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RESUME

La méthode de Newton peut être considérée comme le prototype des algorithmes
rapides d’optimisation. Dans cet exposé, nous comparons différentes manières de
l’étendre à des problèmes d’optimisation non lisse. Les précisions sur le contenu de
l’exposé se trouvent dans [3].

Le cadre de travail est le suivant. On s’intéresse à la minimisation sur Rn d’une
fonction convexe f , et on suppose que le minimum est atteint sur une sous-variétéM
par apport à laquelle f est partly-smooth. Introduite dans [2], la partial smoothness
exprime essentiellement que la régularité de f est confinée à M. Le problème se
reformule comme un problème de minimisation sous contraintes

{
min f(x)
x ∈M .

L’objectif est de préciser les liens entre différentes manières adapter la méthode
de Newton à ce problème:

les algorithmes provenant de la théorie du U-Lagrangian de [1],

les méthodes SQP,

les méthodes de Newton locales surM.

Mots-clé: optimisation non lisse, partial smoothness, géométrie riemannienne

Classification AMS: 49J52, 65K10, 58C99
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20 years ago !

first conf’

SMAI-MODE 2004

Le Havre

nonsmoothness & geometry

towards Newton methods for
minimizing nonsmooth functions
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Nonsmooth objective functions are everywhere...

Max functions F (x) = sup
u∈U

h(u, x)

robust optimization, stochastic optimization, Benders decomposition

Lagrangian relaxations of combinatorial problems

Nonsmooth regularization F (x) = f (x) + g(x)

image/signal processing, inverse problems

sparsity-inducing regularizers in machine learning

Nonsmooth composition F (x) = g ◦ c(x)

risk-averse optimization, eigenvalue optimization

deep learning: nonsmooth activation, implicit layers

Probability functions F (x) = P
(
h(x , ξ) ⩽ 0

)

optimization under uncertainty, energy optimization
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So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

Ex: nonsmooth deep learning

with RELU, max-pooling or implicit layers

Just apply SGD with back-prog

Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?

Smoothing by (inf-)convolution (e.g. Moreau regularization)

Smoothings by overparameterization, ad hoc, or...

My point: nonsmoothness is relevant !
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Example: ℓ1-regularized least-squares (1/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)

Illustration (on an instance with d = 2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds
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Example: ℓ1-regularized least-squares (2/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)
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Remark: smooth but stiff problems

J.-B. Hiriart-Urruty C. Lemaréchal

“There is no clear cut between
functions that are smooth and
functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

In sharp contrast with smoothing-like approaches:

Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms

bundle (nonsmooth) >> (smooth) gradient, conj. grad., quasi-Newton

Real-life example in energy optimization :

– problem of managment of reservoirs : smooth

– state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems
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This talk: advocacy for nonsmooth optimization

Nonsmoothness is sometimes useful, sometimes unavoidable – and always nice-looking

Goals of this talk:

Illustrations of its role, its geometry...

One math spotlight on the proximal operator

2 spotlights on applications:

– in industry : electricity generation

– in learning : towards robustness and fairness

High level: underline ideas, duality, models...

No theorems ! No algorithms ! No references !

modest goals + a personal view
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Nonsmooth optimization at work: Outline

1 Spotlight 1: Do you know all about prox ?

2 Spotlight 2: Optimization of electricity production

3 Spotlight 3: Towards resilient, responsible decisions

4 A final (personal) word
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Spotlight 1: Do you know all about prox ?

Structured nonsmoothness: explicit case

For simple nonsmooth g , the nonsmoothness is explicit

F (x) = f (x) + g(x)

F (x) = g ◦ c(x)

Examples: g = ∥ · ∥1 and g = max

Matrix examples: g = ∥ · ∥trace and g = λmax

nondiff. points organize in smooth manifoldsM
locally, F is smooth alongM and nonsmooth acrossM
there is an optimal manifoldM⋆ ∋ x⋆

full first-order information (∂F (x) and more)

Can we detectM⋆ ?

Introduction Additive nonsmoothness f + g Composite nonsmoothness g ¶ c Conclusion

Sources of nonsmoothness 2

Û Chosen nonsmoothness to attract minimizers
F (x) = f (x) + g(x), with f smooth, g nonsmooth

Examples inverse problems, sparse regression e.g. lasso
ù Scherzer et al ’09, Vaiter et al ’15

Û In-between nonsmoothness
F (x) = g ¶ c(x), with c smooth map, g nonsmooth

Examples Robust regression, optimal control, SDP
ù Shapiro ’03, Noll ’05, Lewis Wright ’16

Û In these two cases, we know

I where F is nonsmooth
I the full first-order description ˆF (x) and more

Here nonsmoothness is explicit. Focus of this talk

minx F (x) = ÎAx ≠ bÎ2 + ⁄ÎxÎ1
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Structure in nonsmoothness

In most target applications, we observe that:

I nondi�. points organize in smooth manifoldsM
I locally, F is smooth along and nonsmooth acrossM

These are structure manifolds.
ù Lewis ’02, Fadili Malick Peyré ’18, Davis Drusviatsky ’19

If xı is nonsmooth for F , there is an
optimal manifoldMı – xı

æ This PhD explores the following question

Can structure help optimization?

minx F (x) = ÎAx ≠ bÎ2 + ⁄ÎxÎ1
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Spotlight 1: Do you know all about prox ?

Proximal operator: identification

J.J. Moreau

J.J. Moreau, father of convex analysis, in the 1960s

(”mécanique appliquée aux mathématiques”)

Proximal operator proxγg (y) = argmin
z

{
g(z) +

1

2γ
∥z − y∥2

}

A. Daniilidis

Gradient-proximal operator

(locally, smoothly) identifiesM
(under some natural assumptions)

[Daniilidis, Hare, Malick ’06]

Grad-prox operator: T (y) = proxγg
(
y − γ∇f (y)

)

1 Explicit step on f : u = y − γ∇f (y)
2 Implicit step on g :

x = proxγg (u) ⇔ u ∈ x + γ∂g(x)

8
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Back on the proximal gradient

Û Proximal gradient algorithm: iterate

x = prox“g (y ≠ “Òf (y))

1. Explicit step on f

u = y ≠ “Òf (y)

2. Implicit step on g

x = prox“g (u)
… u œ x + “ˆg(x)

æ prox“g can send points to M
More precisely...
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(”mécanique appliquée aux mathématiques”)
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(”mécanique appliquée aux mathématiques”)
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Spotlight 1: Do you know all about prox ?

How to exploit structure identification ?

Replace the nonsmooth problem min
x∈Rd

F (x) by the smooth problem min
x∈M⋆

F (x)

Apply efficient 2nd order smooth (Riemannian) optimization algorithms...

Add constraints to simplify the problem

Simple idea [SMAI-MODE @ Le Havre ’04], but not so simple in practice...

Solution: Gilles Bareilles Ph.D. (2019-2022)

interwine prox-grad steps and Newton-like steps

guarantees on (global) convergence

properly chosen parameters to identification and quadratic convergence

“Newton acceleration of proximal-gradient method”

+ what happens in the case g ◦ c !

geometry of the function vs. prox outputs

not in the same space

G. Bareilles

(2022 Dodu Prize)
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Spotlight 1: Do you know all about prox ?

Proximal identification for F = g ◦ c
We have the prox of g ... but not the prox of F = g ◦ c
Still use proxγg , identify in the intermediate space, and then identify in the x-space

Ex: F (x) = max(c1(x), c2(x), c3(x)) g(y) = max(y1, y2, y3)

Introduction Additive nonsmoothness f + g Composite nonsmoothness g ¶ c Conclusion

Identification for g ¶ c, no prox“g¶c

The prox of F = g ¶ c is not available, but we do have prox“g .
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Observation: prox“g can map points toMg .
The structure naturally lies in the intermediate space ... but that’s ok!
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γ too small: detection of M⋆ only near x⋆ γ too big: no more detection of M⋆ near x⋆

So we can properly interlace Newton-like steps ,
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{x : prox0.4 max(c(x)) œ Mgı}– xı

Mı = M23

“ too small ∆ detection of Mı only near xı;

“ too large ∆ no detection of Mı near xı.

Bottom line: prox“g ¶ c(·) detects Mı from any x near xı when “ œ [ cmap
cri

distM(x), �].

æ How to choose the step in practice?
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Spotlight 1: Do you know all about prox ?

Conclusion on this spotlight

Nonsmoothness is highly structured

Sometimes, we know “explicitly” the structure (thank you, prox)

We can exploit it: Newton acceleration ( ̸= Nesterov acceleration)

Applications on matrix problems E.g. F (x) = λmax

(
A0 +

n∑
i=1

xiAi

)
Introduction Additive nonsmoothness f + g Composite nonsmoothness g ¶ c Conclusion

Back on the proximal gradient

Û Proximal gradient algorithm: iterate

x = prox“g (y ≠ “Òf (y))

1. Explicit step on f

u = y ≠ “Òf (y)

2. Implicit step on g

x = prox“g (u)
… u œ x + “ˆg(x)

æ prox“g can send points to M
More precisely...
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Nonsmooth optimization at work: Outline

1 Spotlight 1: Do you know all about prox ?

2 Spotlight 2: Optimization of electricity production

3 Spotlight 3: Towards resilient, responsible decisions

4 A final (personal) word



Spotlight 2: Optimization of electricity production

Finding “optimal” production schedules

In France: EDF produces electricity by N production units

nuclear 63% renewables 14% oil/gaz/coal 12% hydro 17%

Day-to-day optimization of production “unit-commitment” (compute a minimal-cost production

schedule, satisfying operational constraints and meeting customer demand, over T times).

Hard optimization problem: large-scale, heterogeneous, complex (⩾ 106 variables, ⩾ 106 constraints)

(
simplified
model

) 



min
∑

i ci
⊤xi (production costs)∑

i xi = d (demand constraints)
(x1, . . . , xN) ∈ X1 × · · · × XN (operational constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?
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

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Spotlight 2: Optimization of electricity production

Lagrangian decomposition

Dual function (concave) θ(u) =





min
N∑

i=1

ci
⊤xi +

T∑

t=1

ut
(
d t −

N∑

i=1

x ti

)

(x1, . . . , xN) ∈ X1 × · · · × XN

Dualizing the coupling constraint
makes it decomposable by units

θ(u) = d⊤u +
N∑

i=1

θi (u)

θi (u) =

{
min (ci − u)⊤xi

xi ∈ Xi

Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal ’75... ’95]

Optimization of electricity 
production 
Executive summary 

Every day, EdF (French Electricity Board) has to 
compute production schedules of its power plants 
for the next day. This is a difficult, large-scale, 
heterogeneous optimization problem. 

Challenge overview 

In the mid eighties, a meeting was organized 
between Inria and EdF R&D. The idea was to let 
EdF present some of their applications, to explore 
possible collaborations. Indeed, EdF has a long 
tradition of scientific work, in particular with 
academics. Their production optimization problem 
was presented among others. Its mathematical 
model was clearly established; even the relevant 
software existed, but the solution approach 
needed improvement. The mathematics at stake 
turned out to perfectly fit with Inria competences. 

Implementation of the initiative 

Collaborative work therefore started immediately. 
No difficulty appeared with administrative issues 
such as intellectual property or industrial 
confidentiality. It was a long-term research, so 
deadlines posed no problem either.  

The problem 

The solution approach is by decomposition: each 
power plant (EdF software) optimizes its own 
production on the basis of ``shadow prices'' 
remunerating it; these prices are iteratively 
updated (Inria software) so as to satisfy the 
balance equation. The working horse to compute 
the prices is a nonsmooth optimization algorithm. 
   

 

   

 
 

 

 

 

   
 

The difficulty was to join the EdF and Inria-
software. This turned out to be harder than 
expected. The model appeared as not mature 
enough and significant bugs were revealed. The 

project was basically abandoned and it is only in 
the mid nineties that intensive collaboration could 
resume on a renewed model.  

Results and achievements 

This time, the collaboration was successful and 
the new software became operational a few years 
later. This relatively long delay was due to 
necessary industrial requirements (mainly aimed 
at achieving reasonable reliability). Substantial 
improvements in cost and robustness were 
achieved. EdF is highly satisfied with this 
collaboration, which continues and will probably 
continue for many years. 
 
Current research focuses on developing more 
accurate models of the power plants, entailing 
more delicate price optimization. 
 
Several academic outcomes resulted from this 
operation: 
• to understand better and to improve highly 
sophisticated optimization methods; 
• to assess these methods in the “real world”, 
thereby introducing them for new applications; 
• to exhibit the practical merits of a mathematical 
theory (convex analysis, duality), generally 
considered so far as highly abstract (and taught 
as such in the university cursus). 

Lessons learned 

Beyond science and techniques, a lesson of this 
“success story” is that an academic-industrial 
collaboration should be undertaken with strong 
mutual esteem and confidence, in both directions. 

 
Sandrine Charousset-Brignol (EDF R&D) 
sandrine.charousset@edf.fr 
 
Grace Doukopoulos (EDF R&D) 
grace.doukopoulos@edf.fr  
 
Claude Lemaréchal (INRIA) 
claude.lemarechal@inrialpes.fr 
 
Jérôme Malick (CNRS, LJK) 
jerome.malick@inrialpes.fr  
 
Jérôme Quenu (EDF R&D) 
jerome.quenu@edf.fr 
 
 

           

shadow   
prices 

decentralized 
productions 

 

 Nonsmooth optimization algorithm 

C. Lemarechal S. Charousset A. Renaud

– Research in the 1990’s

– Production in early 2000’s

– Save money and CO2 !
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Spotlight 2: Optimization of electricity production

On the shoulders of giants

Our work

Denoising dual solutions (by TV-regularization) [Zaourar, Malick ’13]

Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar ’15]

(Level) asynchronous bundle algorithm [Iutzeler, Malick, Oliveira ’18]

Introducing weather uncertainty in the model

– robust version of the problem + bundle method [van Ackooij, Lebbe, Malick ’16]

– 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick ’15]
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Spotlight 2: Optimization of electricity production

Two-stage stochastic unit-commitment

W. van Ackooij

The schedule x is sent to the grid-operator (RTE)
before being activated and before observing uncertainty

In real time, a new production schedule can be sent at certain times

At time τ , we have the observed load ξ1, ..., ξτ
and the current best forecast ξτ+1, ..., ξT

We propose a stochastic 2-stage problem:

{
min c⊤x + E[c(x , ξ)]
x ∈ X ,

∑
i xi = d

where c(x , ξ) =





min c⊤y
y ∈ X ,

∑
i yi = ξ

y coincides with x on 1, . . . , τ

– 2nd stage model: same as 1st stage but with smaller horizon
– fine operational modeling vs difficult to compute
– complexity of c(x , ξ) only allows for simple modeling of randomness

New algo: double decomposition (by units and scenarios) using the same ingredients
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Spotlight 2: Optimization of electricity production

Numerical illustration for stochastic unit-commitment

On a 2013 EDF instance (medium-size)

– deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints

– stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

Our method allows to solve it , (in reasonable time)

Observation: generation transferred from cheap/inflexible to expensive/flexible

Example: production schedules for 2 units: determinist vs stochasticAnn Oper Res

0 20 40 60 80 100
60

80

100

120

140

160

180

200

220

240

260

Time Steps (1/2h)

G
en

er
at

ed
 P

ow
er

 (
M
W

)

Det. Schedule
2Stage Schedule

(a)

0 20 40 60 80 100
0

50

100

150

200

250

Time Steps (1/2h)

G
en

er
at

ed
 P

ow
er

 (
M
W

)
Det. Schedule
2Stage Schedule

(b)

0 20 40 60 80 100
-400

-200

0

200

400

600

800

1000

1200

1400

Time Steps (1/2h)

G
en

er
at

ed
 P

ow
er

 (
M
W

)

Det. Schedule
2Stage Schedule

(c)

0 20 40 60 80 100
-1000

-500

0

500

1000

1500

2000

Time Steps (1/2h)

G
en

er
at

ed
 P

ow
er

 (
M
W

)

Det. Schedule
2Stage Schedule

(d)

Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20

123

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)
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Spotlight 2: Optimization of electricity production

Conclusion on this spotlight

Electricity managment optimzation is huge

Ad: attend Sandrine’s talk this afternoon for a broader view

Nonsmoothness 1: Lagrangian decomposition

Nonsmoothness 2: robustness against (weather) uncertainties
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Nonsmooth optimization at work: Outline

1 Spotlight 1: Do you know all about prox ?

2 Spotlight 2: Optimization of electricity production

3 Spotlight 3: Towards resilient, responsible decisions

4 A final (personal) word



Spotlight 3: Towards resilient, responsible decisions

Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable diffusion (https://stablediffusionweb.com)

“towards resilient, responsible decisions”

18
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Spotlight 3: Towards resilient, responsible decisions

Example #1: Don’t forget how fragile deep learning can be !

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
12/02/2020 11&13

Page 1 sur 1file:///Users/jerome/Nomade/Talks/20-montpelier-roadef/pics/pig.svg

pig (99%)

“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Illustration 2: Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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Spotlight 3: Towards resilient, responsible decisions

Example #2: ML may perform poorly for some people

Example: Global model is trained on average distribution 
across clients (ERM)

Server

From Washington Post (2019) “the accent gap”

By Drew Harwell July 19, 2018 13
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Spotlight 3: Towards resilient, responsible decisions

Optimization set-up

Training data: ξ1, . . . , ξN
e.g. in supervised learning: labeled data ξi = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (ω, β, θ, ...)

e.g. least-square regression: f
(
x , (a, y)

)
= (x⊤a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

min
x

1

N

N∑

i=1

f (x , ξi ) = E P̂N
[f (x , ξ)] with P̂N =

1

N

N∑

i=1

δξi

Prediction with x for different data ξ

– Adversarial attacks (e.g. flying pigs, driving cakes...)

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain ̸= Ptest

Solution: take possible variations into account during training

...and nonsmoothness comes into play ,

21
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Spotlight 3: Towards resilient, responsible decisions

(Wasserstein) Distributionally Robust Optimization

Rather than min
x

E P̂N
[f (x , ξ)] solve instead min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N

Wasserstein balls as ambiguity sets

U = { Q : W (P̂N ,Q) ⩽ ρ }
W (P̂N ,Q) = min

πππ

{
Eπππ[c(ξ, ξ

′)] : [πππ]1 = P̂N , [πππ]2 = Q
}

WDRO objective function for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔





maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔





maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

...(finite dimension) nonsmooth... great talk of Tam Le yesterday ,

...computable in some (specific) cases [Kuhn et al. ’18]

...actually many more since the PhD of Florian Vincent, see poster tomorow ,

22
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Spotlight 3: Towards resilient, responsible decisions

Current research in my group

Our work

Toolbox: robustify our model with skWDRO [Vincent, Azizian, Iutzeler, Malick ’24]

scikitlearn interface + pytorch wrapper

Generalization guarantees [Le, Malick ’24] [Azizian, Iutzeler, Malick ’23]

(abstract, entropic) regularizations of WDRO [Azizian, Iutzeler, Malick ’22]

Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick ’23]

F. Iutzeler W. Azizian Y. Laguel Tam Le F. Vincent
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Spotlight 3: Towards resilient, responsible decisions

Conclusion on this spotlight

Deep learning works very well... unless it does not.

Need for more robustness (resilience, fairness...) – brought by max/nonsmoothness

Wasserstein DRO is a nice playground – current work of my group

Ad: Go and see Florian’s poster... and robustify your models !
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Nonsmooth optimization at work: Outline

1 Spotlight 1: Do you know all about prox ?

2 Spotlight 2: Optimization of electricity production

3 Spotlight 3: Towards resilient, responsible decisions

4 A final (personal) word



A final (personal) word

Back to the future

12ème journées du groupe MODE

U-Lagrangien et géométrie

Jérôme MALICK1, Scott MILLER2

1 INRIA (Rhône-Alpes)
Montbonnot, 38334 St Ismier
jerome.malick@inria.fr

2 University of California, San Diego
9500 Gilman Dr, m/c 0411, La Jolla, CA 92093-0411

scott@turbulence.ucsd.edu

RESUME

La méthode de Newton peut être considérée comme le prototype des algorithmes
rapides d’optimisation. Dans cet exposé, nous comparons différentes manières de
l’étendre à des problèmes d’optimisation non lisse. Les précisions sur le contenu de
l’exposé se trouvent dans [3].

Le cadre de travail est le suivant. On s’intéresse à la minimisation sur Rn d’une
fonction convexe f , et on suppose que le minimum est atteint sur une sous-variétéM
par apport à laquelle f est partly-smooth. Introduite dans [2], la partial smoothness
exprime essentiellement que la régularité de f est confinée à M. Le problème se
reformule comme un problème de minimisation sous contraintes

{
min f(x)
x ∈M .

L’objectif est de préciser les liens entre différentes manières adapter la méthode
de Newton à ce problème:

les algorithmes provenant de la théorie du U-Lagrangian de [1],

les méthodes SQP,

les méthodes de Newton locales surM.

Mots-clé: optimisation non lisse, partial smoothness, géométrie riemannienne

Classification AMS: 49J52, 65K10, 58C99

Références

[1] C. Lemaréchal, F. Oustry, and C. Sagastizábal : The U-Lagrangian of a convex
function. Trans. AMS, 352(2):711–729 (1999).

[2] A. S. Lewis : Active sets, nonsmoothness and sensitivity. SIAM J. Optimization,
13:702–725 (2003) .

[3] S. Miller, J. Malick : Connections between U-Lagrangian, Riemannian Newton
and SQP Methods for Convex Minimization. (2004, submitted for publication).

From Le Havre to Lyon, nonsmoothness matters

From 2004 to 2024, what a journey !

Optimisation rules !

CNRS/Insis topic of the year 2024

(save the date: Oct.3 @ Paris)

Theory ←→ Practice

Optim ←→ ML

(e.g. talk of Emilie Chouzenoux yesterday)

Responsible decision-making
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A final (personal) word

Many thanks !

Merci à vous

pour votre attention aujourd’hui

et pour faire vivre notre communauté demain – rdv en 2044 ?!

Et merci à eux
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