# Toward resilient, responsible predictions/decisions

(a gentle introduction to optimal-transport-based distributionally robust optimization)



Séminaire joint DATA-GAIA – March 2024

#### Based on joint work with





Waïss Azizian



Florian Vincent



Tam Le



Franck lutzeler



### Deep learning can be impressive

Spectacular success of deep learning, in many fields/applications... E.g. in generation Ex: picture generated with stable diffusion (https://stablediffusionweb.com)



"towards resilient, responsible decisions"

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)



Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)



Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)



"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)



"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

#### Example 2: Attacks against self-driving cars [@ CVPR '18]



Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)



"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Example 2: Attacks against self-driving cars [@ ICLR '19]









**Example:** Global model is deployed on *individual* clients





**Example:** Global model is deployed on *individual* clients

From Washington Post (2019) "the accent gap"





### Math. setting

- Training data:  $\xi_1, \ldots, \xi_N$  (in theory: sampled from  $\mathbb{P}_{\text{train}}$  unknown) e.g. in supervised learning: labeled data  $\xi_i = (a_i, y_i)$  feature, label
- Train model:  $f(x, \cdot)$  the loss function with x the parameter/decision  $(\omega, \beta, \theta, ...)$ e.g. least-square regression:  $f(x, (a, y)) = (x^T a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i)$$

### Math. setting

- Training data:  $\xi_1, \ldots, \xi_N$  (in theory: sampled from  $\mathbb{P}_{\text{train}}$  unknown) e.g. in supervised learning: labeled data  $\xi_i = (a_i, y_i)$  feature, label
- Train model:  $f(x, \cdot)$  the loss function with x the parameter/decision  $(\omega, \beta, \theta, ...)$ e.g. least-square regression:  $f(x, (a, y)) = (x^T a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

- Prediction with x for different data  $\xi$ 
  - Adversarial attacks (e.g. flying pigs, driving cakes...)
  - Presence of bias, e.g. heterogeneous data
  - Distributional shifts:  $\mathbb{P}_{\mathsf{train}} \neq \mathbb{P}_{\mathsf{test}}$
  - Generalization: computations with  $\widehat{\mathbb{P}}_{N}$  and guarantees on  $\mathbb{P}_{train}$
- Solution: take possible variations into account during training

### Math. setting

- Training data:  $\xi_1, \ldots, \xi_N$  (in theory: sampled from  $\mathbb{P}_{\text{train}}$  unknown) e.g. in supervised learning: labeled data  $\xi_i = (a_i, y_i)$  feature, label
- Train model:  $f(x, \cdot)$  the loss function with x the parameter/decision  $(\omega, \beta, \theta, ...)$ e.g. least-square regression:  $f(x, (a, y)) = (x^T a - y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i) = \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x}, \xi)] \quad \text{with } \widehat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}$$

- Prediction with x for different data  $\xi$ 
  - Adversarial attacks (e.g. flying pigs, driving cakes...)
  - Presence of bias, e.g. heterogeneous data
  - Distributional shifts:  $\mathbb{P}_{\mathsf{train}} \neq \mathbb{P}_{\mathsf{test}}$
  - Generalization: computations with  $\widehat{\mathbb{P}}_{N}$  and guarantees on  $\mathbb{P}_{train}$
- Solution: take possible variations into account during training

## (Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

 $\min_{x} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$ 

rather than  $\min_{\mathbb{E}} \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(x,\xi)]$  solve instead

with  $\mathcal U$  a neighborhood of  $\widehat{\mathbb P}_N$  (called ambiguity set)

## (Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than  $\min \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x},\xi)]$  solve instead

with  $\mathcal{U}$  a neighborhood of  $\widehat{\mathbb{P}}_N$  (called ambiguity set)

• 
$$\mathcal{U} = \left\{\widehat{\mathbb{P}}_{N}\right\}$$
:  $\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_{i})$  standard ERM

•  $\mathcal{U}$  defined by moments e.g. [Delage, Ye, '10] [Jegelka *et al.* '19]

- $\mathcal{U} = \left\{ \mathbb{Q} : d(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant \rho \right\}$  for various distances or divergences E.g. KL-div.,  $\chi_2$ -div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]
- $\mathcal{U} = \left\{ \mathbb{Q} : W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leq \rho \right\}$  Wasserstein distance [Kuhn *et al.* '18] (popular in OT)

modeling vs. computational tractability

 $\min_{\mathbf{x}} \max_{\mathbf{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x}, \boldsymbol{\xi})]$ 

#### Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

- Training data: ξ<sub>i</sub> = (a<sub>i</sub>, y<sub>i</sub>) ∈ ℝ<sup>2</sup> × {-1, +1} sampled from two Gaussian distributions with variances σ = 1 and σ = 5
- Testing data: reverse variance  $\sigma = 5$  and  $\sigma = 1$
- Compute standard separator by min logistic loss  $f(x,\xi) = \log(1 + \exp(-y a^{T}x))$

$$\min_{\mathbf{x}} \ \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i \ a_i^{\top} \mathbf{x}))$$

• Compute a robust separator (Wassertein DRO w.  $c((a, y), (a', y')) = ||a - a'|| + \kappa 1_{y=y'})$ 



#### Illustration 1: the gain in robustness

Toy example: basic classification (linear, 2D, 2 classes...)

- Training data: ξ<sub>i</sub> = (a<sub>i</sub>, y<sub>i</sub>) ∈ ℝ<sup>2</sup> × {-1, +1} sampled from two Gaussian distributions with variances σ = 1 and σ = 5
- Testing data: reverse variance  $\sigma = 5$  and  $\sigma = 1$
- Compute standard separator by min logistic loss  $f(x,\xi) = \log(1 + \exp(-y a^{T}x))$

$$\min_{\mathbf{x}} \ \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i \ a_i^{\top} \mathbf{x}))$$

• Compute a robust separator (Wassertein DRO w.  $c((a, y), (a', y')) = ||a - a'|| + \kappa 1_{y=y'})$ 



## Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]



## Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]



#### Experiments: (federated) classification task

#### ConvNet with EMNIST dataset

(1730 users, 179 images/users)

#### Histogram over users of test misclassif. error Models: standard vs. robust (dashed lines: 10%/90%-quantiles)



High

Error

Error

## Illustration 2: gain in fairness

Federated learning framework with heterogeneous users (...) [Pillutla, Laguel, M., Harchaoui '22]



(W)DRO reshapes test histograms – towards more fairness

## (W)DRO, at the intersection of Optim & ML

(Wasserstein) distributionnally robust optimization is very attractive

- Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
   back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Statistical/theoretical properties e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in usual cases e.g. [Kuhn *et al.* '18], [Zhao Guan '18]...
- Interprets up to first-order as a penalization by  $\|\nabla_{\xi} f(x,\xi)\|$  e.g. [Gao *et al.* '18]

## (W)DRO, at the intersection of Optim & ML

(Wasserstein) distributionnally robust optimization is very attractive

- Natural in many applications (e.g. fairness [Pillutla, Laguel, M., Harchaoui '22])
   back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Statistical/theoretical properties warning: dimensionality ! (spotlight #1) e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in usual cases in fact in many cases ! (spotlight #2)
   e.g. [Kuhn et al. '18], [Zhao Guan '18]...
- Interprets up to first-order as a penalization by  $\|\nabla_{\xi} f(x,\xi)\|$  e.g. [Gao *et al.* '18]

### Gentle introduction to WDRO: Outline

**1** Just a bit of maths: optimal transport, duality, and formulations

**2** Dimension-free statistical guarantees of WDRO

**3 Robustify your models with** skWDR0 !

### Gentle introduction to WDRO: Outline

#### **1** Just a bit of maths: optimal transport, duality, and formulations

**2** Dimension-free statistical guarantees of WDRO

**3** Robustify your models with skWDR0 !

### **Optimal transport comes into play**

**Wasserstein** distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, \ [\pi]_2 = \mathbb{Q} \}$$

### **Optimal transport comes into play**

**Wasserstein** distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, \ [\pi]_2 = \mathbb{Q} \}$$



Discrete case

## Optimal transport comes into play

**Wasserstein** distance (given a cost function *c*)

$$\mathcal{W}(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P}, \ [\pi]_2 = \mathbb{Q} \}$$



Discrete case



Semi-discrete case

 $\mathcal{U} = \{ \mathbb{Q} : W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leq \rho \}$ 

for given x, 
$$\widehat{\mathbb{P}}_{N}$$
,  $\rho$   

$$\begin{cases}
\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leq \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\
\min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho
\end{cases}$$

for given 
$$\mathbf{x}$$
,  $\widehat{\mathbb{P}}_{N}$ ,  $\rho$   

$$\begin{cases}
\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x},\xi)] \\
W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x},\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\
\min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(\mathbf{x},\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N} \\
\mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho
\end{cases}$$

for given x,  $\widehat{\mathbb{P}}_{N}$ , ho

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_{1}}[f(x,\xi)] \\ [\pi]_{1} = \widehat{\mathbb{P}}_{N} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{cases}$$

$$\Leftrightarrow \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$$

to be compared with  $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$ 

for given x,  $\widehat{\mathbb{P}}_{N}$ ,  $\rho$  $\begin{cases}
\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leq \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\
\min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho
\end{cases} \Leftrightarrow \\
\underset{\lambda \geq 0}{\max_{\mathbb{P},N}} [\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]
\end{cases}$ 

to be compared with  $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$ 

...does not involve explicitly the transport plan

...computable in some (specific) cases [Kuhn et al. '18]

for given x,  $\widehat{\mathbb{P}}_{N}$ ,  $\rho$  $\begin{cases}
\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
W(\widehat{\mathbb{P}}_{N},\mathbb{Q}) \leq \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\mathbb{Q},\pi} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N}, [\pi]_{2} = \mathbb{Q} \\
\min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho
\end{cases} \Leftrightarrow \begin{cases}
\max_{\pi} \mathbb{E}_{[\pi]_{2}}[f(x,\xi)] \\
[\pi]_{1} = \widehat{\mathbb{P}}_{N} \\
\mathbb{E}_{\pi}[c(\xi,\xi')] \leq \rho
\end{cases}$   $\Leftrightarrow \min_{\lambda \geq 0} \lambda \rho + \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[\max_{\xi'} \{f(x,\xi') - \lambda c(\xi,\xi')\}]$ 

to be compared with  $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(\mathbf{x},\xi)]$ 

...does not involve explicitly the transport plan ...computable in some (specific) cases [Kuhn *et al.* '18] ...actually many more; see spotlight #2 ...does it worth it ? see spotlight #1

## Gentle introduction to WDRO: Outline

**1** Just a bit of maths: optimal transport, duality, and formulations

#### **2** Dimension-free statistical guarantees of WDRO

3 Robustify your models with skWDR0 !

## Existing statistical guarantees of WDRO

• Suppose 
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where  $\xi \in \mathbb{R}^d$ )

- Computations with  $\widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}$  and guarantees with  $\mathbb{P}_{\text{train}}$  ?
- We manipulate the WDRO risk :  $R_{\rho}(x) = \max_{W(\widehat{\mathbb{P}}_{N}, \mathbb{Q}) \leqslant \rho} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$
- Obviously, if  $\rho, N$  large enough such that  $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leqslant \rho$ , then



• To be compared with  $\mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x,\xi)] \ge \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)] + O(\frac{1}{\sqrt{N}})$ 

## Existing statistical guarantees of WDRO

• Suppose 
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where  $\xi \in \mathbb{R}^d$ )

- Computations with  $\widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}$  and guarantees with  $\mathbb{P}_{\text{train}}$  ?
- We manipulate the WDRO risk :  $R_{\rho}(x) = \max_{W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant \rho} \mathbb{E}_{\mathbb{Q}}[f(x, \xi)]$
- Obviously, if  $\rho, N$  large enough such that  $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leq \rho$ , then



- To be compared with  $\mathbb{E}_{\widehat{\mathbb{P}}_N}[f(x,\xi)] \ge \mathbb{E}_{\mathbb{P}_{\text{train}}}[f(x,\xi)] + O(\frac{1}{\sqrt{N}})$
- It requires  $ho \propto 1/\sqrt[d]{N}$  [Fournier and Guillin '15] (issue)
- Not optimal:  $ho \propto 1/\sqrt{N}$  suffices
  - asymptotically [Blanchet et al '22]
  - in particular cases [Shafieez-Adehabadeh et al '19]
  - or with error terms [Gao '22]

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

#### Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family  $f(\theta, \cdot) + compactness$  on  $\theta + compactness$  on  $\xi + non-degeneracy$ 

For  $\delta \in (0,1)$ , if  $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right)$  then w.p.  $1 - \delta$ ,

Generalization guarantee:  $R_o(x) \ge \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$ 

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

#### Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family  $f(\theta, \cdot)$  + compactness on  $\theta$  + compactness on  $\xi$  + non-degeneracy

For 
$$\delta \in (0,1)$$
, if  $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right) = \rho_n$  then w.p.  $1 - \delta$ ,

Generalization guarantee:  $R_{\rho}(x) \ge \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$ 

Distribution shifts:

$$W(\mathbb{P},\mathbb{Q})^2 \leq \rho(\rho - \rho_n)$$
 it holds  $R_{\rho}(x) \geq \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$ 

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

#### Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family  $f(\theta, \cdot)$  + compactness on  $\theta$  + compactness on  $\xi$  + non-degeneracy

For  $\delta \in (0,1)$ , if  $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right) = \rho_n$  then w.p.  $1 - \delta$ ,

Generalization guarantee:  $R_{
ho}(x) \geqslant \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$ 

Distribution shifts:

$$W(\mathbb{P},\mathbb{Q})^2 \leqslant \rho(\rho - \rho_n)$$
 it holds  $R_{\rho}(x) \geqslant \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$ 

Asymptotic tightness:

 $W(\mathbb{P},\mathbb{Q})^2 \leqslant 
ho(
ho+
ho_n)$  it holds  $R_
ho(x) \leqslant \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$ 

Our approach: a direct "optim." approach (work to get a concentration on the dual function)

#### Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family  $f(\theta, \cdot)$  + compactness on  $\theta$  + compactness on  $\xi$  + non-degeneracy

For  $\delta \in (0,1)$ , if  $\rho \ge O\left(\sqrt{\frac{\log 1/\delta}{N}}\right) = \rho_n$  then w.p.  $1 - \delta$ ,

Generalization guarantee:  $R_{
ho}(x) \geqslant \mathbb{E}_{\mathbb{P}_{train}}[f(x,\xi)]$ 

Distribution shifts:

$$W(\mathbb{P},\mathbb{Q})^2 \leqslant 
ho(
ho-
ho_n)$$
 it holds  $R_
ho(x) \geqslant \mathbb{E}_\mathbb{Q}\left[f(x,\xi)\right]$ 

Asymptotic tightness:

$$W(\mathbb{P},\mathbb{Q})^2 \leqslant 
ho(
ho+
ho_n)$$
 it holds  $R_
ho(x) \leqslant \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}\left[f(x,\xi)\right]$ 

- Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)
- Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al '19]

## **Theorem illustrated**

On logistic regression:

- for each  $\rho,$  sample 200 training datasets
- solve the WDRO problem on each of them [Blanchet et al '22]
- plot the proba of  $R_{\rho}(x) \mathbb{E}_{\mathbb{P}_{train}}[f(x)] \ge 0$  (average, standard deviation)
- the training robust loss is indeed an upper-bound on the true loss



## **Robustness illustrated**



## **Robustness illustrated**



How can we compute such models ! We want the same at home !

## Gentle introduction to WDRO: Outline

**1** Just a bit of maths: optimal transport, duality, and formulations

**2** Dimension-free statistical guarantees of WDRO

**3 Robustify your models with** skWDR0 !

### **Original approach**

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

What about smoothing ?! Smoothed counterpart

$$R^{\varepsilon}_{\rho}(f) = \min_{\lambda \ge 0} \ \lambda \rho + \mathbb{E}_{\mathbb{P}} \ \varepsilon \log \left( \mathbb{E}_{\xi' \sim \mathcal{N}(\xi, \sigma^2)} \exp \left( \frac{f(\xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

### **Original approach**

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

What about smoothing ?! Smoothed counterpart

$$R_{\rho}^{\varepsilon}(f) = \min_{\lambda \geqslant 0} \ \lambda \rho + \mathbb{E}_{\mathbb{P}} \ \varepsilon \log \left( \mathbb{E}_{\xi' \sim \mathcal{N}(\xi, \sigma^2)} \exp \left( \frac{f(\xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

Nice interpretation as entropy-regularized WDRO

### **Original approach**

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

What about smoothing ?! Smoothed counterpart

$$R_{\rho}^{\varepsilon}(f) = \min_{\lambda \geqslant 0} \ \lambda \rho + \mathbb{E}_{\mathbb{P}} \ \varepsilon \log \left( \mathbb{E}_{\xi' \sim \mathcal{N}(\xi, \sigma^2)} \exp \left( \frac{f(\xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon} \right) \right)$$

Nice interpretation as entropy-regularized WDRO

Nice approximation results, e.g. :

#### Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of  $\mathbb{P}$  is contained in a compact convex set  $\Xi \subset \mathbb{R}^d$ , then

$$0 \leqslant R_{\rho}(f) - R_{\rho}^{\varepsilon}(f) \leqslant \left(C \varepsilon \log \frac{1}{\varepsilon}\right) d$$

## Hard work on computational aspects

- Importance sampling for the inner integral
- Careful logsumexp
- Heuristics to set  $\varepsilon$  and  $\sigma$
- Numerically stable backward pass
- Efficient heuristic to set starting  $\lambda$
- All-in-one API, easy to define the problem
- User-friendly interfaces



Try it out !



More (to come) in [Vincent, Azizian, lutzeler, M. '24]

#### Easy to use, with few lines of code

#### Scikitlearn

from sklearn.linear\_model import LogisticRegression # scikit-learn's standard version
from skwdro.linear\_models import LogisticRegression as WDROLogisticRegression # WDRO version

#### Pytorch

| 63 | def | main():                                                                                              |
|----|-----|------------------------------------------------------------------------------------------------------|
| 64 |     | <pre>device = "cuda" if pt.cuda.is_available() else "cpu"</pre>                                      |
| 65 |     | <pre>model = MyShallowNet([1, 50, 30, 10, 1]).to(device)</pre>                                       |
| 66 |     |                                                                                                      |
| 00 |     |                                                                                                      |
| 67 |     | <pre>rho = pt.tensor(le-1).to(device)</pre>                                                          |
| 68 |     |                                                                                                      |
| 69 |     | x = pt.sort(pt.flatten(                                                                              |
| 70 |     | pt.linspace(0., 1., 10, device=device).unsqueeze(0)\                                                 |
| 71 |     | + pt_randn(10000, 10_device=device) * le-1                                                           |
| 72 |     |                                                                                                      |
| 72 |     | f(x) = f(x) + pt rando(100000 - device-device) * 20.2                                                |
| /3 |     | y = r(x) + pt.radia(100000, device device) + 2e-2                                                    |
| 14 |     | dataset = DataLoader(TensorDataset(X.unsqueeze(-1), y.unsqueeze(-1)), batcn_size=5000, snuttle=True) |
| 75 |     |                                                                                                      |
| 76 |     |                                                                                                      |
| 77 |     | <pre>dual_loss = dualize_primal_loss(</pre>                                                          |
| 78 |     | <pre>nn.MSELoss(reduction='none'),</pre>                                                             |
| 79 |     | model,                                                                                               |
| 80 |     | rho,                                                                                                 |
| 81 |     | x.unsqueeze(-1),                                                                                     |
| 82 |     | v.unsqueeze(-1)                                                                                      |
| 83 |     |                                                                                                      |
| 84 |     |                                                                                                      |
| 05 |     |                                                                                                      |
| 85 |     | model = train(duat_toss, dataset, 1000) # type: ignore                                               |
| 86 |     | model.eval()                                                                                         |

#### To sum up, in one last slide...

#### Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in action with skWDRO (via scitkitlearn + Pytorch wrappers)

#### To sum up, in one last slide...

#### Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in action with skWDRO (via scitkitlearn + Pytorch wrappers)

#### What's next ?

- Beyond Wasserstein neighborhoods... new models, new applications !
- How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)

#### To sum up, in one last slide...

#### Main take-aways

- ML works well, unless it does not. Work needed. Optimization is in the game
- Distributionally robust optimization is rich, active topic
- Spotlight #1: WDRO has nice generalization properties
- Spotlight #2: WDRO in action with skWDRO (via scitkitlearn + Pytorch wrappers)

#### What's next ?

- Beyond Wasserstein neighborhoods... new models, new applications !
- How to deal with difficult constraints ? (0-1 variables, mixed-integer sets...)

