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Look at how impressive deep learning can be !

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable di↵usion (https://stablediffusionweb.com)

”A way towards more robust, resilient, responsible decisions”
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Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
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“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Example 2: Attacks against self-driving cars
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“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Example 2: Attacks against self-driving cars [@ CVPR ’18]

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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Observe also that ML can perform poorly

Example:

Server

Global model is deployed on individual clients

[Washington Post ’19] “the accent gap”

By Drew Harwell July 19, 2018 13
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Toward robust, responsible learning: set-up of the optim. perspective

Training data: ⇠1, . . . , ⇠N (in theory: sampled from Ptrain unknown)

e.g. in supervised learning: labeled data ⇠i = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (!,�, ✓, ...)

e.g. least-square regression: f
�
x , (a, y)

�
= (x>a� y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

NX

i=1

f (x , ⇠i )

Prediction with x for di↵erent data ⇠

– Adversarial attacks (e.g. flying pigs, driving cakes...)

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain 6= Ptest

– Generalization: computations with bPN and guarantees on Ptrain

Solution: take possible variations into account during training

4
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than min
x

E bPN
[f (x , ⇠)] solve instead min

x
max
Q2U

EQ[f (x , ⇠)]

with U a neighborhood of bPN (called ambiguity set)

U =
n
bPN

o
: min

x

1

N

NX

i=1

f (x , ⇠i ) standard ERM

U defined by moments e.g. [Delage, Ye, ’10] [Jegelka et al. ’19]

U =
n

Q : d(bPN , Q) 6 ⇢
o
for various distances or divergences

E.g. KL-div., �2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
n

Q : W (bPN , Q) 6 ⇢
o
Wasserstein distance [Kuhn et al. ’18] (popular in OT)

modeling vs. computational tractability

5



Simple illustration of the gain in robustness

Example : basic classification (linear, 2D, 2 classes...)

Training data : ⇠i = (ai , yi )2 R2 ⇥ {�1,+1}
sampled from two Gaussian distributions with variances � = 1 and � = 5

Testing data : reverse variance � = 5 and � = 1

Compute standard separator by min logistic loss f (x , ⇠) = log(1 + exp(�y a
>
x))

min
x

1

N

NX

i=1

log(1 + exp(�yi ai
>
x))

Compute a robust separator (Wassertein DRO w. c((a, y), (a0, y 0
)) = ka� a0k+ 1y=y0)

6
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DRO, at the intersection of OR, ML, Optim

DRO is very attractive

Statistical/theoretical properties

e.g. [Blanchet et al. ’18] and [Blanchet and Shapiro ’23]

Computable in many cases

e.g. [Kuhn et al. ’18], [Zhao Guan ’18]...

Natural in many applications

back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. ’20]

Interprets up to first-order as a penalization by kr⇠f (x , ⇠)k e.g. [Gao et al. ’18]
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Spotlight #1 : Statistical guarantees

of optimal-transport-based DRO

Azizian Waiss, Franck Iutzeler, and Jérôme Malick

Excat generalization guarantees for (regularized) WDRO models

Just accepted in NeurIPS, 2023



Wasserstein comes into play

Def: Wasserstein distance (given a cost function c)

W (P, Q) = min
⇡⇡⇡

�
E⇡⇡⇡[c(⇠, ⇠

0)] : ⇡⇡⇡ with marginals [⇡⇡⇡]1 = P and [⇡⇡⇡]2 = Q
 

Demystification: in the discrete case

e.g. P = (p1, . . . , pN) and Q = (q1, . . . , qN) in the simplex
8
>>>><

>>>>:

min⇡⇡⇡
PN

i ,j=1
ci ,j ⇡⇡⇡i ,j

PN
j=1

⇡⇡⇡i ,j = pi i = 1, . . . ,N
PN

i=1
⇡⇡⇡i ,j = qj j = 1, . . . ,N

⇡⇡⇡i ,j > 0 i , j = 1, . . . ,N

linear assignment !

Wasserstein-DRO objective for given P and ⇢

⇢
maxQ EQ[f (x , ⇠)]
W (P, Q) 6 ⇢

,

8
<

:

maxQ,⇡⇡⇡ EQ[f (x , ⇠)]
[⇡⇡⇡]1 = P, [⇡⇡⇡]2 = Q
min⇡⇡⇡ E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

,

8
<

:

max⇡⇡⇡ E[⇡⇡⇡]2 [f (x , ⇠)]
[⇡⇡⇡]1 = P
E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

duality...

Franck’s talk!
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18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(�,�) def.= min
��U(�,�)

�

X�Y
c(x, y)d�(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(�,�) is compact for the weak topology of measures (see
Remark 2.2), � ��

�
cd� is a continuous function for this topology and the con-

straint set is nonempty (for instance, �� � � U(�,�)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.
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�

�

Figure 2.6: Left: “continuous” coupling � solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].
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are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(�,�) is compact for the weak topology of measures (see
Remark 2.2), � ��

�
cd� is a continuous function for this topology and the con-

straint set is nonempty (for instance, �� � � U(�,�)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

⇡

�

� ⇡
�

�

Figure 2.6: Left: “continuous” coupling � solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .

�

�

�

�

⇡ �

�

�

�

⇡
�

�

�

�

⇡

�

�

�

⇡�

Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Wasserstein-DRO objective for given P and ⇢

⇢
maxQ EQ[f (x , ⇠)]
W (P, Q) 6 ⇢

,

8
<

:

maxQ,⇡⇡⇡ EQ[f (x , ⇠)]
[⇡⇡⇡]1 = P, [⇡⇡⇡]2 = Q
min⇡⇡⇡ E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

,

8
<

:

max⇡⇡⇡ E[⇡⇡⇡]2 [f (x , ⇠)]
[⇡⇡⇡]1 = P
E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

duality...

Franck’s talk!
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Existing statistical guarantees of WDRO

Suppose ⇠1, . . . , ⇠N ⇠ Ptrain (where ⇠ 2 Rd)

Computations with bPN=
1

N

NX

i=1

�⇠i and guarantees with Ptrain ?

We manipulate the WDRO risk : R⇢(x) = max
W (bPN ,Q)6⇢

EQ[f (x , ⇠)]

Obviously, if ⇢,N large enough such that W (Ptrain, bPN) 6 ⇢, then

R⇢(x)| {z }
can compute & optimize

> EPtrain
[f (x , ⇠)]| {z }

cannot access

It requires ⇢ / 1/ d
p
N [Fournier and Guillin ’15] (issue)

Not optimal: ⇢ / 1/
p
N su�ces

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Extended exact generalization guarantees of WDRO

Our approach : a direct “optimization” approach
(work to get a concentration result on the (dual) objective in the `2-case)

Theorem ([Azizian, Iutzeler, M. ’23])

Assumptions : compactness on ⇠ + compactness on f + quad. growth of f near its minimizers

For � 2 (0, 1), if ⇢ > O

⇣q
log 1/�

N

⌘

Generalization guarantee: w.p. 1 � �, R⇢(x) > EPtrain [f (x , ⇠)]

Distribution shifts: w.p. 1 � �,

W (P, Q)2 6 ⇢
⇣
⇢ � O

�q
log 1/�

N

�⌘
it holds R⇢(x) > EQ [f (x , ⇠)]

Assumptions valid in many cases: linear/logistic regression, kernel models, smooth
neural networks, family of invertible mappings (e.g. normalizing flows)
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Illustration

On logistic regression:

for each ⇢, sample 200 training datasets

solve the WDRO problem on each of them [Blanchet et al ’22]

plot the proba of R⇢(f ) � EPtrain
[f ] > 0 (average, standard deviation)

the training robust loss is indeed an upper-bound on the true loss

12



Spotlight #2 : Robust Federated Learning

Krishna Pillutla, Yassine Laguel, Jérôme Malick, Zaid Harchaoui

Federated Learning with Superquantile Aggregation for Heterogeneous Data

Machine Learning Journal, 2023



Setting: federated learning in a nutschell

Standard learning : get all the data and learn your model on it

E�cient... but is privacy invasive (hospitals, compagnies...)

Idea : move the model not the data !

Usual learning algorithm : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])
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Setting: federated learning in a nutschell

Standard learning : get all the data and learn your model on it

E�cient... but is privacy invasive (hospitals, compagnies...)

Idea : move the model not the data !

Usual learning algorithm : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts 
global model to sampled clients

Step 2 of 3: Clients perform some 
local SGD steps on their local data

Server

Step 3 of 3: Aggregate client 
updates securely

Server

Parallel Gradient Distribution [Mangasarian. SICON (1995)]                 
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)] 
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

14



Issue of heterogeneous users

Global model is trained on average distribution 
across clients (ERM)

Server

15



Issue of heterogeneous users

Server

Global model is deployed on individual clients
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Issue of heterogeneous users

Server

Error

C
ou

nt

Error

High 
Error

Low 
Error

Train-test 
mismatch!

Global model is deployed on individual clients
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Robust approach over the users

Our goal: reduce the tail error

Error

C
ou

nt

Error

High 
Error

Low 
Error

Error

C
ou

nt

Error

High 
Error

Low 
Error

Reduce tail errorOur goal

27

Risk measure: Superquantile [Rockafellar et al ’00] (a.k.a. Conditional Value-at-Risk)

(Recent applications in learning [Pillutla, Laguel, M., Harchaoui ’21] [Bondel et al ’22])

Duality gives a DRO formulation

R✓(x) = max
Q2U

EQ[F (x)]

= max
⇡2�n

(
nX

i=1

⇡i Fi (x) : k⇡k1 6 1

n✓

)
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Risk measure: Superquantile [Rockafellar et al ’00] (a.k.a. Conditional Value-at-Risk)

(Recent applications in learning [Pillutla, Laguel, M., Harchaoui ’21] [Bondel et al ’22])

Duality gives a DRO formulation

R✓(x) = max
Q2U

EQ[F (x)]

= max
⇡2�n

(
nX

i=1

⇡i Fi (x) : k⇡k1 6 1

n✓

) 0

1

1

1

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Dual expression  continuous knapsack problem�

��(x1, �, xn) = max {∑
i

�ixi : �i � 0, ∑
i

�i = 1, �i � (n�)�1}

min
w

max
� : �i�(n�)�1 �z�p� [f(w; z)]

 Distributionally robust learning�

Assuming a new test client with mixture distribution , 

Simplicial-FL objective is equivalent to:

p� = ∑
i

�ipi

31

16



DRO/superquantile in action in federated learning

Only step 3 di↵ers between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

ERM Algorithm (FedAvg):

Server Server

Loss

C
ou

nt
Tail

Simplicial-FL Algorithm:

min
w

��( (F1(w), �, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

DRO approach is fully compatible with secure aggregation and di↵erential privacy
[Pillutla, Laguel, M., Harchaoui ’22]
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Convergence analysis

Analysis when Fi are smooth (and nonconvex)

Challenges: non-smoothness of R✓, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui ’23])

Suppose Fi are G -Lipschitz and with gradients L-Lipshitz

Ekr�2L
✓ (xt)k2 6

r
�LG 2

t
+ (1 � ⌧)1/3

✓
�LG

t

◆2/3

+
�L

t

with t: nb comm. rounds, ⌧ : nb local updates, and �: initial error

where �µ
✓ (x) = inf

y

n
R̄✓(y) +

µ

2
ky � xk2

o
(Moreau~ enveloppe) [Davis Drus. ’21]

R̄✓ an approximation of R✓ with unbiased gradient [Levy et al ’21]

+ result of linear convergence when Fi are convex (add smoothing and regularization)

18



Illustration: DRO does reshape test histograms

Classification task – ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. DRO
(dashed lines: 10%/90%-quantiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of � nal misclassi� cation error

Conformity level 

Distribution of � nal misclassi� cation error for FedAvg

Distribution of � nal misclassi� cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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Recall the goal:

Error

C
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Error

High 
Error

Low 
Error

Error
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nt

Error
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Error
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Error

Reduce tail errorOur goal

27
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Conclusion

Main take-aways

ML works well, unless it does not. Work needed. Optimization is in the game

Distributionally robust optimization DRO is rich, active topic

Spotlight #1: WDRO has nice generalization properties

Spotlight #2: DRO works in practice (code: github.com/krishnap25/sqwash)
Distributionally robust learning in PyTorch

Install: pip install sqwash 

Documentation: krishnap25.github.io/sqwash/

What’s next ? Can’t wait for Franck’s talk !

WDRO is popular... But requires numerical work

How to dealing with nonsmooth objective R⇢(x) =maxW (bPN ,Q)6⇢ EQ[f (x , ⇠)]

thank you all ,

20

github.com/krishnap25/sqwash
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