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Optimization for machine learning

Optim. is at the core of ML, playing a fundamental role behind the scenes
(model training, hyperparameter tuning, feature selection,...)
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In this talk
Part | — about stochastic algorithms for min-max problems
o illustrate spurious convergence — even for toy example

@ present a simple fix and its theoretical guarantees
[Hsieh, lutzeler, M., Mertikopoulos, '20] — spotlight NeurlPS ©

Part Il — about robust models in learning

e introduce (distributionally) robust optimization, applied to learning problems
[Laguel, Pillutla, M., Harchaoui '21]

@ derive some nice duality/approximation results
[Azizian, lutzeler, M. '22]

Yu-Guan Hsieh, Yassine Laguel, Waiss Azizian
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Success of Generative Adversarial Networks...

Question: who is real, who isn't ? Answer: both are fake !
[https://thispersondoesnotexist.com]

Much technology... and some maths (©)

Optimization plays a role during training to compute equilibrium Generator/Discriminator
Issue: Convergence of training algorithms 7

Coupling of two neural networks gives rise
to strange behaviors and phenomena

Even when solved with state-of-the-art
stochastic gradient (extra-gradient variants)
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Example of strange phenomena... and a simple fix
Non-convergent phenomena are observed even in very basic problems
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Example of strange phenomena... and a simple fix
Non-convergent phenomena are observed even in very basic problems

Example: minmax xy of solution/equilibrium =(0, 0) (arrows: gradient flows V(x,y) = (—y,x))
x oy

o

o Gradient algorithm diverges...
o Extra-gradient algorithm converges (thanks to its additional correction step)
@ Stochastic extra-gradient never converges...

@ A remedy: use double stepsize strategy [Hsieh, lutzeler, M., Mertikopoulos '20]



General set-up and simple new strategy
To compute a solution of V/(X) = 0 from stochastic oracle (E[Vs] = V(Xs) and bounded variance)
We propose to explore aggressively and update conservatively, in the stoc. extra-gradient

{ Xt+% :Xt—’YtVt ~ { Xt+% :Xt—”r’t\?t

~ with 7:/v: =0
Xt+1 =X — Yt VH_% Xt+1 =X — Nt VH.% h/ !

Theorem [last-iterate convergence rate] [Hsieh, lutzeler, M., Mertikopoulos '20]

@ Let V be monotone and affine. With stepsizes v; = v and 1y ~ 1/t,
1
Eflx - x| < 0 (} )
@ Let V be variationally stable® and satisfy the error bound™ condition. With stepsizes of
the form v, = v/(t + b)'/3 and n, = n/(t + b)?/3,
1

Ellx - X7 < 0

4

(V(X), X — X*) =0 for all X *Ir>0: [[V(X)|| = 7|[X — X*||? e.g. affine, strongly monotone...



Conclusions, perspectives on Part |

Many extensions, variations, improvements,...
@ We also have local convergence results... beyond monotonicity ! (a bit technical)

@ The constrained case is more complicated... still 13 days before deadline ;-)

Suggestion: invite Yu-Guan, who the ultimate expert on these topics...

Bottomline

@ We propose a simple modification of the stochastic extragradient scheme to make its last
iterate converge in a large spectrum of problems including all monotone games.

@ Explicit convergence rates under additional assumptions (+ local convergence results)




Conclusions, perspectives on Part |

Many extensions, variations, improvements,...
@ We also have local convergence results... beyond monotonicity ! (a bit technical)

@ The constrained case is more complicated... still 13 days before deadline ;-)

Suggestion: invite Yu-Guan, who the ultimate expert on these topics...

Bottomline

@ We propose a simple modification of the stochastic extragradient scheme to make its last
iterate converge in a large spectrum of problems including all monotone games.

@ Explicit convergence rates under additional assumptions (+ local convergence results)

small break for questions before Part Il ?
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Robustness...

we do not want machine-learned systems to fail when used in real-word

Example 1:

keep in mind how fragile can be
deep learning techniques

[© NeurlPS '18]

Teapot(24.99%)
Joystick(37.39%)

Example 2: Attacks against self-driving cars [@ ICLR '19]
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Robust ML

we do not want machine-learned systems to fail when used in real-word

Example 3: Data heterogeneity

E.g. in federated learning

Google, hospital consortiums... ()
Model Model

Data Data

What about non-conforming users ?

Many issues !
(service quality? fairness?...)

More later...

remember the talk of Yassine Laguel in November...



Set-up: data-driven optimization under uncertainty

@ Training data:  &1,...,&ny ~ P (unknown)

e.g. in supervised learning: & = (a;, y;) feature, label

@ Train model: x the parameter f(x, ) the objective function

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

N
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@ Prediction with x for different data 5 ? (generalisation, data shifts, adversarial examples,...)
Take possible variations into account during training (= when optimizing ©) )
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Set-up: data-driven optimization under uncertainty

@ Training data:  &1,...,&ny ~ P (unknown)

e.g. in supervised learning: & = (a;, y;) feature, label

@ Train model: x the parameter f(x, ) the objective function

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

N N
.1 s 1
min ;Zl f(x,&) =Eg, [f(x, 9] with ]P’N:N E J¢;

i=1
@ Prediction with x for different data 5 ? (generalisation, data shifts, adversarial examples,...)
Take possible variations into account during training (= when optimizing ©) )

o (Distributionally) robust optimization
(optimize expected loss for the worst probability in a set of perturbations)

min max Eq[f(x,¢)]



Modeling issues

E.g. ambiguity/incertainty set U: min max Eo[f(x,&)]
. 1
o U= {IP’N} : min ; f(x,&) standard ERM
o U={Q:supp(Q) C U} : min rgeaﬁ f(x,£) standard robust optimization

o U defined by moments e.g. [Delage, Ye, '10]

o U = {Q : d(Q, @/\/) < p} for various distances or divergences
E.g. KL-div., x2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

ol = {Q : W(Q,@N) < p} Wiasserstein distance from optimal transport (OT) (in this talk)

Good statistical/practical properties... e.g. [Kuhn et al. '18]
Interprets up to first-order as a penalization by [|V¢f(x,&)| e.g. [Gao et al. '18]



DRO in action #1 : toy example

Least-square linear regression

Data : &1,&,...,&n  with & = (a;, ;) in two groups (majority vs. minority)
yi = X Ta; +&; with &; ~ BN™A" 4 (1 — g)A/minor
Compute from data:

ERM

standard regression x vs. DRO regression xPRO (

KL-regularized)
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DRO in action #1 : toy example

Least-square linear regression

Data : &1,&,...,&n  with & = (a;, ;) in two groups (majority vs. minority)
yi = X Ta; +&; with &; ~ BN™A" 4 (1 — g)A/minor
Compute from data:

ERM

standard regression x vs. DRO regression xPRO (

KL-regularized)

Generate new data &1, ..., &),

Test the regression errors given by xERM ys xPRO
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Histogram of the test regression errors (r; = |x"a; — y;|)
DRO re-shapes histograms towards more fairness (2)



DRO in action #2 : federated learning with heterogeneous users

1]

(] (¢] (¢} =/
Model Model Model Model
Data Data Data Data

Federated Learning by Google = FedAvg



DRO in action #2 : federated learning with heterogeneous users

Federated Learning by Google = FedAvg vs. DRO FedAvg [Laguel, Pillutla,

[llustration:
Classification task by ConvNet
with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error
(dashed lines: 10%/90% -percentiles)
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M., Harchaoui '21]
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Current research topic: extend the (W)DRO toolkit

e DRO works well ()

o Trade-off in practice : modeling vs. computational tractability

Wasserstein-DRO is popular...

Good statistical /practical properties, e.g. [Kuhn et al. '18]
@ ...but has some limitations ! news results

@ We propose: Regularized WDRO [Azizian, lutzeler, M. '22]

@ Why regularizing 7 it helps computationnally !
One of the main reasons of the popularity of OT in ML [Cuturi '13]
@ On-going research... (try to import and adapt the techniques of OT for WDRO)
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Def: Wasserstein distance (given a cost function c)

W(P,Q) = m7rin{]E,r[c(§,§')] : m with marginals [r]; = Pand [r], = Q}

Demystification: in the discrete case
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Wasserstein-DRO (WDRO) objective for given P and p

maxg. Eolf(€ maxe Egey, [F(6)]
{ ma;‘}Q(PEg)[fif )l — a[ﬂ?l — p?[[,,](z ):] Q <« a[ﬂ']l = [P]
R)S P ming Ex[c(&,&)] < p Ex[c(§,8)] < p



WDRO: better duals by regularization

Let’s write its dual @

Primal WDRO
maxgz  Epr, [£(£)]
[7[‘]1 =P
Er[c(§, )] <p < A20
Dual WDRO

min - Ap + Ep[ maxe {f(¢') = Ac(€, €} ]

=
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WDRO: better duals by regularization

Let’s write its dual @

Primal WDRO regularized (with two convex functions R, S)

{ maxye  Epr, [£(E)] - R(m)
[7T]1 =P
Erlc(&,€)]+S(m) <p < A20

Dual WDRO when regularized
min min Ap + Ep[ maxe {f(§7) = Ac(&,€7) — @&, €)M + (R +AS).(w)

Quite abstract... but more concrete expressions when specialized
e.g. with R(m) = e KL(7|mg) and S(7) = 6 KL(w|mo) for a given mg

)\m>|ra Ap + (e + A6)Ep log (Eglwﬂo(,me“57);3;((55’5 ))



WDRO: approximation result

Dual WDRO: (P) &n>n(1) Ap + Ep[maxg (&) — Ae(&,€)]

Dual WDRO regularized by R(w) = ¢ KL(r|mp) and S(7) = 6 KL(7|mo)
; LGP ]
(Pa,é) T}IB )\p + (E + )\5)]E]ﬂl |Og (Egl"‘ﬂ'o(-‘f)e Y] )

Theorem ([Azizian, lutzeler, M. '22])

Under mild assumptions (non-degeneracy, lipschitz, c=|| - ||P, special form of mo), if the support of P is
contained in a compact convex set = C RY, then

— 1
0 < I(P) —val(P.s) < Cd(e+ M) —
val(P) — val(P. 5) (e )og5+)\6

2sup- |f|

where \ = B
p—EryC

an explicit dual bound.




WDRO: approximation result

Dual WDRO: (P) &n>n(1) Ap + Ep[maxg (&) — Ae(&,€)]
Dual WDRO regularized by R(7) = ¢ KL(w|mg) and S(w) = ¢ KL(|mo)
f(&’)ﬂc(@&’))

(Pa,é) T}'g )\p + (E + )\6)]EP’ |Og (Eg/wﬂ-o(.‘g)e e+Ad

Theorem ([Azizian, lutzeler, M. '22])

Under mild assumptions (non-degeneracy, lipschitz, c=|| - ||P, special form of mo), if the support of P is

contained in a compact convex set = C RY, then

0 < val(P) —val(P.s) < Cd(e+ ) log ——

e+ A6
where X = %EW an explicit dual bound.
p—EryC
o solve (P s) efficiently
We control the error... Next steps: another story...

@ establish generalization bounds



Conclusion
Main take-aways
@ min-max optimization is a rich/subtle field with many applications in ML
@ In general: more work is needed on robustness (shifts, nonconvexity, stability, extreme cases...)

@ Our current work: extend the toolkit of DRO by regularization (towards scalable algorithms...)

general duality, approximation results, worst-case distribution... statistical guarantees ?

Work advertized today

@ Last-iterate convergence of stochastic min/max algorithms
[Hsieh, lutzeler, M., Mertikopoulos '20]

@ Improvements for non-conforming users in federated learning
[Laguel, Pillutla, M., Harchaoui '21]

© Regularization of distributionally robust optimization
[Azizian, lutzeler, M. '22]




Conclusion
Main take-aways
@ min-max optimization is a rich/subtle field with many applications in ML
@ In general: more work is needed on robustness (shifts, nonconvexity, stability, extreme cases...)

@ Our current work: extend the toolkit of DRO by regularization (towards scalable algorithms...)

general duality, approximation results, worst-case distribution... statistical guarantees ?

Work advertized today

@ Last-iterate convergence of stochastic min/max algorithms
[Hsieh, lutzeler, M., Mertikopoulos '20]

@ Improvements for non-conforming users in federated learning
[Laguel, Pillutla, M., Harchaoui '21]

© Regularization of distributionally robust optimization
[Azizian, lutzeler, M. '22]

thank you all !



Existing results extragradient in the stochastic setting

V is L-Lipschitz continuous

Stochastic Hypothesis Convergence type  rate
[UNT '11] Monotone Ergodic O(1/t)
[KS '19] Strongly monotone Last iterate O(1/t)
[MLZF+ '19] Strictly coherent Last iterate -

Last-iterate convergence for stochastic monotone operators?

@ Regularization with vanishing weight

@ Variance reduction with increasing batch size
@ Finite sum: SVRG-like variance reduction

@ Second-order: stochastic Hamiltonian descent

o Different stepsizes for the two steps of EG!



Beyond monotonicity: Local convergence

Theorem
Assumptions:

(i) Locally variational stable and locally Lipschitz around a soultion x*.
(ii) V is differentiable at x* and JacV/(sol) is invertible.
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Beyond monotonicity: Local convergence

Theorem

Assumptions:

(i) Locally variational stable and locally Lipschitz around a soultion x*.
(ii) V is differentiable at x* and JacV/(sol) is invertible.

Guarantee:

For any tolerance level § > 0, there exists a stepsize policy for double stepsize extra-gradient
such that if the algorithm is initialized close enough to x*, there exists an event with
probability at least 1 — § and, conditioned on this event:

@ Under (i), the iterates converge to x*.

@ Under (i) and (ii), X; converges to x* at a rate O (1/v/t) in mean square error.
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One-pixel attack

From [Su, Vargas, Sakurai '18]

AllConv
i
SHIP HORSE
CAR(99.7%) FROG(99.9%)

HORSE DOG
CAT(75.5%)

DEER
AIRPLANE(82.4%) DOG(86.4%)

DEER BIRD
AIRPLANE(49.8%) FROG(88.8%)
HORSE SHIP
DOG(88.0%) AIRPLANE(62.7%)

DEER
AIRPLANE(85.3%)

g

.

BIRD
FROG(86.5%)

CAT
BIRD(66.2%)

SHIP
AIRPLANE(88.2%)

CAT
DOG(78.2%)
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SFL comparison w. state-of-the-art

From [Laguel, Pillutla, M., Harchaoui '21]

A-FL p=0.5

E FedAvg

prox FedProx
Il-11¢(¢>1) ¢FFL
max AFL

90tk Percentile

Linear

46.48 + (.38

49.66 £ 0.67
49.15 £ 0.74

49.90 & 0.58
51.62 £0.28

ConvNet

23.69 + 0.94

28.46 £ 1.07
27.01 £+ 1.86

28.02 £ 0.80
45.08 = 1.00

Average
Linear ConvNet
35.02 £ 0.20 15.49 £ 0.30
34.38 +0.38 16.64 4+ 0.50
33.82 + 0.30 16.02 + 0.54
34.34 +0.33 16.59 + 0.30
39.33 £ 0.27 33.01 +0.37
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Regularized WDRO

From [Azizian, lutzeler, M. '22]

@ Recall : KL (Kullback-Lieber divergence)

KL(ulv) = flogd du ifpr>0and p < v
a +00 otherwise

In the discrete case: P = (p1,...,pn) and Q = (q1,.-.,qn)

P|Q Zpl |0g7

o Explicit reference measure

mo(d€,dg’) o< P(dE) Lereze - leel®

o Worst-case distribution
P* = (...) supported on the whole space

vs. WDRO where the worst-case is finitely supported...
(WDRO hedges against wrong set of distributions ?)
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