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Optimization for machine learning

Optim. is at the core of ML, playing a fundamental role behind the scenes
(model training, hyperparameter tuning, feature selection,...)

min
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e.g. least-squares regression: ξi = (ai , yi ) feature, label

f
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Abstract

We consider regularized stochastic learning and online optimization problems,
where the objective function is the sum of two convex terms: one is the loss func-
tion of the learning task, and the other is a simple regularization term such as
ℓ1-norm for promoting sparsity. We develop a new online algorithm, the regular-
ized dual averaging (RDA) method, that can explicitly exploit the regularization
structure in an online setting. In particular, at each iteration, the learning variables
are adjusted by solving a simple optimization problem that involves the running
average of all past subgradients of the loss functions and the whole regulariza-
tion term, not just its subgradient. Computational experiments show that the RDA
method can be very effective for sparse online learning with ℓ1-regularization.

1 Introduction

In machine learning, online algorithms operate by repetitively drawing random examples, one at a
time, and adjusting the learning variables using simple calculations that are usually based on the
single example only. The low computational complexity (per iteration) of online algorithms is often
associated with their slow convergence and low accuracy in solving the underlying optimization
problems. As argued in [1, 2], the combined low complexity and low accuracy, together with other
tradeoffs in statistical learning theory, still make online algorithms a favorite choice for solving large-
scale learning problems. Nevertheless, traditional online algorithms, such as stochastic gradient
descent (SGD), has limited capability of exploiting problem structure in solving regularized learning
problems. As a result, their low accuracy often makes it hard to obtain the desired regularization
effects, e.g., sparsity under ℓ1-regularization. In this paper, we develop a new online algorithm, the
regularized dual averaging (RDA) method, that can explicitly exploit the regularization structure in
an online setting. We first describe the two types of problems addressed by the RDA method.

1.1 Regularized stochastic learning

The regularized stochastic learning problems we consider are of the following form:

minimize
!

{
"(#) ≜ E"$(#, &) + Ψ(#)

}
(1)

where # ∈ R# is the optimization variable (called weights in many learning problems), & = (', ()
is an input-output pair drawn from an (unknown) underlying distribution, $(#, &) is the loss function
of using # and ' to predict (, and Ψ(#) is a regularization term. We assume $(#, &) is convex in #
for each &, and Ψ(#) is a closed convex function. Examples of the loss function $(#, &) include:

∙ Least-squares: ' ∈ R#, ( ∈ R, and $(#, (', ()) = (( − #$ ')2.
∙ Hinge loss: ' ∈ R#, ( ∈ {+1, −1}, and $(#, (', ()) = max{0, 1 − ((#$ ')}.
∙ Logistic regression: ' ∈ R#, (∈{+1, −1}, and $(#, (', ())=log

(
1+ exp

(
−((#$ ')

))
.
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Abstract

Sparse coding—that is, modelling data vectors as
sparse linear combinations of basis elements—is
widely used in machine learning, neuroscience,
signal processing, and statistics. This paper fo-
cuses on learning the basis set, also called dic-
tionary, to adapt it to specific data, an approach
that has recently proven to be very effective for
signal reconstruction and classification in the au-
dio and image processing domains. This paper
proposes a new online optimization algorithm
for dictionary learning, based on stochastic ap-
proximations, which scales up gracefully to large
datasets with millions of training samples. A
proof of convergence is presented, along with
experiments with natural images demonstrating
that it leads to faster performance and better dic-
tionaries than classical batch algorithms for both
small and large datasets.

1. Introduction

The linear decomposition of a signal using a few atoms of
a learned dictionary instead of a predefined one—based on
wavelets (Mallat, 1999) for example—has recently led to
state-of-the-art results for numerous low-level image pro-
cessing tasks such as denoising (Elad & Aharon, 2006)
as well as higher-level tasks such as classification (Raina
et al., 2007; Mairal et al., 2009), showing that sparse
learned models are well adapted to natural signals. Un-
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like decompositions based on principal component analy-
sis and its variants, these models do not impose that the
basis vectors be orthogonal, allowing more flexibility to
adapt the representation to the data. While learning the
dictionary has proven to be critical to achieve (or improve
upon) state-of-the-art results, effectively solving the cor-
responding optimization problem is a significant compu-
tational challenge, particularly in the context of the large-
scale datasets involved in image processing tasks, that may
include millions of training samples. Addressing this chal-
lenge is the topic of this paper.

Concretely, consider a signal x in Rm. We say that it ad-
mits a sparse approximation over a dictionaryD in Rm×k,
with k columns referred to as atoms, when one can find a
linear combination of a “few” atoms fromD that is “close”
to the signal x. Experiments have shown that modelling a
signal with such a sparse decomposition (sparse coding) is
very effective in many signal processing applications (Chen
et al., 1999). For natural images, predefined dictionaries
based on various types of wavelets (Mallat, 1999) have
been used for this task. However, learning the dictionary
instead of using off-the-shelf bases has been shown to dra-
matically improve signal reconstruction (Elad & Aharon,
2006). Although some of the learned dictionary elements
may sometimes “look like” wavelets (or Gabor filters), they
are tuned to the input images or signals, leading to much
better results in practice.

Most recent algorithms for dictionary learning (Olshausen
& Field, 1997; Aharon et al., 2006; Lee et al., 2007)
are second-order iterative batch procedures, accessing the
whole training set at each iteration in order to minimize a
cost function under some constraints. Although they have
shown experimentally to be much faster than first-order
gradient descent methods (Lee et al., 2007), they cannot
effectively handle very large training sets (Bottou & Bous-
quet, 2008), or dynamic training data changing over time,
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Beyond minimization? Two classical illustrative examples

Flying pigs

– robust/adversarial training (from notebooks of NeurIPS 2018, tutorial on robustness)
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min
x

E(a,y)∼data

[
max

‖a′−a‖∞6ρ
f (x , (a′, y))

]

= min
x

max
Padv∈U

E(a,y)∼Padv
[f (x , (a, y))]

GANs training [Goodfellow et al ’14]

min
θ

max
ω

Eξ∼Pdata
[logDω(ξ)] + Eξ′ [log(1− Dω(Gθ(ξ′))]

Applications

Adversarial Training

Generative Adversarial Network (GAN)
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In this talk

Part I – about stochastic algorithms for min-max problems

illustrate spurious convergence – even for toy example

present a simple fix and its theoretical guarantees
[Hsieh, Iutzeler, M., Mertikopoulos, ’20] – spotlight NeurIPS ,

Part II – about robust models in learning

introduce (distributionally) robust optimization, applied to learning problems
[Laguel, Pillutla, M., Harchaoui ’21]

derive some nice duality/approximation results
[Azizian, Iutzeler, M. ’22]

Yu-Guan Hsieh

,

Yassine Laguel, Wäıss Azizian
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Wäıss Azizian

1

MANY THANKS TO MY CO-AUTHORS ! 29

3



In this talk

Part I – about stochastic algorithms for min-max problems

illustrate spurious convergence – even for toy example

present a simple fix and its theoretical guarantees
[Hsieh, Iutzeler, M., Mertikopoulos, ’20] – spotlight NeurIPS ,

Part II – about robust models in learning

introduce (distributionally) robust optimization, applied to learning problems
[Laguel, Pillutla, M., Harchaoui ’21]

derive some nice duality/approximation results
[Azizian, Iutzeler, M. ’22]

Yu-Guan Hsieh, Yassine Laguel, Wäıss Azizian
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Part I – About stochastic algorithms for min/max



Success of Generative Adversarial Networks...

Question: who is real, who isn’t ?

Answer: both are fake !
[https://thispersondoesnotexist.com]

Bacgkround Learning in continuous time Learning in discrete time Perspectives

Example 2: deep learning

What is real and what isn’t?

[Source: https://thispersondoesnotexist.com]

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble

Much technology... and some maths ,
Optimization plays a role during training to compute equilibrium Generator/Discriminator

Issue: Convergence of training algorithms ?

Coupling of two neural networks gives rise
to strange behaviors and phenomena

Even when solved with state-of-the-art
stochastic gradient (extra-gradient variants)

5
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Example of strange phenomena... and a simple fix

Non-convergent phenomena are observed even in very basic problems

Example: min
x

max
y

x y of solution/equilibrium =(0, 0) (arrows: gradient flows V (x , y) = (−y , x))

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Gradient algorithm diverges...

Extra-gradient algorithm converges (thanks to its additional correction step)

Stochastic extra-gradient never converges...

A remedy: use double stepsize strategy [Hsieh, Iutzeler, M., Mertikopoulos ’20]
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General set-up and simple new strategy

To compute a solution of V (X ) = 0 from stochastic oracle (E[V̂s ] = V (Xs) and bounded variance)

We propose to explore aggressively and update conservatively, in the stoc. extra-gradient

{
Xt+ 1

2
= Xt − γtV̂t

Xt+1 = Xt − γtV̂t+ 1
2

;;;

{
Xt+ 1

2
= Xt − γtV̂t

Xt+1 = Xt − ηtV̂t+ 1
2

with ηt/γt → 0

Theorem [last-iterate convergence rate] [Hsieh, Iutzeler, M., Mertikopoulos ’20]

1 Let V be monotone and affine. With stepsizes γt ≡ γ and ηt ' 1/t,

E[‖Xt − X ?‖2] 6 O

(
1

t

)

2 Let V be variationally stable∗ and satisfy the error bound∗ condition. With stepsizes of
the form γt = γ/(t + b)1/3 and ηt = η/(t + b)2/3,

E[‖Xt − X ?‖2] 6 O

(
1
3
√
t

)

∗〈V (X ),X − X?〉 > 0 for all X ∗∃τ > 0 : ‖V (X )‖ > τ‖X − X?‖2 e.g. affine, strongly monotone...
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Conclusions, perspectives on Part I

Many extensions, variations, improvements,...

We also have local convergence results... beyond monotonicity ! (a bit technical)

The constrained case is more complicated... still 13 days before deadline ;-)

Suggestion: invite Yu-Guan, who the ultimate expert on these topics...

Bottomline

We propose a simple modification of the stochastic extragradient scheme to make its last
iterate converge in a large spectrum of problems including all monotone games.

Explicit convergence rates under additional assumptions (+ local convergence results)

small break for questions before Part II ?
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Part II – About robust optimization and learning



Robustness...

we do not want machine-learned systems to fail when used in real-word

Example 1:

keep in mind how fragile can be
deep learning techniques

[@ NeurIPS ’18]

Example 2: Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019

53/56
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Robust ML

we do not want machine-learned systems to fail when used in real-word

Example 3: Data heterogeneity

E.g. in federated learning

Google, hospital consortiums...

What about non-conforming users ?

Many issues !
(service quality? fairness?...)

More later...

remember the talk of Yassine Laguel in November...

9
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Set-up: data-driven optimization under uncertainty

Training data: ξ1, . . . , ξN ∼ P (unknown)

e.g. in supervised learning: ξi = (ai , yi ) feature, label

Train model: x the parameter f (x , ·) the objective function

e.g. least-square regression: f
(
x , (a, y)

)
= (x>a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑

i=1

f (x , ξi )

Prediction with x for different data ξ ? (generalisation, data shifts, adversarial examples,...)

Take possible variations into account during training (= when optimizing , )

(Distributionally) robust optimization
(optimize expected loss for the worst probability in a set of perturbations)

min
x

max
Q∈U

EQ[f (x , ξ)]

10
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Modeling issues

E.g. ambiguity/incertainty set U : min
x

max
Q∈U

EQ[f (x , ξ)]

U =
{
P̂N

}
: min

x

1

N

N∑

i=1

f (x , ξi ) standard ERM

U = {Q : supp(Q) ⊂ U} : min
x

max
ξ∈U

f (x , ξ) standard robust optimization

U defined by moments e.g. [Delage, Ye, ’10]

U =
{
Q : d(Q, P̂N) 6 ρ

}
for various distances or divergences

E.g. KL-div., χ2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
{
Q : W (Q, P̂N) 6 ρ

}
Wasserstein distance from optimal transport (OT) (in this talk)

Good statistical/practical properties... e.g. [Kuhn et al. ’18]

Interprets up to first-order as a penalization by ‖∇ξf (x , ξ)‖ e.g. [Gao et al. ’18]

11



DRO in action #1 : toy example

Least-square linear regression

Data : ξ1, ξ2, . . . , ξN with ξi = (ai , yi ) in two groups (majority vs. minority)

yi = x̄>ai + εi with εi ∼ βNmajor + (1− β)Nminor

Compute from data:

standard regression xERM vs. DRO regression xDRO (KL-regularized)

Generate new data ξ′1, . . . , ξ
′
M

Test the regression errors given by xERM vs xDRO

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25

Training Loss Distribution

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25
Test Loss Distribution

Ordinary Least Squares Superquantile RegressionHistogram of the test regression errors (ri = |x>ai − yi |)
DRO re-shapes histograms towards more fairness ,
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DRO in action #2 : federated learning with heterogeneous users

Federated Learning by Google = FedAvg

vs. DRO FedAvg [Laguel, Pillutla, M., Harchaoui ’21]

Illustration:

Classification task by ConvNet

with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error
(dashed lines: 10%/90% -percentiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>

23
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Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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Current research topic: extend the (W)DRO toolkit

DRO works well ,

Trade-off in practice : modeling vs. computational tractability

Wasserstein-DRO is popular...

Good statistical/practical properties, e.g. [Kuhn et al. ’18]

...but has some limitations ! news results

We propose: Regularized WDRO [Azizian, Iutzeler, M. ’22]

Why regularizing ? it helps computationnally !

One of the main reasons of the popularity of OT in ML [Cuturi ’13]

On-going research... (try to import and adapt the techniques of OT for WDRO)
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DRO with Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)

W (P,Q) = min
πππ
{Eπππ[c(ξ, ξ′)] : πππ with marginals [πππ]1 = P and [πππ]2 = Q}

Demystification: in the discrete case

e.g. P = (p1, . . . , pN) and Q = (q1, . . . , qN) in the simplex





minπππ
∑N

i,j=1 ci,j πππi,j∑N
j=1 πππi,j = pi i = 1, . . . ,N

∑N
i=1 πππi,j = qj j = 1, . . . ,N

πππi,j > 0 i , j = 1, . . . ,N

linear assignment !

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.
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Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Wasserstein-DRO (WDRO) objective for given P and ρ

{
maxQ EQ[f (ξ)]
W (P,Q) 6 ρ

⇐⇒





maxQ,πππ EQ[f (ξ)]
[πππ]1 = P, [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ′)] 6 ρ

⇐⇒





maxπππ E[πππ]2
[f (ξ)]

[πππ]1 = P
Eπππ[c(ξ, ξ′)] 6 ρ

15
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WDRO: better duals by regularization

Let’s write its dual

Primal WDRO




maxπππ E[πππ]2
[f (ξ)]

−R(πππ)

[πππ]1 = P
Eπππ[c(ξ, ξ′)] 6 ρ ← λ > 0

Dual WDRO

min
λ>0

min
ϕ

λρ+ EP[ maxξ′{f (ξ′)− λc(ξ, ξ′)} ]

− ϕ(ξ, ξ′)} ] + (R + λS)∗(ϕ)

Quite abstract... but more concrete expressions when specialized

e.g. with R(π) = εKL(π|π0) and S(π) = δKL(π|π0) for a given π0

min
λ>0

λρ+ (ε+ λδ)EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λc(ξ,ξ′)
ε+λδ

)
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WDRO: approximation result

Dual WDRO: (P) min
λ>0

λρ+ EP[ maxξ′ f (ξ′)− λc(ξ, ξ′) ]

Dual WDRO regularized by R(π) = εKL(π|π0) and S(π) = δKL(π|π0)

(Pε,δ) min
λ>0

λρ+ (ε+ λδ)EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λc(ξ,ξ′)
ε+λδ

)

Theorem ([Azizian, Iutzeler, M. ’22])

Under mild assumptions (non-degeneracy, lipschitz, c =‖ · ‖p , special form of π0), if the support of P is
contained in a compact convex set Ξ ⊂ Rd , then

0 6 val(P)− val(Pε,δ) 6 C d (ε+ λδ) log
1

ε+ λδ

where λ = 2 supΞ |f |
ρ−Eπ0

c an explicit dual bound.

We control the error... Next steps:
solve (Pε,δ) efficiently

establish generalization bounds
another story...
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Conclusion

Main take-aways

min-max optimization is a rich/subtle field with many applications in ML

In general: more work is needed on robustness (shifts, nonconvexity, stability, extreme cases...)

Our current work: extend the toolkit of DRO by regularization (towards scalable algorithms...)

general duality, approximation results, worst-case distribution... statistical guarantees ?

Work advertized today

1 Last-iterate convergence of stochastic min/max algorithms
[Hsieh, Iutzeler, M., Mertikopoulos ’20]

2 Improvements for non-conforming users in federated learning
[Laguel, Pillutla, M., Harchaoui ’21]

3 Regularization of distributionally robust optimization
[Azizian, Iutzeler, M. ’22]

thank you all !
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Existing results extragradient in the stochastic setting

V is L-Lipschitz continuous

Stochastic Hypothesis Convergence type rate

[JNT ’11] Monotone Ergodic O(1/
√
t)

[KS ’19] Strongly monotone Last iterate O(1/t)

[MLZF+ ’19] Strictly coherent Last iterate -

Last-iterate convergence for stochastic monotone operators?

Regularization with vanishing weight

Variance reduction with increasing batch size

Finite sum: SVRG-like variance reduction

Second-order: stochastic Hamiltonian descent

Different stepsizes for the two steps of EG!
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Beyond monotonicity: Local convergence

Theorem

Assumptions:

(i) Locally variational stable and locally Lipschitz around a soultion x?.
(ii) V is differentiable at x? and JacV (sol) is invertible.

Guarantee:

For any tolerance level δ > 0, there exists a stepsize policy for double stepsize extra-gradient
such that if the algorithm is initialized close enough to x?, there exists an event with
probability at least 1− δ and, conditioned on this event:

Under (i), the iterates converge to x?.

Under (i) and (ii), Xt converges to x? at a rate O
(
1/ 3
√
t
)

in mean square error.
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One-pixel attack

From [Su, Vargas, Sakurai ’18]

1

One Pixel Attack for Fooling
Deep Neural Networks

Jiawei Su*, Danilo Vasconcellos Vargas* and Kouichi Sakurai

Abstract—Recent research has revealed that the output of Deep
Neural Networks (DNN) can be easily altered by adding relatively
small perturbations to the input vector. In this paper, we analyze
an attack in an extremely limited scenario where only one pixel
can be modified. For that we propose a novel method for gen-
erating one-pixel adversarial perturbations based on differential
evolution (DE). It requires less adversarial information (a black-
box attack) and can fool more types of networks due to the
inherent features of DE. The results show that 67.97% of the
natural images in Kaggle CIFAR-10 test dataset and 16.04%
of the ImageNet (ILSVRC 2012) test images can be perturbed
to at least one target class by modifying just one pixel with
74.03% and 22.91% confidence on average. We also show the
same vulnerability on the original CIFAR-10 dataset. Thus, the
proposed attack explores a different take on adversarial machine
learning in an extreme limited scenario, showing that current
DNNs are also vulnerable to such low dimension attacks. Besides,
we also illustrate an important application of DE (or broadly
speaking, evolutionary computation) in the domain of adversarial
machine learning: creating tools that can effectively generate low-
cost adversarial attacks against neural networks for evaluating
robustness.

Index Terms—Differential Evolution, Convolutional Neural
Network, Information Security, Image Recognition.

I. INTRODUCTION

IN the domain of image recognition, DNN-based approach
has outperform traditional image processing techniques,

achieving even human-competitive results [25]. However, sev-
eral studies have revealed that artificial perturbations on natu-
ral images can easily make DNN misclassify and accordingly
proposed effective algorithms for generating such samples
called “adversarial images” [7][11][18][24]. A common idea
for creating adversarial images is adding a tiny amount of
well-tuned additive perturbation, which is expected to be
imperceptible to human eyes, to a correctly classified natural
image. Such modification can cause the classifier to label the
modified image as a completely different class. Unfortunately,
most of the previous attacks did not consider extremely limited
scenarios for adversarial attacks, namely the modifications
might be excessive (i.e., the amount of modified pixels is fairly
large) such that it may be perceptible to human eyes (see Fig-
ure 3 for an example). Additionally, investigating adversarial
images created under extremely limited scenarios might give

Authors are with the Graduate School/Faculty of Information Science and
Electrical Engineering, Kyushu University, Japan. The third author is also
affiliated to Advanced Telecommunications Research Institute International
(ATR).

The official version of this article has been published in IEEE Transactions
on Evolutionary Computation [65], which can be accessed through the
following link: https://ieeexplore.ieee.org/abstract/document/8601309

*Both authors have equal contribution.

Fig. 1. One-pixel attacks created with the proposed algorithm that success-
fully fooled three types of DNNs trained on CIFAR-10 dataset: The All
convolutional network (AllConv), Network in network (NiN) and VGG. The
original class labels are in black color while the target class labels and the
corresponding confidence are given below.

new insights about the geometrical characteristics and overall
behavior of DNN’s model in high dimensional space [9]. For
example, the characteristics of adversarial images close to the
decision boundaries can help describing the boundaries’ shape.

In this paper, by perturbing only one pixel with differential
evolution, we propose a black-box DNN attack in a scenario
where the only information available is the probability labels
(Figure 1 and 2) Our proposal has mainly the following
advantages compared to previous works:
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SFL comparison w. state-of-the-art

From [Laguel, Pillutla, M., Harchaoui ’21]

27

Misclassi!cation error (in %) on test devices for EMNIST.

90th Percentile
Linear ConvNet Linear ConvNet

FedAvg
FedProx
q-FFL
AFL

Average

E<latexit sha1_base64="KOAcx4f7TC5RBIg/jwK8JuR99i8=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LIogssK9oHtUDLpbRuayQxJRihD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695NwTxIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6ihRDBssEpFqB1Sj4BIbhhuB7VghDQOBrWB8k/mtJ1SaR/LBTGL0QzqUfMAZNVZ67IbUjIIgvZ32SmW34s5AlomXkzLkqPdKX91+xJIQpWGCat3x3Nj4KVWGM4HTYjfRGFM2pkPsWCppiNpPZ4mn5NQqfTKIlH3SkJn6eyOlodaTMLCTWUK96GXif14nMYMrP+UyTgxKNv9okAhiIpKdT/pcITNiYgllitushI2ooszYkoq2BG/x5GXSrFa880r1/qJcu87rKMAxnMAZeHAJNbiDOjSAgYRneIU3RzsvzrvzMR9dcfKdI/gD5/MHquyQ6Q==</latexit>

prox
<latexit sha1_base64="RqkuGkqqlTbJxPWXQyN4pURXc2A=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7dZMPuRFpCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03jUo14w2mpNLtgBouRcwbKFDydqI5jQLJW8Hobua3nrg2QsWPOEm4H9FBLELBKFqp00U+xizRajztlcpuxZ2DrBIvJ2XIUe+Vvrp9xdKIx8gkNabjuQn6GdUomOTTYjc1PKFsRAe8Y2lMI278bH7ylJxbpU9CpW3FSObq74mMRsZMosB2RhSHZtmbif95nRTDGz8TcZIij9liUZhKgorM/id9oTlDObGEMi3srYQNqaYMbUpFG4K3/PIqaVYr3mWl+nBVrt3mcRTgFM7gAjy4hhrcQx0awEDBM7zCm4POi/PufCxa15x85gT+wPn8ASGfkc4=</latexit>

k · kqq (q > 1)
<latexit sha1_base64="PigkaRdv7lWBJQRXSsFr1gqxCd4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUDclqYKCIEU3LivYBzQxTCaTduhkks5MhNJ246+4caGIWz/DnX/jtM1CWw9cOJxzL/fe4yeMSmVZ30ZuaXlldS2/XtjY3NreMXf3GjJOBSZ1HLNYtHwkCaOc1BVVjLQSQVDkM9L0ezcTv/lIhKQxv1eDhLgR6nAaUoyUljzzwBk5OIiVM/L6D33nEpb68AraJ55ZtMrWFHCR2Bkpggw1z/xyghinEeEKMyRl27YS5Q6RUBQzMi44qSQJwj3UIW1NOYqIdIfTB8bwWCsBDGOhiys4VX9PDFEk5SDydWeEVFfOexPxP6+dqvDCHVKepIpwPFsUpgyqGE7SgAEVBCs20ARhQfWtEHeRQFjpzAo6BHv+5UXSqJTt03Ll7qxYvc7iyINDcARKwAbnoApuQQ3UAQZj8AxewZvxZLwY78bHrDVnZDP74A+Mzx+R1pUS</latexit>

max
<latexit sha1_base64="X1Khmvl0dU0tItIcckC+TeawfM0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsN+3S3U3Y3Ygl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OZ+55EqzWL5YKYJDQQeSRYxgk0u9QV+GlRrbt2dA60SryA1KNAaVL/6w5ikgkpDONa657mJCTKsDCOczir9VNMEkwke0Z6lEguqg2x+6wydWWWIoljZkgbN1d8TGRZaT0VoOwU2Y73s5eJ/Xi810XWQMZmkhkqyWBSlHJkY5Y+jIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJu1L2LeuP+sta8KeIowwmcwjl4cAVNuIMW+EBgDM/wCm+OcF6cd+dj0Vpyiplj+APn8wccXY5I</latexit>

Comparison with other baselines

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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Regularized WDRO

From [Azizian, Iutzeler, M. ’22]

Recall : KL (Kullback-Lieber divergence)

KL(µ|ν) =

{∫
log dµ

dν dµ if µ,ν > 0 and µ� ν

+∞ otherwise

In the discrete case: P = (p1, . . . , pN) and Q = (q1, . . . , qN)

KL(P|Q) =
N∑

i=1

pi log
pi
qi

Explicit reference measure

π0(dξ, dξ′) ∝ P(dξ) Iξ′∈Ξe
− ‖ξ−ξ

′‖p

2p−1σ dξ′

Worst-case distribution

P∗ = (...) supported on the whole space

vs. WDRO where the worst-case is finitely supported...
(WDRO hedges against wrong set of distributions ?)
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