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Wäıss Azizian, Franck Iutzeler

1

MANY THANKS TO MY CO-AUTHORS ! 29



More robustness in ML/IA ?

we do not want machine-learned systems to fail when used in real-word

Example 1: Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
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“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Example 2: Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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Set-up: data-driven optimization under uncertainty

Training data: ξ1, . . . , ξN ∼ Ptrain (unknown)

e.g. in supervised learning: ξi = (ai , yi ) feature, label

Train model: x the parameter f (x , ·) the objective function

e.g. least-square regression: f
(
x , (a, y)

)
= (x>a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑
i=1

f (x , ξi )

Prediction with x for different data ξ

– Adversarial attacks (e.g. flying pigs)

– Distributional shifts: Ptrain 6= Ptest

– Generalization: computations with P̂N and guarantees on Ptrain

– Other situations...

Solution: take possible variations into account during training (= when optimizing , )
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

Instead of min
x

E P̂N
[f (x , ξ)] solve min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N (called ambiguity set)

modeling vs. computational tractability

U =
{
P̂N

}
: min

x

1

N

N∑
i=1

f (x , ξi ) standard ERM

U defined by moments e.g. [Delage, Ye, ’10]

U =
{
Q : d(P̂N ,Q) 6 ρ

}
for various distances or divergences

E.g. KL-div., χ2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
{
Q : W (P̂N ,Q) 6 ρ

}
Wasserstein distance [Kuhn et al. ’18] (in this talk)

and Sinkhorn ? not considered yet ?! because not clear... (more on that later)
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WDRO: DRO with Wasserstein balls as ambiguity sets

Notation: p-Wasserstein distance

W (P,Q) = min
πππ
{Eπππ[‖ξ − ξ′‖p] : πππ with marginals [πππ]1 = P and [πππ]2 = Q}

1
p

WDRO objective for given P and ρ

{
maxQ EQ[f (ξ)]
W (P,Q) 6 ρ

⇐⇒

maxQ,πππ EQ[f (ξ)]
[πππ]1 = P, [πππ]2 = Q
minπππ Eπππ[‖ξ − ξ′‖p] 6 ρp

⇐⇒

maxπππ E[πππ]2
[f (ξ)]

[πππ]1 = P
Eπππ[‖ξ − ξ′‖p] 6 ρp

Computable in many cases

e.g. [Kuhn et al. ’18]Dual min
λ>0

λρp + EP[ maxξ′{f (ξ′)− λ‖ξ − ξ′‖p} ]

Success: WDRO is popular

– Natural in many applications, e.g. in learning [Kuhn et al. ’20]

– Good statistical/practical properties, e.g. [Blanchet et al. ’18]

– Interprets up to first-order as a penalization by ‖∇ξf (x , ξ)‖, e.g. [Gao et al. ’18]

But WDRO also has some limitations: further work needed to extend the WDRO toolkit
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Our work: regularization for WDRO

Inspired by [Paty, Cuturi ’20] (study of general regularization for OT)

We propose to regularize WDRO with general convex functions (R, S : M(Ξ×Ξ)→ R ∪ {+∞}) maxπππ E[πππ]2
[f (ξ)]−R(πππ)

[πππ]1 = P
Eπππ[‖ξ − ξ′‖p]+S(πππ) 6 ρp

Dual regularized WDRO

min
λ>0

min
ϕ

λρp + EP[ maxξ′{f (ξ′)− λ‖ξ − ξ′‖p} ]− ϕ(ξ, ξ′)} ] + (R + λS)∗(ϕ)

Quite abstract... but more concrete expressions when specialized

e.g. R(π) = εKL(π|π0) and S(π) = δKL(π|π0) KL div. : KL(µ|ν) =

{∫
log dµ

dν
dµ µ� ν

+∞ otherwise

for a given π0 such that [π0]1 = P

min
λ>0

λρp + (ε+ λδ) EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λ‖ξ−ξ′‖p
ε+λδ

)
smooth,

(Similar expressions in [Blanchet et al ’21] [Wang et al ’21])
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Entropic regularization: OT & WDRO

OT: Sinkhorn distance, very popular from [Cuturi ’13]

min
πππ
{Eπππ[‖ξ − ξ′‖p] + εKL(πππ|π0) : πππ with marginals [πππ]1 = P and [πππ]2 = Q}

WDRO: entropic regularization, seemingly new [Azizian, Iutzeler, M. ’21] maxπππ E[πππ]2
[f (ξ)]−εKL(πππ|π0)

[πππ]1 = P
Eπππ[‖ξ − ξ′‖p]+δKL(πππ|π0) 6 ρp

Subtility:
in OT, take π0 = P⊗Q
[πππ]1 = P, [πππ]2 = Q⇒ πππ � π0

vs
but in WDRO, [π0]2 not fixed !

π0(dξ, dξ′) ∝ P(dξ) Iξ′∈Ξe
− ‖ξ−ξ

′‖p
σ dξ′

Bottomline: (entropic) regularization – for both OT and WDRO

helps numerically (on-going research for WDRO...)

helps in theory, especially against curse of dimension (end of this talk)
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WDRO: entropic regularization, seemingly new [Azizian, Iutzeler, M. ’21] maxπππ E[πππ]2
[f (ξ)]−εKL(πππ|π0)

[πππ]1 = P
Eπππ[‖ξ − ξ′‖p]+δKL(πππ|π0) 6 ρp

Subtility:
in OT, take π0 = P⊗Q
[πππ]1 = P, [πππ]2 = Q⇒ πππ � π0

vs
but in WDRO, [π0]2 not fixed !

π0(dξ, dξ′) ∝ P(dξ) Iξ′∈Ξe
− ‖ξ−ξ

′‖p
σ dξ′

Bottomline: (entropic) regularization – for both OT and WDRO

helps numerically (on-going research for WDRO...)

helps in theory, especially against curse of dimension (end of this talk)
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Regularization helps in theory #1, sanity check: approximation bounds for WDRO

Inspired by [Genevay, Chizat, et al. ’19] (bound on the approximation error for regularized OT)

Dual WDRO: (P) min
λ>0

λρp + EP[ maxξ′ {f (ξ′)− λ‖ξ − ξ′‖p} ]

Dual WDRO regularized by R(π) = εKL(π|π0) and S(π) = δKL(π|π0)

(Pε,δ) min
λ>0

λρp + (ε+ λδ)EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λ‖ξ−ξ′‖p
ε+λδ

)
Theorem ([Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set Ξ ⊂ Rd , then

0 6 val(P)− val(Pε,δ) 6 C d (ε+ λδ) log
1

ε+ λδ

where λ = 2 supΞ |f |
ρp−Eπ0

c an explicit dual upper bound.

(the proof uses techniques from [Carlier et al ’17])
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Regularization helps in theory #2: generalization results for WDRO

Data ξ1, . . . , ξN ∼ Ptrain; computation with P̂N = 1
N

∑N
i=1 δξi ; guarantees with Ptrain ?

OT theory: W (Ptrain, P̂N) 6 O(1/ d
√
N) (with high probability) [Fournier, Guillin ’15]

WDRO consequence [Esfahani, Kuhn ’18]: if ρ > O(1/ d
√
N), for all f ∈ F

EPtrain [f (ξ)] 6 max
W (P̂N ,Q)6ρ

EQ[f (ξ)] (with high probability)

WDRO direct: [An, Gao ’22] drops the dependence on d by taking ρ ∝ 1/
√
N

With regularization: we can do even better ! (when p = 2, ε > 0, and Ξ compact)

Theorem (very informal, [Azizian, Iutzeler, M. ’22])

If ρ > ρN =O(1/
√
N), then for all f ∈ F

EPtrain [f ] 6 F ερ−ρN (f ,Ptrain) 6 F ερ (f , P̂N) (with high probability)

F ερ (f ,P) =

 maxπππ E[πππ]2
[f (ξ)]− εKL(πππ|π0)

[πππ]1 = P
Eπππ[‖ξ − ξ′‖2] 6 ρ2
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Conclusion

Main take-aways

More work is needed on robustness in learning

Distributionally robust optimization DRO is rich, active topic

Our current work: extend the toolkit of DRO by regularization, inspired by OT
(general duality, approximation results, worst-case distribution, statistical guarantees)

On-going work

Wrap up the paper on generalisation

Further investigate the computational aspects !

Further investigate applications... (in fairness?)

(first sucess in federated learning [Laguel, Pillutla, M., Harchaoui])

thank you all !
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