Near-Optimal Linear Recovery from Indirect Observations

joint work with

A. Nemirovski, Georgia Tech

http://www2.isye.gatech.edu/~nemirovs/StatOpt_LN.pdf

Les Houches, April, 2017

Situation: "In the nature" there exists a signal x known to belong to a given convex compact set $\mathcal{X} \subset \mathbb{R}^n$. We observe corrupted by noise affine image of the signal:

 $\omega = Ax + \sigma\xi \in \Omega = \mathbb{R}^m$

- A: given $m \times n$ sensing matrix
- ξ : random observation noise
- Our goal is to recover the image Bx of x under a given affine mapping B: $\mathbb{R}^n \to \mathbb{R}^{\nu}$.
- **Risk** of a candidate estimate $\widehat{x}(\cdot) : \Omega \to \mathbb{R}^{\nu}$ is defined as

$$\mathsf{Risk}[\widehat{x}|\mathcal{X}] = \sup_{x \in \mathcal{X}} \sqrt{\mathbf{E}_{\xi} \left\{ \|Bx - \widehat{x}(Ax + \sigma\xi)\|_{2}^{2} \right\}}$$

 \Rightarrow Risk² is the worst-case, over $x \in \mathcal{X}$, expected $\|\cdot\|_2^2$ recovery error.

Agenda: Under appropriate assumptions on \mathcal{X} , we are to show that

• One can build, in a computationally efficient fashion, the (nearly) best, in terms of risk, estimate from the family of linear estimates

$$\widehat{x}(\omega) = \widehat{x}_H(\omega) = H^T \omega$$
 $[H \in \mathbb{R}^{m \times \nu}]$

• The resulting linear estimate is nearly optimal among all estimates, linear and nonlinear alike.

Linear estimation of signal in Gaussian noise

• ...

- Kuks & Olman, 1971, 1972
- Rao 1972, 1973, Pilz, 1981, 1986, ..., Drygas, 1996, Christopeit & Helmes, 1996, Arnold & Stahlecker, 2000, ...
- Pinsker 1980, Efromovich & Pinsker, 1981, 1982, Efromovich & Pinsker 1996, Golubev, Levit & Tsybakov, 1996, ..., Efromovich, 2008, ...
- Donoho, Liu, McGibbon, 1990

• ...

Risk of linear estimation

Assuming that ξ is zero mean with unit covariance matrix, we can easily compute the risk of a linear estimate $\hat{x}_H(\omega) = H^T \omega$

$$\operatorname{Risk}^{2}[\widehat{x}_{H}|\mathcal{X}] = \max_{x \in \mathcal{X}} \operatorname{E}_{\xi} \left\{ \|[B - H^{T}A]x - \sigma H^{T}\xi\|_{2}^{2} \right\}$$
$$= \max_{x \in \mathcal{X}} \left\{ \|[B - H^{T}A]x\|_{2}^{2} + \sigma^{2}\operatorname{E}_{\xi} \{\operatorname{Tr}(H^{T}\xi\xi^{T}H)\} \right\}$$
$$= \sigma^{2}\operatorname{Tr}(H^{T}H) + \max_{x \in \mathcal{X}} \operatorname{Tr}(xx^{T}[B^{T} - A^{T}H][B - H^{T}A]).$$

Note: *building the minimum risk linear estimate reduces to solving convex minimization problem*

$$\min_{H} \left[\phi(H) := \max_{x \in \mathcal{X}} \operatorname{Tr}(xx^{T}[B^{T} - A^{T}H][B - H^{T}A]) + \sigma^{2} \operatorname{Tr}(H^{T}H) \right]. \quad (*)$$

Convex function ϕ is given implicitly and can be difficult to compute, making (*) difficult as well.

Fact: essentially, the only cases when (*) is known to be easy are those when

- \mathcal{X} is given as a convex hull of finite set of moderate cardinality
- \mathcal{X} is an ellipsoid: for $W \in \mathbf{S}^n$ and $S \succ \mathbf{0}$

$$\max_{x^T S x \leq 1} \operatorname{Tr}(x x^T W) = \lambda_{\max} \left(S^{-1/2} W S^{-1/2} \right).$$

where $\lambda_{\max}(\cdot)$ is the maximal eigenvalue.

When \mathcal{X} is a "box," computing ϕ is NP-hard...

• When ϕ is difficult to compute, we can to replace ϕ in the design problem (*) with an efficiently computable convex upper bound $\varphi(H)$.

• We are about to consider a family of sets $\mathcal{X} - ellitopes$ – for which reasonably tight bounds φ of desired type are available.

An ellitope is a set $\mathcal{X} \subset \mathbb{R}^n$ given as

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^N, t \in \mathcal{T} : x = Py, y^T S_k y \le t_k, 1 \le k \le K \}$$

where

- P is a given $n \times N$ matrix (we can assume that $P = I_n$),
- $S_k \succeq 0$ are positive semidefinite matrices with $\sum_k S_k \succ 0$
- \mathcal{T} is a convex compact subset of *K*-dimensional nonnegative orthant \mathbb{R}^{K}_{+} such that
 - \mathcal{T} contains some positive vectors
 - \mathcal{T} is *monotone*: if $0 \le t' \le t$ and $t \in \mathcal{T}$, then $t' \in \mathcal{T}$ as well.

Note: every ellitope is a symmetric w.r.t. the origin convex compact set.

Examples

- [A.] A centered at the origin ellipsoid (K = 1, T = [0; 1])
- [B.] (Bounded) intersection of K ellispoids/elliptic cylinders centered at the origin $(\mathcal{T} = \{t \in \mathbb{R}^K : 0 \le t_k \le 1, k \le N\})$

[C.] Box $\{x \in \mathbb{R}^n : -1 \le x_i \le 1\}$ $(\mathcal{T} = \{t \in \mathbb{R}^n : 0 \le t_k \le 1, k \le K = n\}, x^T S_k x = x_k^2)$

[D.] $\mathcal{X} = \{x \in \mathbb{R}^n : ||x||_p \le 1\}$ with $p \ge 2$ $(\mathcal{T} = \{t \in \mathbb{R}^n_+ : ||t||_{p/2} \le 1\}, x^T S_k x = x_k^2, k \le K = n)$

Ellitopes admit fully algorithmic calculus: if \mathcal{X}_i , $1 \leq i \leq I$, are ellitopes, so are

• linear images of \mathcal{X}_i

- $\mathcal{X}_1 \times ... \times \mathcal{X}_I$
- inverse linear images of X_i under linear embeddings
- 1
- $\mathcal{X}_1 + \ldots + \mathcal{X}_I$
- $\bigcap_i \mathcal{X}_i$...

Observation

Let

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \le t_k, 1 \le k \le K \}$$

be an ellitope. Given a quadratic form x^TWx , $W \in \mathbf{S}^n$, one has

$$\max_{x \in \mathcal{X}} x^T W x = \max_{x \in \mathcal{X}} \operatorname{Tr}(x x^T W) \le \max_{Q \in \mathcal{Q}} \operatorname{Tr}(Q W),$$

where

$$\mathcal{Q} := \{ Q \in \mathbf{S}^n : Q \succeq \mathbf{0}, \exists t \in \mathcal{T} : \mathsf{Tr}(QS_k) \leq t_k, k \leq K \}.$$

We conclude that

$$\phi(H) \leq \varphi(H) := \sigma^2 \operatorname{Tr}(H^T H) + \max_{Q \in \mathcal{Q}} \operatorname{Tr}(Q(A^T H - B^T)(H^T A - B)),$$

and

$$\operatorname{Risk}^{2}[\widehat{x}_{H}|\mathcal{X}] \leq \min_{H} \varphi(H).$$

This attracts our attention to the optimization problem

$$Opt^{P} = \min_{H} \left\{ \varphi(H) = \max_{Q \in \mathcal{Q}} \left[\underbrace{\sigma^{2} \operatorname{Tr}(H^{T}H) + \operatorname{Tr}\left(Q(A^{T}H - B^{T})(H^{T}A - B)\right)}_{\Phi(H,Q)} \right] \right\}. \quad (P)$$

Note that (P) is the primal problem

$$\min_{H} \left[\max_{Q \in \mathcal{Q}} \Phi(H,Q)
ight]$$

associated with the convex-concave saddle point function $\Phi(H,Q)$. The dual problem associated with $\Phi(H,Q)$ is

 $\max_{Q\in\mathcal{Q}}\left[\min_{H}\Phi(H,Q)\right],$

that is, the problem

$$\mathsf{Opt}^{D} = \max_{Q \in \mathcal{Q}} \left\{ \psi(Q) := \min_{H} \left[\sigma^2 \mathsf{Tr}(H^T H) + \mathsf{Tr}\left(Q(A^T H - B^T)(H^T A - B)\right) \right] \right\}.$$
(D)

By the Sion-Kakutani theorem, (P) and (D) are solvable with equal optimal values: $Opt^{D} = Opt^{P} = Opt$.

Note that the minimizer of $\Phi(\cdot, Q)$ can be easily computed:

$$H(Q) = (\sigma^2 I_m + AQA^T)^{-1}AQB^T,$$

so that

$$\psi(Q) = \operatorname{Tr}(B[Q - QA^{T}(\sigma^{2}I_{m} + AQA^{T})^{-1}AQ]B^{T}),$$

and the dual problem reads

$$Opt^{D} = \max_{Q,t} \left\{ Tr(B[Q - QA^{T}(\sigma^{2}I_{m} + AQA^{T})^{-1}AQ]B^{T}), \\ Q \succeq 0, t \in \mathcal{T}, Tr(QS_{k}) \leq t_{k}, k \leq K \right\}$$
(D)

In fact, both (P) and (D) can be cast as Semidefinite Optimization problems. In particular, (P) can be rewritten as

$$Opt = \min_{H,\lambda} \left\{ \sigma^2 Tr(H^T H) + \phi_T(\lambda) : \left[\begin{array}{cc} \sum_k \lambda_k S_k & B^T - A^T H \\ B - H^T A & I_\nu \end{array} \right] \succeq 0, \lambda \ge 0 \right\} \quad (P)$$

where $\phi_{\mathcal{T}}$: $\mathbb{R}^K \to \mathbb{R}$ is the support function of \mathcal{T} :

$$\phi_{\mathcal{T}}(\lambda) = \max_{t \in \mathcal{T}} \lambda^T t.$$

Note that (P) is efficiently solvable whenever \mathcal{T} is computationally tractable.

Bottom line: Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{k \times n}$ and an ellitope

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \le t_k , 1 \le k \le K \}$$
(*)

consider the convex optimization problems

$$\operatorname{Opt}^P = \min_{H} \varphi(H)$$
 and $\operatorname{Opt}^D = \max_{Q \in \mathcal{Q}} \psi(Q)$,

where $Q := \{Q \in \mathbf{S}^n : Q \succeq 0, \exists t \in : \operatorname{Tr}(QS_k) \leq t_k, k \leq K\}.$

• The optimal values of two problems coincide, $Opt^P = Opt^D = Opt$.

• When noise ξ satisfies $\mathbf{E}\{\xi\} = 0$, and $\mathbf{E}\{\xi\xi^T\} = I_m$, the risk of the linear estimate $\hat{x}_{H_*}(\cdot)$ induced by the optimal solution H_* to the problem (this solution clearly exists provided that $\sigma > 0$) satisfies the risk bound

 $\mathsf{Risk}[\widehat{x}_{H_*}|\mathcal{X}] \leq \sqrt{\mathsf{Opt.}}$

• We are to compare the bound $\sqrt{\text{Opt}}$ for the risk of \widehat{x}_{H_*} to the minimax risk

 $\operatorname{Risk}_{\operatorname{Opt}}[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \operatorname{Risk}[\widehat{x}|\mathcal{X}].$

Bayesian risks

• *Minimax risk* $Risk_{Opt}[\mathcal{X}]$ is defined as the *worst*, over the signals of interest, performance of $\hat{x}(\cdot)$

• *Bayesian risk* is the *average performance*, with the average taken over some *prior* probability distribution on the signals.

For the problem of $\|\cdot\|_2$ -recovering Bx via noisy observation

 $\omega = Ax + \sigma\xi, \ \xi \sim P$

this alternative reads as follows:

(!) Given a probability distribution π of signals $x \in \mathbb{R}^n$, find an estimate $\widehat{x}(\cdot)$ which minimizes

$$\mathsf{Risk}^{2}(\widehat{x}|\pi) := \int_{\pi} \left\{ \int_{\mathbb{R}^{m}} \|Bx - \widehat{x}(Ax + \sigma\xi)\|_{2}^{2} P(d\xi) \right\} \pi(dx)$$

- the average, over the distribution π of signals x, of expected $\|\cdot\|_2^2$ estimation error of Bx via observation $Ax + \sigma\xi$.

Let $P_{x,\omega}$ be the induced by π and P_{ξ} joint distribution of $(x, \omega = Ax + \sigma\xi)$ on $\mathbb{R}^n_x \times \mathbb{R}^m_\omega$. $P_{x,\omega}$ gives rise to

- marginal distribution P_{ω} of ω ,
- conditional distribution $P_{x|\omega}$ of x given ω .

We have

$$\begin{aligned} \mathsf{Risk}^{2}(\widehat{x}|\pi) &= \int_{\mathbb{R}^{n}_{x} \times \mathbb{R}^{m}_{\omega}} \|Bx - \widehat{x}(\omega)\|_{2}^{2} P_{x,\omega}(dx, d\omega) \\ &= \int_{\mathbb{R}^{n}} \left\{ \int_{\mathbb{R}^{n}} \|Bx - \widehat{x}(\omega)\|_{2}^{2} P_{x|\omega}(dx) \right\} P_{\omega}(d\omega) \end{aligned}$$

Assuming that the probability distribution π possesses finite second moments, one has

$$\min_{\widehat{x}(\cdot)} \int_{\mathbb{R}^n \times \mathbb{R}^m} \|Bx - \widehat{x}(\omega)\|_2^2 P_{x,\omega}(dx) = \int_{\mathbb{R}^n \times \mathbb{R}^m} \|Bx - \widehat{x}_*(\omega)\|_2^2 P_{x,\omega}(dx),$$

where

$$\widehat{x}_*(\omega) = \int_{\mathbb{R}^n} Bx P_{x|\omega}(dx).$$

Corollary [Gauss-Markov theorem]: Let $x \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^m$ be independent zeromean Gaussian random vectors. Assuming $\sigma > 0$ and the covariance matrix of ξ to be positive definite,

- conditional, given ω , distribution of x is normal, and the conditional expectation $\hat{x}_*(\omega)$ is a linear function of ω ,
- as a result, an optimal solution $\widehat{x}_*(\cdot)$ to the risk minimization problem

$$\min_{\widehat{x}(\cdot)} \mathbf{E}_{x \sim \pi, \xi} \left\{ \|Bx - \widehat{x}(Ax + \sigma\xi)\|_2^2 \right\}$$

exists and is a linear function of $\omega = Ax + \sigma \xi$.

In particular, when $\xi \sim \mathcal{N}(0, I_m)$ and $x \sim \mathcal{N}(0, Q)$, one has

$$\widehat{x}_{*}(\omega) = \left[[\sigma^{2}I_{m} + AQA^{T}]^{-1}AQB^{T} \right] \omega$$

Risk²($\widehat{x}_{*} | \mathcal{N}(0, Q)$) = Tr($B[Q - QA^{T}[\sigma^{2}I_{m} + AQA^{T}]^{-1}AQ]B^{T}$)

Course of actions (Pinsker's program)

• Let $\mathcal{N}(0,Q)$ be a Gaussian prior for the signal x which "sits on \mathcal{X} with high probability." Then by the Gauss-Markov theorem the ("slightly reduced") quantity

$$\psi(Q) = \operatorname{Tr}(B[Q - QA^T[\sigma^2 I_m + AQA^T]^{-1}AQ]B^T)$$

would be a lower bound on $Risk_{Opt}^2$.

• Note that $E_{\eta \sim \mathcal{N}(0,Q)}\{\eta^T S \eta\} = \mathsf{Tr}(SQ)$. Thus, selecting $Q \succeq 0$ according to

 $\exists t \in \mathcal{T} : \mathsf{Tr}(QS_k) \le t_k, k \le K$

we ensure that $\eta \sim \mathcal{N}(0, Q)$ sits in \mathcal{X} "on average." Imposing on $Q \succeq 0$ restriction

$$\exists t \in \mathcal{T} : \mathsf{Tr}(QS_k) \le \rho t_k, k \le K, \qquad [\rho > 0]$$

we enforce $\eta \sim \mathcal{N}(0,Q)$ to take values in \mathcal{X} with probability controlled by ρ and approaching 1 as $\rho \to +0$.

• The above considerations give rise to parametric optimization problem

$$Opt_*(\rho) = \max_{Q \succ 0} \{ \psi(Q) : \exists t \in \mathcal{T} : Tr(QS_k) \le \rho t_k, \ 1 \le k \le K \}$$
(P_{\rho})

We may expect that for small ρ a "slightly corrected" $Opt_*(\rho)$ is a lower bound on $Risk_{Opt}^2$.

• As we have just seen, $Opt_*(1) = Opt$ (!). Since the optimal value of the (concave) optimization problem (P_ρ) is a a concave function of ρ , we have

 $\operatorname{Opt}_*(\rho) \ge \rho \operatorname{Opt}, \ 0 < \rho < 1.$

Now, all we need is a simple result as follows:

Lemma Let *S* and *Q* be positive semidefinite $n \times n$ matrices with $\rho := \text{Tr}(SQ) \leq 1$, and let $\eta \sim \mathcal{N}(0, Q)$. Then

$$\mathsf{Prob}\left\{\eta^T S \eta > \mathbf{1}\right\} \leq \mathrm{e}^{-\frac{1-\rho+\rho\ln(\rho)}{2\rho}}$$

We arrive at the following

Theorem. Let us associate with ellitope $\mathcal{X} = \{x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, k \leq K\}$ the convex compact set

$$\mathcal{Q} = \{ Q \in \mathbf{S}^n : Q \succeq 0, \exists t \in \mathcal{T} : \mathsf{Tr}(QS_k) \le t_k, k \le K \},\$$

and the quantity

$$M_* = \max_{Q \in \mathcal{Q}} \sqrt{\mathrm{Tr}(BQB^T)}.$$

Then the linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ of Bx, $x \in \mathcal{X}$, via observation $\omega = Ax + \sigma \xi$, $\xi \sim \mathcal{N}(0, I_m)$, given by the optimal solution H_* to the convex optimization problem

$$Opt = \min_{H,\lambda} \left\{ \phi_{\mathcal{T}}(\lambda) + \sigma^2 \operatorname{Tr}(HH^T) : \begin{array}{c} \lambda \ge 0\\ \left[\begin{array}{c} \sum_k \lambda_k S_k \mid B^T - A^T H \\ B - H^T A \mid I_k \end{array} \right] \succeq 0 \end{array} \right\}$$

satisfies the risk bound

$$\operatorname{Risk}[\widehat{x}_{H_*}|\mathcal{X}] \leq \sqrt{\operatorname{Opt}} \leq \sqrt{6 \ln\left(\frac{8M_*^2K}{\operatorname{Risk}_{\operatorname{Opt}}^2[\mathcal{X}]}\right)} \operatorname{Risk}_{\operatorname{Opt}}[\mathcal{X}].$$

Numerical illustration

In these experiments

- B is $n \times n$ identity matrix,
- $n \times n$ sensing matrix A is a randomly rotated matrix with singular values λ_j , $1 \le j \le n$, forming a geometric progression, with $\lambda_1 = 1$ and $\lambda_n = 0.01$.
- In the first experiment the signal set \mathcal{X}_1 is an ellipsoid:

$$\mathcal{X}_1 = \{ x \in \mathbb{R}^n : \sum_{j=1}^n j^2 x_j^2 \le 1 \},$$

that is, K = 1, $S_1 = \sum_{j=1}^n j^2 e_j e_j^T$ (e_j are basic orths), and $\mathcal{T} = [0, 1]$. Theoretical "suboptimality factor" in the interval [31.6, 73.7] in this experiment.

• In the second experiment, the signal set \mathcal{X} is the box:

$$\mathcal{X} = \{x \in \mathbb{R}^n : j | x_j | \le 1, \ 1 \le j \le n\} \ [K = n, S_k = k^2 e_k e_k^T, k = 1, ..., K, \mathcal{T} = [0, 1]^K].$$

Theoretical "suboptimality factor" in the interval [73.2, 115.4].

Recovery on ellipsoids: risk bounds as functions of the noise level σ , dimension n = 32. Left plot: upper and lower bounds of the risk; right plot: suboptimality ratios.

Recovery on ellipsoids: risk bounds as functions of problem dimension n, noise level $\sigma = 0.01$. Left plot: upper and lower risk bounds; right plot: suboptimality ratios.

Recovery on a box: risk bounds as functions of the noise level σ , dimension n = 32. Left plot: upper and lower bounds of the risk; right plot: suboptimality ratios.

Recovery on a box: risk bounds as functions of problem dimension n, noise level $\sigma = 0.01$. Left plot: upper and lower risk bounds; right plot: suboptimality ratios.

Extensions

1. Relative risks

When "very large" signals are allowed, one may switch from the usual risk to its *relative version* – "S-risk" defined as follows:

• Given a positive semidefinite "risk calibrating matrix" S we set

$$\mathsf{RiskS}[\widehat{x}|\mathcal{X}] = \min\left\{\sqrt{\tau} : \mathbf{E}_{\xi}\left\{\|Bx - \widehat{x}(Ax + \sigma\xi)\|_{2}^{2}\right\} \le \tau[1 + x^{T}Sx] \,\forall x \in \mathcal{X}\right\}$$

Note: setting S = 0 recovers the usual "plain" risk.

• Results on design of near-optimal, in terms of plain risk, linear estimates extend directly to the case of *S*-risk.

Design of near optimal linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ is given by an optimal solution (H_*, τ_*, λ_*) to the convex optimization problem

$$Opt = \min_{H,\tau,\lambda} \left\{ \tau : \left[\frac{\sum_{k} \lambda_k S_k + \tau S \mid B^T - A^T H}{B - H^T A \mid I_k} \right] \succeq 0, \ \sigma^2 \mathsf{Tr}(HH^T) + \phi_{\mathcal{T}}(\lambda) \le \tau, \ \lambda \ge 0 \right\}$$

For the resulting estimate, it holds

$$\mathsf{RiskS}[\widehat{x}_{H_*}|\mathcal{X}] \leq \sqrt{\mathsf{Opt}},$$

provided ξ is zero mean with unit covariance matrix.

Near-optimality properties of the estimate \hat{x}_{H_*} remain the same as in the case of plain risk: when $\xi \sim \mathcal{N}(0, I_m)$, one has

$$\operatorname{RiskS}[\widehat{x}_{H_*}|\mathcal{X}] \leq \sqrt{6 \ln \left(\frac{8KM_*^2}{\operatorname{RiskS}_{\operatorname{Opt}}^2[\mathcal{X}]}\right)} \operatorname{RiskS}_{\operatorname{Opt}}[\mathcal{X}],$$

where

$$M_* = \max_Q \left\{ \sqrt{\operatorname{Tr}(BQB^T)} : Q \succeq 0, \exists t \in \mathcal{T} : \operatorname{Tr}(QS_k) \leq t_k, \ 1 \leq k \leq K \right\},\$$

and

$$\mathsf{RiskS}_{\mathsf{Opt}}[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \mathsf{RiskS}[\widehat{x}|\mathcal{X}].$$

In the case $\mathcal{X} = \mathbb{R}^n$, the best linear estimate is yielded by the optimal solution to the convex problem

$$Opt = \min_{H,\tau} \left\{ \tau : \left[\frac{\tau S}{B - H^T A} \middle| \frac{B^T - A^T H}{I_k} \right] \succeq 0, \ \sigma^2 \mathsf{Tr}(HH^T) \le \tau \right\}$$
(*)

A feasible solution τ , H to (*) gives rise to linear estimate $\hat{x}_H(\omega) = H^T \omega$ such that

 $\mathsf{RiskS}[\widehat{x}_H|\mathbb{R}^n] \leq \sqrt{\tau},$

provided ξ is zero mean with unit covariance matrix.

Proposition Assume that $B \neq 0$ and (*) is feasible. Then the problem is solvable, and its optimal solution Opt, H_* gives rise to the linear estimate

$$\widehat{x}_{H_*}(\omega) = H_*^T \omega$$

with S-risk $\sqrt{\text{Opt}}$.

When $\xi \sim \mathcal{N}(0, I_m)$, this estimate is minimax optimal:

 $\operatorname{RiskS}[\widehat{x}_{H_*}|\mathbb{R}^n] = \sqrt{\operatorname{Opt}} = \operatorname{RiskS}_{\operatorname{Opt}}[\mathbb{R}^n].$

2. Spectratopes

We say that a set $\mathcal{X} \subset \mathbb{R}^n$ is a *basic spectratope*, if it can be represented in the form

$$\mathcal{X} = \left\{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : R_k^2[x] \leq t_k I_{d_k}, 1 \leq k \leq K \right\}$$

where

[S₁] $R_k[x] = \sum_{i=1}^n x_i R^{ki}$ are symmetric $d_k \times d_k$ matrices linearly depending on $x \in \mathbb{R}^n$ (i.e., "matrix coefficients" R^{ki} belong to \mathbf{S}^n)

[S₂] $\mathcal{T} \in \mathbb{R}_+^K$ is a convex compact subset of \mathbb{R}_+^K which contains a positive vector and is monotone:

$$0 \le t' \le t \in \mathcal{T} \Rightarrow t' \in \mathcal{T}.$$

[S₃] Whenever $x \neq 0$, it holds $R_k[x] \neq 0$ for at least one $k \leq K$.

A *spectratope* is a linear image $\mathcal{Y} = P\mathcal{X}$ of a basic spectratope.

We refer to $D = \sum_k d_k$ as size of the spectratope \mathcal{Y} .

Examples

[A.] Any ellitope is a spectratope.

[B.] Let L be a positive definite $d \times d$ matrix. Then the "matrix box"

$$\mathcal{X} = \{ X \in \mathbf{S}^d : -L \leq X \leq L \} = \{ X \in \mathbf{S}^d : R^2[X] := [L^{-1/2}XL^{-1/2}]^2 \leq I_d \}$$

is a basic spectratope. As a result, a *bounded* set $\mathcal{X} \subset \mathbb{R}^n$ given by a system of "two-sided" LMI's, specifically,

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : -t_k L_k \leq S_k[x] \leq t_l L_k, \ 1 \leq k \leq K \}$$

where $S_k[x]$ are symmetric $d_k \times d_k$ matrices linearly depending on x, $L_k \succ 0$ and \mathcal{T} satisfies S_2 , is a basic spectratope:

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : R_k^2[x] \le t_k I_{d_k}, k \le K \} \qquad [R_k[x] = L_k^{-1/2} S_k[x] L_k^{-1/2}]$$

Same as ellitopes, spectratopes admit fully algorithmic calculus.

Bounding quadratic forms over ellitopes

Proposition Let G be a symmetric $n \times n$ matrix, $\mathcal{X} \subset \mathbb{R}^n$ be given by spectratopic representation, and let

$$Opt_* = \max_{x \in \mathcal{X}} x^T G x$$

and

$$Opt = \min_{\Lambda = \{\Lambda_k\}_{k \le K}} \left\{ \phi_{\mathcal{T}}(\lambda[\Lambda]) : \Lambda_k \succeq 0, P^T G P \preceq \sum_k \mathcal{R}_k^*[\Lambda_k] \right\}$$
(QPR)

where $\mathcal{R}_k^*(\Lambda)$: $\mathbf{S}^{d_k} \to \mathbf{S}^n$ is the conjugate linear mapping,

$$[\mathcal{R}_k^*(\Lambda)]_{ij} = \frac{1}{2} \operatorname{Tr} \left(\Lambda [R^{ki} R^{kj} + R^{kj} R^{ki}] \right), \ 1 \le i, j \le n,$$

 $\phi_{\mathcal{T}}$ is the support function of \mathcal{T} , and for $\Lambda = {\Lambda_k \in \mathbf{S}^{d_k}}_{k \leq K}$, $\lambda[\Lambda] = [\mathsf{Tr}[\Lambda_1]; ...; \mathsf{Tr}[\Lambda_K]].$

Then (QPR) is solvable, and

 $Opt_* \leq Opt \leq 2 \max[ln(2D), 1]Opt.$

Remark

The result of the proposition has some history.

- Nemirovski, Roos and Terlaky, 1999 X is an intersection of centered at the origin ellipsoids/elliptic cylinders
- J. and Nemirovski 2016 \mathcal{X} is ellitope, with tighter bound

 $Opt_* \leq Opt \leq 4 \ln(5K)Opt_*$.

Note that in the case of an ellitope, (QPR) results in a somewhat worse "suboptimality factor" $O(1) \ln(\sum_{k=1}^{K} \operatorname{Rank}(S_k))$.

Building linear estimate

Proposition Consider convex optimization problem

$$Opt = \min_{H,\Lambda,\tau} \left\{ \tau : \begin{array}{l} (B - H^T A)^T (B - H^T A) \leq \sum_k \mathcal{R}_k^*(\Lambda_k) \\ \sigma^2 \mathsf{Tr}(H^T H) + \phi_{\mathcal{T}}(\lambda[\Lambda]) \leq \tau \end{array} \right\}$$
(*)

Problem (*) is solvable, and its feasible solution (H, λ, τ) induces a linear estimate $\hat{x}_H = H^T \omega$ of Bx, $x \in \mathcal{X}$, via observation

$$\omega = Ax + \sigma\xi, \, \xi \sim \mathcal{N}(0, I)$$

with the maximal over \mathcal{X} risk not exceeding $\sqrt{\tau}$.

Proposition Let \mathcal{X} be a spectratope, and let

$$\mathcal{Q} = \{ Q \in \mathbf{S}^n_+ : \exists t \in \mathcal{T} : \mathcal{R}_k[Q] \leq t_k I_{d_k}, k \leq K \}.$$

The set Q is a nonempty convex compact set containing a neighbourhood of the origin, so that the quantity

$$M_* = \sqrt{\max_{Q \in \mathcal{Q}} \operatorname{Tr}(BQB^T)},$$

is well defined and positive.

The efficiently computable linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ yielded by the optimal solution of (*) is nearly optimal in terms of the risk:

$$\operatorname{Risk}[\widehat{x}_{H_*}|\mathcal{X}] \leq 2\sqrt{2\ln\left(\frac{8DM_*^2}{\operatorname{Risk}S_{\operatorname{Opt}}^2[\mathcal{X}]}\right)}\operatorname{Risk}_{\operatorname{Opt}}[\mathcal{X}],$$

where

$$\operatorname{Risk}_{\operatorname{Opt}}[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \operatorname{Risk}[\widehat{x}|\mathcal{X}]$$

is the minimax risk associated with \mathcal{X} , and $D = \sum_k d_k$.

3. Norms

We say that the norm $\|\cdot\|$ is spectratopic-representable if the unit ball \mathcal{B}_* of the conjugate norm $\|\cdot\|_*$ is a spectratope:

$$\mathcal{B}_* = M\mathcal{Y}, \quad \mathcal{Y} = \left\{ x \in \mathbb{R}^n : \exists r \in \mathcal{R} : S_\ell^2[x] \preceq r_\ell I_{f_\ell}, 1 \leq \ell \leq L \right\},$$

where $S_{\ell} \in \mathbb{R}^{f_{\ell} \times f_{\ell}}$, r_{ℓ} , $\ell = 1, ..., L$ and \mathcal{R} is a "valid spectratopic data." We denote $F = \sum_{\ell} f_{\ell}$ the size of \mathcal{B}_* .

Examples

- $\|\cdot\|_p$ -norm with $1 \le p \le 2 \mathcal{B}_*$ is the unit ball of $\|\cdot\|_q$ -norm with $\frac{1}{p} + \frac{1}{q} = 1$
- || · ||₁ + || · ||₂ B* is an affine image of the the direct product of unit balls of norms || · ||_∞ and || · ||₂
- "combined norm" $\min_{x=u+v} \|M_1u\|_1 + \|M_2v\|_2 \mathcal{B}_*$ is the intersection $\mathcal{B}^{\infty}_* \cap \mathcal{B}^2_*$ of unit balls of norms $\|M_1^T \cdot\|_{\infty}$ and $\|M_2^T \cdot\|_2$
- nuclear norm $\|\cdot\|_{Sh,1} \mathcal{B}_*$ is the unit ball of the spectral norm $\|\cdot\|_{Sh,\infty}$
- ... spectral norm $\|\cdot\|_{\mathsf{Sh},\infty}$ is ''difficult''

For an estimate \hat{x} of Bx, let

$$\mathsf{Risk}_{\|\cdot\|}[\widehat{x}|\mathcal{X}] = \sup_{x \in \mathcal{X}} \mathsf{E}_{\xi \sim \mathcal{N}(0, I_m)}\{\|Bx - \widehat{x}(Ax + \sigma\xi)\|\}.$$

Proposition Consider the convex optimization problem

$$\begin{aligned} \mathsf{Opt} &= \min_{H,\Lambda,\Upsilon,\Upsilon',\Theta} \left\{ \phi_{\mathcal{T}}(\lambda[\Lambda]) + \phi_{\mathcal{R}}(\lambda[\Upsilon']) + \phi_{\mathcal{R}}(\lambda[\Upsilon']) + \sigma\mathsf{Tr}(\Theta) : \\ \Lambda &= \{\Lambda_k \succeq 0, k \leq K\}, \ \Upsilon = \{\Upsilon_\ell \succeq 0, \ell \leq L\}, \ \Upsilon' = \{\Upsilon'_\ell \succeq 0, \ell \leq L\}, \\ \left[\frac{\sum_k \mathcal{R}_k^*[\Lambda_k]}{\frac{1}{2}M^T[B - H^TA]} | \frac{\frac{1}{2}[B^T - A^TH]M}{\sum_\ell \mathcal{S}_\ell^*[\Upsilon_\ell]} \right] \succeq 0, \\ \left[\frac{\Theta}{\frac{1}{2}M^TH^T} | \sum_\ell \mathcal{S}_\ell^*[\Upsilon'_\ell]} \right] \succeq 0 \end{aligned} \right\}. \end{aligned}$$

Here for $\Lambda = \{\Lambda_i \in \mathbf{S}^{m_i}\}_{i \leq I}$ $\lambda[\Lambda] = [\operatorname{Tr}[\Lambda_1]; ...; \operatorname{Tr}[\Lambda_I]],$ $[\mathcal{R}_k^*[\Lambda_k]]_{ij} = \frac{1}{2}\operatorname{Tr}(\Lambda_k[R_k^{ki}R_k^{kj} + R_k^{kj}R_k^{ki}]), \quad \text{where } R_k[x] = \sum_i x_i R^{ki},$ $[\mathcal{S}_\ell^*[\Upsilon_\ell]]_{ij} = \frac{1}{2}\operatorname{Tr}(\Upsilon_\ell[S_\ell^{\ell i}S_\ell^{\ell j} + S_\ell^{\ell j}S_\ell^{\ell i}]), \quad \text{where } S_\ell[y] = \sum_i y_i S^{\ell i},$ and $\phi_{\mathcal{T}}$ and $\phi_{\mathcal{R}}$ are the support function of \mathcal{T} and \mathcal{R} . The problem is solvable, and

the *H*-component H_* of its optimal solution yields linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ such that

$$\mathsf{Risk}_{\|\cdot\|}[\widehat{x}(\cdot)|\mathcal{X}] \leq \mathsf{Opt}.$$

Near-optimality of linear estimation on spectratopes

Proposition Let

$$M_*^2 = \max_W \left\{ \mathbf{E}_{\eta \sim \mathcal{N}(0, I_n)} \| BW^{1/2} \eta \|^2 : \\ W \in \mathcal{Q} := \{ W \in \mathbf{S}_+^n : \exists t \in \mathcal{T} : \mathcal{R}_k[W] \leq t_k I_{d_k}, 1 \leq k \leq K \} \right\}.$$

Then there is an efficiently computable linear estimate $\hat{x}_{H_*} = H_*\omega$ which satisfies

$$\mathsf{Risk}_{\|\cdot\|}[\widehat{x}_{H_*}|\mathcal{X}] \leq \mathsf{Opt} \leq C \sqrt{\mathsf{In}(2F) \mathsf{In}\left(\frac{2DM_*^2}{\mathsf{Risk}^2[\mathcal{X}]}\right)} \mathsf{Risk}_{\|\cdot\|,\mathsf{Opt}}[\mathcal{X}],$$

where C is a positive absolute constant,

$$\mathsf{Risk}_{\mathsf{Opt}}[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \left[\sup_{x \in \mathcal{X}} \mathbf{E}_{\xi \sim \mathcal{N}(0, I_m)} \{ \|Bx - \widehat{x}(Ax + \sigma\xi)\| \} \right]$$

the infimum being taken over all estimates, and

$$D = \sum_{k} d_k, \ F = \sum_{\ell} f_{\ell}.$$

The key component

Lemma Let Y be an $N \times \nu$ matrix, let $\|\cdot\|$ be a norm on \mathbb{R}^{ν} such that the unit ball \mathcal{B}_* of the conjugate norm is the spectratope, and let $\zeta \sim \mathcal{N}(0,Q)$ for some positive semidefinte $N \times N$ matrix Q.

Then the upper bound on

$$\phi_Q(Y) := \mathbf{E}\{\|Y^T\zeta\|\}$$

yielded by the SDP relaxation, that is, the optimal value Opt[Q] of the convex optimization problem

$$Opt[Q] = \min_{\Theta,\Upsilon} \left\{ \phi_{\mathcal{R}}(\lambda[\Upsilon]) + Tr(\Theta) : \Upsilon = \{\Upsilon_{\ell} \succeq 0, 1 \le \ell \le L\}, \Theta \in \mathbf{S}^{m}, \\ \left[\frac{\Theta}{\frac{1}{2}M^{T}Y^{T}Q^{1/2}} | \frac{1}{2}Q^{1/2}YM}{\frac{1}{2}M^{T}Y^{T}Q^{1/2}} \right] \succeq 0 \right\}$$

is tight, namely,

$$\psi_Q(Y) \leq \operatorname{Opt}[Q] \leq rac{4\sqrt{\ln\left(rac{8F}{\sqrt{2}-\mathrm{e}^{1/4}}
ight)}}{\sqrt{2}-\mathrm{e}^{1/4}}\psi_Q(Y),$$

where $F = \sum_{\ell} f_{\ell}$ is the size of the spectratope \mathcal{B}_* .