Optimization beyond minimization: spurious GANs, Wasserstein robustness, and other applications in machine learning*

Jérôme MALICK

CNRS, Lab. Jean Kuntzmann & MIAI

Thoth Seminar - Inria Grenoble - May 2022

*based on joint work with good people from DAO...

Optimization for machine learning

Optim. is at the core of ML, playing a fundamental role behind the scenes (model training, hyperparameter tuning, feature selection,...)

$$\min_{x} F(x) = \mathbb{E}_{\xi \sim \mathbb{P}}[f(x,\xi)] \text{ or } \frac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

e.g. least-squares regression:
$$\xi_i=(a_i,y_i)$$
 feature, label
$$f\big(x,(a,y)\big)=(x^\top a-y)^2$$

Optimization for machine learning

Optim. is at the core of ML, playing a fundamental role behind the scenes (model training, hyperparameter tuning, feature selection,...)

$$\min_{x} F(x) = \mathbb{E}_{\xi \sim \mathbb{P}}[f(x,\xi)] \text{ or } \frac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

e.g. least-squares regression: $\xi_i = (a_i, y_i)$ feature, label $f(x, (a, y)) = (x^\top a - y)^2$

E.g. optim. workshops at NeurIPS/ICML... multiple books...

Optimization for machine learning

Optim. is at the core of ML, playing a fundamental role behind the scenes (model training, hyperparameter tuning, feature selection....)

$$\min_{x} F(x) = \mathbb{E}_{\xi \sim \mathbb{P}}[f(x,\xi)] \text{ or } \frac{1}{N} \sum_{i=1}^{N} f(x,\xi_i)$$

e.g. least-squares regression: $\xi_i = (a_i, y_i)$ feature, label $f(x,(a,y)) = (x^{T}a - y)^{2}$

E.g. optim. workshops at NeurIPS/ICML... multiple books...

E.g. Test of Time Awards

NeurIPS 2019

[Xiao '09]

Dual Averaging Method for Regularized Stochastic Learning and Online Optimization

> Microsoft Research, Redmond, WA 98052 lin.xiao@microsoft.com

> > Abstract

We consider combained atachastic learning and galine patimization problems where the objective function is the sum of two convex terms: one is the loss func**ICML 2019**

[Mairal et al '09]

Online Dictionary Learning for Sparse Coding Juliea Mairal INRIA.1 45 rae d'Ulm 75005 Paris, France University of Minnesota - Department of Electrical and Computer Engineering, 200 Union Street SE, Minnespolis, US:

NeurIPS 2020 [Recht et al '10]

HOGWILD!: A Lock-Free Approach to Parallelizing

Stochastic Gradient Descent Stephen J. Wright swright@cs.wisc.ed

Stochastic Gradient Doccent (SGD) is a normal algorithm that can achieve state

ICMI 2021

[Seeger et al '09]

Gaussian Process Optimization in the Bandit Setting No Regret and Experimental Design

California Institute of Technology, Posseless, CA, USA Matthias Songer Saudand University, Sauthriches, German

Flying pigs

 $pig\ \ ^{(99\%)}$

Flying pigs

Flying pigs

Flying pigs - robust/adversarial training (from notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

Flying pigs - robust/adversarial training (from notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

$$\min_{x} \mathbb{E}_{(a,y)\sim \mathsf{data}} \left[\max_{\|a'-a\|_{\infty} \leqslant \rho} f(x,(a',y)) \right]$$

Flying pigs - robust/adversarial training (from notebooks of NeurIPS 2018, tutorial on robustness)

$$+ \varepsilon_{125}^{00} + \varepsilon_$$

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

$$\min_{x} \ \mathbb{E}_{(a,y) \sim \text{data}} \left[\max_{\|a'-a\|_{\infty} \leqslant \rho} f(x,(a',y)) \right]$$

GANs training [Goodfellow et al '14]

$$\min_{\theta} \max_{\omega} \mathbb{E}_{\xi \sim \mathbb{P}_{\text{data}}}[\log D_{\omega}(\xi)] + \mathbb{E}_{\xi'}[\log(1 - D_{\omega}(\mathcal{G}_{\theta}(\xi'))]$$

Flying pigs - robust/adversarial training (from notebooks of NeurIPS 2018, tutorial on robustness)

"ML is a wonderful technology: it makes pigs fly" [Kolter, Madry '18]

$$\min_{x} \ \mathbb{E}_{(a,y) \sim \mathsf{data}} \left[\max_{\|a'-a\|_{\infty} \leqslant \rho} f(x,(a',y)) \right] = \min_{x} \max_{\mathbb{P}_{\mathsf{adv}} \in \mathcal{U}} \ \mathbb{E}_{(a,y) \sim \mathbb{P}_{\mathsf{adv}}} \left[f(x,(a,y)) \right]$$

GANs training [Goodfellow et al '14]

$$\min_{\theta} \max_{\omega} \mathbb{E}_{\xi \sim \mathbb{P}_{\text{data}}}[\log D_{\omega}(\xi)] + \mathbb{E}_{\xi'}[\log(1 - D_{\omega}(\mathcal{G}_{\theta}(\xi'))]$$

Part I – about stochastic algorithms for min-max problems

Part II – about robust models in learning

Part I – about stochastic algorithms for min-max problems

- illustrate spurious convergence even for toy example
- present a simple fix and its theoretical guarantees
 [Hsieh, lutzeler, M., Mertikopoulos, '20] spotlight NeurIPS ©

Part II – about robust models in learning

Yu-Guan Hsieh,

Part I – about stochastic algorithms for min-max problems

- illustrate spurious convergence even for toy example
- present a simple fix and its theoretical guarantees
 [Hsieh, lutzeler, M., Mertikopoulos, '20] spotlight NeurIPS ©

Part II – about robust models in learning

• introduce (distributionally) robust optimization, applied to learning problems [Laguel, Pillutla, M., Harchaoui '21]

Yu-Guan Hsieh, Yassine Laguel,

Part I – about stochastic algorithms for min-max problems

- illustrate spurious convergence even for toy example
- present a simple fix and its theoretical guarantees
 [Hsieh, lutzeler, M., Mertikopoulos, '20] spotlight NeurIPS ©

Part II – about robust models in learning

- introduce (distributionally) robust optimization, applied to learning problems [Laguel, Pillutla, M., Harchaoui '21]
- derive some nice duality/approximation results [Azizian, lutzeler, M. '22]

Yu-Guan Hsieh, Yassine Laguel, Waïss Azizian

Part I – About stochastic algorithms for min/max

Success of Generative Adversarial Networks...

Question: who is real, who isn't?

Success of Generative Adversarial Networks...

Question: who is real, who isn't?

Answer: both are fake!

[https://thispersondoesnotexist.com]

Much technology... and some maths \bigcirc

Optimization plays a role during training to compute equilibrium Generator/Discriminator

Success of Generative Adversarial Networks...

Question: who is real, who isn't?

Answer: both are fake!
[https://thispersondoesnotexist.com]

Much technology... and some maths \bigcirc

Optimization plays a role during training to compute equilibrium Generator/Discriminator

Issue: Convergence of training algorithms?

Coupling of two neural networks gives rise to strange behaviors and phenomena

Even when solved with state-of-the-art stochastic gradient (extra-gradient variants)

Non-convergent phenomena are observed even in very basic problems

Example: $\min_{x} \max_{y} x y$ of solution/equilibrium = (0,0) (arrows: gradient flows V(x,y) = (-y,x))

Non-convergent phenomena are observed even in very basic problems

Example: $\min_{x} \max_{y} x y$ of solution/equilibrium = (0,0) (arrows: gradient flows V(x,y) = (-y,x))

• Gradient algorithm diverges...

Non-convergent phenomena are observed even in very basic problems

Example: $\min_{x} \max_{y} x y$ of solution/equilibrium = (0,0) (arrows: gradient flows V(x,y) = (-y,x))

- Gradient algorithm diverges...
- Extra-gradient algorithm converges (thanks to its additional correction step)

Non-convergent phenomena are observed even in very basic problems

Example: $\min_{x} \max_{y} x y$ of solution/equilibrium = (0,0) (arrows: gradient flows V(x,y) = (-y,x))

- Gradient algorithm diverges...
- Extra-gradient algorithm converges (thanks to its additional correction step)
- Stochastic extra-gradient never converges...

Non-convergent phenomena are observed even in very basic problems

Example: $\min_{x} \max_{y} x y$ of solution/equilibrium = (0,0) (arrows: gradient flows V(x,y) = (-y,x))

- Gradient algorithm diverges...
- Extra-gradient algorithm converges (thanks to its additional correction step)
- Stochastic extra-gradient never converges...
- A remedy: use double stepsize strategy [Hsieh, lutzeler, M., Mertikopoulos '20]

General set-up and simple new strategy

To compute a solution of V(X) = 0 from stochastic oracle $(\mathbb{E}[\hat{V}_s] = V(X_s)$ and bounded variance)

We propose to explore aggressively and update conservatively, in the stoc. extra-gradient

Theorem [last-iterate convergence rate] [Hsieh, lutzeler, M., Mertikopoulos '20]

① Let V be monotone and affine. With stepsizes $\gamma_t \equiv \gamma$ and $\eta_t \simeq 1/t$,

$$\mathbb{E}[\|X_t - X^{\star}\|^2] \leqslant O\left(\frac{1}{t}\right)$$

② Let V be variationally stable* and satisfy the error bound* condition. With stepsizes of the form $\gamma_t = \gamma/(t+b)^{1/3}$ and $\eta_t = \eta/(t+b)^{2/3}$,

$$\mathbb{E}[\|X_t - X^\star\|^2] \leqslant O\left(\frac{1}{\sqrt[3]{t}}\right)$$

 $^*\langle V(X),X-X^*\rangle\geqslant 0 \text{ for all } X \\ ^*\exists \tau>0: \|V(X)\|\geqslant \tau\|X-X^*\|^2 \text{ e.g. affine, strongly monotone...}$

Conclusions, perspectives on Part I

Many extensions, variations, improvements,...

- We also have local convergence results... beyond monotonicity ! (a bit technical)
- The constrained case is more complicated... still 13 days before deadline ;-)

Suggestion: invite Yu-Guan, who the ultimate expert on these topics...

Bottomline

- We propose a simple modification of the stochastic extragradient scheme to make its last iterate converge in a large spectrum of problems including all monotone games.
- Explicit convergence rates under additional assumptions (+ local convergence results)

Conclusions, perspectives on Part I

Many extensions, variations, improvements,...

- We also have local convergence results... beyond monotonicity! (a bit technical)
- The constrained case is more complicated... still 13 days before deadline ;-)

Suggestion: invite Yu-Guan, who the ultimate expert on these topics...

Bottomline

- We propose a simple modification of the stochastic extragradient scheme to make its last iterate converge in a large spectrum of problems including all monotone games.
- Explicit convergence rates under additional assumptions (+ local convergence results)

small break for questions before Part II ?

Part II – About robust optimization and learning

we do not want machine-learned systems to fail when used in real-word

we do not want machine-learned systems to fail when used in real-word

Example 1:

keep in mind how fragile can be deep learning techniques

[@ NeurIPS '18]

Teapot(24.99%)
Joystick(37.39%)

we do not want machine-learned systems to fail when used in real-word

Example 1:

keep in mind how fragile can be deep learning techniques

[@ NeurIPS '18]

Teapot(24.99%)
Joystick(37.39%)

Example 2: Attacks against self-driving cars [@ CVPR '18]

we do not want machine-learned systems to fail when used in real-word

Example 1:

keep in mind how fragile can be deep learning techniques

[@ NeurIPS '18]

Teapot(24.99%)
Joystick(37.39%)

Example 2: Attacks against self-driving cars [@ ICLR '19]

Robust ML

we do not want machine-learned systems to fail when used in real-word

Example 3: Data heterogeneity

Robust ML

we do not want machine-learned systems to fail when used in real-word

Example 3: Data heterogeneity

E.g. in federated learning

Google, hospital consortiums...

What about non-conforming users?

Many issues!

(service quality? fairness?...)

More later...

remember the talk of Yassine Laguel in November...

Set-up: data-driven optimization under uncertainty

- Training data: $\xi_1, \dots, \xi_N \sim \mathbb{P}$ (unknown) e.g. in supervised learning: $\xi_i = (a_i, y_i)$ feature, label
- Train model: x the parameter $f(x,\cdot)$ the objective function e.g. least-square regression: $f(x,(a,y)) = (x^{\top}a y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_i)$$

• Prediction with x for different data ξ ? (generalisation, data shifts, adversarial examples,...) Take possible variations into account during training (= when optimizing \odot)

Set-up: data-driven optimization under uncertainty

- Training data: $\xi_1, \dots, \xi_N \sim \mathbb{P}$ (unknown) e.g. in supervised learning: $\xi_i = (a_i, y_i)$ feature, label
- Train model: x the parameter $f(x,\cdot)$ the objective function e.g. least-square regression: $f(x,(a,y)) = (x^{\top}a y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_{i}) = \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x, \xi)] \quad \text{with } \widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}}$$

• Prediction with x for different data ξ ? (generalisation, data shifts, adversarial examples,...) Take possible variations into account during training (= when optimizing)

Set-up: data-driven optimization under uncertainty

- Training data: $\xi_1, \dots, \xi_N \sim \mathbb{P}$ (unknown) e.g. in supervised learning: $\xi_i = (a_i, y_i)$ feature, label
- Train model: x the parameter $f(x,\cdot)$ the objective function e.g. least-square regression: $f(x,(a,y)) = (x^{\top}a y)^2$
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \ \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i) = \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x}, \xi)] \qquad \text{with } \widehat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}$$

- Prediction with x for different data ξ ? (generalisation, data shifts, adversarial examples,...) Take possible variations into account during training (= when optimizing)
- (Distributionally) robust optimization (optimize expected loss for the worst probability in a set of perturbations)

$$\min_{\mathbf{x}} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x}, \boldsymbol{\xi})]$$

Modeling issues

E.g. ambiguity/incertainty set
$$\mathcal{U}$$
: $\min_{\mathbf{x}} \max_{\mathbf{Q} \in \mathcal{U}} \mathbb{E}_{\mathbf{Q}}[f(\mathbf{x}, \boldsymbol{\xi})]$

- $\mathcal{U} = \left\{\widehat{\mathbb{P}}_N\right\}$: $\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_i)$ standard ERM
- $\bullet \ \mathcal{U} = \{\mathbb{Q} : \operatorname{supp}(\mathbb{Q}) \subset U\} : \quad \min_{\mathbf{x}} \max_{\xi \in U} f(\mathbf{x}, \xi) \quad \text{ standard robust optimization }$
- ullet U defined by moments e.g. [Delage, Ye, '10]
- $\mathcal{U} = \left\{ \mathbb{Q} : d(\mathbb{Q}, \widehat{\mathbb{P}}_N) \leqslant \rho \right\}$ for various distances or divergences E.g. KL-div., χ_2 -div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]
- $\mathcal{U} = \left\{ \mathbb{Q} : W(\mathbb{Q}, \widehat{\mathbb{P}}_N) \leqslant \rho \right\}$ Wasserstein distance from optimal transport (OT) (in this talk) Good statistical/practical properties... e.g. [Kuhn et al. '18] Interprets up to first-order as a penalization by $\|\nabla_{\xi} f(x, \xi)\|$ e.g. [Gao et al. '18]

Least-square linear regression

Data :
$$\xi_1, \xi_2, \dots, \xi_N$$
 with $\xi_i = (a_i, y_i)$ in two groups (majority vs. minority)
 $y_i = \bar{x}^\top a_i + \varepsilon_i$ with $\varepsilon_i \sim \beta \mathcal{N}^{\text{major}} + (1 - \beta) \mathcal{N}^{\text{minor}}$

Compute from data:

standard regression x^{ERM} vs. DRO regression x^{DRO} (KL-regularized)

Least-square linear regression

Data :
$$\xi_1, \xi_2, \dots, \xi_N$$
 with $\xi_i = (a_i, y_i)$ in two groups (majority vs. minority) $y_i = \bar{\mathbf{x}}^{\top} a_i + \varepsilon_i$ with $\varepsilon_i \sim \beta \mathcal{N}^{\text{major}} + (1 - \beta) \mathcal{N}^{\text{minor}}$

Compute from data:

standard regression x^{ERM} vs. DRO regression x^{DRO} (KL-regularized)

Generate new data ξ_1', \dots, ξ_M'

Test the regression errors given by x^{ERM} vs x^{DRO}

Least-square linear regression

Data :
$$\xi_1, \xi_2, \dots, \xi_N$$
 with $\xi_i = (a_i, y_i)$ in two groups (majority vs. minority) $y_i = \bar{x}^\top a_i + \varepsilon_i$ with $\varepsilon_i \sim \beta \mathcal{N}^{\text{major}} + (1 - \beta) \mathcal{N}^{\text{minor}}$

Compute from data:

standard regression
$$x^{ERM}$$
 vs. DRO regression x^{DRO} (KL-regularized)

Generate new data ξ_1', \dots, ξ_M'

Test the regression errors given by x^{ERM} vs x^{DRO}

Histogram of the test regression errors $(r_i = |x^T a_i - y_i|)$

Least-square linear regression

Data :
$$\xi_1, \xi_2, \dots, \xi_N$$
 with $\xi_i = (a_i, y_i)$ in two groups (majority vs. minority)
 $y_i = \bar{x}^\top a_i + \varepsilon_i$ with $\varepsilon_i \sim \beta \mathcal{N}^{\text{major}} + (1 - \beta) \mathcal{N}^{\text{minor}}$

Compute from data:

standard regression
$$x^{ERM}$$
 vs. DRO regression x^{DRO} (KL-regularized)

Generate new data ξ'_1, \ldots, ξ'_M

Test the regression errors given by x^{ERM} vs x^{DRO}

Histogram of the test regression errors $(r_i = |x^T a_i - y_i|)$

DRO re-shapes histograms towards more fairness (2)

DRO in action #2: federated learning with heterogeneous users

Federated Learning by Google = FedAvg

DRO in action #2: federated learning with heterogeneous users

Federated Learning by Google = FedAvg vs. DRO FedAvg [Laguel, Pillutla, M., Harchaoui '21]

Illustration:

Classification task by ConvNet

with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error (dashed lines: 10%/90% -percentiles)

Current research topic: extend the (W)DRO toolkit

- DRO works well 🙂
- Trade-off in practice : modeling vs. computational tractability
- Wasserstein-DRO is popular...
 Good statistical/practical properties, e.g. [Kuhn et al. '18]
- ...but has some limitations! news results
- We propose: Regularized WDRO [Azizian, lutzeler, M. '22]
- Why regularizing? it helps computationnally!
 One of the main reasons of the popularity of OT in ML [Cuturi '13]
- On-going research... (try to import and adapt the techniques of OT for WDRO)

Def: Wasserstein distance (given a cost function c)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \}$$

Def: Wasserstein distance (given a cost function c)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \}$$

Demystification: in the discrete case

e.g.
$$\mathbb{P}=({\color{red}p_1},\ldots,{\color{red}p_N})$$
 and $\mathbb{Q}=({\color{red}q_1},\ldots,{\color{red}q_N})$ in the simplex

$$\begin{cases} \min_{\boldsymbol{\pi}} \sum_{i,j=1}^{N} c_{i,j} \boldsymbol{\pi}_{i,j} \\ \sum_{j=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{p}_{i} \quad i = 1, \dots, N \\ \sum_{i=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{q}_{j} \quad j = 1, \dots, N \\ \boldsymbol{\pi}_{i,j} \geqslant 0 \quad i, j = 1, \dots, N \end{cases}$$

linear assignment!

Def: Wasserstein distance (given a cost function c)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \}$$

Demystification: in the discrete case

e.g.
$$\mathbb{P}=({\color{red}p_1},\ldots,{\color{red}p_N})$$
 and $\mathbb{Q}=({\color{red}q_1},\ldots,{\color{red}q_N})$ in the simplex

$$\begin{cases} \min_{\boldsymbol{\pi}} \sum_{i,j=1}^{N} c_{i,j} \boldsymbol{\pi}_{i,j} \\ \sum_{j=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{p}_{i} & i = 1, \dots, N \\ \sum_{i=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{q}_{j} & j = 1, \dots, N \\ \boldsymbol{\pi}_{i,j} \geqslant 0 & i, j = 1, \dots, N \end{cases}$$

linear assignment!

Wasserstein-DRO (WDRO) objective for given $\mathbb P$ and ho

$$\begin{cases}
\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\
W(\mathbb{P}, \mathbb{Q}) \leqslant \rho
\end{cases}$$

Def: Wasserstein distance (given a cost function c)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \}$$

Demystification: in the discrete case

e.g.
$$\mathbb{P}=({\color{red}p_1},\ldots,{\color{red}p_N})$$
 and $\mathbb{Q}=({\color{red}q_1},\ldots,{\color{red}q_N})$ in the simplex

$$\begin{cases} \min_{\boldsymbol{\pi}} \sum_{i,j=1}^{N} c_{i,j} \boldsymbol{\pi}_{i,j} \\ \sum_{j=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{p}_{i} & i = 1, \dots, N \\ \sum_{i=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{q}_{j} & j = 1, \dots, N \\ \boldsymbol{\pi}_{i,j} \geqslant 0 & i, j = 1, \dots, N \end{cases}$$

linear assignment!

Wasserstein-DRO (WDRO) objective for given $\mathbb P$ and ρ

$$\left\{ \begin{array}{l} \max_{\mathbb{Q}} \ \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ W(\mathbb{P},\mathbb{Q}) \leqslant \rho \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} \max_{\mathbb{Q},\pi} \ \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{array} \right.$$

Def: Wasserstein distance (given a cost function c)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \}$$

Demystification: in the discrete case

e.g.
$$\mathbb{P}=(p_1,\ldots,p_N)$$
 and $\mathbb{Q}=(q_1,\ldots,q_N)$ in the simplex

$$\begin{cases} \min_{\boldsymbol{\pi}} \sum_{i,j=1}^{N} c_{i,j} \boldsymbol{\pi}_{i,j} \\ \sum_{j=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{p}_{i} & i = 1, \dots, N \\ \sum_{i=1}^{N} \boldsymbol{\pi}_{i,j} = \boldsymbol{q}_{j} & j = 1, \dots, N \\ \boldsymbol{\pi}_{i,j} \geqslant 0 & i, j = 1, \dots, N \end{cases}$$

linear assignment!

Wasserstein-DRO (WDRO) objective for given \mathbb{P} and ρ

$$\left\{ \begin{array}{l} \max_{\mathbb{Q}} \ \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ \mathcal{W}(\mathbb{P},\mathbb{Q}) \leqslant \rho \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} \max_{\mathbb{Q},\pi} \ \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} \max_{\pi} \ \mathbb{E}_{[\pi]_2}[f(\xi)] \\ [\pi]_1 = \mathbb{P} \\ \mathbb{E}_{\pi}[c(\xi,\xi')] \leqslant \rho \end{array} \right.$$

WDRO: better duals by regularization

Let's write its dual **(?)**.

Primal WDRO

$$\begin{cases} \max_{\boldsymbol{\pi}} \mathbb{E}_{[\boldsymbol{\pi}]_2}[f(\xi)] \\ [\boldsymbol{\pi}]_1 = \mathbb{P} \\ \mathbb{E}_{\boldsymbol{\pi}}[c(\xi, \xi')] \leqslant \rho & \leftarrow \lambda \geqslant 0 \end{cases}$$

Dual WDRO

$$\min_{\lambda\geqslant 0} \qquad \lambda\rho + \mathbb{E}_{\mathbb{P}}\big[\max_{\xi'}\{f(\xi') - \lambda c(\xi,\xi')\}\big]$$

WDRO: better duals by regularization

Let's write its dual (1).

Primal WDRO regularized (with two convex functions R, S)

$$\begin{cases} \max_{\boldsymbol{\pi}} \mathbb{E}_{[\boldsymbol{\pi}]_2}[f(\xi)] - R(\boldsymbol{\pi}) \\ [\boldsymbol{\pi}]_1 = \mathbb{P} \\ \mathbb{E}_{\boldsymbol{\pi}}[c(\xi, \xi')] + S(\boldsymbol{\pi}) \leqslant \rho & \leftarrow \lambda \geqslant 0 \end{cases}$$

Dual WDRO when regularized

$$\min_{\lambda\geqslant 0} \min_{\varphi} \lambda \rho + \mathbb{E}_{\mathbb{P}} \big[\max_{\xi'} \{f(\xi') - \lambda c(\xi,\xi') - \varphi(\xi,\xi')\} \big] + (R + \lambda S)_*(\varphi)$$

WDRO: better duals by regularization

Let's write its dual (1).

Primal WDRO regularized (with two convex functions R, S)

$$\begin{cases} \max_{\boldsymbol{\pi}} \mathbb{E}_{[\boldsymbol{\pi}]_2}[f(\xi)] - R(\boldsymbol{\pi}) \\ [\boldsymbol{\pi}]_1 = \mathbb{P} \\ \mathbb{E}_{\boldsymbol{\pi}}[c(\xi, \xi')] + S(\boldsymbol{\pi}) \leqslant \rho & \leftarrow \lambda \geqslant 0 \end{cases}$$

Dual WDRO when regularized

$$\min_{\lambda\geqslant 0} \min_{\varphi} \lambda \rho + \mathbb{E}_{\mathbb{P}} [\max_{\xi'} \{f(\xi') - \lambda c(\xi, \xi') - \varphi(\xi, \xi')\}] + (R + \lambda S)_*(\varphi)$$

Quite abstract... but more concrete expressions when specialized

e.g. with
$$R(\pi)=arepsilon\, {\sf KL}(\pi|\pi_0)$$
 and $S(\pi)=\delta\, {\sf KL}(\pi|\pi_0)$ for a given π_0

$$\min_{\lambda\geqslant 0} \ \lambda\rho + (\varepsilon+\lambda\delta)\mathbb{E}_{\mathbb{P}}\log\left(\mathbb{E}_{\xi'\sim\pi_0(\cdot|\xi)}e^{\frac{f(\xi')-\lambda\varepsilon(\xi,\xi')}{\varepsilon+\lambda\delta}}\right)$$

WDRO: approximation result

$$(P) \quad \min_{\lambda\geqslant 0} \lambda \rho + \mathbb{E}_{\mathbb{P}} [\max_{\xi'} f(\xi') - \lambda c(\xi, \xi')]$$

Dual WDRO regularized by $R(\pi) = \varepsilon \operatorname{KL}(\pi|\pi_0)$ and $S(\pi) = \delta \operatorname{KL}(\pi|\pi_0)$

$$(P_{\varepsilon,\delta}) \min_{\lambda \geqslant 0} \lambda \rho + (\varepsilon + \lambda \delta) \mathbb{E}_{\mathbb{P}} \log \left(\mathbb{E}_{\xi' \sim \pi_0(\cdot|\xi)} e^{\frac{f(\xi') - \lambda c(\xi, \xi')}{\varepsilon + \lambda \delta}} \right)$$

Theorem ([Azizian, Iutzeler, M. '22])

Under mild assumptions (non-degeneracy, lipschitz, $c = \|\cdot\|^p$, special form of π_0), if the support of $\mathbb P$ is contained in a compact convex set $\Xi \subset \mathbb R^d$, then

$$0 \leqslant \mathsf{val}(P) - \mathsf{val}(P_{\varepsilon,\delta}) \leqslant C \frac{\mathsf{d}}{\mathsf{d}} (\varepsilon + \overline{\lambda} \delta) \log \frac{1}{\varepsilon + \overline{\lambda} \delta}$$

where $\overline{\lambda} = \frac{2\sup_{\overline{z}}|f|}{\rho - \mathbb{E}_{\pi_0}c}$ an explicit dual bound.

WDRO: approximation result

$$(P) \quad \min_{\lambda \geqslant 0} \lambda \rho + \mathbb{E}_{\mathbb{P}} [\max_{\xi'} f(\xi') - \lambda c(\xi, \xi')]$$

Dual WDRO regularized by $R(\pi) = \varepsilon \operatorname{KL}(\pi|\pi_0)$ and $S(\pi) = \delta \operatorname{KL}(\pi|\pi_0)$

$$(P_{\varepsilon,\delta}) \quad \min_{\lambda\geqslant 0} \ \lambda \rho + (\varepsilon + \lambda \delta) \mathbb{E}_{\mathbb{P}} \log \left(\mathbb{E}_{\xi' \sim \pi_0(\cdot|\xi)} e^{\frac{f(\xi') - \lambda c(\xi,\xi')}{\varepsilon + \lambda \delta}} \right)$$

Theorem ([Azizian, Iutzeler, M. '22])

Under mild assumptions (non-degeneracy, lipschitz, $c = \|\cdot\|^p$, special form of π_0), if the support of $\mathbb P$ is contained in a compact convex set $\Xi \subset \mathbb R^d$, then

$$0 \leqslant \operatorname{val}(P) - \operatorname{val}(P_{\varepsilon,\delta}) \leqslant C \frac{d}{d} (\varepsilon + \overline{\lambda} \delta) \log \frac{1}{\varepsilon + \overline{\lambda} \delta}$$

where $\overline{\lambda} = \frac{2 \sup_{\overline{z}} |f|}{\rho - \mathbb{E}_{\pi_0} c}$ an explicit dual bound.

We control the error... Next steps:

- solve $(P_{\varepsilon,\delta})$ efficiently
- establish generalization bounds

another story...

Conclusion

Main take-aways

- min-max optimization is a rich/subtle field with many applications in ML
- In general: more work is needed on robustness (shifts, nonconvexity, stability, extreme cases...)
- Our current work: extend the toolkit of DRO by regularization (towards scalable algorithms...) general duality, approximation results, worst-case distribution... statistical guarantees ?

Work advertized today

- Last-iterate convergence of stochastic min/max algorithms [Hsieh, lutzeler, M., Mertikopoulos '20]
- Improvements for non-conforming users in federated learning [Laguel, Pillutla, M., Harchaoui '21]
- Regularization of distributionally robust optimization [Azizian, lutzeler, M. '22]

Conclusion

Main take-aways

- min-max optimization is a rich/subtle field with many applications in ML
- In general: more work is needed on robustness (shifts, nonconvexity, stability, extreme cases...)
- Our current work: extend the toolkit of DRO by regularization (towards scalable algorithms...) general duality, approximation results, worst-case distribution... statistical guarantees ?

Work advertized today

- Last-iterate convergence of stochastic min/max algorithms [Hsieh, lutzeler, M., Mertikopoulos '20]
- Improvements for non-conforming users in federated learning [Laguel, Pillutla, M., Harchaoui '21]
- Regularization of distributionally robust optimization [Azizian, lutzeler, M. '22]

thank you all!

Existing results extragradient in the stochastic setting

V is *L*-Lipschitz continuous

Stochastic	Hypothesis	Convergence type	rate
[JNT '11]	Monotone	Ergodic	$O(1/\sqrt{t})$
[KS '19]	Strongly monotone	Last iterate	O(1/t)
[MLZF+ '19]	Strictly coherent	Last iterate	_

Last-iterate convergence for stochastic monotone operators?

- Regularization with vanishing weight
- Variance reduction with increasing batch size
- Finite sum: SVRG-like variance reduction
- Second-order: stochastic Hamiltonian descent
- Different stepsizes for the two steps of EG!

Beyond monotonicity: Local convergence

Theorem

Assumptions:

- (i) Locally variational stable and locally Lipschitz around a soultion x^* .
- (ii) V is differentiable at x^* and Jac V(sol) is invertible.

Beyond monotonicity: Local convergence

Theorem

Assumptions:

- (i) Locally variational stable and locally Lipschitz around a soultion x^* .
- (ii) V is differentiable at x^* and JacV(sol) is invertible.

Guarantee:

For any tolerance level $\delta>0$, there exists a stepsize policy for double stepsize extra-gradient such that if the algorithm is initialized close enough to x^* , there exists an event with probability at least $1-\delta$ and, conditioned on this event:

- Under (i), the iterates converge to x^* .
- Under (i) and (ii), X_t converges to x^* at a rate $O(1/\sqrt[3]{t})$ in mean square error.

One-pixel attack

From [Su, Vargas, Sakurai '18]

SFL comparison w. state-of-the-art

From [Laguel, Pillutla, M., Harchaoui '21]

		90^{th} Percentile		Avera	Average	
		Linear	ConvNet	Linear	ConvNet	
	\triangle -FL $p=0.5$	46.48 ± 0.38	23.69 ± 0.94	35.02 ± 0.20	15.49 ± 0.30	
\mathbb{E}	FedAvg	49.66 ± 0.67	28.46 ± 1.07	34.38 ± 0.38	16.64 ± 0.50	
prox	$\operatorname{FedProx}$	49.15 ± 0.74	27.01 ± 1.86	33.82 ± 0.30	16.02 ± 0.54	
$\ \cdot\ _q^q\;(q>1)$	q-FFL	49.90 ± 0.58	28.02 ± 0.80	34.34 ± 0.33	16.59 ± 0.30	
max	AFL	51.62 ± 0.28	45.08 ± 1.00	39.33 ± 0.27	33.01 ± 0.37	

Regularized WDRO

From [Azizian, lutzeler, M. '22]

Recall : KL (Kullback-Lieber divergence)

$$\mathsf{KL}(\mu|\nu) = \begin{cases} \int \log \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \; \mathrm{d}\mu & \text{if } \mu,\nu \geqslant 0 \text{ and } \mu \ll \nu \\ +\infty & \text{otherwise} \end{cases}$$

In the discrete case: $\mathbb{P}=(p_1,\ldots,p_N)$ and $\mathbb{Q}=(q_1,\ldots,q_N)$

$$\mathsf{KL}(\mathbb{P}|\mathbb{Q}) = \sum_{i=1}^N p_i \log rac{p_i}{q_i}$$

Explicit reference measure

$$\pi_0(\mathsf{d}\xi,\mathsf{d}\xi') \propto \mathbb{P}(\mathsf{d}\xi) \, \mathbb{I}_{\xi'\in\Xi} \mathrm{e}^{-\frac{\|\xi-\xi'\|^p}{2^{p-1}\sigma}} \, \mathsf{d}\xi'$$

Worst-case distribution

$$\mathbb{P}^* = (...)$$
 supported on the whole space

vs. WDRO where the worst-case is finitely supported...

(WDRO hedges against wrong set of distributions ?)