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Situation: “In the nature” there exists a signal x known to belong to a given

convex compact set X ⊂ Rn. We observe corrupted by noise affine image of the

signal:

ω = Ax+ σξ ∈ Ω = Rm

• A: given m× n sensing matrix

• ξ: random observation noise

• Our goal is to recover the image Bx of x under a given affine mapping B:

Rn → Rν.

• Risk of a candidate estimate x̂(·) : Ω→ Rν is defined as

Risk[x̂|X ] = sup
x∈X

√
Eξ

{
‖Bx− x̂(Ax+ σξ)‖2

2

}
⇒Risk2 is the worst-case, over x ∈ X , expected ‖ · ‖2

2 recovery error.
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Agenda: Under appropriate assumptions on X , we are to show that

• One can build, in a computationally efficient fashion, the (nearly) best, in

terms of risk, estimate from the family of linear estimates

x̂(ω) = x̂H(ω) = HTω [H ∈ Rm×ν]

• The resulting linear estimate is nearly optimal among all estimates, linear

and nonlinear alike.
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Linear estimation of signal in Gaussian noise

• ...

• Kuks & Olman, 1971, 1972

• Rao 1972, 1973, Pilz, 1981, 1986, ..., Drygas, 1996, Christopeit & Helmes,

1996, Arnold & Stahlecker, 2000, ...

• Pinsker 1980, Efromovich & Pinsker, 1981, 1982, Efromovich & Pinsker

1996, Golubev, Levit & Tsybakov, 1996, ..., Efromovich, 2008, ...

• Donoho, Liu, McGibbon, 1990

• ...
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Risk of linear estimation

Assuming that ξ is zero mean with unit covariance matrix, we can easily compute

the risk of a linear estimate x̂H(ω) = HTω

Risk2[x̂H|X ] = max
x∈X

Eξ

{
‖[B −HTA]x− σHTξ‖2

2

}
= max

x∈X

{
‖[B −HTA]x‖2

2 + σ2Eξ{Tr(HTξξTH}
}

= σ2Tr(HTH) + max
x∈X

Tr(xxT [BT −ATH][B −HTA]).

Note: building the minimum risk linear estimate reduces to solving convex mini-

mization problem

min
H

[
φ(H) := max

x∈X
Tr(xxT [BT −ATH][B −HTA]) + σ2Tr(HTH)

]
. (∗)

Convex function φ is given implicitly and can be difficult to compute, making (∗)
difficult as well.
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Fact: essentially, the only cases when (∗) is known to be easy are those when

• X is given as a convex hull of finite set of moderate cardinality

• X is an ellipsoid: for W ∈ Sn and S � 0

max
xTSx≤1

Tr(xxTW ) = λmax

(
S−1/2WS−1/2

)
.

where λmax(·) is the maximal eigenvalue.

When X is a “box,” computing φ is NP-hard...

• When φ is difficult to compute, we can to replace φ in the design problem (∗)
with an efficiently computable convex upper bound ϕ(H).

• We are about to consider a family of sets X – ellitopes – for which reasonably

tight bounds ϕ of desired type are available.
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An ellitope is a set X ⊂ Rn given as

X = {x ∈ Rn : ∃y ∈ RN , t ∈ T : x = Py, yTSky ≤ tk, 1 ≤ k ≤ K}

where

• P is a given n×N matrix (we can assume that P = In),

• Sk � 0 are positive semidefinite matrices with
∑

k Sk � 0

• T is a convex compact subset of K-dimensional nonnegative orthant RK+ such

that

• T contains some positive vectors

• T is monotone: if 0 ≤ t′ ≤ t and t ∈ T , then t′ ∈ T as well.

Note: every ellitope is a symmetric w.r.t. the origin convex compact set.

- 6 -



Examples

[A.] A centered at the origin ellipsoid (K = 1, T = [0; 1])

[B.] (Bounded) intersection of K ellispoids/elliptic cylinders centered at the origin

(T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ N})

[C.] Box {x ∈ Rn : −1 ≤ xi ≤ 1} (T = {t ∈ Rn : 0 ≤ tk ≤ 1, k ≤ K = n}, xTSkx = x2
k)

[D.] X = {x ∈ Rn : ‖x‖p ≤ 1} with p ≥ 2

(T = {t ∈ Rn+ : ‖t‖p/2 ≤ 1}, xTSkx = x2
k, k ≤ K = n)

Ellitopes admit fully algorithmic calculus: if Xi, 1 ≤ i ≤ I, are ellitopes, so are

• linear images of Xi

• inverse linear images of Xi under lin-

ear embeddings

•
⋂
iXi

• X1 × ...×XI

• X1 + ...+ XI

• ...
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Observation

Let

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ,1 ≤ k ≤ K}

be an ellitope. Given a quadratic form xTWx, W ∈ Sn, one has

max
x∈X

xTWx = max
x∈X

Tr(xxTW ) ≤ max
Q∈Q

Tr(QW ),

where

Q := {Q ∈ Sn : Q � 0, ∃t ∈ T : Tr(QSk) ≤ tk, k ≤ K}.

We conclude that

φ(H) ≤ ϕ(H) := σ2Tr(HTH) + max
Q∈Q

Tr
(
Q(ATH −BT)(HTA−B)

)
,

and

Risk2[x̂H|X ] ≤ min
H

ϕ(H).
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This attracts our attention to the optimization problem

OptP = min
H

{
ϕ(H) = max

Q∈Q

[
σ2Tr(HTH) + Tr

(
Q(ATH −BT)(HTA−B)

)︸ ︷︷ ︸
Φ(H,Q)

]}
. (P )

Note that (P) is the primal problem

min
H

[
max
Q∈Q

Φ(H,Q)

]
associated with the convex-concave saddle point function Φ(H,Q). The dual

problem associated with Φ(H,Q) is

max
Q∈Q

[
min
H

Φ(H,Q)
]
,

that is, the problem

OptD = max
Q∈Q

{
ψ(Q) := min

H

[
σ2Tr(HTH) + Tr

(
Q(ATH −BT)(HTA−B)

)]}
. (D)

By the Sion-Kakutani theorem, (P) and (D) are solvable with equal optimal

values: OptD = OptP = Opt.
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Note that the minimizer of Φ(·, Q) can be easily computed:

H(Q) = (σ2Im +AQAT)−1AQBT ,

so that

ψ(Q) = Tr
(
B[Q−QAT(σ2Im +AQAT)−1AQ]BT

)
,

and the dual problem reads

OptD = max
Q,t

{
Tr
(
B[Q−QAT(σ2Im +AQAT)−1AQ]BT

)
,

Q � 0, t ∈ T , Tr(QSk) ≤ tk, k ≤ K
} (D)

In fact, both (P) and (D) can be cast as Semidefinite Optimization problems.

In particular, (P) can be rewritten as

Opt = min
H,λ

{
σ2Tr(HTH) + φT (λ) :

[ ∑
k λkSk BT −ATH

B −HTA Iν

]
� 0, λ ≥ 0

}
(P )

where φT : RK → R is the support function of T :

φT (λ) = max
t∈T

λT t.

Note that (P) is efficiently solvable whenever T is computationally tractable.
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Bottom line: Given matrices A ∈ Rm×n, B ∈ Rk×n and an ellitope

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ,1 ≤ k ≤ K} (∗)

consider the convex optimization problems

OptP = min
H

ϕ(H) and OptD = max
Q∈Q

ψ(Q),

where Q := {Q ∈ Sn : Q � 0, ∃t ∈ : Tr(QSk) ≤ tk, k ≤ K}.
• The optimal values of two problems coincide, OptP = OptD = Opt.

• When noise ξ satisfies E{ξ} = 0, and E{ξξT} = Im, the risk of the linear

estimate x̂H∗(·) induced by the optimal solution H∗ to the problem (this solution

clearly exists provided that σ > 0) satisfies the risk bound

Risk[x̂H∗|X ] ≤
√

Opt.

• We are to compare the bound
√

Opt for the risk of x̂H∗ to the minimax risk

RiskOpt[X ] = inf
x̂(·)

Risk[x̂|X ].
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Bayesian risks

• Minimax risk RiskOpt[X ] is defined as the worst, over the signals of interest,

performance of x̂(·)
• Bayesian risk is the average performance, with the average taken over some

prior probability distribution on the signals.

For the problem of ‖ · ‖2-recovering Bx via noisy observation

ω = Ax+ σξ, ξ ∼ P

this alternative reads as follows:

(!) Given a probability distribution π of signals x ∈ Rn, find an estimate

x̂(·) which minimizes

Risk2(x̂|π) :=

∫
π

{∫
Rm

‖Bx− x̂(Ax+ σξ)‖2
2P (dξ)

}
π(dx)

– the average, over the distribution π of signals x, of expected ‖ · ‖2
2

estimation error of Bx via observation Ax+ σξ.
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Let Px,ω be the induced by π and Pξ joint distribution of (x, ω = Ax + σξ) on

Rnx × Rmω . Px,ω gives rise to

• marginal distribution Pω of ω,

• conditional distribution Px|ω of x given ω.

We have

Risk2(x̂|π) =
∫

Rn
x×Rm

ω

‖Bx− x̂(ω)‖2
2Px,ω(dx, dω)

=
∫
Rm

{∫
Rn ‖Bx− x̂(ω)‖2

2Px|ω(dx)
}
Pω(dω)

Assuming that the probability distribution π possesses finite second moments,

one has

min
x̂(·)

∫
Rn×Rm

‖Bx− x̂(ω)‖2
2Px,ω(dx) =

∫
Rn×Rm

‖Bx− x̂∗(ω)‖2
2Px,ω(dx),

where

x̂∗(ω) =

∫
Rn

BxPx|ω(dx).
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Corollary [Gauss-Markov theorem]: Let x ∈ Rn and ξ ∈ Rm be independent zero-

mean Gaussian random vectors. Assuming σ > 0 and the covariance matrix of ξ

to be positive definite,

• conditional, given ω, distribution of x is normal, and the conditional expec-

tation x̂∗(ω) is a linear function of ω,

• as a result, an optimal solution x̂∗(·) to the risk minimization problem

min
x̂(·)

Ex∼π,ξ
{
‖Bx− x̂(Ax+ σξ)‖2

2

}
exists and is a linear function of ω = Ax+ σξ.

In particular, when ξ ∼ N (0, Im) and x ∼ N (0, Q), one has

x̂∗(ω) =
[
[σ2Im +AQAT)]−1AQBT

]
ω

Risk2(x̂∗|N (0, Q)) = Tr
(
B[Q−QAT [σ2Im +AQAT ]−1AQ]BT

)
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Course of actions (Pinsker’s program)

• Let N (0, Q) be a Gaussian prior for the signal x which “sits on X with high

probability.” Then by the Gauss-Markov theorem the (“slightly reduced”) quan-

tity

ψ(Q) = Tr(B[Q−QAT [σ2Im +AQAT ]−1AQ]BT)

would be a lower bound on Risk2
Opt.

• Note that Eη∼N (0,Q){ηTSη} = Tr(SQ). Thus, selecting Q � 0 according to

∃t ∈ T : Tr(QSk) ≤ tk, k ≤ K

we ensure that η ∼ N (0, Q) sits in X “on average.”

Imposing on Q � 0 restriction

∃t ∈ T : Tr(QSk) ≤ ρtk, k ≤ K, [ρ > 0]

we enforce η ∼ N (0, Q) to take values in X with probability controlled by ρ and

approaching 1 as ρ→ +0.
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• The above considerations give rise to parametric optimization problem

Opt∗(ρ) = max
Q�0
{ψ(Q) : ∃t ∈ T : Tr(QSk) ≤ ρtk, 1 ≤ k ≤ K} (Pρ)

We may expect that for small ρ a “slightly corrected” Opt∗(ρ) is a lower bound

on Risk2
Opt.

• As we have just seen, Opt∗(1) = Opt (!). Since the optimal value of the

(concave) optimization problem (Pρ) is a a concave function of ρ, we have

Opt∗(ρ) ≥ ρOpt, 0 < ρ < 1.

Now, all we need is a simple result as follows:

Lemma Let S and Q be positive semidefinite n×n matrices with ρ := Tr(SQ) ≤ 1,

and let η ∼ N (0, Q). Then

Prob
{
ηTSη > 1

}
≤ e−

1−ρ+ρ ln(ρ)

2ρ
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We arrive at the following

Theorem. Let us associate with ellitope X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
the convex compact set

Q = {Q ∈ Sn : Q � 0, ∃t ∈ T : Tr(QSk) ≤ tk, k ≤ K},

and the quantity

M∗ = max
Q∈Q

√
Tr(BQBT).

Then the linear estimate x̂H∗(ω) = HT
∗ ω of Bx, x ∈ X , via observation ω = Ax+σξ,

ξ ∼ N (0, Im), given by the optimal solution H∗ to the convex optimization problem

Opt = min
H,λ

{
φT (λ) + σ2Tr(HHT) :

λ ≥ 0[ ∑
k
λkSk BT −ATH

B −HTA Ik

]
� 0

}
satisfies the risk bound

Risk[x̂H∗|X ] ≤
√

Opt ≤

√√√√6 ln

(
8M2

∗K

Risk2
Opt[X ]

)
RiskOpt[X ].
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Numerical illustration

In these experiments

• B is n× n identity matrix,

• n× n sensing matrix A is a randomly rotated matrix with singular values λj,

1 ≤ j ≤ n, forming a geometric progression, with λ1 = 1 and λn = 0.01.

• In the first experiment the signal set X1 is an ellipsoid:

X1 = {x ∈ Rn :
n∑

j=1

j2x2
j ≤ 1},

that is, K = 1, S1 =
∑n

j=1 j
2ejeTj (ej are basic orths), and T = [0,1].

Theoretical “suboptimality factor” in the interval [31.6, 73.7] in this experiment.

• In the second experiment, the signal set X is the box:

X = {x ∈ Rn : j|xj| ≤ 1, 1 ≤ j ≤ n} [K = n, Sk = k2eke
T
k , k = 1, ...,K, T = [0,1]K].

Theoretical “suboptimality factor” in the interval [73.2, 115.4].
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Extensions

1. Relative risks

When “very large” signals are allowed, one may switch from the usual risk to its

relative version – “S-risk” defined as follows:

• Given a positive semidefinite “risk calibrating matrix” S we set

RiskS[x̂|X ] = min

{
√
τ : Eξ

{
‖Bx− x̂(Ax+ σξ)‖2

2

}
≤ τ [1 + xTSx] ∀x ∈ X

}

Note: setting S = 0 recovers the usual “plain” risk.

• Results on design of near-optimal, in terms of plain risk, linear estimates extend

directly to the case of S-risk.
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Design of near optimal linear estimate x̂H∗(ω) = HT
∗ ω is given by an optimal

solution (H∗, τ∗, λ∗) to the convex optimization problem

Opt = min
H,τ,λ

{
τ :

[ ∑
k
λkSk + τS BT −ATH

B −HTA Ik

]
� 0, σ2Tr(HHT) + φT (λ) ≤ τ, λ ≥ 0

}
For the resulting estimate, it holds

RiskS[x̂H∗|X ] ≤
√

Opt,

provided ξ is zero mean with unit covariance matrix.

Near-optimality properties of the estimate x̂H∗ remain the same as in the case

of plain risk: when ξ ∼ N (0, Im), one has

RiskS[x̂H∗|X ] ≤

√√√√6 ln

(
8KM2

∗
RiskS2

Opt[X ]

)
RiskSOpt[X ],

where

M∗ = maxQ
{√

Tr(BQBT) : Q � 0, ∃t ∈ T : Tr(QSk) ≤ tk, 1 ≤ k ≤ K
}
,

and

RiskSOpt[X ] = inf
x̂(·)

RiskS[x̂|X ].

- 20 -



In the case X = Rn, the best linear estimate is yielded by the optimal solution

to the convex problem

Opt = min
H,τ

{
τ :

[
τS BT −ATH

B −HTA Ik

]
� 0, σ2Tr(HHT) ≤ τ

}
(∗)

A feasible solution τ,H to (∗) gives rise to linear estimate x̂H(ω) = HTω such that

RiskS[x̂H|Rn] ≤
√
τ ,

provided ξ is zero mean with unit covariance matrix.

Proposition Assume that B 6= 0 and (∗) is feasible. Then the problem is solvable,

and its optimal solution Opt, H∗ gives rise to the linear estimate

x̂H∗(ω) = HT
∗ ω

with S-risk
√

Opt.

When ξ ∼ N (0, Im), this estimate is minimax optimal:

RiskS[x̂H∗|Rn] =
√

Opt = RiskSOpt[Rn].
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2. Spectratopes

We say that a set X ⊂ Rn is a basic spectratope, if it can be represented in the

form

X =
{
x ∈ Rn : ∃t ∈ T : R2

k[x] � tkIdk,1 ≤ k ≤ K
}

where

[S1] Rk[x] =
∑n

i=1 xiR
ki are symmetric dk×dk matrices linearly depending on x ∈ Rn

(i.e., “matrix coefficients” Rki belong to Sn)

[S2] T ∈ RK+ is a convex compact subset of RK+ which contains a positive vector

and is monotone:

0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T .

[S3] Whenever x 6= 0, it holds Rk[x] 6= 0 for at least one k ≤ K.

A spectratope is a linear image Y = PX of a basic spectratope.

We refer to D =
∑

k dk as size of the spectratope Y.
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Examples

[A.] Any ellitope is a spectratope.

[B.] Let L be a positive definite d× d matrix. Then the “matrix box”

X = {X ∈ Sd : −L � X � L} = {X ∈ Sd : R2[X] := [L−1/2XL−1/2]2 � Id}

is a basic spectratope. As a result, a bounded set X ⊂ Rn given by a system of

“two-sided” LMI’s, specifically,

X = {x ∈ Rn : ∃t ∈ T : −tkLk � Sk[x] � tlLk, 1 ≤ k ≤ K}

where Sk[x] are symmetric dk× dk matrices linearly depending on x, Lk � 0 and T
satisfies S2, is a basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] ≤ tkIdk, k ≤ K} [Rk[x] = L

−1/2
k Sk[x]L−1/2

k ]

Same as ellitopes, spectratopes admit fully algorithmic calculus.
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Bounding quadratic forms over ellitopes

Proposition Let G be a symmetric n×n matrix, X ⊂ Rn be given by spectratopic

representation, and let

Opt∗ = max
x∈X

xTGx

and

Opt = min
Λ={Λk}k≤K

{
φT (λ[Λ]) : Λk � 0, P TGP �

∑
kR∗k[Λk]

}
(QPR)

where R∗k(Λ) : Sdk → Sn is the conjugate linear mapping,

[R∗k(Λ)]ij = 1
2
Tr
(
Λ[RkiRkj +RkjRki]

)
, 1 ≤ i, j ≤ n,

φT is the support function of T , and for Λ = {Λk ∈ Sdk}k≤K,

λ[Λ] = [Tr[Λ1]; ...; Tr[ΛK]].

Then (QPR) is solvable, and

Opt∗ ≤ Opt ≤ 2 max[ln(2D),1]Opt.
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Remark

The result of the proposition has some history.

• Nemirovski, Roos and Terlaky, 1999 – X is an intersection of centered at the

origin ellipsoids/elliptic cylinders

• J. and Nemirovski 2016 – X is ellitope, with tighter bound

Opt∗ ≤ Opt ≤ 4 ln(5K)Opt∗.

Note that in the case of an ellitope, (QPR) results in a somewhat worse

“suboptimality factor” O(1) ln(
∑K

k=1 Rank(Sk)).
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Building linear estimate

Proposition Consider convex optimization problem

Opt = min
H,Λ,τ

{
τ :

(B −HTA)T(B −HTA) �
∑
k

R∗k(Λk)

σ2Tr(HTH) + φT (λ[Λ]) ≤ τ

}
(∗)

Problem (∗) is solvable, and its feasible solution (H,λ, τ) induces a linear estimate

x̂H = HTω of Bx, x ∈ X , via observation

ω = Ax+ σξ, ξ ∼ N (0, I)

with the maximal over X risk not exceeding
√
τ .
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Proposition Let X be a spectratope, and let

Q = {Q ∈ Sn+ : ∃t ∈ T : Rk[Q] � tkIdk, k ≤ K}.

The set Q is a nonempty convex compact set containing a neighbourhood of the

origin, so that the quantity

M∗ =
√

max
Q∈Q

Tr(BQBT),

is well defined and positive.

The efficiently computable linear estimate x̂H∗(ω) = HT
∗ ω yielded by the optimal

solution of (∗) is nearly optimal in terms of the risk:

Risk[x̂H∗|X ] ≤ 2

√√√√2 ln

(
8DM2

∗
RiskS2

Opt[X ]

)
RiskOpt[X ],

where

RiskOpt[X ] = inf
x̂(·)

Risk[x̂|X ]

is the minimax risk associated with X , and D =
∑

k dk.
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3. Norms

We say that the norm ‖ · ‖ is spectratopic-representable if the unit ball B∗ of the

conjugate norm ‖ · ‖∗ is a spectratope:

B∗ = MY, Y =
{
x ∈ Rn : ∃r ∈ R : S2

` [x] � r`If`,1 ≤ ` ≤ L
}
,

where S` ∈ Rf`×f`, r`, ` = 1, ..., L and R is a “valid spectratopic data.” We denote

F =
∑

` f` the size of B∗.

Examples

• ‖ · ‖p-norm with 1 ≤ p ≤ 2 – B∗ is the unit ball of ‖ · ‖q-norm with 1
p

+ 1
q

= 1

• ‖ · ‖1 + ‖ · ‖2 – B∗ is an affine image of the the direct product of unit balls of

norms ‖ · ‖∞ and ‖ · ‖2

• “combined norm” minx=u+v ‖M1u‖1 + ‖M2v‖2 – B∗ is the intersection B∞∗ ∩B2
∗

of unit balls of norms ‖MT
1 · ‖∞ and ‖MT

2 · ‖2

• nuclear norm ‖ · ‖Sh,1 – B∗ is the unit ball of the spectral norm ‖ · ‖Sh,∞

• ... spectral norm ‖ · ‖Sh,∞ is “difficult”
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For an estimate x̂ of Bx, let

Risk‖·‖[x̂|X ] = sup
x∈X

Eξ∼N (0,Im){‖Bx− x̂(Ax+ σξ)‖}.

Proposition Consider the convex optimization problem

Opt = min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + σTr(Θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk]

1
2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S∗` [Υ`]

]
� 0,[

Θ 1
2
HM

1
2
MTHT

∑
` S∗` [Υ′`]

]
� 0

 .

Here for Λ = {Λi ∈ Smi}i≤I
λ[Λ] = [Tr[Λ1]; ...; Tr[ΛI]],

[R∗k[Λk]]ij = 1
2
Tr(Λk[Rki

k R
kj
k +Rkj

k R
ki
k ]), where Rk[x] =

∑
i xiR

ki,

[S∗` [Υ`]]ij = 1
2
Tr(Υ`[S`i` S

`j
` + S`j` S

`i
` ]), where S`[y] =

∑
i yiS

`i,

and φT and φR are the support function of T and R. The problem is solvable, and

the H-component H∗ of its optimal solution yields linear estimate x̂H∗(ω) = HT
∗ ω

such that

Risk‖·‖[x̂(·)|X ] ≤ Opt.
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Near-optimality of linear estimation on spectratopes

Proposition Let

M2
∗ = max

W

{
Eη∼N (0,In)‖BW

1/2η‖2 :

W ∈ Q := {W ∈ Sn+ : ∃t ∈ T : Rk[W ] � tkIdk, 1 ≤ k ≤ K}
}
.

Then there is an efficiently computable linear estimate x̂H∗ = H∗ω which satisfies

Risk‖·‖[x̂H∗|X ] ≤ Opt ≤ C

√
ln(2F ) ln

(
2DM2

∗
Risk2[X ]

)
Risk‖·‖,Opt[X ],

where C is a positive absolute constant,

RiskOpt[X ] = inf
x̂(·)

[
sup
x∈X

Eξ∼N (0,Im){‖Bx− x̂(Ax+ σξ)‖}
]

the infimum being taken over all estimates, and

D =
∑
k

dk, F =
∑
`

f`.
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The key component

Lemma Let Y be an N × ν matrix, let ‖ · ‖ be a norm on Rν such that the unit

ball B∗ of the conjugate norm is the spectratope, and let ζ ∼ N (0, Q) for some

positive semidefinte N ×N matrix Q.

Then the upper bound on

φQ(Y ) := E{‖Y Tζ‖}

yielded by the SDP relaxation, that is, the optimal value Opt[Q] of the convex

optimization problem

Opt[Q] = min
Θ,Υ

{
φR(λ[Υ]) + Tr(Θ) : Υ = {Υ` � 0,1 ≤ ` ≤ L}, Θ ∈ Sm,[

Θ 1
2
Q1/2YM

1
2
MTY TQ1/2

∑
` S∗` [Υ`]

]
� 0

}
is tight, namely,

ψQ(Y ) ≤ Opt[Q] ≤
4

√
ln
(

8F√
2−e1/4

)
√

2− e1/4
ψQ(Y ),

where F =
∑

` f` is the size of the spectratope B∗.
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