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Example 2: Attacks against self-driving cars [@ ICLR "19]




Set-up:

data-driven optimization under uncertainty

Training data:  &1,...,&n ~ Piain (unknown)

e.g. in supervised learning: & = (a;, y;) feature, label

Train model: x the parameter f(x, ) the objective function

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

1N
min ; f(x,&)

Prediction with x for different data &

— Adversarial attacks (e.g. flying pigs)
Distributional shifts: Prain 7 Prest

— Generalization: computations with Py and guarantees on Piain

Other situations...

Solution: take possible variations into account during training (

when optimizing ©) )
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e.g. in supervised learning: & = (a;, y;) feature, label

@ Train model: x the parameter f(x, ) the objective function

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

e Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)
1 1N
min ; Fx, &) =Bz [F(x, )] with Py= N; S,
@ Prediction with x for different data &

— Adversarial attacks (e.g. flying pigs)
Distributional shifts: Prain 7 Prest

— Generalization: computations with Py and guarantees on Piain

Other situations...

@ Solution: take possible variations into account during training (= when optimizing ) )
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations
Instead of mXin Es [f(x,9)] solve min max Eg[f(x,&)]

with U/ a neighborhood of I@N (called ambiguity set)

modeling vs. computational tractability

N
. 1
o U = {]P’N} toominy ; f(x,&) standard ERM
o U defined by moments e.g. [Delage, Ye, '10]

o U= {Q : d(@,\,,@) < p} for various distances or divergences
E.g. KL-div., x2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U= {Q : W(@N,Q) < p} Wasserstein distance [Kuhn et al. '18] (in this talk)

@ and Sinkhorn ? not considered yet ?! because not clear... (more on that later)
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Notation: p-Wasserstein distance

W(P,Q) = mﬂin{E,,[Hf —&'||P] : m with marginals [r]; = Pand [r], = Q}%

WDRO objective for given P and p

maxq,x EQ[f(f)] maXy E[,,,-h[f(f)]
{ ma;S(PEg)[gE;] = [ﬂl =P r2=Q = [r]; =P
S ming Br[[[§ — &'IIP] < pP Ex[ll€ = £'[IP] < p?
Computable in many cases
Dual  min Ap” + Ee| maxe {f(&') = AlI€ = &[1P}] e.g. [Kuhn et al. '18]

Success: WDRO is popular
— Natural in many applications, e.g. in learning [Kuhn et al. '20]
— Good statistical /practical properties, e.g. [Blanchet et al. '18]

— Interprets up to first-order as a penalization by ||V¢f(x,&)||, e.g. [Gao et al. '18]

But WDRO also has some limitations: further work needed to extend the WDRO toolkit
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We propose to regularize WDRO with general convex functions (R, S: M(=ZxZ) — RU {+oc})
maxy B, [F(E)]— R ()
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Our work: regularization for WDRO
Inspired by [Paty, Cuturi '20] (study of general regularization for OT)

We propose to regularize WDRO with general convex functions (R, S: M(=ZxZ) — RU {+oc})

maxy Bz, [f(§)] - R(7)
[t =P
Ex[ll€ — &NIP]+S(m) < pP

Dual regularized WDRO
minmin Ap” + K[ maxe {f(&') = M€ = &'[IP — @(&.E)}H + (R +AS).()

Quite abstract... but more concrete expressions when specialized

_ _ . B j'logj—‘; dp p<v
e.g. R(w) =eKL(x|m) and S(7) = § KL(7|mp) KL div. : KL(plv) = {+Oo otherwice
for a given mg such that [mp]; =P
T;r(} ApP 4 (e + A9) Ep log (ng,ro(.‘g)ew) smooth(©)

=

(Similar expressions in [Blanchet et al '21] [Wang et al '21])



Entropic regularization: OT & WDRO

OT: Sinkhorn distance, very popular from [Cuturi '13]
min{ Ex[||¢ — &'||P] + e KL(7|mo) :  with marginals [r]; = Pand [r], = Q}
™

WDRO: entropic regularization, seemingly new [Azizian, lutzeler, M. '21]

maXqy ]E[,rlz[f(f)]—E KL(Tl"ﬂ'())
[71']1 =P
Ex[ll€ = €'[1P1+0 KL(m|mo) < pP

in OT, take mp =P ®Q but in WDRO, [mg]2 not fixed !
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OT: Sinkhorn distance, very popular from [Cuturi '13]
min{ Ex[||¢ — &'||P] + e KL(7|mo) :  with marginals [r]; = Pand [r], = Q}
™

WDRO: entropic regularization, seemingly new [Azizian, lutzeler, M. '21]

maXqy ]E[,rlz[f(f)]—E KL(Tl"ﬂ'())
[71']1 =P
Ex[ll€ = €'[1P1+0 KL(m|mo) < pP

in OT, take mp =P ®Q but in WDRO, [mg]2 not fixed !

Subtility: [y =P, [r,=Q=7 < mo ” mo(d§, d’) oc P(dE) Tgreze™

le—¢"nP

o

Bottomline: (entropic) regularization — for both OT and WDRO
@ helps numerically (on-going research for WDRO...)

@ helps in theory, especially against curse of dimension (end of this talk)

de¢’



Regularization helps in theory #1, sanity check: approximation bounds for WDRO

Inspired by [Genevay, Chizat, et al. "19] (bound on the approximation error for regularized OT)
Dual WDRO: (P) min AP +Exlmaxe {£(¢) — Al¢ — €17 ]

Dual WDRO regularized by R(7) = ¢ KL(7|m) and S(7) = § KL(7|mo)
. feH-xe-¢"|P
(RS,(S) r}?}”& )\pp + (5 + )\6)]E]_31 |Og (Egl"‘ﬂ'o("f)e e+Ad )

Theorem ([Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set = C RY, then

0 < | —val(P. < Cd(e+ M) | =
val(P) —val(F. 5) (e ) log 0
2sup- |f|

where A = P —Engc

an explicit dual upper bound.

(the proof uses techniques from [Carlier et al '17])
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Regularization helps in theory #2: generalization results for WDRO
Data &1, ...,En ~ Pyain; computation with Py = %Z,’-V:l 0¢,; guarantees with Pyein 7
OT theory: W(Pain, Pv) < O(1/¥/N)  (with high probability) [Fournier, Guillin '15]

WDRO consequence [Esfahani, Kuhn '18]: if p > O(1/v/N), for all f € F
Eﬂ»m[f(g)] < ‘max EQ[f(f)] (with high probability)
w

PN, P
WDRO direct: [An, Gao '22] drops the dependence on d by taking p 1/\/N

With regularization: we can do even better ! (when p =2, £ > 0, and = compact)

Theorem (very informal, [Azizian, lutzeler, M. '22])

If p = pny=0(1/v/'N), then for all f € F

Ep,..[f] < Fo_,u(f,Peain) < FE(f,Bn)  (with high probability)

maxz B, [f(€)] — € KL(m|mo)
F;(f7HD): [7[']1:IP
Er[ll€ —€'IP] < p?



Conclusion

Main take-aways
@ More work is needed on robustness in learning
@ Distributionally robust optimization DRO is rich, active topic

@ Our current work: extend the toolkit of DRO by regularization, inspired by OT
(general duality, approximation results, worst-case distribution, statistical guarantees)

On-going work
@ Wrap up the paper on generalisation
o Further investigate the computational aspects !

o Further investigate applications... (in fairness?)
(first sucess in federated learning [Laguel, Pillutla, M., Harchaoui])
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thank you all !



