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OComputational Burden Resulting from Image Recognition of High Resolution Radar Sensors,O L—pez-Rodr'guezt al. 2013
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Multi-reference alignment
[BCSZO14]

\W\/\ true signal: ! | R

| rotated signal: Ri,!

| noisy data: Y; = R, ! + "#

OMultireference alignment using semidefinite programming,O Bandeira, Charikar, Singer, Zhu. 2014.



Multi-reference alignment

[BCSZ014]
Yi=R I+"#;,1=1,...,n
11 RY "1"=1  Parameter of interest
11 Ng(0,14) i.d.
R,! Cyclic shift of ! by ! coordinates:
Rit o= 1+ (mod d)
ey

eg. R," 2% ="3%
3 1



Multi-reference alignment
[BCSZO14]

Yi=R I+"#;,1=1,...,n

¥ How many samples are needed to estimate signal?

¥ Are there efbcient algorithms to recover the
sighal?

¥ How does rate of estimation depend on group
structure ?



Yi = Ry, + 1"

&1 N(0,1)
R:. : shift
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[BCSZO14Pwe focus on the problem of estimating the shiftsO




Yi = Ry, + 1"

&1 N(,I)
R, : shift

Synchronization

[BCSZO14Pwe focus on the problem of estimating the shiftsO

If signals can be synchronized perfectly, then

E[LFE" ]

o d
n

E-Fwiznd!!:‘" RII = E["(F1)]



Yi = Ry, + 1"

&1 N(0,1)
R:. : shift

Synchronization

High SNR Low SNR
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Threshold effect [ADBSO16]: critical SNR below which no
synchronization possible, even in infinite-sample limit

eg. d=2, 1,=0,!,=1

OFundamental limits in multi-image alignment,O Augerrebere, Delbracio, Bartesaghi, Sapiro. 2016.



Mixture of Gaussians

R, latent variables > R uniform from Z4 (WLOG)

Yi= Ry L+ # - Ry, Yi = Ry« + "Ry #

Equivalent to samples from Gaussian mixture model :

1

Y, | N(R!,"?1)=:P,

R! Zg



Rates of estimation

Curse of dimensionality
Gaussian mixtures with d centers [CO95, HKO15]

E (") | C(#,d)n' =
Parametric rate
We assume that Fourier transform of ! satisfies:

1

j|=0 or |§|>Cc = E'I(5") " C@#dn' 2

Dependence int ?

OOptimal Rate of Convergence for Finite Mixture Models O, Chen. 1995
OOptimal rates for finite mixture estimation O, Heinrich, Kahn. 2015



What can be estimated from Y;?
E[Y;]= E[R! + Z]= E[R!]= ¥
E[Y:' 2] 121 = E[(R")" ?]

E[(Yi ! 1) °]= E[(R!)" ]

Mixture of Gaussians

Moments

(mean)
(autocovariance)

(triple covariance)



Mixture of Gaussians

What can be estimated from Y;? Moments

E[Y;]= E[R! + Z]= E[R!]= P1 —(mean)
E[Y: 2] 121 = E[(R")' 7] /[(autocovariance)

E[(Y; ! PL1) °]1= E[(R!)" °] (triple covariance)
'
O, |
{16, 1°}

(6080, )

-l-J-_l_



Reconstruction from
bispectrum (G089, G092

O=(,...,% 1)

First moment: 0, (DC)
Second moment: {16, |2 (magnitude)
Third moment: (000, .} (phase)

Reconstruction possible if Dj EO !]

OSignal reconstruction from multiple correlations: frequency and time domain approaches,O Giannaki. 1989
OShift- and rotation-invariant object reconstruction using the bispectrum,O Sadler, Giannakis. 1992



Reconstruction from
bispectrum (G689, S6692]

Figure 3

gioracy e A - e
DOlbjeck Ca%v;n,\'“l riwlultoe d([;aussmn s Reconstruction froth 10 frames with random translation.

Figure 4
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Reconstruction from
bispectrum (G089, G092

= (%, ..., 0 1)
First moment: 0, (DC)
Second moment: {16, |2 (magnitude)
Third moment: (0RO, ) (phase)

| 11

Y ® - E[Y; °] atrate '3/ n
=1



Yi = Ry, + 1"

&1 N(,I)
R, : shift

Orbit recovery

Theorem [BRWO17]:
¥ Optimal rate of estimation for worst case signals!!

_ #d! 2
E['(™")]! — = (57) = min 1%7 R
¥ Optimal rate of estimation for typical signals:!
I '" 3
TG N ias
N

¥ Can interpolate between them: for 2! s! d/?

there exists a class of signals on which optimal rate

. " |
IS. I 025. 1

E p(6,6) | —
T




Moments are enough

OIf you can matchk ! 1 moments, divergence is! (1’ %¢)C

Note: holds for any subgroup of orthogonal group.



Moments = Rates

For optimal estimator,

!H:_" P
E (") | —

where k! 1 1s the maximum number of matchable moments.

Ea growing theme in statistics [LNSO99, CLO11, WYO16]
Eactually common in Gaussian mixtures [LO89, HKO15]

OOn estimation of the L, norm of a regression function,O Lepski, Nemirovski, Spokoiny. 1999

OTesting composite hypotheses, Hermite polynomials and optimal estimation of a nonsmooth functional ,0 Cai, Low. 2011
OMinimax rates of entropy estimation on large alphabets via best polynomial approximation,O Wu, Yang. 2016

OMoment matrices: applications in mixturesO, Lindsay. 1989

OOptimal rates for finite mixture estimation O, Heinrich, Kahn. 2015
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Typical signals

(9%,..., 0% 1)

First moment: 0,

Second moment: {16, |2
Third moment: (0RO, )

| 1

Y; ° - E[Y; °] atrate '3/  n
=1

(DC)
(magnitude)

(phase)

actually optimal
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Worst-case signals

NI~ DN
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Worst-case signals

. 1 L . 1

= q 4 = é =0 4= | é

. . 1 1

= = _ Y = @ = | _

pS q 9 2 b5 d)! 5 . 5

all other entries zero
First moment: o (DC) same
Second moment: {16 12} (magnitude) same
Third moment: {D 00 i} (phase) vanishes

First eight moments match!



Worst-case signals

by =@ 4=

NI~ DN

bs=0 5=
First eight moments match!

DPP, ! P:)" o *°



Takeaways

Divergence between Gaussian mixtures usually hard to
compute, but reduces to moment matching

Maximum likelihood estimator gives optimal noise
dependence



Algorithms

[PWBRSO17]: Neviensor-based algorithms for MRA

Achieves optimal ! *dependence on SNR
for generic signals

Modified algorithm can handle heterogenous

mixtures with ! >dependence /

Yi = Ri!(i) + "#;

Ri I1.I.d uniform cyclic shifts
1 () i.i.d from finite mixture of linearly indep. signals




Heterogeneity

relative error

3 components (red Is good)

-lag. SNR




Takeaway

Polynomial-time tensor algorithms are (much) stronger than
synchronization approaches

More information about
bispectrum-based
algorithms in next talk!




Group Structure

Main technical Theorem [BRWO17]:

Let!, "1 RY, 1 (", #)=$ | » = E[(R!)' ™! E[(R")" ™].

If there exists ak such that
T w!=o!)form=1,..., k" 1, as! 1 0
et ="()

then

D(P, ! P.) " 172k

OIf you can matchk ! 1 moments, divergence is! (1 ' %) O

Note: holds for any subgroup of orthogonal group.



Group Structure

'm = E[(R!)" "] E[(R")"™]

—

depend on group structure

entries of E[(R!)"™] are degree m polynomials in entries of !

iInvariant theory



Invariant Theory

Classical guestion in group theory: describe a

ring of polynomials in dvariables which are

invariant under the action of a group Gon R®

P(RI)= P(1)= "Ik
K

k = (Kg,...,kg), 1K= 1511k 4414



Invariant Theory

OTheoremO: If the algebraR® ofC -invariant polynomials is
generated as an algebra by polynomials of degree at most Y
then orbit recovery problem can be solved atrate !9/ n.

Proof:
Generated by Orbit of | D(P, ! P.)1 120
polynomials of — determined by . fbr NN

degree ! Q. E[(R!) ™],m! g



Example

G= SO(d) group of all rotations

Y, = R ! + "# Onorm recoveryO

algebra of invariants = generated by squared 2 norm

expect optimal

rate of estimation
12/ n



Example

G= Sy group of all permutations

Y, = R ! +"# Obag of valuesO

algebra of invariants = symmetric polynomials

expect optimal
rate of estimation

19/" 1



Takeaway

Rates of estimation correspond to properties of algebra of
invariant polynomials Na well-studied object in group theory



Multi-reference alignment
Y= R, ! +"Z

¥ Optimal rates of estimation
¥ Efbcient algorithms via tensor decomposition
¥ Link between rates and polynomial invariants

¥ Dimension dependence?
¥ Projection step? Observe ! Y,
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