Nonsmooth Optimization at Work

models, geometry, and applications in energy and learning

Jérome MALICK

@M !

2

&

UNIVERSITE
' Grenoble
Zl Alpes

Grenoble Alpes

Multidisciplinary Institute
In Artificial Intelligence

Journées SMAI-MODE - Lyon - March 2024



Teasing...

Low
Error

Count

High
Error

Error

histogram reshaping

P ———

. - flying pigs
Hiriart-Urruty Lemarechal Wasserstein ambiguity



March 27th 2004

128M€ journées du groupe MODE

U-Lagrangien et géométrie

20 years ago !

Jéréme MALICK', Scott MILLER?

T INRIA (Rhone-Alpes) . s
Montbonnot, 38334 St Ismier o first conf
jerome.malick@inria.fr
2 University of California, San Diego
9500 Gilman Dr, m/c 0411, La Jolla, CA 92093-0411

scott@turbulence.ucsd.edu ° SMAl-MODE 2004
RESUME o Le HaVre
La méthode de Newton peut étre considérée comme le prototype des algorithmes
rapides d’optimisation. Dans cet exposé, nous comparons différentes manieres de
I’étendre & des problemes d’optimisation non lisse. Les précisions sur le contenu de ° th & t
Pexposé se trouvent dans [3]. nonsmootnness geometry
Le cadre de travail est le suivant. On s’intéresse a la minimisation sur R" d’une
fonction convexe f, et on suppose que le minimum est atteint sur une sous-variété M
par apport & laquelle f est partly-smooth. Introduite dans [2], la partial smoothness
exprime essentiellement que la régularité de f est confinée & M. Le probleme se ° tOWardS NeWtOn methOdS for
reformule comme un probleme de minimisation sous contraintes m | nimizing nonsmooth fu nctions
min f(z)
reM.

L’objectif est de préciser les liens entre différentes manieres adapter la méthode
de Newton & ce probleme:
— les algorithmes provenant de la théorie du U-Lagrangian de [1],
— les méthodes SQP,
— les méthodes de Newton locales sur M.



Nonsmooth objective functions are everywhere...
Max functions F(x) =sup h(u,x)
uel
@ robust optimization, stochastic optimization, Benders decomposition

@ Lagrangian relaxations of combinatorial problems

Nonsmooth regularization F(x) = f(x) + g(x)

@ image/signal processing, inverse problems

@ sparsity-inducing regularizers in machine learning

Nonsmooth composition F(x) = goc(x)

@ risk-averse optimization, eigenvalue optimization

@ deep learning: nonsmooth activation, implicit layers

Probability functions F(x) =P(h(x,£) <0)

@ optimization under uncertainty, energy optimization




So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

@ Ex: nonsmooth deep learning

| obeig

with RELU, max-pooling or implicit layers
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@ Just apply SGD with back-prog

@ Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?
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@ Smoothing by (inf—)convolution (e.g. Moreau regularization)

@ Smoothings by overparameterization, ad hoc, or...

ndino
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@ Smoothing by (inf—)convolution (e.g. Moreau regularization)

@ Smoothings by overparameterization, ad hoc, or...
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My point: nonsmoothness is relevant !




Example: /;-regularized least-squares (1/2)
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Example: /;-regularized least-squares (1/2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds




Example: /;-regularized least-squares (1/2)
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Example: /;-regularized least-squares (2/2)
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(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms




Remark: smooth but stiff problems

Li

J.-B. Hiriart-Urruty C. Lemaréchal

“There is no clear cut between
functions that are smooth and
functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

Jean-Baptiste Hiriart-Urruty
Claude Lemaréchal

Convex Analysis
and Minimization
Algorithms II



Remark: smooth but stiff problems

Jean-Baptiste Hiriart-Urruty
hal

Claude
“There is no clear cut between Convex Analysis
. and Minimization
functions that are smooth and Algorithms T

functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

I'SV\... """""" e
J.-B. Hiriart-Urruty C. Lemaréchal :

In sharp contrast with smoothing-like approaches:

@ Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms
bundle (nonsmooth) >> (smooth) gradient, conj. grad., quasi-Newton
@ Real-life example in energy optimization :

— problem of managment of reservoirs : smooth
— state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems




This talk: advocacy for nonsmooth optimization

Nonsmoothness is sometimes useful, sometimes unavoidable — and always nice-looking

Goals of this talk:
@ lllustrations of its role, its geometry...
@ One math spotlight on the proximal operator

@ 2 spotlights on applications:
— in industry : electricity generation

— in learning : towards robustness and fairness

@ High level: underline ideas, duality, models...

No theorems ! No algorithms ! No references !

@ modest goals 4 a personal view




Nonsmooth optimization at work: QOutline

e Spotlight 1: Do you know all about prox ?

e Spotlight 2: Optimization of electricity production

9 Spotlight 3: Towards resilient, responsible decisions

O A final (personal) word
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Nonsmooth optimization at work: QOutline

e Spotlight 1: Do you know all about prox ?



Structured nonsmoothness: explicit case

For simple nonsmooth g, the nonsmoothness is explicit
F(x) = f(x) + &(x)
F(x) =g oc(x)
Examples: g = || - ||1 and g = max

Matrix examples: g = || - |/trace aNd & = Amax

Spotlight 1: Do you know all about prox ?
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In many target applications, we observe that:

@ nondiff. points organize in smooth manifolds M

@ locally, F is smooth along M and nonsmooth across M
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Structured nonsmoothness: explicit case

For simple nonsmooth g, the nonsmoothness is explicit
F(x) = f(x) +&(x)
F(x) = goc(x)
Examples: g = || - ||1 and g = max

Matrix examples: g = || - ||race and & = Amax

In many target applications, we observe that:

@ nondiff. points organize in smooth manifolds M
@ locally, F is smooth along M and nonsmooth across M
@ there is an optimal manifold M* > x*

@ full first-order information (OF (x) and more)

Can we detect M* ?

Spotlight 1: Do you know all about prox ?

mini F(x) = ||Ax — b||? + )\||XH‘1
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Spotlight 1: Do you know all about prox ?

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s

(" mécanique appliquée aux mathématiques”)

1 ‘ §

Proximal operator prox. ,(y) = argmin {g(z) + =z - }/||2} ¥ E
z 2y &, .Y

J.J. Moreau
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Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s

(" mécanique appliquée aux mathématiques”)

1 ,
Proximal operator prox. . (y) = argmin {g(z) +—|lz— }/||2} 4% -
: 27 JIEA

J.J.

Moreau

Gradient-proximal operator

(locally, smoothly) identifies M
(under some natural assumptions)

[Daniilidis, Hare, Malick '06]

A. Daniilidis

Grad-prox operator:  T(y) = prox., (y —yVf(y))

10
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Q Explicit stepon f: u=y—~Vf(y)
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@ Implicit step on g:

x = prox.,(u) & u € x+v0g(x)



Spotlight 1: Do you know all about prox ?

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s

(" mécanique appliquée aux mathématiques”)

1
Proximal operator prox..(y) = argmin {g(z) + 2—||Z - Y||2}
z v

Gradient-proximal operator

(locally, smoothly) identifies M =
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Grad-prox operator:  T(y) = prox., (y —yVf(y))
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@ Implicit step on g: {u: prox, (u) € M}

x = prox.,(u) & u € x+v0g(x)



Spotlight 1: Do you know all about prox ?

Proximal operator: identification

J.J. Moreau, father of convex analysis, in the 1960s

(" mécanique appliquée aux mathématiques”)

1
Proximal operator prox..(y) = argmin {g(z) + 2—||Z - Y||2}
z v

Gradient-proximal operator

(locally, smoothly) identifies M =
(under some natural assumptions)

[Daniilidis, Hare, Malick '06]

e
A. Daniilidis
Grad-prox operator:  T(y) = prox., (y —yVf(y))
Q Explicit stepon f: u=y—~Vf(y)

x 4 v0g(x)

@ Implicit step on g: {y < prox. g (y — 7VF(y)) € M}

x = prox.,(u) & u € x+v0g(x)



Spotlight 1: Do you know all about prox ?

How to exploit structure identification ?

Replace the nonsmooth problem  min F(x) by the smooth problem  min F(x)
x€R4 xXEM*

Apply efficient 2nd order smooth (Riemannian) optimization algorithms...

Add constraints to simplify the problem

Simple idea [SMAI-MODE @ Le Havre '04], but not so simple in practice...



Spotlight 1: Do you know all about prox ?

How to exploit structure identification ?

Replace the nonsmooth problem  min F(x) by the smooth problem  min F(x)
x€RI xeM*

Apply efficient 2nd order smooth (Riemannian) optimization algorithms...

Add constraints to simplify the problem

Simple idea [SMAI-MODE @ Le Havre '04], but not so simple in practice...

Solution: Gilles Bareilles Ph.D. (2019-2022)
@ interwine prox-grad steps and Newton-like steps
@ guarantees on (global) convergence

@ properly chosen parameters to identification and quadratic convergence

@ “Newton acceleration of proximal-gradient method” P

G. Bareilles
+ what happens in the case goc ! (2022 Dodu Prize)

geometry of the function vs. prox outputs

not in the same space



Spotlight 1: Do you know all about prox ?

Proximal identification for F = goc

We have the prox of g... but not the prox of F =goc

Still use prox. ., identify in the intermediate space, and then identify in the x-space

Vg’
Ex: F(x) = max(ci(x), ca(x), e3(x)) g(y) = max(y1, y2, y3)
JMlmgx '/\/IT?,B

y

max
M3

y3 M3

N
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There is an “explicit” segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]
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We have the prox of g... but not the prox of F =goc

Still use prox. ., identify in the intermediate space, and then identify in the x-space

8’
Ex:  F(x) = max(ci(x), e2(x), c3(x)) g(y) = max(y1, y2, y3)
M max
/VITEX 1,2,3
MY
P"°Xo.75g(Y)
/\/ITBX
N {X L Pprox; > max(c(x)) € Mg*} > x*

There is an “explicit” segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

~ too small: detection of M* only near x*

10



Spotlight 1: Do you know all about prox ?

Proximal identification for F = goc

We have the prox of g... but not the prox of F =goc

Still use prox. ., identify in the intermediate space, and then identify in the x-space

g’
Ex: F(x) = max(ci(x), ea(x), c3(x)) g(y) = max(y1,y2, y3)
M Max
’MT%X “7r,2,3
My
P"°Xo.75g(Y)
P'°X1.2g(Y)
M
~ {x proxy g max(c(x)) € ME*} 5 X

There is an “explicit” segment of stepsizes that gives identification [Bareilles lutzeler Malick '22]

~ too small: detection of M* only near x* ~ too big: no more detection of M* near x*

So we can properly interlace Newton-like steps (2)

10



Spotlight 1: Do you know all about prox ?

Conclusion on this spotlight
@ Nonsmoothness is highly structured
@ Sometimes, we know “explicitly” the structure (thank you, prox)
@ We can exploit it: Newton acceleration (# Nesterov acceleration)

@ Applications on matrix problems E.g. F(x) = Amax <Ao + Zx,-A,-)
i=1

10

19
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<

WYY Ao

x +70g(x)
{y rprox o (y —yVf(y)) € M}

10
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Nonsmooth optimization at work: QOutline

e Spotlight 2: Optimization of electricity production



Spotlight 2: Optimization of electricity production

Finding “optimal” production schedules

In France: EDF produces electricity by N production units

nuclear 63% renewables 14% oil/gaz/coal 12%

hydro 17%

Day-to-day optimization of production “unit-commitment” (compute a minimal-cost production

schedule, satisfying operational constraints and meeting customer demand, over T times).

Hard optimization problem: large-scale, heterogeneous, complex (> 10° variables, > 10° constraints)

S min Z’- C,'TX,' (production costs)
(S|m(;j)|||f|ed) ZI-X,' =d (demand constraints)
mode
(Xl, . 7XN) € X1 X --- X Xy (operational constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?

12



Spotlight 2: Optimization of electricity production

Finding “optimal” production schedules

In France: EDF produces electricity by N production units

az/coal 12%

nuclear 63% renewables 14% oil/

hydro 17%

B e s |

Day-to-day optimization of production “unit-commitment” (compute a minimal-cost production
schedule, satisfying operational constraints and meeting customer demand, over T times).

Hard optimization problem: large-scale, heterogeneous, complex (> 10° variables, > 10° constraints)

min Zi C,'TX,' (production costs)
(S|m(;j)|||f|ed> ZIX,' =d «ue RT (demand constraints)
mode
(Xl, L. ,XN) € Xy X --- X Xy (operational constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ? @
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Lagrangian decomposition

@ Dual function (concave) O(u) =

@ Dualizing the coupling constraint
makes it decomposable by units

N
O(u)=d"u+> 0;(u)
i=1
0:(u) = { min (¢ — u) x

x; € X;
@ Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal '75... '95]

\

C. Lemarechal

S. Charousset

Spotlight 2: Optimization of electricity production

N

N T
min Z ¢ x; + Z ut(dt — E x,t)
i—1 t=1 i—1

(Xl,..i.,XN)Exl X - X Xy

| Nonsmooth optimization algorithm |

decentralized
productions

shadow
prices

— Research in the 1990's
— Production in early 2000's

— Save money and CO2 !

A. Renaud

13



Spotlight 2: Optimization of electricity production

On the shoulders of giants

Our work

@ Denoising dual solutions (by TV-regularization) [Zaourar, Malick '13]
@ Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]
@ (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]

@ Introducing weather uncertainty in the model
— robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
— 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

40 60
Time Steps

14
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Spotlight 2: Optimization of electricity production

Two-stage stochastic unit-commitment

@ The schedule x is sent to the grid-operator (RTE)
before being activated and before observing uncertainty

@ In real time, a new production schedule can be sent at certain times

@ At time 7, we have the observed load &, ..., &
and the current best forecast &,41,...,&T W. van Ackooij

@ We propose a stochastic 2-stage problem:

: T
: T min c'y
M ST | e = yex. Tiyi-e
' i y coincides with x on 1,..., 7

— 2nd stage model: same as 1st stage but with smaller horizon
— fine operational modeling vs difficult to compute
— complexity of ¢(x, &) only allows for simple modeling of randomness

o New algo: double decomposition (by units and scenarios) using the same ingredients

15



Spotlight 2: Optimization of electricity production

Numerical illustration for stochastic unit-commitment

@ On a 2013 EDF instance (medium-size)

— deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints
— stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

@ Our method allows to solve it (2) (in reasonable time)
@ Observation: generation transferred from cheap/inflexible to expensive/flexible

@ Example: production schedules for 2 units: determinist vs stochastic

A

Generated Power (MW)
B 3
8 3
Generated Power (MW)

100 1 50 1
80| —— Det. Schedule —— Det. Schedule
—— 2Stage Schedule| —— 2Stage Schedule

0 20 40 60 80 100 0 20 40 60 80 100

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)

16



Spotlight 2: Optimization of electricity production

Conclusion on this spotlight

@ Electricity managment optimzation is huge
@ Ad: attend Sandrine’s talk this afternoon for a broader view
@ Nonsmoothness 1: Lagrangian decomposition

@ Nonsmoothness 2: robustness against (weather) uncertainties

40 60
Time Steps

17



Nonsmooth optimization at work: QOutline

9 Spotlight 3: Towards resilient, responsible decisions



Spotlight 3: Towards resilient, responsible decisions

Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable diffusion (https://stablediffusionweb.com)

“towards resilient, responsible decisions”

18


https://stablediffusionweb.com

Spotlight 3: Towards resilient, responsible decisions

Example #1: Don’t forget how fragile deep learning can be !

lllustration 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

50 100 150 200

pig (99%)

19
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Spotlight 3: Towards resilient, responsible decisions

Example #1: Don’t forget how fragile deep learning can be !

lllustration 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry '18]
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Spotlight 3: Towards resilient, responsible decisions

Example #1: Don’t forget how fragile deep learning can be !

Hlustration 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry '18]

0

100

pig (99%) airliner (96%)

lllustration 2: Attacks against self-driving cars [@ CVPR '18]
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Spotlight 3: Towards resilient, responsible decisions

Example #1: Don’t forget how fragile deep learning can be !

lllustration 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)

“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry 18]

o

100

pig (99%) airliner (96%)

lllustration 2: Attacks against self-driving cars [@ ICLR '19]

19



Spotlight 3: Towards resilient, responsible decisions

Example #2: ML may perform poorly for some people

Example: Global model is trained on average distribution
across clients (ERM)

‘ Server >

20



Spotlight 3: Towards resilient, responsible decisions

Example #2: ML may perform poorly for some people

=ie

Have a good
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Spotlight 3: Towards resilient, responsible decisions

Example #2: ML may perform poorly for some people

Example: Global model is deployed on individual clients

Train-test
mismatch!

Have a good

Q@ o o
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Example #2: ML may perform poorly for some people

Example: Global model is deployed on individual clients

From Washington Post (2019) “the accent gap”

Have a good

0

GOOGLE HOME
Overall accuracy

Western U.S.
Midwest U.S.
Eastern U.S.
Southern U.S.
03 @
26 @
32@

83%

@ +3.0
@®+25

@ +0.5
®+0.1
Indian langs.
Chinese
Spanish

Count

Spotlight 3: Towards resilient, responsible decisions

Error

AMAZON ECHO
Overall accuracy

Southern U.S.
Eastern U.S.
Western U.S.
Midwest U.S.
180

27@
42 @

s @ +1.0
Indian langs.
Chinese

Spanish

Train-test
mismatch!

@®+31
@®+27

®+20
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Spotlight 3: Towards resilient, responsible decisions

Optimization set-up

@ Training data:  &1,..., &N

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

N N
1 L 1 .
min '5—1 fx, &) =Eg [f(x. O] with Py=+ Eﬁl Og;
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Optimization set-up

@ Training data:  &p,...,¢&n

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)
1o 1
min NZf(X,g,-) =E; [f(x,&)]  with PN:NZ%
i=1 i=1

@ Prediction with x for different data &
— Adversarial attacks (e.g. flying pigs, driving cakes...)
— Presence of bias, e.g. heterogeneous data

— Distributional shifts: Prain 7 Prest

@ Solution: take possible variations into account during training
...and nonsmoothness comes into play ()
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Spotlight 3: Towards resilient, responsible decisions

(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U a neighborhood of Py

22
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U a neighborhood of Py
Wasserstein balls as ambiguity sets
U={Q: WEy,Q) <p}
W(Pn, Q) = min{ Balc(&,€)] : [l = P, [l = Q}
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U a neighborhood of Py
Wasserstein balls as ambiguity sets
U={Q: WEy,Q) <p}
W(Pn, Q) = min{ Balc(&,€)] : [l = P, [l = Q}

WDRO objective function for given x, @/\/. p

maxg_ Eq[f(x,¢)] maxgx Eqolf(x, 5_)]
{ WEv.Q<p { [;]I;;Eli’[vc (@?i Sp
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U a neighborhood of Py
Wasserstein balls as ambiguity sets
U={Q: WEy,Q) <p}
W(Pn, Q) = min{ Balc(&,€)] : [l = P, [l = Q}

WDRO objective function for given x, @/\/. p

maxg Eg[f(x,£)] maxg.x Eq[f(x, )] maxy B, [f(x, )]
{ W?]?DN’QQ) <p A { [y =Pn, 7 =Q & [t]: = Py

mine Ex[c(€. €N <p | Ealc(&€) <p
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(Wasserstein) Distributionally Robust Optimization

Rather than mXin Es [f(x, 9] solve instead mXin max Eo[f(x,£)]

with U a neighborhood of Py
Wasserstein balls as ambiguity sets
U={Q: WEy,Q) <p}
W(Pn, Q) = min{ Balc(&,€)] : [l = P, [l = Q}

WDRO objective function for given x, @/\/. p

maxg.x Eg[f(x,)] maxz Epx, [f(x, §)]
{ m%%&ﬁ N ol ok =0 =] =i @
NR)S P ming Ex[c(&, €)] < p Er[c(& &) <p

& min Ap+ Ex [maxg {f(x.€) = Ac(6.))]

..(finite dimension) nonsmooth... great talk of Tam Le yesterday (<)
...computable in some (specific) cases [Kuhn et al. '18]

...actually many more since the PhD of Florian Vincent, see poster tomorow (2)

22



Spotlight 3: Towards resilient, responsible decisions

Current research in my group

Our work
@ Toolbox: robustify our model with skWDRO [Vincent, Azizian, lutzeler, Malick '24]
scikitlearn interface + pytorch wrapper
@ Generalization guarantees [Le, Malick '24] [Azizian, lutzeler, Malick '23]
@ (abstract, entropic) regularizations of WDRO [Azizian, lutzeler, Malick '22]

@ Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick '23]

F. lutzeler W. Azizian Y. Laguel Tam Le F. Vincent

23



Spotlight 3: Towards resilient, responsible decisions

Conclusion on this spotlight

@ Deep learning works very well... unless it does not.
@ Need for more robustness (resilience, fairness...) — brought by max/nonsmoothness
@ Wasserstein DRO is a nice playground — current work of my group

@ Ad: Go and see Florian's poster... and robustify your models !

i \ / Train-test
\ & # mismatch!
o w0 a0 NN

airliner (96%) T
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Nonsmooth optimization at work: QOutline

O A final (personal) word



Back to the future

1291 journées du groupe MODE

U-Lagrangien et géométrie
Jérome MALICK', Scott MILLER?

2 University of California
9500 Gilman Dr, m/e 0411, La Jolla, CA 92003-0411
scottoturbulence . ucsd. edu

RESUME

La méthode de Newton peut étre considérée comme le prototype des algorithmes

ites man

rapides d’optimi Dans cet exposé, nous comparo
Tétendre & des problemes d'optimisation non lisse. Le
Vexposé se trouvent dans [3]

Le cadre de
fonction convey
par apport & laq
exprime essentielle

nt que la régularité de f est confinée

reformule comme un probléme de minimisation sous contrai

{mef

Liobjectif est de préciser les liens entre différentes maniéres adapter la
de Newton & ce probleme:
Igorithmes provenant de la théo

odes SQP,

du U-Lagrangian de (1]

éthodes de Newton locales sur M.

Mots-clé: optimisation non lisse, partial smoothness, géométrie riemannienne

Classification AMS: 4952, 6510, 58C99
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ur le contenu de

cst o suivant. On s'intéressc & la minimisation sur B d'une
on suppose que le minimum est atteint sur une sous-variété M
 est partly-smooth. Introduite dans [2], la partial smoothn
M. Le problime se

s : Active sets, nonsmoothness and sensitivity. SIAM J. Optimization

A final (personal) word

@ From Le Havre to Lyon, nonsmoothness matters

Optimisation rules !

Theory <— Practice

Optim +— ML

(e.g. talk of Emilie Chouzenoux yesterday)

@ Responsible decision-making

From 2004 to 2024, what a journey !

CNRS/Insis topic of the year 2024
(save the date: Oct.3 @ Paris)
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A final (personal) word

Many thanks !
Merci a vous
pour votre attention aujourd’hui

et pour faire vivre notre communauté demain — rdv en 2044 ?!

Et merci a eux
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