Nonsmooth Optimization at Work

models, geometry, and applications in energy and learning

Jérôme MALICK

UNIVERSITÉ Grenoble Alpes

$$
\text { Journées SMAI-MODE - Lyon - March } 2024
$$

Teasing...

Optimal manifold

J.-J. Moreau

Wasserstein ambiguity

Error
histogram reshaping

flying pigs

March 27th 2004

$12{ }^{\text {ème }}$ journées du groupe MODE

\mathcal{U}-Lagrangien et géométrie

Jérôme MALICK 1, Scott MILLER ${ }^{2}$
${ }^{1}$ INRIA (Rhône-Alpes)
Montbonnot, 38334 St Ismier
jerome.malick@inria.fr
${ }^{2}$ University of California, San Diego
9500 Gilman Dr, m/c 0411, La Jolla, CA 92093-0411
scott@turbulence.ucsd.edu

RESUME

La méthode de Newton peut être considérée comme le prototype des algorithmes rapides d'optimisation. Dans cet exposé, nous comparons différentes manières de l'étendre à des problèmes d'optimisation non lisse. Les précisions sur le contenu de l'exposé se trouvent dans [3].

Le cadre de travail est le suivant. On s'intéresse à la minimisation sur \mathbb{R}^{n} d'une fonction convexe f, et on suppose que le minimum est atteint sur une sous-variété \mathcal{M} par apport à laquelle f est partly-smooth. Introduite dans [2], la partial smoothness exprime essentiellement que la régularité de f est confinée à \mathcal{M}. Le problème se reformule comme un problème de minimisation sous contraintes

$$
\left\{\begin{array}{l}
\min f(x) \\
x \in \mathcal{M}
\end{array}\right.
$$

L'objectif est de préciser les liens entre différentes manières adapter la méthode de Newton à ce problème:

- les algorithmes provenant de la théorie du \mathcal{U}-Lagrangian de [1],
- les méthodes SQP,
- les méthodes de Newton locales sur \mathcal{M}.
- 20 years ago!
- first conf'
- SMAI-MODE 2004
- Le Havre
- nonsmoothness \& geometry
- towards Newton methods for minimizing nonsmooth functions

Nonsmooth objective functions are everywhere...

Max functions

$$
F(x)=\sup _{u \in U} h(u, x)
$$

- robust optimization, stochastic optimization, Benders decomposition
- Lagrangian relaxations of combinatorial problems

Nonsmooth regularization

$$
F(x)=f(x)+g(x)
$$

- image/signal processing, inverse problems
- sparsity-inducing regularizers in machine learning

Nonsmooth composition

$$
F(x)=g \circ c(x)
$$

- risk-averse optimization, eigenvalue optimization
- deep learning: nonsmooth activation, implicit layers

Probability functions

$$
F(x)=\mathbb{P}(h(x, \xi) \leqslant 0)
$$

- optimization under uncertainty, energy optimization

So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

- Ex: nonsmooth deep learning with RELU, max-pooling or implicit layers
- Just apply SGD with back-prog
- Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?

- Smoothing by (inf-)convolution (e.g. Moreau regularization)
- Smoothings by overparameterization, ad hoc, or...

So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

- Ex: nonsmooth deep learning with RELU, max-pooling or implicit layers
- Just apply SGD with back-prog
- Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?

- Smoothing by (inf-)convolution (e.g. Moreau regularization)
- Smoothings by overparameterization, ad hoc, or...

My point: nonsmoothness is relevant !

Example: ℓ_{1}-regularized least-squares $(1 / 2)$

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Illustration (on an instance with $d=2$)

Example: ℓ_{1}-regularized least-squares $(1 / 2)$

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Illustration (on an instance with $d=2$)

the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds

Example: ℓ_{1}-regularized least-squares $(1 / 2)$

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Illustration (on an instance with $d=2$)

the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds

Example: ℓ_{1}-regularized least-squares $(2 / 2)$

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

(proximal-gradient) algorithms produce iterates...
...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms

Remark: smooth but stiff problems

J.-B. Hiriart-Urruty C. Lemaréchal
"There is no clear cut between functions that are smooth and functions that are not. In-between there is a rather fuzzy boundary of stiff functions"

Remark: smooth but stiff problems

J.-B. Hiriart-Urruty

C. Lemaréchal
"There is no clear cut between functions that are smooth and functions that are not. In-between there is a rather fuzzy boundary of stiff functions"

Jean-Baptiste Hiriart-Urruty Claude Lemaréchal

Convex Analysis and Minimization Algorithms II

In sharp contrast with smoothing-like approaches:

- Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms bundle (nonsmooth) > (smooth) gradient, conj. grad., quasi-Newton
- Real-life example in energy optimization :
- problem of managment of reservoirs: smooth
- state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems

This talk: advocacy for nonsmooth optimization

Nonsmoothness is sometimes useful, sometimes unavoidable - and always nice-looking

Goals of this talk:

- Illustrations of its role, its geometry...
- One math spotlight on the proximal operator
- 2 spotlights on applications:
- in industry : electricity generation
- in learning : towards robustness and fairness
- High level: underline ideas, duality, models...

No theorems! No algorithms! No references!

- modest goals + a personal view

Nonsmooth optimization at work: Outline

(1) Spotlight 1: Do you know all about prox?
(2) Spotlight 2: Optimization of electricity production
(3) Spotlight 3: Towards resilient, responsible decisions
(4) A final (personal) word

Emotional parenthesis...

Emotional parenthesis...

close colleagues

Emotional parenthesis...

PhDs

post-docs
close colleagues

Nonsmooth optimization at work: Outline
(1) Spotlight 1: Do you know all about prox ?
(2) Spotlight 2: Optimization of electricity production
(3) Spotlight 3: Towards resilient, responsible decisions
(4) A final (personal) word

Structured nonsmoothness: explicit case

For simple nonsmooth g, the nonsmoothness is explicit

$$
\begin{gathered}
F(x)=f(x)+g(x) \\
F(x)=g \circ c(x)
\end{gathered}
$$

Examples: $g=\|\cdot\|_{1}$ and $g=\max$
Matrix examples: $g=\|\cdot\|_{\text {trace }}$ and $g=\lambda_{\text {max }}$

Structured nonsmoothness: explicit case

For simple nonsmooth g, the nonsmoothness is explicit

$$
\begin{gathered}
F(x)=f(x)+g(x) \\
F(x)=g \circ c(x)
\end{gathered}
$$

Examples: $g=\|\cdot\|_{1}$ and $g=\max$
Matrix examples: $g=\|\cdot\|_{\text {trace }}$ and $g=\lambda_{\text {max }}$

In many target applications, we observe that:

- nondiff. points organize in smooth manifolds \mathcal{M}
- locally, F is smooth along \mathcal{M} and nonsmooth across \mathcal{M}

Structured nonsmoothness: explicit case

For simple nonsmooth g, the nonsmoothness is explicit

$$
\begin{gathered}
F(x)=f(x)+g(x) \\
F(x)=g \circ c(x)
\end{gathered}
$$

Examples: $g=\|\cdot\|_{1}$ and $g=\max$
Matrix examples: $g=\|\cdot\|_{\text {trace }}$ and $g=\lambda_{\text {max }}$

In many target applications, we observe that:

- nondiff. points organize in smooth manifolds \mathcal{M}
- locally, F is smooth along \mathcal{M} and nonsmooth across \mathcal{M}
- there is an optimal manifold $\mathcal{M}^{\star} \ni x^{\star}$
- full first-order information $(\partial F(x)$ and more)

Can we detect \mathcal{M}^{\star} ?

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

J.J. Moreau

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

Gradient-proximal operator (locally, smoothly) identifies \mathcal{M} (under some natural assumptions) [Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator: $T(y)=\operatorname{prox}_{\gamma g}(y-\gamma \nabla f(y))$

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

Gradient-proximal operator (locally, smoothly) identifies \mathcal{M} (under some natural assumptions) [Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator: $T(y)=\operatorname{prox}_{\gamma g}(y-\gamma \nabla f(y))$
(1) Explicit step on $f: u=y-\gamma \nabla f(y)$

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

Gradient-proximal operator (locally, smoothly) identifies \mathcal{M} (under some natural assumptions) [Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator: $T(y)=\operatorname{prox}_{\gamma g}(y-\gamma \nabla f(y))$
(1) Explicit step on f : $u=y-\gamma \nabla f(y)$
(2) Implicit step on g :

$$
x=\operatorname{prox}_{\gamma g}(u) \Leftrightarrow u \in x+\gamma \partial g(x)
$$

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

Gradient-proximal operator (locally, smoothly) identifies \mathcal{M} (under some natural assumptions)
[Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator: $T(y)=\operatorname{prox}_{\gamma g}(y-\gamma \nabla f(y))$
(1) Explicit step on $f: u=y-\gamma \nabla f(y)$
(2) Implicit step on g :

$$
x=\operatorname{prox}_{\gamma g}(u) \Leftrightarrow u \in x+\gamma \partial g(x)
$$

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s
(" mécanique appliquée aux mathématiques")
Proximal operator

$$
\operatorname{prox}_{\gamma g}(y)=\underset{z}{\operatorname{argmin}}\left\{g(z)+\frac{1}{2 \gamma}\|z-y\|^{2}\right\}
$$

Gradient-proximal operator (locally, smoothly) identifies \mathcal{M} (under some natural assumptions)
[Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator: $T(y)=\operatorname{prox}_{\gamma g}(y-\gamma \nabla f(y))$
(1) Explicit step on $f: u=y-\gamma \nabla f(y)$
(2) Implicit step on g :

$$
x=\operatorname{prox}_{\gamma g}(u) \Leftrightarrow u \in x+\gamma \partial g(x)
$$

How to exploit structure identification ?

Replace the nonsmooth problem $\min _{x \in \mathbb{R}^{d}} F(x)$ by the smooth problem $\min _{x \in \mathcal{M}^{\star}} F(x)$
Apply efficient 2nd order smooth (Riemannian) optimization algorithms...

Add constraints to simplify the problem

Simple idea [SMAI-MODE @ Le Havre '04], but not so simple in practice...

How to exploit structure identification ?

Replace the nonsmooth problem $\min _{x \in \mathbb{R}^{d}} F(x)$ by the smooth problem $\min _{x \in \mathcal{M}^{\star}} F(x)$
Apply efficient 2nd order smooth (Riemannian) optimization algorithms...

Add constraints to simplify the problem

Simple idea [SMAI-MODE @ Le Havre '04], but not so simple in practice...
Solution: Gilles Bareilles Ph.D. (2019-2022)

- interwine prox-grad steps and Newton-like steps
- guarantees on (global) convergence
- properly chosen parameters to identification and quadratic convergence
- "Newton acceleration of proximal-gradient method"
+ what happens in the case $g \circ c$!

G. Bareilles (2022 Dodu Prize) geometry of the function vs. prox outputs not in the same space

Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox $_{\gamma g}$, identify in the intermediate space, and then identify in the x-space

Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox $_{\gamma g}$, identify in the intermediate space, and then identify in the x-space
Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

There is an "explicit" segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox ${ }_{\gamma g}$, identify in the intermediate space, and then identify in the x-space
Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

There is an "explicit" segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

[^0]
Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox $_{\gamma g}$, identify in the intermediate space, and then identify in the x-space
Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

There is an "explicit" segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

[^1]
Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox $_{\gamma g}$, identify in the intermediate space, and then identify in the x-space
Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

There is an "explicit" segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

[^2]
Proximal identification for $F=g \circ c$

We have the prox of $g \ldots$ but not the prox of $F=g \circ c$
Still use prox $_{\gamma g}$, identify in the intermediate space, and then identify in the x-space
Ex: $\quad F(x)=\max \left(c_{1}(x), c_{2}(x), c_{3}(x)\right)$

There is an "explicit" segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

```
too small: detection of }\mp@subsup{\mathcal{M}}{}{\star}\mathrm{ only near x* }\quad\gamma\mathrm{ too big: no more detection of }\mp@subsup{\mathcal{M}}{}{\star}\mathrm{ near }\mp@subsup{x}{}{\star
```

So we can properly interlace Newton-like steps \odot

Conclusion on this spotlight

- Nonsmoothness is highly structured
- Sometimes, we know "explicitly" the structure (thank you, prox)
- We can exploit it: Newton acceleration (\neq Nesterov acceleration)
- Applications on matrix problems E.g. $F(x)=\lambda_{\max }\left(A_{0}+\sum_{i=1}^{n} x_{i} A_{i}\right)$

Nonsmooth optimization at work: Outline
(1) Spotlight 1: Do you know all about prox ?
(2) Spotlight 2: Optimization of electricity production
(3) Spotlight 3: Towards resilient, responsible decisions

4 A final (personal) word

Finding "optimal" production schedules

In France: EDF produces electricity by N production units

Day-to-day optimization of production "unit-commitment" (compute a minimal-cost production schedule, satisfying operational constraints and meeting customer demand, over T times).

Hard optimization problem: large-scale, heterogeneous, complex ($\geqslant 10^{6}$ variables, $\geqslant 10^{6}$ constraints)

$$
\binom{\text { simplified }}{\text { model }}\left\{\begin{array}{cc}
\min \sum_{i} c_{i}^{\top} x_{i} & \text { (production costs) } \\
\sum_{i} x_{i}=d & \text { (demand constraints) } \\
\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \times \cdots \times X_{N} \quad \text { (operational constraints) }
\end{array}\right.
$$

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?

Finding "optimal" production schedules

In France: EDF produces electricity by N production units

Day-to-day optimization of production "unit-commitment" (compute a minimal-cost production schedule, satisfying operational constraints and meeting customer demand, over T times).

Hard optimization problem: large-scale, heterogeneous, complex ($\geqslant 10^{6}$ variables, $\geqslant 10^{6}$ constraints)

$$
\binom{\text { simplified }}{\text { model }}\left\{\begin{array}{l}
\min \sum_{i} c_{i}^{\top} x_{i} \quad \text { (production costs) } \\
\sum_{i} x_{i}=d, u \in \mathbb{R}^{\top} \text { (demand constraints) } \\
\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \times \cdots \times X_{N} \quad \text { (operational constraints) }
\end{array}\right.
$$

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?

Lagrangian decomposition

- Dual function (concave)

$$
\theta(u)=\left\{\begin{array}{c}
\min \sum_{i=1}^{N} c_{i}^{\top} x_{i}+\sum_{t=1}^{T} u^{t}\left(d^{t}-\sum_{i=1}^{N} x_{i}^{t}\right) \\
\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \times \cdots \times X_{N}
\end{array}\right.
$$

- Dualizing the coupling constraint makes it decomposable by units
Nonsmooth optimization algorithm

$$
\begin{aligned}
\theta(u) & =d^{\top} u+\sum_{i=1}^{N} \theta_{i}(u) \\
\theta_{i}(u) & =\left\{\begin{array}{c}
\min \\
\left.x_{i} \in x_{i}-u\right)^{\top} x_{i}
\end{array}\right.
\end{aligned}
$$

- Nonsmooth algorithm: inexact prox. bundle [Lemaréchal '75... '95]

- Research in the 1990's
- Production in early 2000's
- Save money and CO2!
S. Charousset
A. Renaud

On the shoulders of giants

Our work

- Denoising dual solutions (by TV-regularization) [Zaourar, Malick '13]
- Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]
- (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]
- Introducing weather uncertainty in the model
- robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
- 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

On the shoulders of giants

Our work

- Denoising dual solutions (by TV-regularization) [Zaourar, Malick '13]
- Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]
- (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]
- Introducing weather uncertainty in the model
- robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
- 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

Two-stage stochastic unit-commitment

- The schedule x is sent to the grid-operator (RTE) before being activated and before observing uncertainty
- In real time, a new production schedule can be sent at certain times
- At time τ, we have the observed load $\xi_{1}, \ldots, \xi_{\tau}$
 and the current best forecast $\xi_{\tau+1}, \ldots, \xi_{T}$
W. van Ackooij
- We propose a stochastic 2-stage problem:

$$
\left\{\begin{array}{c}
\min \quad c^{\top} x+\mathbb{E}[c(x, \xi)] \\
x \in X, \quad \sum_{i} x_{i}=d
\end{array}\right\} \quad \text { where } c(x, \xi)=\left\{\begin{array}{c}
\min c^{\top} y \\
y \in X, \quad \sum_{i} y_{i}=\xi \\
y \text { coincides with } x \text { on } 1, \ldots, \tau
\end{array}\right.
$$

- 2nd stage model: same as 1st stage but with smaller horizon
- fine operational modeling vs difficult to compute
- complexity of $c(x, \xi)$ only allows for simple modeling of randomness
- New algo: double decomposition (by units and scenarios) using the same ingredients

Numerical illustration for stochastic unit-commitment

- On a 2013 EDF instance (medium-size)
- deterministic problem: 50k continuous variables, 27 k binary variables, 815 k constraints
- stochastic version (50 scenarios) : 1,200k continuous var., 700 k binary var., $20,000 \mathrm{k}$ constraints
- Our method allows to solve it \odot (in reasonable time)
- Observation: generation transferred from cheap/inflexible to expensive/flexible
- Example: production schedules for 2 units: determinist vs stochastic

Conclusion on this spotlight

- Electricity managment optimzation is huge
- Ad: attend Sandrine's talk this afternoon for a broader view
- Nonsmoothness 1: Lagrangian decomposition
- Nonsmoothness 2: robustness against (weather) uncertainties

Nonsmooth optimization at work: Outline

(1) Spotlight 1: Do you know all about prox ?
(2) Spotlight 2: Optimization of electricity production
(3) Spotlight 3: Towards resilient, responsible decisions
(4) A final (personal) word

Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation Ex: picture generated with stable diffusion (https://stablediffusionweb.com)

"towards resilient, responsible decisions"

Example \#1: Don't forget how fragile deep learning can be!

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

Example \#1: Don't forget how fragile deep learning can be!

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

Example \#1: Don't forget how fragile deep learning can be!

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example $\# 1$: Don't forget how fragile deep learning can be!

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Illustration 2: Attacks against self-driving cars [@ CVPR '18]

Example \#1: Don't forget how fragile deep learning can be!

Illustration 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Illustration 2: Attacks against self-driving cars [@ ICLR '19]

Example \#2: ML may perform poorly for some people

Example: Global model is trained on average distribution across clients (ERM)

Example \#2: ML may perform poorly for some people

Example \#2: ML may perform poorly for some people

Example: Global model is deployed on individual clients

Example \#2: ML may perform poorly for some people

Example: Global model is deployed on individual clients

From Washington Post (2019) "the accent gap"

Optimization set-up

- Training data: $\quad \xi_{1}, \ldots, \xi_{N}$
e.g. in supervised learning: labeled data $\xi_{i}=\left(a_{i}, y_{i}\right)$ feature, label
- Train model: $f(x, \cdot)$ the loss function with x the parameter/decision $(\omega, \beta, \theta, \ldots)$ e.g. least-square regression: $f(x,(a, y))=\left(x^{\top} a-y\right)^{2}$
- Compute x via empirical risk minimization (a.k.a SAA)

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f\left(x, \xi_{i}\right)=\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)] \quad \text { with } \widehat{\mathbb{P}}_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}
$$

Optimization set-up

- Training data: ξ_{1}, \ldots, ξ_{N}
e.g. in supervised learning: labeled data $\xi_{i}=\left(a_{i}, y_{i}\right)$ feature, label
- Train model: $f(x, \cdot)$ the loss function with x the parameter/decision $(\omega, \beta, \theta, \ldots)$
e.g. least-square regression: $f(x,(a, y))=\left(x^{\top} a-y\right)^{2}$
- Compute x via empirical risk minimization (a.k.a SAA)

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f\left(x, \xi_{i}\right)=\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)] \quad \text { with } \widehat{\mathbb{P}}_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}
$$

- Prediction with x for different data ξ
- Adversarial attacks (e.g. flying pigs, driving cakes...)
- Presence of bias, e.g. heterogeneous data
- Distributional shifts: $\mathbb{P}_{\text {train }} \neq \mathbb{P}_{\text {test }}$
- Solution: take possible variations into account during training
...and nonsmoothness comes into play \odot

(Wasserstein) Distributionally Robust Optimization

$\begin{aligned} & \text { Rather than } \quad \min _{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)] \quad \text { solve instead } \min _{x} \max _{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)] \\ & \text { with } \mathcal{U} \text { a neighborhood of } \widehat{\mathbb{P}}_{N}\end{aligned}$

(Wasserstein) Distributionally Robust Optimization

Rather than $\quad \min _{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)]$

solve instead
$\min _{x} \max _{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$
with \mathcal{U} a neighborhood of $\widehat{\mathbb{P}}_{N}$
Wasserstein balls as ambiguity sets

$$
\begin{aligned}
& \mathcal{U}=\left\{\mathbb{Q}: W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right) \leqslant \rho\right\} \\
& W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right)=\min _{\boldsymbol{\pi}}\left\{\mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right]:[\pi]_{1}=\widehat{\mathbb{P}}_{N},[\pi]_{2}=\mathbb{Q}\right\}
\end{aligned}
$$

(Wasserstein) Distributionally Robust Optimization

Rather than $\quad \min _{x} \mathbb{E}_{\mathbb{\mathbb { P }}_{N}}[f(x, \xi)]$
solve instead

$$
\min _{x} \max _{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]
$$

with \mathcal{U} a neighborhood of $\widehat{\mathbb{P}}_{N}$
Wasserstein balls as ambiguity sets

$$
\begin{aligned}
& \mathcal{U}=\left\{\mathbb{Q}: W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right) \leqslant \rho\right\} \\
& W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right)=\min _{\boldsymbol{\pi}}\left\{\mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right]:[\pi]_{1}=\widehat{\mathbb{P}}_{N},[\pi]_{2}=\mathbb{Q}\right\}
\end{aligned}
$$

WDRO objective function for given $x, \widehat{\mathbb{P}}_{N}, \rho$

$$
\left\{\begin{array} { c }
{ \operatorname { m a x } _ { \mathbb { Q } } \mathbb { E } _ { \mathbb { Q } } [f (x , \xi)] } \\
{ W (\mathbb { P } _ { N } , \mathbb { Q }) \leqslant \rho }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\max _{\mathbb{Q}, \boldsymbol{\pi}} \underset{\mathbb{E}_{\mathbb{Q}}[f(x, \xi)]}{[\pi]_{1}=\mathbb{\mathbb { P }}_{N},[\pi]_{2}=\mathbb{Q}} \\
\min _{\boldsymbol{\pi}} \mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right] \leqslant \rho
\end{array}\right.\right.
$$

(Wasserstein) Distributionally Robust Optimization

Rather than $\min _{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)]$
solve instead

$$
\min _{x} \max _{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]
$$

$$
\text { with } \mathcal{U} \text { a neighborhood of } \widehat{\mathbb{P}}_{N}
$$

Wasserstein balls as ambiguity sets

$$
\begin{aligned}
& \mathcal{U}=\left\{\mathbb{Q}: W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right) \leqslant \rho\right\} \\
& W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right)=\min _{\pi}\left\{\mathbb{E}_{\pi}\left[c\left(\xi, \xi^{\prime}\right)\right]:[\pi]_{1}=\widehat{\mathbb{P}}_{N},[\pi]_{2}=\mathbb{Q}\right\}
\end{aligned}
$$

WDRO objective function for given $x, \widehat{\mathbb{P}}_{N}, \rho$

$$
\left\{\begin{array} { c }
{ \operatorname { m a x } _ { \mathbb { Q } } \mathbb { E } _ { \mathbb { Q } } [f (x , \xi)] } \\
{ W (\mathbb { P } _ { N } , \mathbb { Q }) \leqslant \rho }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \operatorname { m a x } _ { \mathbb { Q } , \boldsymbol { \pi } } \mathbb { E } _ { \mathbb { Q } } [f (x , \xi)] } \\
{ [\pi] _ { 1 } = \mathbb { P } _ { N } , [\pi] _ { 2 } = \mathbb { Q } } \\
{ \operatorname { m i n } _ { \boldsymbol { \pi } } \mathbb { E } _ { \boldsymbol { \pi } } [c (\xi , \xi ^ { \prime })] \leqslant \rho }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\max _{\boldsymbol{\pi}} \mathbb{E}_{[\pi]_{2}}[f(x, \xi)] \\
{[\pi]_{1}=\mathbb{\mathbb { P }}_{N}} \\
\mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right] \leqslant \rho
\end{array}\right.\right.\right.
$$

(Wasserstein) Distributionally Robust Optimization

Rather than $\quad \min _{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)]$
solve instead

$$
\min _{x} \max _{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]
$$

Wasserstein balls as ambiguity sets

$$
\begin{aligned}
& \mathcal{U}=\left\{\mathbb{Q}: W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right) \leqslant \rho\right\} \\
& W\left(\widehat{\mathbb{P}}_{N}, \mathbb{Q}\right)=\min _{\pi}\left\{\mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right]:[\pi]_{1}=\widehat{\mathbb{P}}_{N},[\pi]_{2}=\mathbb{Q}\right\}
\end{aligned}
$$

WDRO objective function for given $x, \widehat{\mathbb{P}}_{N}, \rho$

$$
\begin{aligned}
\left\{\begin{array}{c}
\max _{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)] \\
W\left(\mathbb{P}_{N}, \mathbb{Q}\right) \leqslant \rho
\end{array} \Leftrightarrow\right. & \Leftrightarrow\left\{\begin{array} { c }
{ \operatorname { m a x } _ { \mathbb { Q } , \boldsymbol { \pi } } \mathbb { E } _ { \mathbb { Q } } [f (x , \xi)] } \\
{ [\pi] _ { 1 } = \mathbb { P } _ { N } , [\pi] _ { 2 } = \mathbb { Q } } \\
{ \operatorname { m i n } _ { \boldsymbol { \pi } } \mathbb { E } _ { \boldsymbol { \pi } } [c (\xi , \xi ^ { \prime })] \leqslant \rho }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\max _{\boldsymbol{\pi}} \mathbb{E}_{[\pi]_{2}}[f(x, \xi)] \\
{[\pi]_{1}=\mathbb{\mathbb { P }}_{N}} \\
\mathbb{E}_{\boldsymbol{\pi}}\left[c\left(\xi, \xi^{\prime}\right)\right] \leqslant \rho
\end{array}\right.\right. \\
& \Leftrightarrow \min _{\lambda \geqslant 0} \lambda \rho+\mathbb{E}_{\widehat{\mathbb{P}}_{N}}\left[\max _{\xi^{\prime}}\left\{f\left(x, \xi^{\prime}\right)-\lambda c\left(\xi, \xi^{\prime}\right)\right\}\right]
\end{aligned}
$$

...(finite dimension) nonsmooth... great talk of Tam Le yesterday $;$
...computable in some (specific) cases [Kuhn et al. '18]
...actually many more since the PhD of Florian Vincent, see poster tomorow $)$

Current research in my group

Our work

- Toolbox: robustify our model with skWDRO [Vincent, Azizian, lutzeler, Malick '24] scikitlearn interface + pytorch wrapper
- Generalization guarantees [Le, Malick '24] [Azizian, lutzeler, Malick '23]
- (abstract, entropic) regularizations of WDRO [Azizian, lutzeler, Malick '22]
- Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick '23]

F. lutzeler

W. Azizian

Y. Laguel

Tam Le

F. Vincent

Conclusion on this spotlight

- Deep learning works very well... unless it does not.
- Need for more robustness (resilience, fairness...) - brought by max/nonsmoothness
- Wasserstein DRO is a nice playground - current work of my group
- Ad: Go and see Florian's poster... and robustify your models !

Train-test mismatch!

Nonsmooth optimization at work: Outline

(1) Spotlight 1: Do you know all about prox ?
(2) Spotlight 2: Optimization of electricity production
(3) Spotlight 3: Towards resilient, responsible decisions
(4) A final (personal) word

Back to the future

$12^{\text {ème }}$ journées du groupe MODE

\mathcal{U}-Lagrangien et géométrie

Jérôme MALICK ${ }^{1}$, Scott MILLER ${ }^{2}$
${ }^{1}$ INRIA (Rhône-Alpes)
Montbonnot, 38334 St Ismier jerome malick@inria fr
jerome.malickđinria.fr
9500 Gilman Dr, m/c 0411, La Jolla, CA 92093-0411 scottoturbulence.ucsd.edu

resume

La méthode de Newton peut étre considérée comme le prototype des algorithmes rapides d'optimisation. Dans cet exposé, nous comparons différentes manières de l'étendre à des problèmes d'optimisation non lisse. Les précisions sur le contenu de l'exposé se trouvent dans [3].
Le cadre de travail est le suivant. On s'intéresse à la minimisation sur \mathbb{R}^{n} d'une
fonction convere f et on suppose que le minimum fonction convexe f, et on suppose que le minimum est atteint sur une sous-variété \mathcal{M} par apport à laquelle f est partly-smooth. Introduite dans [2], la partial smoothness de f est confinée à \mathcal{M}. Le probleme se reformule comme un problème de minimisation sous contraintes

$$
\left\{\begin{array}{l}
\min f(x) \\
x \in \mathcal{M}
\end{array}\right.
$$

L'objectif est de préciser les liens entre différentes manières adapter la méthode de Newton à ce problème:

- les algorithmes provenant de la théorie du \mathcal{U}-Lagrangian de [1],
- les méthodes SQP.
- les méthodes SQP,
- les méthodes de Newton locales sur M.

Mots-clé: optimisation non lisse, partial smoothness, géométrie riemannienne
Classification AMS: 49.552, 65K10, 58C99
Références
[1] C. Lemaréchal, F. Oustry, and C. Sagastizábal : The \mathcal{U}-Lagrangian of a convex function. Trans. AMS, 352(2):711-729 (1999).
[2] A. S. Lewis : Active sets, nonsmoothness and sensitivity. SIAM J. Optimization, 13:702-725 (2003)
[3] S. Miller, J. Malick : Connections between \mathcal{U}-Lagrangian, Riemannian Newton and SQP Methods for Convex Minimization. (2004, submitted for publication).

- From Le Havre to Lyon, nonsmoothness matters
- From 2004 to 2024 , what a journey !
- Optimisation rules !
- CNRS/Insis topic of the year 2024
(save the date: Oct. 3 @ Paris)
- Theory \longleftrightarrow Practice
- Optim \longleftrightarrow ML
(e.g. talk of Emilie Chouzenoux yesterday)
- Responsible decision-making

Many thanks!

Merci à vous

pour votre attention aujourd'hui et pour faire vivre notre communauté demain - rdv en 2044 ?!

Et merci à eux

[^0]: γ too small: detection of \mathcal{M}^{\star} only near x^{\star}

[^1]: γ too small: detection of \mathcal{M}^{\star} only near x^{\star}

[^2]: γ too small: detection of \mathcal{M}^{\star} only near x^{\star}

