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Look at how impressive deep learning can be !

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with stable diffusion (https://stablediffusionweb.com)



https://stablediffusionweb.com

Don’t forget how fragile deep learning can be !

Example 1: Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)
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“ML is a wonderful tech-
nology: it makes pigs fly”
[Kolter, Madry '18]
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Example 2: Attacks against self-driving cars [@ CVPR '18]
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Observe also that ML can perform poorly

Example:  Global model is deployed on individual clients :

Have a good (=) |77

@ o | oy weekend &
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Toward robust, responsible learning: set-up of the optim. perspective

@ Training data:  &1,...,&y (in theory: sampled from Pyin unknown)

e.g. in supervised learning: labeled data & = (aj, yi) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,0, ...)

e.g. least-square regression: f(x7 (a,y)) =(x"a—y)

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

1 N
min Zl f(x,&)



Toward robust, responsible learning: set-up of the optim. perspective

@ Training data:  &1,...,&n (in theory: sampled from Pyin unknown)

e.g. in supervised learning: labeled data & = (aj, yi) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,0, ...)

e.g. least-square regression: f(x, (a,y)) =(x"a—y)

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

N N
1 L 1
min E f(x, &) =Eg, [f(x,€)] with PN:N E 3
i=1 i=1
@ Prediction with x for different data &

Adversarial attacks (e.g. flying pigs, driving cakes...)

Presence of bias, e.g. heterogeneous data
Distributional shifts: Pyain # Prest

— Generalization: computations with [Py and guarantees on Pyin

@ Solution: take possible variations into account during training



(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than mXin Eg, [f(x,§)]  solve instead mXin max Eo[f(x,&)]
with U/ a neighborhood of @N (called ambiguity set)
_ 1<
o U= {PN} ; mXin m ; f(x,&) standard ERM

@ U defined by moments e.g. [Delage, Ye, '10] [Jegelka et al. '19]

o U = {(@ : d(]IADN, Q) < p} for various distances or divergences
E.g. KL-div., x2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U= {(@ : W(@N,(@) < p} Wasserstein distance [Kuhn et al. '18] (popular in OT)

modeling vs. computational tractability




Simple illustration of the gain in robustness

Example : basic classification (linear, 2D, 2 classes...)
e Training data : & = (a;,y,)€ R? x {—1,+1}
sampled from two Gaussian distributions with variances c =1 and 0 =5
@ Testing data : reverse variance c =5and o =1

e Compute standard separator by min logistic loss f(x, &) = log(1 + exp(—y a' x))

N
1 T
min z; log(1 + exp(—y; a; x))
=
@ Compute a robust separator (Wassertein DRO w. c((a,y),(a’,y")) = |la — a|| + x1,—,/)

Training qata Testing data

A%




Simple illustration of the gain in robustness
Example : basic classification (linear, 2D, 2 classes...)
e Training data : & = (a;,y,)€ R? x {—1,+1}
sampled from two Gaussian distributions with variances c =1 and 0 =5

@ Testing data : reverse variance c =5 and o =1

e Compute standard separator by min logistic loss f(x, &) = log(1 + exp(—y a' x))

N
1 .
min Zl log(1 + exp(—y; a; x))
=
@ Compute a robust separator (Wassertein DRO w. c((a,y),(a,y")) = |la—a'|| + k1,_,/)

Training data Testing data Logistic Regression WDRO Logistic Regression




DRO, at the intersection of OR, ML, Optim

DRO is very attractive

@ Statistical /theoretical properties
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

@ Computable in many cases
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Natural in many applications
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Interprets up to first-order as a penalization by |V¢f(x, )|l e.g. [Gao et al. '18]



DRO, at the intersection of OR, ML, Optim

DRO is very attractive

@ Statistical /theoretical properties — warning : dimensionality | (spotlight #1)
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

e Computable in many cases — on-going research | (Franck’s talk)
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Natural in many applications — towards fairness (spotlight #2)
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

@ Interprets up to first-order as a penalization by |V¢f(x, )|l e.g. [Gao et al. '18]



Spotlight #1 : Statistical guarantees
of optimal-transport-based DRO

ﬁ Azizian Waiss, Franck lutzeler, and Jérome Malick
Excat generalization guarantees for (regularized) WDRO models
Just accepted in NeurlPS, 2023



Wasserstein comes into play

Def: Wasserstein distance (given a cost function c)

W(P,Q) = m7rin{E,,[c(§,§')] .7 with marginals [r]; = Pand [r], = Q}
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Def: Wasserstein distance (given a cost function c)
W(P,Q) = min{ Ex[c(&, &')] : ® with marginals [r]; = Pand [r], = Q}
™

Demystification: in the discrete case
eg. P=(p1,...,pn) and Q = (q1,...,gn) in the simplex
ming ZII-VJ:]_C,"J'ﬂ;’j 0@
S imj=p i=1...,N °
SN mi=q j=1,...,N
mj=>0 i,j=1...,N

linear assignment !
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Wasserstein-DRO objective for given P and p

{maX@ Eg[f(x, €)]
W(P,Q) <p
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Wasserstein comes into play

Def: Wasserstein distance (given a cost function c)
W(P,Q) = min{ Ex[c(&, &')] : ® with marginals [r]; = Pand [r], = Q}
T

Demystification: in the discrete case
eg. P=(p1,...,pn) and Q = (q1,...,gn) in the simplex
ming Z,’-V’J-zl Cijmij 0@
S imj=p i=1...,N °
SN mi=q j=1,...,N
mj=0 ij=1,...,N

linear assignment !

Wasserstein-DRO objective for given P and p

maxg Eg[f(x,& maxgx Eg[f(x,§)] maxgy B, [f(x, )] duality...
{ ;V?P,S)[ép e [fh=P=Q &q [h=F

ming Eolc(6, ) <p | Eale(6.€)]<p KSR



Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Prain (where € € RY)
T T .
@ Computations with Py = —Z 0¢; and guarantees with Pyin 7
N i=1
@ We manipulate the WDRO risk : R,(x) = max  Eg[f(x,§)]
W(HDNyQ)gp

@ Obviously, if p,N large enough such that W(]P’traim@,v) < p, then

Ro(x) >z Ep,,[f(x9)]
SN—— —

can compute & optimize cannot access

10



Existing statistical guarantees of WDRO

@ Suppose &1,...,En ~ Prain (where € € RY)
T _
@ Computations with Py = NZ 0¢; and guarantees with Pyin 7
i=1
@ We manipulate the WDRO risk : R,(x) = max  Eg[f(x,§)]
W(P/\h(@)gp

Obviously, if p,N large enough such that W(IP’traim@N) < p, then

Ro(x) >z Ep,,[f(x9)]
SN—— —

can compute & optimize cannot access

It requires p oc 1/¥/N [Fournier and Guillin '15] (issue)

Not optimal: p o 1/\/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et al '19]
— or with error terms [Gao '22]
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Extended exact generalization guarantees of WDRO

Our approach : a direct “optimization” approach

(work to get a concentration result on the (dual) objective in the ¢>-case)

Theorem ([Azizian, lutzeler, M. '23])

Assumptions : compactness on & + compactness on f + quad. growth of f near its minimizers

For$ € (0,1), ifp> O(@)

Generalization guarantee: w.p. 1 —§, R,(x) = Ep,,,, [f(x,£)]

11
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Extended exact generalization guarantees of WDRO

Our approach : a direct “optimization” approach

(work to get a concentration result on the (dual) objective in the ¢>-case)

Theorem ([Azizian, lutzeler, M. '23])

Assumptions : compactness on & + compactness on f + quad. growth of f near its minimizers

Ford € (0,1), ifp> 0(\/@)

Generalization guarantee: w.p. 1 — 6, R,(x) = Ep,,,, [f(x,£)]

Distribution shifts: w.p. 1 — 6,

W(P,Q)* < p(p— O(\/52)) it holds  R,(x) > Eqf(x,¢)]

Assumptions valid in many cases: linear/logistic regression, kernel models, smooth
neural networks, family of invertible mappings (e.g. normalizing flows)

11



llustration

On logistic regression:

@ for each p, sample 200 training datasets
@ solve the WDRO problem on each of them [Blanchet et al '22]

@ plot the proba of Rp(f) — Eptrain[f] > 0 (average, standard deviation)

@ the training robust loss is indeed an upper-bound on the true loss
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Spotlight #2 : Robust Federated Learning

ﬁ Krishna Pillutla, Yassine Laguel, Jérdme Malick, Zaid Harchaoui
Federated Learning with Superquantile Aggregation for Heterogeneous Data
Machine Learning Journal, 2023




Setting: federated learning in a nutschell
@ Standard learning : get all the data and learn your model on it
o Efficient... but is privacy invasive (hospitals, compagnies...)

@ |ldea : move the model not the data !

14



Setting: federated learning in a nutschell

Standard learning : get all the data and learn your model on it

Efficient... but is privacy invasive (hospitals, compagnies...)
@ |dea : move the model not the data !

@ Usual learning algorithm : FedAvg [McMahan et al 2017]
(based on old ideas, e.g. [Mangasarian 1995])

Step 1 of 3: Server broadcasts Step 2 of 3: Clients perform some Step 3 of 3: Aggregate client
global model to sampled clients local SGD steps on their local data updates securely

‘ Server ’
Server

14



Issue of heterogeneous users

Global model is trained on average distribution
across clients (ERM)

‘ Server ’

i
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Issue of heterogeneous users

> | Haveagood [

@ ot oy weekend
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Issue of heterogeneous users

Global model is deployed on individual clients

> | Haveagood

Count

Train-test
mismatch!

High
Error

Error
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Robust approach over the users

Our goal: reduce the tail error

Count

Count

Error Error

Risk measure: Superquantile [Rockafellar et al '00] (a.k.a. Conditional Value-at-Risk)
(Recent applications in learning [Pillutla, Laguel, M., Harchaoui '21] [Bondel et al '22])

16



Robust approach over the users

Our goal: reduce the tail error

Count

Count

Error

Error
Risk measure: Superquantile [Rockafellar et al '00] (a.k.a. Conditional Value-at-Risk)
(Recent applications in learning [Pillutla, Laguel, M., Harchaoui '21] [Bondel et al '22])
Duality gives a DRO formulation

Ro(x) = max EqlF(x)

n
1
= ;gann{;m Fi(x): [[7flee < @}

16



DRO/superquantile in action in federated learning

Only step 3 differs between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates
contributed by all clients

Step 3 of 3: Aggregate updates
contributed by tail clients only

Count

| Tail

Loss

DRO approach is fully compatible with secure aggregation and differential privacy
[Pillutla, Laguel, M., Harchaoui '22]

17



Convergence analysis

Analysis when F; are smooth (and nonconvex)

Challenges: non-smoothness of Ry, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui '23])
Suppose F; are G-Lipschitz and with gradients L-Lipshitz

ALG? ALGN\?? AL
BIVOR (i < | 25 + -0 (A1) 5

with t: nb comm. rounds, T: nb local updates, and A: initial error

where ®7(x) = inf {R’e(y) + %Ily - XH2} (MoreauQ enveloppe) [Davis Drus. '21]
y

Ry an approximation of Ry with unbiased gradient [Levy et al '21]
+ result of linear convergence when F; are convex (add smoothing and regularization)

18



lllustration: DRO does reshape test histograms

Classification task — ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. DRO
(dashed lines: 10%/90%-quantiles)
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Low
Error
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High 0.000
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Conclusion
Main take-aways

@ ML works well, unless it does not. Work needed. Optimization is in the game
Distributionally robust optimization DRO is rich, active topic

@ Spotlight #1: WDRO has nice generalization properties

@ Spotlight #2: DRO works in practice (code: github.com/krishnap25/sqwash)

import torch.nn.functional as F
from sqwash import reduce_superquantile

for x, y in dataloader:
y_hat = model(x)
batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set ‘reduction='none'"
loss = reduce_superquantile(batch_losses, superquantile_tail_fraction=0.5) # Additional line
loss.backward() # Proceed as usual from here

20
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from sqwash import reduce_superquantile
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What'’s next ? Can’t wait for Franck’s talk !
@ WDRO is popular... But requires numerical work

@ How to dealing with nonsmooth objective R,(x) =MaXy, @, 0)<p Eo[f(x,&)]

thank you all  ©)
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