We start by a study of the
convergence of the residual terms in the two inner loops of the implicit
time discretisation scheme, and then turn to the convergence of the
solution versus mesh refinement. Finally, the main physical features of
the solution are described, together with preliminary comparisons to
experimental data and a sensitivity analysis with respect to maximum
volume fraction 𝜙𝑚.

4.1. Experimental setup

Oh et al. [18] injected a mono-disperse particle suspension in a
circular tube from a tank with an imposed flow rate 𝑞. At the inlet of
the tube, the volume fraction is supposed to be uniform, equal to 𝜙0.
Particle volume fraction 𝜙 and axial velocity of the mixture 𝑢𝑧 were

easured by MRI at a sufficiently long distance from the inlet to ensure
ully developed flow. Note that this distance, at which the flow can be
onsidered as fully developed, depends upon several parameters [18]:
he volume fraction at the inlet of the tube 𝜙0, the density of both the
luid and the particles, the fluid viscosity 𝜂0, the particle radius 𝑟𝑝, and
he tube radius 𝑅. Inlet flow rate was varied between 0.5 and 3 ml/min.
or the computations presented thereafter, we retained an intermediate
alue 𝑞 = 1.88 ml/min.

The values of model constants chosen for the computations pre-
sented in this section are summarised in Table 2. The parameters 𝐾𝑛,
𝐾𝑠, 𝜆2, 𝜆3 and 𝛼 of the rheological model were identified from experi-
mental data, as explained in Appendix D. The choice of the maximum
volume fraction 𝜙𝑚 will be discussed in the forthcoming paragraph
dedicated to comparisons with experiments.

4.2. Convergence of the inner loops

This paragraph documents the convergence of the augmented La-
grangian loop and the fixed point loop. These numerical tests were
performed with values of 𝜙0 = 0.32, 𝜙𝑚 = 0.585, and an arbitrary
final time 𝑇 = 4000. The link between ℎ and 𝛥𝑡 is provided by
Table 4. Fig. 2.left plots the relative error in 𝐿2 norm of the auxiliary
variable 𝛿(𝑚) during the augmented Lagrangian loop as a function of
loop index 𝑚. The convergence is studied for 𝑘 = 0, i.e. at the first
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Fig. 2. Convergence of the two inner loops at 𝑡 = 3𝑇 ∕8 (ℎ = 1∕800). (left) Convergence of the augmented Lagrangian loop: normalised relative error on the auxiliary variable 𝛿(𝑚)
ersus iteration number 𝑚 for different values of augmentation parameter 𝜇. (right) Convergence of the fixed point loop: relative error for the volume fraction 𝜓 (𝑛,𝑘) versus total
teration number 𝑘 × 𝑚𝑚𝑎𝑥 for different values of 𝑚𝑚𝑎𝑥.
f
t
m
r
o
r

a
[
p

Table 3
Numerical parameters of the algorithm.
Symbol Value Description

𝜇 1280 Augmented Lagrangian parameter
𝑚𝑚𝑎𝑥 1 Inner augmented Lagrangian maximum iteration
𝑘𝑚𝑎𝑥 40 Outer fixed point maximal iteration
𝜀𝑓𝑝 10−12 Fixed point stopping criterion

iteration of the fixed point loop, and for 𝑡 = 3𝑇 ∕8, i.e. fully developed
flow is not reached yet. First, observe that the relative error decrease
for all values of the augmentation parameter 𝜇, as expected from theory
(see Fortin and Glowinski [53]). Next, observe that the convergence is
faster for intermediate values of 𝜇: the optimal value is near 𝜇 = 1280.

Let us now turn to the convergence of the fixed point loop.
Fig. 2.right presents the relative error for the volume fraction 𝜓 (𝑛,𝑘)

ersus total number of iterations 𝑘 × 𝑚𝑚𝑎𝑥 of the inner loops. The
nitial relative error ‖𝜓 (𝑛,1) − 𝜓 (𝑛,0)

‖ is of about 10−9, and decreases
to about 10−12, when rounding effects appear. Hence, the normalised
relative error decreases to about 10−3. Recall that there is an inner
ugmented Lagrangian loop, whose index is 𝑚 and maximal number of
terations is 𝑚𝑚𝑎𝑥. To understand how the two loops interact, the value
f 𝑚𝑚𝑎𝑥 has been varied. Observe that it is not necessary to iterate more
han once in the augmented Lagrangian loop, for the fixed point loop
o converge. Moreover, this strategy appears to be the most efficient in
erms of overall convergence rate of the algorithm.

Finally, the numerical parameters retained for the simulations of the
ext sections are grouped in Table 3. The values of 𝜇, 𝑚𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥
nsure proper convergence of the inner loops. The stopping criterion (5)
f the fixed point outer loop is set at 𝜀𝑓𝑝 = 10−12.

4.3. Spatial and temporal convergences

This paragraph is dedicated to the convergence of the solution
versus the simultaneous refinement of the time and space steps. The
four considered mesh configurations are summarised in Table 4.

Similar to time step 𝛥𝑡 that tends to zero with mesh size ℎ, we also
considered that the regularisation parameter of the constitutive law 𝜓∗

effective maximum volume fraction) evolves with mesh refinement,
nd tends to 1 when ℎ → 0. Specifically, the following relation was
onsidered based on a specific convergence study (not shown here):
∗ = 1 − 10.24ℎ ( Table 4).

As in the previous subsection, these numerical tests were performed
or values of 𝜙 = 0.32, 𝜙 = 0.585, and 𝑇 = 4000. In Fig. 3, an
7

0 𝑚
Table 4
Parameters of the numerical discretisation for dimensionless final time 𝑇 = 4000.
1∕ℎ 𝛥𝑡 1 − 𝜓∗

200 2 5.12 × 10−2

400 1 2.56 × 10−2

800 0.5 1.28 × 10−2

1600 0.25 0.64 × 10−2

additional subscript ℎ is added to variables, e.g. 𝑤𝑟,ℎ, 𝜓ℎ, in order
to indicate the mesh dependence. Fig. 3.left plots the 𝐿2 norm of
the radial migration velocity 𝑤𝑟,ℎ versus dimensionless time 𝑡 for the
four mesh refinements. Observe first that, on all meshes, 𝑤𝑟,ℎ decays
exponentially with time: as expected, radial particle migration vanishes
in steady-state regime. Furthermore, the slope of this decay appears to
be mesh-independent.

An important feature of our model is that it should conserve the
mass of the fluid and solid phases, as expressed by Eq. (2)(c) for
the whole mixture and Eq. (2)(d) for the particle phase. At 𝑡 = 0,
the particle mass is given by ∫ 1

0 𝜙0 𝑟 d𝑟 = 𝜙0∕2. Fig. 3.right shows the
maximum particle mass error as a function of mesh size ℎ. Obviously,
this error is never exactly zero, as the finite element method only
provides an approximation of the solution. However, the error clearly
tends to zero and Fig. 3.right suggests that it converges as (ℎ),
i.e. linearly, with mesh refinement. This linear convergence represents
a major improvement compared to other existing migration models.
As our formulation enables us to impose a non-penetration boundary
condition (2)(g) on the particle velocity 𝒖 +𝒘, or equivalently on 𝒘,
it prevents uncontrolled mass loss. Let us recall that this property is
made possible by introducing the second-order differential term on 𝒘
in (2)(b).

Fig. 4 presents the radial profiles of various quantities at time 𝑡 = 𝑇
or the four mesh refinements. A clear, progressive convergence of all
he profiles with ℎ can be observed. Note that the amplitude of radial
igration velocity 𝑤𝑟 is very small, confirming that the system has

eached quasi-steady state. Accordingly, the bulk shear stress 𝜎𝑚,𝑟𝑧 is
bserved to evolve linearly within the tube, as expected, for all mesh
efinements. The peak of jamming pressure 𝑝𝑗 on the symmetry axis 𝑟 =
0 is likely due to a numerical artefact in the treatment of the boundary
condition, but appears to remain bounded as ℎ → 0.

For each mesh size ℎ, one can define a critical radius, denoted
s 𝑟𝑐,ℎ(𝑡), such that 𝜓ℎ(𝑡, 𝑟) reaches its maximum 1 − 𝜓∗ for all 𝑟 ∈
0, 𝑟𝑐,ℎ(𝑡)] (see Fig. 4.top-right). This region corresponds to a central
lug, where the radial migration velocity 𝑤 vanishes while the axial
𝑟
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Fig. 3. Convergence versus simultaneous space and time refinement (see Table 4), with 𝑇 = 4000, 𝜙0 = 0.32, 𝜙𝑚 = 0.585. (left) 𝐿2 norm of the radial component 𝑤𝑟,ℎ of migration
velocity versus dimensionless time 𝑡. (right) Maximum particle mass error versus mesh size ℎ.
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Table 5
Convergence of critical plug radius 𝑟𝑐,ℎ versus mesh refinement ℎ.

ℎ 𝑟𝑐,ℎ(𝑇 ) |𝑟𝑐,ℎ − 𝑟𝑐,ℎ4 |

1∕200 0.240 0.033
1∕400 0.222 0.015
1∕800 0.214 0.007
1∕1600 0.207

bulk velocity 𝑢𝑧 is constant and maximum. Table 5 indicates the values
of 𝑟𝑐,ℎ at time 𝑡 = 𝑇 for the four mesh refinements (see also Table 4).

he last column corresponds to the difference with the value obtained
or the finest subdivision. Observe that this difference decreases reg-
larly when ℎ → 0, and suggests that the critical radius converges
s (ℎ).

.4. Main features of the solution

This subsection describes the main features of the solution predicted
y the present migration model. The finest mesh, namely ℎ = 1∕1600,
s retained for these computations.

Fig. 5 shows the radial profiles of various physical quantities in the
ube section at three different times. Note that values of 𝜙0 = 0.32, 𝜙𝑚 =
0.585, and 𝑇 = 4000 are still used here. It is observed that the central
lug, in which the material is saturated (𝜓 = 𝜓∗), grows over time. At

the transition between the plug and the outer sheared region (𝑟 = 𝑟𝑐 (𝑡)),
the reduced volume fraction 𝜓 is continuous but not differentiable. As
already mentioned, the radial migration velocity 𝑤𝑟 strongly decreases
with time, and vanishes in the plug. Negative values of 𝑤𝑟 in the
sheared region indicate that particles migrate from the wall to the
centre of the tube, as expected. Interestingly, one also observes that the
values of longitudinal migration velocity 𝑤𝑧 remain slightly negative
even at steady-state, indicating that particle velocity lags behind fluid
velocity. As expected from the complementarity condition (11)(b), the
jamming pressure 𝑝𝑗 is nonzero inside this plug, while it is zero in the
unsaturated sheared zone. Jamming pressure 𝑝𝑗 appears to increase
towards the centre of the plug, as do the components of the particle
stress tensor 𝝉𝑝,𝑟𝑧 and (𝝉𝑝). Note however that stress values in the plug
are likely to be strongly influenced by the considered regularisation for
the constitutive law. One cannot argue that stress profiles in this region
converge to those that would be obtained with a more sophisticated
constitutive law avoiding the need for a regularisation. Finally, also
observe that the jamming pressure displays a small discontinuity at
the transition between the plug and the sheared region at intermediate
8

i

times, but that this discontinuity tends to vanish in the steady-state
regime.

Steady-state solutions have been computed for five different values
of average reduced volume fraction 𝜓0 ranging between 0.55 and 0.78.
The corresponding values of 𝜙0 and 𝜙𝑚 are indicated in Fig. 6. The
inal computation time 𝑇 used for each case was varied to ensure that
fully-developed flow regime is effectively reached. For that purpose,
steady-state criterion based on the exponential decay of 𝑤𝑟 (see

ig. 3.left) is used. More precisely, the time loop is stopped when
𝑤𝑟(𝑡)‖ is reduced by a factor of 100 compared to its value at the end of
he first iteration. Observe that the final dimensionless time 𝑇 decreases
s the average reduced volume fraction 𝜓0 increases (see Fig. 6).

Fig. 7 illustrates the influence of average volume fraction 𝜙0 on the
teady-state solution, for a fixed value of 𝜙𝑚. As expected, the width
f the plug region strongly increases with 𝜙0, while the average bulk
elocity decreases. The jamming pressure in the plug, as well as the
ifferent components of the particle stress tensor, are also observed to
ncrease when 𝜙0 increases. For completeness, let us also mention that
he Lagrange multiplier 𝑓𝑧 is negative and decreases with 𝜙0: steady-
tate values are 𝑓𝑧(𝑇 ) = −10.80 for 𝜙0 = 0.32 and 𝑓𝑧(𝑇 ) = −43.84 for
0 = 0.50. Recall that 𝑓𝑧 interprets as the longitudinal gradient of the
ulk pressure.

.5. Comparison with experiments

This paragraph presents direct comparisons between the experi-
ental measurements of Oh et al. [18], performed on fully developed

lows, and steady-state solutions of our migration model. Oh et al. [18]
eport data for several values of average particle volume fraction 𝜙0.
e retained here the results corresponding to a semi-concentrated and

o a concentrated case, with nominal values 𝜙0 = 0.35 and 𝜙0 = 0.52
espectively. We observed that these nominal values of volume fraction
lightly differ from the values obtained by direct integration of the
easured radial particle fraction profiles. This computation leads to

ffective values 𝜙0 = 0.32 and 𝜙0 = 0.5 for the semi-concentrated
nd concentrated cases, respectively. To avoid systematic discrepancies
etween experimental and numerical profiles, the model solutions were
omputed for these effective values of 𝜙0.

Choosing the value of the maximal volume fraction 𝜙𝑚 in the model
equires care. As explained by Lecampion and Garagash [15], volume
raction 𝜙 is actually characterised by two noticeable limits in highly-
oncentrated mixtures. The first limit is the random close packing
raction 𝜙𝑟𝑐𝑝 = 0.64, which cannot be exceeded. The second limit is the
ritical volume fraction 𝜙𝑐 ≈ 0.585, above which the mixture is jammed,

.e. behaves as a solid. In regions where 𝜙 > 𝜙𝑐 , volume fraction can
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Fig. 4. Convergence versus mesh refinement: radial profiles at 𝑡 = 𝑇 = 4000 of longitudinal bulk velocity 𝑢𝑧, reduced particle volume fraction 𝜓 , radial and longitudinal migration
velocity 𝑤𝑟 and 𝑤𝑧, bulk shear stress 𝝈𝑚,𝑟𝑧, and jamming pressure 𝑝𝑗 (𝜙0 = 0.32, 𝜙𝑚 = 0.585).
still continue to increase by compaction, as the particle phase behaves
as a compressible solid. As shown by Oh et al. [18], the actual steady-
state volume fraction reached in the jammed regions depends upon 𝜙0.
We may hypothesise that this steady-state volume fraction results from
a complex balance between particle jamming pressure 𝑝𝑗 and friction.
Since the constitutive law of Morris and Boulay [7] considered in the
present model does not account for friction nor for solid compressibility
in the jammed regions, the apparent maximal volume fraction 𝜙𝑚 to
be considered remains a priori unknown in the range [𝜙𝑐 , 𝜙𝑟𝑐𝑝]. Ac-
cordingly, for each average volume fraction 𝜙0, solutions corresponding
9

to several values of maximal volume fraction 𝜙𝑚 were computed and
compared to experimental data.

Fig. 8 presents comparisons between the steady-state solution at
𝑡 = 𝑇 and experimental measurements for the semi-concentrated case
(𝜙0 = 0.32). It is observed that the radial profile of mixture velocity 𝑢𝑧
across the tube section is very well reproduced by the model, and
this for all choices of 𝜙𝑚 in the range 0.585–0.64 (see Fig. 8.top-
left). In particular, the velocity value in the plug appears to be well
captured. Concerning particle volume fraction 𝜙 (see Fig. 8.top-right),
discrepancies can be observed concerning the width of the plug and

the sharpness of the transition with the sheared layer. Experimental
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Fig. 5. Convergence of the solution to the steady state: radial profiles at three different times of longitudinal bulk velocity 𝑢𝑧, reduced particle volume fraction 𝜓 , radial and
longitudinal migration velocity 𝑤𝑟 and 𝑤𝑧, jamming pressure 𝑝𝑗 , and particle stress shear and spherical component 𝝉𝑝,𝑟𝑧 and tr(𝝉𝑝). Final dimensionless time is 𝑇 = 4000 (𝜙0 = 0.32,
𝜙𝑚 = 0.585, ℎ = 1∕1600).
data seem to indicate thinner plugs, and a smoother transition between
the two zones. Note however that the evolution of 𝜙 in the vicinity
of the wall of the tube is well reproduced by the model. It is also
observed that, while the choice of 𝜙𝑚 in the model has obviously a
direct impact on the value of particle volume fraction reached in the
plug, this parameter has only little influence on the profiles of 𝜙 in the
sheared region. Experimental measurements appear to be best captured
with 𝜙𝑚 = 0.60 in this case.

Similar observations can be made for the concentrated case (𝜙0 =
0.50). Here also, the radial profile of 𝑢𝑧 is well reproduced in the whole
tube section for all choices of 𝜙𝑚 (see Fig. 8.bottom-left). In this case,
the value of volume fraction in the central plug is best captured with
the upper bound 𝜙𝑚 = 0.64 (see Fig. 8.bottom-right), suggesting that
the maximum volume fraction reached in the plug appears to increase
10
with the average concentration of the suspension. In contrast, it is again
observed that the value of 𝜙 near the wall depends only slightly on the
choice of 𝜙𝑚.

The discrepancies between numerical solutions and experimental
measurements observed on volume fraction profiles are probably at-
tributable to the limitation of the model pointed out above, namely
that the constitutive law for the particle phase does not account for
friction and solid compressibility in jammed regions. Experimental re-
sults clearly indicate that volume fraction continues to increase beyond
𝜙𝑐 in the plug, and saturates only when reaching the limit 𝜙 = 𝜙𝑟𝑐𝑝. In
contrast, in the model, a single maximum value 𝜙𝑚 is considered. Exten-
sion of the constitutive law to account for such granular processes, as
proposed by Lecampion and Garagash [15], thus represents a promising
prospect to further improve the agreement with experimental data.
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Fig. 6. Final dimensionless computation time 𝑇 , for which |𝑤𝑟| is reduced by a factor
f 100 with respect to its initial value, for the five simulation runs discussed in the
ext. The corresponding values of average reduced volume fraction 𝜓0 = 𝜙0∕𝜙𝑚, average

volume fraction 𝜙0, and maximal volume fraction 𝜙𝑚, are indicated in the table. Other
parameters are given in Table 2. Finest mesh size ℎ = 1∕1600 is used.

5. Conclusion and perspectives

This paper presents a new migration model for mono-disperse sus-
pensions of neutrally buoyant particles. Unlike suspension balance
model (SBM), which relies on a single velocity formulation [25], our
model involves two velocities and two pressures. The two-velocity
formulation, coupled to the introduction of a diffusive term on the
migration velocity 𝒘, allows us to properly impose non-penetration
boundary conditions for the particles across walls, and thus to satisfy
rigorous mass conservation for the particle phase. Physically, the new
diffusive term can be interpreted as a non-local contribution to the par-
ticle stresses in unjammed regions. In addition, the unilateral constraint
𝜙 ⩽ 𝜙𝑚 on the particle volume fraction is strictly imposed through the
introduction of a particle jamming pressure 𝑝𝑗 . This Lagrange multi-
plier, which takes nonzero values only in jammed regions, interprets
as the contribution to the particle pressure of the collective interactions
(contact chains) that develop between particles in these regions.

Through an asymptotic analysis, a reduced 1D migration model is
derived in the case of an axisymmetric Poiseuille flow, and a fully
implicit algorithm is proposed for computing numerical solutions of
this reduced model. The originality lies in the handling of the unilateral
constraint, through an augmented Lagrangian method embedded in a
fixed point iteration at each time step. This algorithm is coupled to a
finite element spatial discretisation, and the convergence properties of
the scheme are carefully demonstrated. In particular, the inner loops
involved in the augmented Lagrangian and the fixed point are shown
to converge in a small number of iterations. The error on particle mass
is also shown to converge linearly with mesh refinement.

The physical characteristics of the solutions are described as a
function of average volume fraction, and quantitative comparisons
11
Table A.6
Correspondence between the notations used in system (A.1) and those used by

Jackson [46]. Three different averages are introduced, namely the volume average
over the suspension ⟨.⟩, the volume average over the fluid phase ⟨.⟩𝑓 , and the discrete
article phase average ⟨.⟩𝑝, with 𝜈 the number density of particles. See also Ozenda
60, chap. 2].
Present model Jackson’s mixture theory

𝝈𝑓
𝜈
2

⟨

𝝉 𝑙 + 𝝉𝑇𝑙
⟩

𝑝
𝝈𝑐

𝜈
2

⟨

𝝉𝑐 + 𝝉𝑇𝑐
⟩

𝑝
𝒖 ⟨𝒖⟩
𝒘 ⟨𝒖⟩𝑝 − ⟨𝒖⟩
𝑝𝑓 ⟨𝑝⟩𝑓
𝑓ℎ 𝜈⟨𝑓𝑙⟩𝑝

with experimental measurements in fully-developed flow regime [18]
are presented for both a semi-concentrated and a concentrated case.
Mixture velocity profiles, characterised by the formation of a central
plug, appear to be very well reproduced. The model is thus able to
accurately capture the effects of jamming and the effective viscoplastic
behaviour [1] in highly-concentrated mixtures. Discrepancies between
model predictions and experimental data remain nevertheless visible
on the volume fraction profiles, particularly at the transition between
the plug and the outer sheared region. In experiments, the transi-
tion between the two zones appears smoother than in the numerical
solutions.

To overcome the current limitations of the model, future improve-
ments shall concentrate on including more sophisticated constitutive
relations accounting for specific granular processes in concentrated
regions. In particular, inelastic compressibility beyond the jamming
limit seems to be a necessary ingredient to better capture the evolu-
tion of particle volume fraction observed in plug regions [15]. Inclu-
sion of a true yield stress in jammed zones through, e.g., frictional
effects Saramito [see, e.g., 55], would also be necessary to avoid
the use of a regularised apparent viscosity and predict more realistic
particle stress values in these regions. Finally, the development of
anisotropic micro-structures in both jammed and sheared regions could
also be considered through specific tensorial constitutive relations [13].
Once these more realistic constitutive models will be implemented and
tested, future work shall also consider the extension of the numerical
algorithm in order to efficiently address more complex geometries such
as 3D channel flows, flows around obstacles [56,57], or re-suspension
experiments [58]. Finally, another promising line of improvement of
the numerical resolution would consist in implementing mesh adapta-
tion along the interface between the plug and the sheared region, as
done for Bingham fluids by, e.g., Roquet and Saramito [59].

Appendix A. Link with mixture theory

The mixture theory developed by Jackson [46] is based on an
asymptotic analysis for small particle radius 𝑟𝑝.

Ozenda [60, chap. 2] recently revisited this asymptotic analysis
and obtained, at first order in 𝑟𝑝, the following two-velocity system of
conservation equations (see also Nott et al. [23]):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌
( 𝜕𝒖
𝜕𝑡

+ 𝒖.∇𝒖
)

− div
(

−𝑝𝑓 𝑰 + 2𝜂0𝐷(𝒖) + 𝝈ℎ + 𝝈𝑐
)

= 𝒇 (a)

𝜌𝜙𝑚𝜓
(

𝜕(𝒖 +𝒘)
𝜕𝑡

+ (𝒖 +𝒘).∇(𝒖 +𝒘)
)

− div
(

𝝈𝑐
)

− 𝒇ℎ = 0 (b)

div 𝒖 = 0 (c)
𝜕𝜓
𝜕𝑡

+ div((𝒖 +𝒘)𝜓) = 0 (d)

(A.1)

here 𝝈ℎ and 𝝈𝑐 denote contributions to the Cauchy stress of the
ixture due to hydrodynamic and contact interactions between the
articles, respectively, 𝑝𝑓 is the fluid phase pressure, and 𝒇ℎ is the

hydrodynamic force exerted on the particle phase.
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Fig. 7. Comparison of the steady-state solutions for two different values of initial volume fraction 𝜙0 = 0.32 and 0.50, while 𝜙𝑚 = 0.585 (ℎ = 1∕1600). Radial profiles of longitudinal
bulk velocity 𝑢𝑧, reduced particle volume fraction 𝜓 , radial and longitudinal migration velocity 𝑤𝑟 and 𝑤𝑧, jamming pressure 𝑝𝑗 , and particle stress shear and spherical component
𝝉𝑝,𝑟𝑧 and tr(𝝉𝑝).
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The correspondence between the notations used in the above sys-
tem and the different phase averages introduced by Jackson [46] are
explained in Table A.6 (see also Ozenda [60, p. 45] for more details).
Identifying (2)(a) with (A.1)(a), and (2)(b) with (A.1)(b), we obtain the
following expressions for the Cauchy stress tensor of the mixture and
the forces in the particle phase, respectively:

− 𝑝𝑓 𝑰 + 2𝜂0𝐷(𝒖) + 𝝈ℎ + 𝝈𝑐 = 𝑝𝑰 + 2𝜂0𝐷(𝒖) + 𝝉𝑝 (A.2a)

− div
(

𝝈𝑐
)

− 𝒇ℎ = −div
(

−𝑝𝑗𝑰 + 𝝉𝑝 + 2𝜂0𝑠(𝜓)𝐷(𝒘)
)

+
𝜂0𝑠(𝜓)
𝑟2𝑝

𝒘 (A.2b)

he following closure relation can be considered:

𝑓 = 𝑝 − 𝑝𝑗 (A.3a)

Then, Eqs. (A.2a) and (A.2b) successively lead to

𝝈ℎ + 𝝈𝑐 = −𝑝𝑗𝑰 + 𝝉𝑝

− 𝒇ℎ + 𝐝𝐢𝐯(𝝈ℎ) =
𝜂0𝑠(𝜓)
𝑟2𝑝

𝒘 − 𝐝𝐢𝐯
(

2𝜂0𝑠(𝜓)𝐷(𝒘)
)

The first relation corresponds to a classical closure in mixture
theory [46, chap. 2], through which the hydrodynamic and contact
12

p

contributions 𝝈ℎ, 𝝈𝑐 are lumped into a particle stress, which writes here
−𝑝𝑗𝑰 + 𝝉𝑝. The second relation writes equivalently:

𝒇ℎ = −
𝜂0𝑠(𝜓)
𝑟2𝑝

𝒘 + 𝐝𝐢𝐯
(

𝝈ℎ + 2𝜂0𝑠(𝜓)𝐷(𝒘)
)

(A.3b)

This expression identifies term by term with Equation (62) of Nott
t al. [23], where the first term on the right-hand side represents the
rag force, and the second term is a particle phase hydrodynamic stress.
ote that the new corrective term introduced in our model identifies
s the difference between the particle phase hydrodynamic stress and
he hydrodynamic stress 𝝈ℎ involved in the mixture momentum conser-
ation (A.1)(a), as discussed by Nott et al. [23]. Since this corrective
erm is of second-order with respect to 𝑟𝑝, it does not change the overall
ccuracy of the mixture model.

ppendix B. Poiseuille flow in a long tube

We consider the circular tube geometry represented on Fig. 1,
ith (𝑟, 𝜃, 𝑧) the associated cylindrical coordinate system. This ap-
endix shows how problem (2)(a)–(2)(i) reduces asymptotically to
roblem (3)(a)–(3)(j) when tube length 𝐿 becomes large with respect to
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Fig. 8. Comparisons of the present migration model with experimental results of Oh et al. [18] for the fully developed flow regime: steady-state radial profiles of bulk longitudinal
velocity 𝑢𝑧 and particle volume fraction 𝜙. (top) Semi-concentrated case 𝜙0 = 0.32. (bottom) Concentrated case 𝜙0 = 0.50. Error bars on the experimental data correspond to
uncertainties estimated by Oh et al. [18], based on measurements for the interstitial fluid and might thus be underestimated for concentrated mixtures.
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its radius 𝑅. The flow is assumed to be axisymmetric, i.e. independent
upon 𝜃. No-slip conditions are assumed at tube wall i.e. 𝒖𝛤 = 0 in (2)(g).
Moreover, we assume that the initial conditions 𝒖0 and 𝒘0 satisfies
𝑢0,𝜃 = 𝑤0,𝜃 = 0.

Let 𝑈 be a characteristic velocity of the mixture and 𝑊 be a charac-
teristic migration velocity; 𝑅∕𝑈 is then a characteristic time and 𝜂0𝑈∕𝑅
is a characteristic stress. Dimensionless variables are denoted by tildes,
e.g. 𝑡 = (𝑈∕𝑅)𝑡, 𝑟 = 𝑟∕𝑅, 𝑧̃ = 𝑧∕𝐿 and 𝒖̃ = (𝑢̃𝑟, 𝑢̃𝜃 , 𝑢̃𝑧) = 𝒖∕𝑈 . Finally, let
𝜉 = 𝑅∕𝐿 denote the tube aspect ratio, 𝜀 = 𝑟𝑝∕𝑅 denote the dimension-
less particle radius, and 𝜁 = 𝑊 ∕𝑈 .

B.1. Mixture subsystem

Let us first consider the mixture subsystem associated to the un-
knowns 𝒖̃ and 𝑝̃. Mixture momentum and mass conservations (2)(a) and
(2)(c) become:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒
𝑢̃𝜃
𝑟2

−
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑟
)

+
𝜏𝑝,𝜃𝜃
𝑟

− 𝜉𝜕𝑧̃𝜏𝑝,𝑟𝑧 + 𝜕𝑟𝑝̃ = 0 (a)

𝑅𝑒
(

𝜕𝑡𝑢̃𝜃 + 𝜉𝑢̃𝑧𝜕𝑧𝑢̃𝜃
)

−
𝜕𝑟
𝑟2

(

𝑟2
(

𝜏𝑝,𝑟𝜃 + 𝜕𝑟𝑢̃𝜃
)

− 𝑟 𝑢̃𝜃
)

−𝜉 𝜕𝑧
(

𝜏𝑝,𝜃𝑧 + 𝜉 𝜕𝑧̃𝑢̃𝜃
)

= 0
(b)

𝑅𝑒
(

𝜕𝑡𝑢̃𝑧 + 𝜉 𝑢̃𝑧𝜕𝑧̃𝑢̃𝑧
)

−
𝜕𝑟
𝑟
(

𝑟
(

𝜕𝑟𝑢̃𝑧 + 𝜏𝑝,𝑟𝑧
))

− 𝜉 𝜕𝑧̃𝜏𝑝,𝑧𝑧 + 𝜉 𝜕𝑧̃𝑝̃ = 0 (c)
𝜕𝑟
𝑟
(

𝑟 𝑢̃𝑟
)

+ 𝜉 𝜕𝑧̃𝑢̃𝑧 = 0 (d)
13

(B.1)
where the Reynolds number is defined by 𝑅𝑒 = 𝜌𝑈𝑅∕𝜂0. For 𝜉 → 0,
relation (B.1)(d) reduces to 𝜕𝑟

(

𝑟𝑢̃𝑟
)

= 0. Hence, the boundary condi-
ion (2)(g) yields 𝑢̃𝑟(𝑡, 𝑟 = 0) = 𝑢̃𝑟(𝑡, 𝑟 = 1) = 0 at any time 𝑡 ∈ ]0, 𝑇̃ [.

Thus, 𝑢̃𝑟 = 0 at any time. Moreover, since we assume 𝑢̃𝜃 = 0 at 𝑡 = 0,
rom (B.1)(b), this identity remains true at any time. Thus 𝒖̃ = (0, 0, 𝑢̃𝑧).

Observe in (B.1)(a) that the term 𝜕𝑟𝜏𝑝,𝑟𝑟, responsible for the migra-
ion, appears at the same order in 𝜉 as the pressure derivative 𝜕𝑟𝑝̃.
onversely, in (B.1)(c), the term 𝜉 𝜕𝑧̃𝑝̃ should be at zeroth order in 𝜉;
therwise the suspension would not move in a long tube when 𝜉 → 0.
inally, the pressure is assumed to admit the following expansion in 𝜉:

𝑝̃(𝑡, 𝑟, 𝑧̃) = 𝜉−1𝑓𝑧(𝑡) 𝑧̃ + 𝑝̃0(𝑡, 𝑟) + 𝒪(𝜉)

here 𝑓𝑧 depends only upon 𝑡, and 𝑝̃0 depends upon 𝑡 and 𝑟 but is
ndependent of 𝑧̃, as inferred from (B.1)(a). Then, for 𝜉 → 0, momentum
onservation (B.1)(a) and (B.1)(c) reduce to

−
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑟
)

+
𝜏𝑝,𝜃𝜃
𝑟

+ 𝜕𝑟𝑝̃0 = 0 (B.2a)

𝑅𝑒 𝜕𝑡𝑢̃𝑧 −
𝜕𝑟
𝑟
(

𝑟
(

𝜕𝑟𝑢̃𝑧 + 𝜏𝑝,𝑟𝑧
))

+ 𝑓𝑧 = 0 (B.2b)

Two types of controls can be considered for the flow of the mixture:
either the pressure drop 𝑓𝑧 or the flow rate can be imposed. Here, we
choose to impose the flow rate, denoted by 𝑞. The characteristic mixture
velocity is then defined as 𝑈 = 2𝑞∕(𝜋𝑅2), which is equal to twice the
average velocity, such that the dimensionless flow rate expresses as

1
𝑢̃𝑧(𝑡, 𝑟) 𝑟d𝑟 = 1 (B.2c)
∫0 4
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and 𝑓𝑧 in (B.2b) interprets as a Lagrange multiplier for the imposition
f the flow rate constraint (B.2c). Note that when 𝜓 = 0, from (2)(f),
he particle stress 𝝉𝑝 vanishes, the fluid is Newtonian and 𝑈 coincides
ith the maximal value of the mixture velocity.

.2. Congested subsystem

Let us now turn to the congested subsystem associated to the
nknowns 𝒘̃, 𝑝̃𝑗 and 𝜓 . Since 𝑤̃𝜃 = 0 at 𝑡 = 0, we assume that
̃ = (𝑤̃𝑟, 0, 𝑤̃𝑧) at any time. Note that 𝑤̃𝑟 ≠ 0 in general, since the
particles are expected to migrate in the tube. The momentum and mass
conservations of the particle phase (2)(b) and (2)(d) become:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒𝜙𝑚𝜓
(

𝜁 𝜕𝑡𝑤̃𝑟 + 𝜁2
(

𝑤̃𝑟𝜕𝑟𝑤̃𝑟 + 𝜉𝑤̃𝑧𝜕𝑧̃𝑤̃𝑟
)

+ 𝜉𝜁𝑢̃𝑧𝜕𝑧̃𝑤̃𝑟
)

+ 𝜀−2𝜁𝑠(𝜓) 𝑤̃𝑟 − 𝜁
𝜕𝑟
𝑟
(

2𝑟 𝑠(𝜓) 𝜕𝑟𝑤̃𝑟
)

− 𝜉𝜁 𝜕𝑧̃
(

𝑠(𝜓)
(

𝜕𝑟𝑤̃𝑧 + 𝜉𝜕𝑧̃𝑤̃𝑟
))

+ 𝜕𝑟𝑝̃𝑗 =
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑟
)

−
𝜏𝑝,𝜃𝜃
𝑟

+ 𝜉 𝜕𝑧̃𝜏𝑝,𝑟𝑧

𝑅𝑒𝜙𝑚𝜓
(

𝜕𝑡𝑢̃𝑧 + 𝜁 𝜕𝑡𝑤̃𝑧 + 𝜁2
(

𝑤̃𝑟𝜕𝑟𝑤̃𝑧 + 𝜉𝑤̃𝑧𝜕𝑧̃𝑤̃𝑧
)

+ 𝜉𝜁 𝑢̃𝑧𝜕𝑧̃𝑤̃𝑧
)

+ 𝜀−2𝜁 𝑠(𝜓) 𝑤̃𝑧 − 𝜁
𝜕𝑟
𝑟
(

𝑟 𝑠(𝜓)
(

𝜕𝑟𝑤̃𝑧 + 𝜉𝜕𝑧̃𝑤̃𝑟
))

− 𝜉2𝜁 𝜕𝑧̃
(

2𝑠(𝜓)𝜕𝑧̃𝑤̃𝑧
)

𝑝̃𝑗

+ 𝜉𝜕𝑧̃ =
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑧
)

+ 𝜉𝜕𝑧̃𝜏𝑝,𝑧𝑧

𝜕𝑡𝜓 + 𝜁
𝜕𝑟
𝑟
(

𝑟𝑤̃𝑟𝜓
)

+ 𝜉 𝑢̃𝑧𝜕𝑧̃𝜓 + 𝜉𝜁 𝜕𝑧̃
(

𝑤̃𝑧𝜓
)

= 0

By passing to the limit 𝜉 → 0 and neglecting second-order terms in 𝜁 ,
which are associated to inertia effects, the previous system becomes:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒 𝜁𝜙𝑚𝜓 𝜕𝑡𝑤̃𝑟 + 𝜀−2𝜁 𝑠(𝜓)𝑤̃𝑟 − 𝜁
𝜕𝑟
𝑟
(

2𝑟 𝑠(𝜓) 𝜕𝑟𝑤̃𝑟
)

+ 𝜕𝑟𝑝̃𝑗

=
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑟
)

−
𝜏𝑝,𝜃𝜃
𝑟

(a)

𝑅𝑒𝜙𝑚𝜓
(

𝜕𝑡𝑢̃𝑧 + 𝜁𝜕𝑡𝑤̃𝑧
)

+ 𝜀−2𝜁 𝑠(𝜓)𝑤̃𝑧 − 𝜁
𝜕𝑟
𝑟
(

𝑟 𝑠(𝜓) 𝜕𝑟𝑤̃𝑧
)

=
𝜕𝑟
𝑟
(

𝑟 𝜏𝑝,𝑟𝑧
)

(b)

𝜕𝑡𝜓 + 𝜁
𝜕𝑟
𝑟
(

𝑟 𝑤̃𝑟 𝜓
)

= 0 (c)

(B.3)

.3. System closure

Finally, let us turn to the expression of particle stress tensor 𝝉𝒑 given
by (2)(f). Since 𝒖̃(𝑡, 𝑟) = (0, 0, 𝑢̃𝑧(𝑡, 𝑟)), the norm of the strain rate writes
|2𝐷̃(𝒖̃)| = |

|

𝜕𝑟𝑢̃𝑧|| and the components of 𝝉𝒑 express as explicit relations
involving 𝑢̃𝑧 and 𝜓 , as shown by (4).

The final system involves seven equations, namely (B.2a)–(B.2c),
(B.3)(a)–(B.3)(c), and (1), and seven unknowns: 𝑢̃𝑧, 𝑝̃0, 𝑓𝑧, 𝑤̃𝑟, 𝑤̃𝑧, 𝑝̃𝑗 ,
nd 𝜓 . All these unknowns depend both upon time 𝑡 and radial position
𝑟, except for 𝑓𝑧 that only depends upon time. Observe that Eq. (B.2a)
eads to an explicit computation of 𝑝̃0, and is used in post-treatment to
btain a first order approximation in 𝜉 of mixture pressure 𝑝̃. Similarly,
̃ 𝑧 appears only in Eq. (B.3)(b); consequently, this equation can be in-
egrated explicitly after the resolution of the five remaining equations.
he system is closed by suitable initial and boundary conditions, and

s summarised in (3). Finally note that, for convenience, tilde notations
re dropped in the main text (Section 2.2), and the two-velocities 𝒖̃
nd 𝒘̃ are normalised by the same characteristic velocity 𝑈 .

ppendix C. Uzawa algorithm

Problem (𝑂), as defined in Section 3.2, is solved by minimising
he cost function 𝐽 defined by Eq. (12). Let us introduce the dual
unction 𝐽 ∗ defined for all 𝑞 ∈ 𝐿2 by:
∗(𝑞) = − min

1 2
𝐿(𝑣, 𝜉 ; 𝑞)
14

(𝑣,𝜉)∈𝐻0×𝐿
he problem writes equivalently as a minimisation problem for this
ual function:

𝑗 = argmin
𝑞∈𝐿2

𝐽 ∗(𝑞)

he numerical procedure used to solve this problem, based on Uzawa
ethod, is described in Appendix B.1, with two technical lemmas

athered in Appendix B.2.

.1. Numerical algorithm

The Uzawa algorithm for the augmented Lagrangian method ex-
resses as a constant-step descent algorithm for the dual function 𝐽 ∗:

• 𝑚 = 0: let 𝑝(0)𝑗 be given.
• 𝑚 ⩾ 1: let 𝑝(𝑚−1)𝑗 be known. Then compute:
𝑝(𝑚)𝑗 = 𝑝(𝑚−1)𝑗 − 𝜇∇𝐽 ∗

(

𝑝(𝑚−1)𝑗

)

.

ere, 𝑚 ∈ N denotes the descent loop index, which is implemented as
n inner loop inside the fixed point loop with index 𝑘 introduced in
ection 3.1. A numerical parameter 𝑚𝑚𝑎𝑥 is introduced, such that the
topping criterion for this inner loop is defined as 𝑚 > 𝑚𝑚𝑎𝑥. Note that
he constant-descent step has been chosen equal to the augmentation
arameter 𝜇. Note also that 𝐽 ∗ is differentiable. Then, expanding its
radient, we obtain an equivalent formulation of the descent algorithm:

• 𝑚 = 0: let 𝑝(0)𝑗 be given.
• 𝑚 ⩾ 1: let 𝑝(𝑚−1)𝑗 be known. Then compute successively:

𝑤(𝑚)
𝑟 , 𝛿(𝑚)

)

= argmin
(𝑣,𝜉)∈𝐻1

0×𝐿
2
𝐿
(

𝑣, 𝜉 ; 𝑝(𝑚−1)𝑗

)

𝑝(𝑚)𝑗 = 𝑝(𝑚−1)𝑗 + 𝜇
(

𝛿(𝑚) − 𝐵𝑤(𝑚)
𝑟

)

o simplify the simultaneous minimisation versus (𝑣, 𝜉) of the La-
rangian, the algorithm is modified by decoupling the first step as:

• 𝑚 = 0: let 𝑝(0)𝑗 and 𝛿(0) be given.
• 𝑚 ⩾ 1: let 𝑝(𝑚−1)𝑗 and 𝛿(𝑚−1) be known. Then compute successively:

(𝑚)
𝑟 = argmin

𝑣∈𝐻1
0

𝐿
(

𝑣, 𝛿(𝑚−1) ; 𝑝(𝑚−1)𝑗

)

𝛿(𝑚) = argmin
𝜉∈𝐿2

𝐿
(

𝑤(𝑚)
𝑟 , 𝜉 ; 𝑝(𝑚−1)𝑗

)

𝑝(𝑚)𝑗 = 𝑝(𝑚−1)𝑗 + 𝜇
(

𝛿(𝑚) − 𝐵𝑤(𝑚)
𝑟

)

From (12), the Lagrangian 𝐿 is quadratic and differentiable ver-
us 𝑣. Thus, the first step of the above algorithm reduces to a linear
ub-problem, namely, find 𝑤(𝑚)

𝑟 ∈ 𝐻1
0 such that, for all 𝑣 ∈ 𝐻1

0 , we have

𝜕𝐿
𝜕𝑣

(

𝑤(𝑚)
𝑟 , 𝛿(𝑚−1), 𝑝(𝑚−1)𝑗

)

= 0

he Lagrangian 𝐿 is both nonlinear and non-differentiable versus 𝜉, but
nvolves a sub-differential with respect to 𝜉. Hence, the optimal value
(𝑚) verifies 0 ∈ 𝜕𝜉𝐿(𝑤

(𝑚)
𝑟 , 𝛿(𝑚), 𝑝(𝑚−1)𝑗 ), where 𝜕𝜉𝐿(𝑤

(𝑚)
𝑟 , 𝛿(𝑚), 𝑝(𝑚−1)𝑗 ) is the

ub-differential of 𝐿 with respect to the variable 𝜉. The second step of
he descent algorithm is then solved locally. The sub-gradient of the
ndicator of [𝑔(𝑟),∞[, denoted ∇I[𝑔(𝑟),∞[, verifies, for all 𝜉 ∈ R:

I[𝑔(𝑟),∞[(𝜉) =

⎧

⎪

⎨

⎪

⎩

∅ when 𝜉 < 𝑔(𝑟)
[0,∞[ when 𝜉 = 𝑔(𝑟)
{0} otherwise

or all 𝑟 ∈ [0, 1], the second step then expresses: find 𝛿(𝑚)(𝑟) ∈ R such
hat:

( (𝑚) ) (𝑚−1) (𝑚) (𝑚)
0 ∈ 𝜕I[𝑔(𝑟),∞[ 𝛿 (𝑟) + 𝑝𝑗 (𝑟) + 𝜇𝛿 (𝑟) − 𝜇𝐵𝑤𝑟 (𝑟)
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w
p

C

L
e

𝛿

L

𝐵

a

P

𝐵

d

e
t
T
o
t

R

⟺

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿(𝑚)(𝑟) > 𝑔(𝑟) and 𝛿(𝑚)(𝑟) = 𝐵𝑤(𝑚)
𝑟 (𝑟) −

𝑝(𝑚−1)𝑗 (𝑟)

𝜇
or

𝛿(𝑚)(𝑟) = 𝑔(𝑟) and 𝛿(𝑚)(𝑟) ⩾ 𝐵𝑤(𝑚)
𝑟 (𝑟) −

𝑝(𝑚−1)𝑗 (𝑟)

𝜇

Finally, the computation of 𝛿(𝑚) reduces to an explicit relation, as shown
in Appendix C.2 (Lemma 1), and the practical Uzawa algorithm writes:

• 𝑚 = 0: let 𝑝(0)𝑗 and 𝛿(0) be given.
• 𝑚 ⩾ 1: let 𝑝(𝑚−1)𝑗 and 𝛿(𝑚−1) be known. Then successively:

(i) find 𝑤(𝑚)
𝑟 ∈ 𝐻1

0 such that, for all 𝑣 ∈ 𝐻1
0 , we have

𝑎
(

𝑤(𝑚)
𝑟 , 𝑣

)

+ 𝜇 ∫

1

0
𝐵𝑤(𝑚)

𝑟 𝐵𝑣 𝑟 d𝑟

= 𝓁(𝑣) + ∫

1

0

(

𝑝(𝑚−1)𝑗 + 𝜇𝛿(𝑚−1)
)

𝐵𝑣 𝑟 d𝑟 (C.1a)

(ii) compute explicitly:

𝛿(𝑚) = max
⎛

⎜

⎜

⎝

𝑔, 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

⎞

⎟

⎟

⎠

(C.1b)

𝑝(𝑚)𝑗 = 𝑝(𝑚−1)𝑗 + 𝜇
(

𝛿(𝑚) − 𝐵𝑤(𝑚)
𝑟

)

(C.1c)

This algorithm has been shown to converge for any 𝜇 > 0 [53,
theorem 5.1]). Recall that the solution is independent upon 𝜇. At
convergence, (C.1c) leads to 𝛿 = 𝐵𝑤𝑟 and then (C.1a) is exactly a weak
formulation of (11)(a). Since 𝑤𝑟 ∈ 𝐻1

0 in (C.1a), we also obtain (11)(c).
Replacing 𝛿 = 𝐵𝑤𝑟 in (C.1b), we obtain

𝐵𝑤𝑟 = max
(

𝑔, 𝐵𝑤𝑟 −
𝑝𝑗
𝜇

)

hich leads to (11)(b), as shown in Appendix C.2 (Lemma 2). Thus, the
revious algorithm effectively provides a solution of (11)(a)–(11)(c).

.2. Technical lemmas

emma 1. With the notations defined in Section 3, we state the following
quivalence relation:

(𝑚) = max
⎛

⎜

⎜

⎝

𝑔, 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑐,0

𝜇

⎞

⎟

⎟

⎠

⟺

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿(𝑚) > 𝑔 and 𝛿(𝑚) = 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇
or

𝛿(𝑚) = 𝑔 and 𝛿(𝑚) ⩾ 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

Proof. The maximum condition is split between two cases that are
equivalent to the right-hand side disjunctive relation in Lemma 1:

⎧

⎪

⎨

⎪

⎩

𝛿(𝑚) = 𝑔

𝑔 ⩾ 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

⟺

⎧

⎪

⎨

⎪

⎩

𝛿(𝑚) = 𝑔

𝛿(𝑚) ⩾ 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

⎧

⎪

⎨

⎪

⎩

𝛿 > 𝑔

𝛿 = 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

⟺

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿 = 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

𝑔 < 𝐵𝑤(𝑚)
𝑟 −

𝑝(𝑚−1)𝑗

𝜇

□

emma 2. With the notations defined in Section 3, we state

𝑤𝑟 = max(𝑔, 𝐵𝑤𝑟 −
𝑝𝑗 ) ⟹ 𝑔 ⩽ 𝐵𝑤𝑟 ⟂ 𝑝𝑗 ⩾ 0
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𝜇

Fig. D.9. Steady-state normal stress ratio 𝑁2∕𝜂𝑎𝑝𝑝|2𝐷(𝒖)| as a function of reduced
volume fraction 𝜓 : comparison between the predictions the rheological model (with
values indicated in Table 2 and 𝜙𝑚 = 0.60) and experimental data of Dbouk et al. [61]
nd Couturier et al. [62].

roof.

𝑤𝑟 = max
(

𝑔, 𝐵𝑤𝑟 −
𝑝𝑗
𝜇

)

⟹

⎧

⎪

⎨

⎪

⎩

𝐵𝑤𝑟 ⩾ 𝑔

𝐵𝑤𝑟 ⩾ 𝐵𝑤𝑟 −
𝑝𝑗
𝜇

• The condition 𝐵𝑤𝑟 ⩾ 𝑔 is evidently satisfied.
• Recalling 𝜇 > 0, the positivity of 𝑝𝑗 is deduced :

𝐵𝑤𝑟 ⩾ 𝐵𝑤𝑟 −
𝑝𝑗
𝜇

⟹ 𝑝𝑗 ⩾ 0

• The condition 𝑝𝑗 (𝐵𝑤𝑟 − 𝑔) = 0 is finally stated:

𝑝𝑗 > 0 ⟹ 𝐵𝑤𝑟 −
𝑝𝑗
𝜇
< 𝐵𝑤𝑟 ⟹ 𝐵𝑤𝑟 = 𝑔

𝐵𝑤𝑟 > 𝑔 ⟹ 𝐵𝑤𝑟 −
𝑝𝑗
𝜇

= 𝐵𝑤𝑟 ⟹ 𝑝𝑗 = 0

Hence the unilateral condition 𝑔 ⩽ 𝐵𝑤𝑟 ⟂ 𝑝𝑗 ⩾ 0 is stated. □

Appendix D. Identification of the rheological parameters

Steady state flow profiles computed with our model show a very
low sensitivity to the values of rheological parameters 𝐾𝑛, 𝜆2, 𝜆3 and
𝛼. Hence, only the value of 𝐾𝑠 was adjusted to fit with the migration
ata of Oh et al. [18] (see Fig. 8). Values of 𝜆2 and 𝜆3 define the

relative magnitude of the normal stress differences 𝑁1 = 𝜏𝑝,𝑧𝑧 − 𝜏𝑝,𝑟𝑟
and 𝑁2 = 𝜏𝑝,𝑟𝑟 − 𝜏𝑝,𝜃,𝜃 . The values chosen for these parameters (see
Table 2) ensure that |𝑁2| > 3|𝑁1|, in agreement with experimental
observations [63]. The value of 𝐾𝑛 controls the magnitude of the ratio
𝑁2∕𝜂𝑎𝑝𝑝|2𝐷(𝒖)|, and was set to fit with experimental data from Dbouk
t al. [61] and Couturier et al. [62], as shown on Fig. D.9. Finally,
he parameter 𝛼 should verify 𝛼 ∈ [2, 5], see Miller and Morris [25].
he present choice 𝛼 = 3 corresponds to an intermediate value. We
bserved that the smaller the value of 𝛼, the faster the system reaches
he steady state regime.
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