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Situation: “In the nature” there exists a signal x known to belong to a given
convex compact set X C R™. We observe corrupted by noise affine image of the
signal:

w=Azx + £ € Q=R"

e A: given m X n sensing matrix
e &£ random observation noise

e Our goal is to recover the image Bx of z under a given affine mapping B:
R"™ — RY.

e Risk of a candidate estimate z(-) : 2 — R” is defined as

Risk[]X] = sup /E¢ {|| Bz — #(Az + 0€)|13}
reX

= Risk? is the worst-case, over x € X, expected || -||3 recovery error.



Agenda: Under appropriate assumptions on X, we are to show that

e One can build, in a computationally efficient fashion, the (nearly) best, in
terms of risk, estimate from the family of linear estimates

Z(w) = Zy(w) = H'w [H € R™*V]

e T he resulting linear estimate is nearly optimal among all estimates, linear
and nonlinear alike.



Linear estimation of signal in Gaussian noise

o Kuks & Olman, 1971, 1972

e Rao 1972, 1973, Pilz, 1981, 1986, ..., Drygas, 1996, Christopeit & Helmes,
1996, Arnold & Stahlecker, 2000, ...

e Pinsker 1980, Efromovich & Pinsker, 1981, 1982, Efromovich & Pinsker
1996, Golubev, Levit & Tsybakov, 1996, ..., Efromovich, 2008, ...

e Donoho, Liu, McGibbon, 1990



Risk of linear estimation

Assuming that & is zero mean with unit covariance matrix, we can easily compute
the risk of a linear estimate zy(w) = H'w

Risk?[zy|X] = max B {I[B— H"Alz — cH"¢||5}
= max{|[[B - H' Alz|3 + o*E{Tr(H" (" H} |
= o°Tr(H'H) + max Tr(zz![BY — ATH]|[B — HT A)).
xre

Note: building the minimum risk linear estimate reduces to solving convex mini-

mization problem

min |¢(H) := max Tr(zx' [B" — ATH][B — H"A]) + o*Tr(H H) | . (%)

Convex function ¢ is given implicitly and can be difficult to compute, making (x)

difficult as well.



Fact: essentially, the only cases when (%) is known to be easy are those when

e X is given as a convex hull of finite set of moderate cardinality
e X is an ellipsoid: for W € S®" and S >0

max Tr(zz"W) = Amax (S_l/QWS_l/Q) |

xTSx<1

where Amax(-) is the maximal eigenvalue.

When X is a “box,” computing ¢ is NP-hard...

e When ¢ is difficult to compute, we can to replace ¢ in the design problem (x)
with an efficiently computable convex upper bound ¢(H).

e \We are about to consider a family of sets X — ellitopes — for which reasonably
tight bounds ¢ of desired type are available.



An ellitope is a set X C R™ given as
X={zeR": eRY, teT: :az=Py, y' Sy <ty, 1<k<K}

where

e P is a given n x N matrix (we can assume that P = I,),
e S;. > 0 are positive semidefinite matrices with Zk S >0

e '/ is a convex compact subset of K-dimensional nonnegative orthant ]Riﬁf such
that

e 7 contains some positive vectors
e 7 is monotone: if 0<t' <tandteT, thent € T as well.

Note: every ellitope is a symmetric w.r.t. the origin convex compact set.



Examples

[A.] A centered at the origin ellipsoid (K =1, 7 = [0; 1])

[B.] (Bounded) intersection of K ellispoids/elliptic cylinders centered at the origin
(T={teRE:0<#<1,k<N})

[C.] Box{xeR": -1 <z; <1} (T ={teR":0<t;, <1, k<K =n}, xTSka::xi)
[D.] X ={zeR": |z|, <1} with p > 2

(T =A{te€ R% - ||t||p/2 <1}, 7Sz = x%, E<K=n)

Ellitopes admit fully algorithmic calculus: if X;, 1 <7< 1, are ellitopes, so are

e linear images of A o X1 X ... XX

e inverse linear images of X; under lin-
i o X1+ ...+ X
ear embeddings

i ﬂin‘ ° ...



Observation

Let
X={zcR": HeT: 2'Sx<t,1<k<K)}

be an ellitope. Given a quadratic form zfWx, W € S™, one has

maxz! Wz = max Tr(zz! W) < max Tr(QW),
rEX TEX QeQ
where
Q:={QeS": Q=0,FHeT:Tr(QS;) <tr, k< K}.

We conclude that
6(H) < o(H) := o*Tr(H"H) + maxTr(Q(ATH — BN (H'A - B)),

and

Risk?[zy|X] < min o(H).



This attracts our attention to the optimization problem

Opt! = min {p(H) = max [ o [ o’ Tr(H"H) + Tr (Q(A"H — B")(H"A — B))J] boo(P)
®(H,Q)

Note that (P) is the primal problem

min |max d(H,

H [Qe@ ( Q)]
associated with the convex-concave saddle point function ®(H,Q). The dual
problem associated with ®(H, Q) is

max |min ®(H, ]
Qe [ H ( Q)
that is, the problem

Opt” = max {¢(Q) =min [>Tr(H"H) + Tr (Q(A"H — B")(H" A - B)) } . (D)

By the Sion-Kakutani theorem, (P) and (D) are solvable with equal optimal
values: Opt? = Opt? = Opt.



Note that the minimizer of ®(-,Q) can be easily computed:
H(Q) = (0°In + AQAT) 1 AQBT,
so that
(Q) = Tr(B[Q — QA (0% + AQAT) T AQ]BY),
and the dual problem reads
Opt” = max {Tr(B[Q — QAT (02I,, + AQAT)LAQ]BT),

(D)
Q=0,tET, Tr(QSY) <t k< K}

In fact, both (P) and (D) can be cast as Semidefinite Optimization problems.

In particular, (P) can be rewritten as

B—-HTA I,

)

T AT
Opt = mir {JQTr(HTH) +or(n) | Zndk BT A H] - 0,) > o} (P)
where ¢+ : R — R is the support function of T:
d7r(N) = max \'t.
teT

Note that (P) is efficiently solvable whenever T is computationally tractable.

- 10 -



Bottom line: Given matrices A € R™*" B € R¥*" and an ellitope
X={zeR":FHeT: 'Sz <ty,1<k<K} (%)
consider the convex optimization problems
Opt? = mingp(H) and Opt? = maxy(Q),
H QeQ
where Q :={Q €S": Q> 0,3t e :Tr(QSk) < tx, k < K}.

e The optimal values of two problems coincide, Opt?” = Opt?” = Opt.

e When noise ¢ satisfies E{¢} = 0, and E{¢'} = I, the risk of the linear
estimate xy (-) induced by the optimal solution H,. to the problem (this solution
clearly exists provided that o > Q) satisfies the risk bound

Risk[zx |X] < v/ Opt.

e We are to compare the bound /Opt for the risk of zy to the minimax risk

Riskopt[X] = inf Risk[z|X].
z(-)
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Bayesian risks

e Minimax risk Riskopt[X] is defined as the worst, over the signals of interest,

performance of z(-)
e Bayesian risk is the average performance, with the average taken over some

prior probability distribution on the signals.
For the problem of || - ||[o-recovering Bx via noisy observation
w=Ax+0c&, E~ P
this alternative reads as follows:
(1) Given a probability distribution = of signals x € R", find an estimate
z(-) which minimizes

Risk?(z|r) 1= /

T

{ / || Bz — z(Ax + af)H%P(d&)} w(dx)

— the average, over the distribution 7 of signals z, of expected || - |5

estimation error of Bx via observation Az 4 €.
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Let P,. be the induced by m and P joint distribution of (z, w = Az 4 c&) on

R? x RT'. P, dives rise to

e marginal distribution P, of w,

e conditional distribution P, of z given w.

We have

Risk?(Z|r) [ 1Bz — 2(w)||3 Py w(dz, dw)

RrxRm
— me {fRn ||B.CU - ZU\(W)H%PJJM(dx)} Pw(dw)

Assuming that the probability distribution m possesses finite second moments,
one has
min [ |Be - 2@)BPrutdn) = [ B2 - 5.()]BPruldo).
") R Re xR
where

Ts(w) = /R Bz P,,(dz).
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Corollary [Gauss-Markov theorem]: Let x € R" and £ € R™ be independent zero-
mean Gaussian random vectors. Assuming o > 0 and the covariance matrix of &
to be positive definite,

e conditional, given w, distribution of x is normal, and the conditional expec-
tation z.(w) is a linear function of w,

e as a result, an optimal solution z.(-) to the risk minimization problem

MinEyr¢ {||Bx — 2(Az 4 0€)||3}

exists and is a linear function of w = Ax + o€.

In particular, when ¢ ~ N (0, I,,) and =z ~ N(0,Q), one has

Z.(w) = [[0°In+ AQAT)] TAQB" | w
Risk?(z+|N(0,Q)) Tr(B[Q — QA" [0 ], + AQA"] T AQ]B")
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Course of actions (Pinsker’s program)

e Let N(0,Q) be a Gaussian prior for the signal x which ‘“sits on X with high
probability.” Then by the Gauss-Markov theorem the (“slightly reduced” ) quan-
tity

P(Q) = Tr(B[Q — QA" [6°],n + AQA"] T AQ]B")
would be a lower bound on Riskg;.
e Note that E, x0.0){n'Sn} = Tr(SQ). Thus, selecting Q = 0 according to

e T Tr(QSy) <tr, k<K

we ensure that n ~ N(0,Q) sits in X “on average.”
Imposing on Q > O restriction

It e T Tr(QSy) < pti, k < K, [p > 0]

we enforce n ~ N(0,Q) to take values in X with probability controlled by p and
approaching 1 as p — —+0.
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e T he above considerations give rise to parametric optimization problem
Opt.(p) = max {w(Q) : I/ eT :Tr(QSk) <ptr, L< k< K} (F)

We may expect that for small p a “slightly corrected” Opt,.(p) is a lower bound
on Riskg:.

e As we have just seen, Opt,(1) = Opt (!). Since the optimal value of the
(concave) optimization problem (P,) is a a concave function of p, we have

Opt.(p) > pOpt, 0 <p < 1.

Now, all we need is a simple result as follows:
Lemma Let S and Q be positive semidefinite n xn matrices with p := Tr(SQ) < 1,
and let n ~ N(0,Q). Then

__1-p+pin(p)

Prob{n'Sn>1} <e >
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We arrive at the following

Theorem. Let us associate with ellitope X = {x c R": 3t c T : 2 Spx < t, k < K}
the convex compact set

Q={QeS":Q=0,3teT:Tr(QS) <ty k < K},
and the quantity

M, = maX\/Tr BQB™).
Qe ( Q )

Then the linear estimate zy (w) = H'w of Bz, x € X, via observation w = Az —+ o€,

¢ ~N(0,I,), given by the optimal solution H, to the convex optimization problem

A>0
R 2 Ty . - X
Opt = rpI&n {ch(A)-I-a Tr(HH") : [BZ’“;;:?Z } BT_]ATH } -0 }
- k

satisfies the risk bound

8M2K
Riskg ot [X]

Risk[zy |X] < 4/Opt < ,|61n < )Riskopt[X].

- 17 -



Numerical illustration

In these experiments

e B is n X n identity matrix,
e n X n sensing matrix A is a randomly rotated matrix with singular values A;,

1 <35 <n, forming a geometric progression, with A1 =1 and A\, = 0.01.

e In the first experiment the signal set X is an ellipsoid:

X1 ={x e R": ZjQxJQ- <1},
j=1

that is, K =1, S1 =3"_, j%eje; (e; are basic orths), and 7 = [0, 1].
Theoretical “suboptimality factor” in the interval [31.6, 73.7] in this experiment.

e In the second experiment, the signal set X is the box:
X={zeR":jlzj|<1,1<j<n} [K=mn,S==Fkeel, k=1,.,KT=][0,1]%].

T heoretical “suboptimality factor” in the interval [73.2, 115.4].

- 18 -



100 T T T 4.5

_ g HE HEHE = 357 //'/

7
B X 4
10 X X/
% 251 /X

15F 7 x°
e

1072 1 1 1 l
10 1073 1072 107t 10° 10 1078 1072 107t 10°

Recovery on ellipsoids: risk bounds as functions of the noise level o, dimension n = 32.

Left plot: upper and lower bounds of the risk; right plot: suboptimality ratios.

0.35 ‘ 4
03F
0.25 F
35%
AN
AN
0.2 N
AN
N
3% AN
0.15 F N N
- N
N AN
N, AN
N
25 ¢ ~ R~
0.1F N ~_
N -
N \\
X ReSS
~. ~
2 ~ RS
\\ \\\
\\x X— — — —
TS
0.05 : 15
10t 10? 10t 102

Recovery on ellipsoids: risk bounds as functions of problem dimension n, noise level o = 0.01.

Left plot: upper and lower risk bounds; right plot: suboptimality ratios.



10t

0.8

0.7

0.6

05

0.4

0.3

0.2

Recovery on a box: risk bounds as functions of problem dimension n, noise level o = 0.01.

Recovery on a box: risk bounds as functions of the noise level o, dimension n = 32.

Left plot: upper and lower bounds of the risk; right plot: suboptimality ratios.

1073 1072 107t

10°

10t

Left plot: upper and lower risk bounds; right plot: suboptimality ratios.

28

26

241

221

18r

16

14

12

10

1078

1072

107t

10°

291

28

271

26

251

2.4

231

2.2

10t

102



Extensions

1. Relative risks

When *“very large” signals are allowed, one may switch from the usual risk to its

relative version — “S-risk’” defined as follows:

e Given a positive semidefinite “risk calibrating matrix” S we set

RiskS[Z|X] = min {\/? . B¢ {||Bx — 2(Az + 0€)|)5} < [l + 2’ Sz] vz € X}

Note: setting S = O recovers the usual “plain” risk.

e Results on design of near-optimal, in terms of plain risk, linear estimates extend

directly to the case of S-risk.

- 19 -



Design of near optimal linear estimate zy (w) = Hlw is given by an optimal

solution (H., T, A\x) to the convex optimization problem

T T
Opt = min {T [ S [P AL ] 0, 2 TE(HET) + 67(0) <7, 2 o}

For the resulting estimate, it holds
RiskS[zy.|X] < /Opt,
provided & is zero mean with unit covariance matrix.

Near-optimality properties of the estimate xy remain the same as in the case
of plain risk: when ¢ ~ N (0, I,,,), one has

8K M?2
: 2
RiSkSZ ¢ [X]

RiskS[Zg |X] < | 61n ( )RiskSopt[X],

where

M, = maxg {\/Tr(BQBT) Q= 0,3teT:TrHQS) <t 1<k< K} ,
and

RiskSopt[X] = inf RiskS[z|X].

z(-)
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In the case X = R", the best linear estimate is vielded by the optimal solution
to the convex problem

Opt = min {T : [ - I B —]:‘TH =0, o> Tr(HHT) < T} (%)

A feasible solution 7, H to (x) gives rise to linear estimate zx(w) = H'w such that
RiskS[Zx|R"] < /T,

provided £ is zero mean with unit covariance matrix.

Proposition Assume that B #= 0 and (%) is feasible. Then the problem is solvable,
and its optimal solution Opt, H, gives rise to the linear estimate

T (w) = H*Tw

with S-risk /Opt.
When &€ ~ N (0, I,,), this estimate is minimax optimal:

RiskS[zp,|R"] = /Opt = RiskSgopt[R"].
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2. Spectratopes

We say that a set X C R"™ is a basic spectratope, if it can be represented in the

form
X={zeR":3teT:Rz] Jtply,1 <k< K}

where

[S1] Rklz] = >, xR are symmetric dj, x di, matrices linearly depending on z € R"
(i.e., “matrix coefficients” R* belong to S")

[S2] T € ]Riﬁﬁ iS a convex compact subset of Ri{ which contains a positive vector

and is monotone:

0t <teT=tecT.
[S3] Whenever x #= 0, it holds Ri[x] # 0 for at least one k < K.

A spectratope is a linear image Y = PX of a basic spectratope.

We refer to D = Zk d; as Size of the spectratope ).
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Examples

[A.] Any ellitope is a spectratope.

[B.] Let L be a positive definite d x d matrix. Then the “matrix box”
X={Xes8: - L<X<L={Xes8: R[X]:=[L Y2XL 1?12 < I}

IS a basic spectratope. As a result, a bounded set X C R"™ given by a system of
“two-sided” LMI's, specifically,

XZ{CCERHZ dt e T . —tkijSk[ZC]jtlLk,lngK}

where Si[x] are symmetric d; x d;, matrices linearly depending on z, L = 0 and T
satisfies S», is a basic spectratope:

X={zcR": HecT: R[] <tply, k < K} [Rilz] = L V2 Sk[2] ;2]

Same as ellitopes, spectratopes admit fully algorithmic calculus.
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Bounding quadratic forms over ellitopes

Proposition Let G be a symmetric n xn matrix, X C R"™ be given by spectratopic

representation, and let
Opt, = maxz! Gz
reX
and

Opt = A_min ’{qu(A[/\]) Ak = 0, PTGP <Y, Ri[A]} (QPR)
where R;(N) : Sd — S™ js the conjugate linear mapping,
[Ri(M)]ij = 2Tr (A[R¥RM + RMRM]) | 1 <4, <m,

¢ is the support function of T, and for A = {Ay € S%} <k,
AA] = [Tr[A1]; ...; Tr[AKk]].

Then (QPR) is solvable, and

Opt, < Opt < 2max[In(2D), 1]Opt.
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Remark

The result of the proposition has some history.

e Nemirovski, Roos and Terlaky, 1999 — X is an intersection of centered at the
origin ellipsoids/elliptic cylinders
e J. and Nemirovski 2016 — X is ellitope, with tighter bound
Opt, < Opt < 4In(5K)Opt..

Note that in the case of an ellitope, (QPR) results in a somewhat worse
“suboptimality factor” O(1) In(> ;_, Rank(Sk)).
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Building linear estimate

Proposition Consider convex optimization problem
(B—H"A)T(B — HTA) 3 3" Ri(Av)
T ! k
o?Tr(HTH) 4+ ¢7(A[A]) < 7

Problem (x) is solvable, and its feasible solution (H, \, ) induces a linear estimate

Opt = min
HN,7

()

g = HTw of Bx, x € X, via observation

w= Ax + &, £ ~N(0,I)

with the maximal over X risk not exceeding +/T.
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Proposition Let X be a spectratope, and let

Q:{QESQL_ dt e T RilQ] X tely, k < K}.

The set QO is a nonempty convex compact set containing a neighbourhood of the

origin, so that the quantity

M, = ,/max Tr(BQB"),
\/QEQ (BQB")

is well defined and positive.

The efficiently computable linear estimate zx (w) = Hlw yielded by the optimal

solution of (x) is nearly optimal in terms of the risk:

8DM?
; 2
RiskS& ¢ [X]

Risk[Zy |X] <2,|2In ( >Riskopt[)(],

where

Riskopt[X] = inf Risk[Z]X]
=)

iIs the minimax risk associated with X, and D = Zk dp..
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3. Norms

We say that the norm || - || is spectratopic-representable if the unit ball B, of the

conjugate norm || - ||« is a spectratope:

Bi=MY, Y={zeR":3IreR:S7[z] Jrds,1<L<L},
where S, e Rf>*fe v, ¢ =1,...,L and R is a “valid spectratopic data.” We denote
F =), fo the size of B,.

Examples

e ||-]|p,-norm with 1 <p <2 — B, is the unit ball of || - |[;-norm with Il)—|- % =1

e |-|[1+] ][ — B*is an affine image of the the direct product of unit balls of

norms || - [[cc @and || - ||2

e ‘‘combined norm’ mMin,—,+, ||Miul|1 + ||Mav||2 — B« is the intersection B N B2
of unit balls of norms ||M{ - || and ||[MZ |2

e nuclear norm || - |[sh.1 — B« is the unit ball of the spectral norm || - ||sh.co

e ... spectral norm | - ||lsh IS “difficult”
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For an estimate z of Bz, let

Risk[z|X] = Sup Ecnvo){llBr —z(Az 4 o§)||}.

Proposition Consider the convex optimization problem

opt =, min {6rOIND + 6rOYD) + 6T +0TH(O).

HAY, Y,
N={N>=0,k<K}, T={T;=04<L}, Y={Y,=0,4<L} )
[ S aRilA] | 2[BT — ATHIM ] -
SMT[B—HYAL | Y,8:(T] —
© | ZHM
[ SMTHT [ 32, S/ ]

>~ 0
J
Here for N = {\; € S™},<;
AA] = [Tr[Ad]; .. Tr[ALL
(RNl = 2Tr(AIRFRY + R RI']), where Rylz] = Y, z;R¥,
[S;[Telliy = 3Tr(TulSfS,” 4+ S,7SfD),  where Sily] = Y-, v:5%,
and ¢ and ¢r are the support function of T and R. The problem is solvable, and
the H-component H, of its optimal solution yields linear estimate g (w) = H*Tw
such that

RiSKH.H [ZB\()‘X] < Opt.
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Near-optimality of linear estimation on spectratopes

Proposition Let

M? = max {E, w01 BWY?n|? -
WeQ:={WeS}: FteT: RiWl=<tply, 1<k<K}}.

Then there is an efficiently computable linear estimate xy, = H.w which satisfies

, R 2DM? :

where C is a positive absolute constant,
Riskoptl ] = Inf |sup B0 {1B — 3z + €]}

the infimum being taken over all estimates, and

D=) d, F=) f
k /¢
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The key component

Lemma Let Y be an N x v matrix, let || - || be a norm on R” such that the unit

ball B, of the conjugate norm is the spectratope, and let { ~ N(0,Q) for some
positive semidefinte N x N matrix Q.

Then the upper bound on

do(Y) == E{|lY'(|]}
vielded by the SDP relaxation, that is, the optimal value Opt[Q] of the convex
optimization problem

Opt[Q] = M

Y

n {qu(Arr]) FTHO): T={T/»0,1<(<L} ©cSm

[ © \%Ql/QYM]m}
%MTYTQl/Q‘ZES;['Y‘g] -

is tight, namely,

SF
Wm ()

Po(Y) < Opt[Q] < 75 _oi/a Yo(Y),

where ' =, f, is the size of the spectratope B..
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