
Efficient polynomial time algorithms

computing industrial-strength primitive roots

Jacques Dubrois

Axalto, 50 Avenue Jean-Jaurès, B.P. 620-12 92542 Montrouge, France.

Jean-Guillaume Dumas

Université Joseph Fourier, Laboratoire de Modélisation et Calcul, 50 av. des

Mathématiques. B.P. 53 X, 38041 Grenoble, France.

Abstract

E. Bach, following an idea of T. Itoh, has shown how to build a small set of numbers

modulo a prime p such that at least one element of this set is a generator of Z/pZ.

E. Bach suggests also that at least half of his set should be generators. We show

here that a slight variant of this set can indeed be made to contain a ratio of

primitive roots as close to 1 as necessary. In particular we present an asymptotically

O∼
(
√

1
ǫ log(p) + log2(p)

)

algorithm providing primitive roots of p with probability

of correctness greater than 1 − ǫ and several O(logα(p)), α ≤ 5.23, algorithms

computing ”Industrial-strength” primitive roots.

Key words: computational complexity, cryptography, randomized algorithms

Email addresses: jdubrois@axalto.com (Jacques Dubrois),

Jean-Guillaume.Dumas@imag.fr (Jean-Guillaume Dumas).

Preprint submitted to Elsevier Science 20 September 2005

1 Introduction

Primitive roots are generators of the multiplicative group of the invertibles of

a finite field. We focus in this paper only on prime finite fields, but the pro-

posed algorithms can work over extension fields or other multiplicative groups.

Primitive roots are of intrinsic use e.g. for secret key exchange (Diffie-Hellman),

pseudo random generators (Blum-Micali) or primality certification. The classi-

cal method of generation of such generators is by trial, test and error. Indeed

within a prime field with p elements they are quite numerous (φ(φ(p)) =

φ(p − 1) among p − 1 invertibles are generators. The problem resides in the

test to decide whether a number g is a generator or not. The first idea is to test

every gi for i = 1..p−1 looking for matches. Unfortunately this is exponential

in the size of p. An acceleration is then to factor p − 1 and test whether one

of the g
p−1

q is 1 for q a divisor of p − 1. If this is the case then g is obviously

not a generator. On the contrary, one has proved that the only possible order

of g is p − 1. Unfortunately again, factorization is still not a polynomial time

process: no polynomial time algorithm computing primitive roots is known.

However, there exists polynomial time methods isolating a polynomial size set

of numbers containing at least one primitive root. Elliot and Murata [3] also

gave polynomial lower bounds on the least primitive root modulo p. One can

also generate elements with exponentially large order even though not being

primitive roots [6]. Our method is in between those two approaches.

As reported by Bach [1], Itoh’s breakthrough was to use only a partial factor-

ization of p−1 to produce primitive roots with high probability [4]. Bach then

used this idea of partial factorization to give the actually smallest known set,

deterministically containing one primitive root[1], if the Extended Riemann

Hypothesis is true. Moreover, he suggested that his set contained at least half

2

primitive roots. In this paper, we propose to use a combination of Itoh’s and

Bach’s algorithms producing a polynomial time algorithm generating primi-

tive roots with a very small probability of failure (without the ERH). Such

generated numbers will be denoted by “Industrial-strength” primitive roots.

We also have a guaranteed lower bound on the order of the produced elements.

In this paper, we analyze the actual ratio of primitive roots within a variant of

Bach’s full set. As this ratio is close to 1, both in theory and even more in prac-

tice, selecting a random element within this set produces a fast and effective

method computing primitive roots. We present in section 2 our algorithm and

the main theorem counting this ratio. Then practical implementation details

and effective ratios are discussed section 3.

2 The variant of Itoh/Bach’s algorithm

The salient features of our approach when compared to Bach’s are that:

(1) We partially factor, but with known lower bound on the remaining factors.

(2) We do not require the primality of the chosen elements.

(3) Random elements are drawn from the whole set of candidates instead of

only from the first ones.

Now, when compared to Itoh’s method, we use a deterministic process pro-

ducing a number with a very high order and which has a high probability of

being primitive. On the contrary, Itoh selects a random element but uses a

polynomial process to prove that this number is a primitive root with high

probability [4]. The difference here is that we use low order terms to build

higher order elements whereas Itoh discards the randomly chosen candidates

and restarts all over at each failure. Therefore we first compute the ratio of

3

Algorithm 1: Probabilistic Primitive Root

Input: A prime p ≥ 3 and a failure probability 0 < ǫ < 1.

Output: A number, primitive root with probability greater than 1 − ε.

begin

Compute B such that (1 + 2
p−1

)(1 − 1
B

)logB
p−1

2 = 1 − ε.

Partially factor p− 1 = 2e1pe2

2peh

h Q (pi < B and Q has no factor < B).

for each 1 ≤ i ≤ h do

By trial and error, randomly choose αi verifying: α
p−1

pi

i 6≡ 1 (mod p).

Set a ≡
h
∏

i=1
α

p−1

p
ei
i

i (mod p).

if Factorization is complete then

Set Probability of correctness to 1 and return a.

else

Refine Probability of correctness to (1 + 1
Q−1

)(1 − 1
B

)logB Q.

Randomly choose b verifying: b
p−1

Q 6≡ 1 and return g ≡ ab
p−1

Q (mod p).

end

primitive roots within the set. We have found afterwards that Itoh, indepen-

dently and differently, proves quite the same within his [4, Theorem 1].

Theorem 1 At least φ(Q)
Q−1

of the returned values of Algorithm 1 are primitive

roots.

PROOF. We let p− 1 = kQ. In algorithm 1, the order of a is (p− 1)/Q = k

(see [1]). We partition Z/pZ∗ by S and T where

S = {b ∈ Z/pZ∗ : bk 6≡ 1(mod p)} and T = {b ∈ Z/pZ∗ : bk ≡ 1(mod p)}

and let U = {b ∈ Z/pZ∗ : bk has order Q}. Note that for any x ∈ Z/pZ∗ of

order n and any y ∈ Z/pZ∗ of order m, if gcd(n, m) = 1 then the order of

z ≡ xy(mod p) is nm. Thus for any b ∈ U it follows that g ≡ abk(mod p) has

4

order p− 1. Since U ⊆ S, we have that |U |
|S|

of the returned values of algorithm

1 are primitive roots.

We thus now count the number of elements of U and S. On the one hand,

we fix arbitrarily a primitive root g̃ ∈ Z/pZ∗ and define E = {i : 0 ≤ i ≤

Q and gcd(i, Q) = 1}. |E| = ϕ(Q) and it is not difficult to see that U =

{g̃i+jQ : i ∈ E and 0 ≤ j ≤ k − 1}. This implies that |U | = kϕ(Q). On the

other hand, we have T = {g̃0, g̃Q, . . . , g̃(k−1)Q}. The partitioning thus gives

|S| = |Z/pZ∗| − |T | = p − 1 − k. We thus conclude that |U |
|S|

= kφ(Q)
p−1−k

= φ(Q)
Q−1

.

Corollary 2 Algorithm 1 is correct and, when Pollard’s rho algorithm is used,

has an average running time of O
(√

1
ε
log2(p) + log3(p) log(log(p))

)

∗ .

PROOF. There remains to show that φ(Q)
Q−1

> 1 − ε. Let Q =
ω(Q)
∏

i=1
qi

fi where

ω(Q) is the number of distinct prime factors of Q. Then φ(Q) =
ω(Q)
∏

i=1
φ(qi

fi) =

Q
ω(Q)
∏

i=1
(1− 1

qi
). Thus φ(Q)

Q−1
= (1+ 1

Q−1
)

ω(Q)
∏

i=1
(1− 1

qi
). Now, since any factor of Q is

bigger than B, we have:
ω(Q)
∏

i=1
(1− 1

qi
) >

ω(Q)
∏

i=1
(1− 1

B
) = (1− 1

B
)ω(Q). To conclude,

we minor ω(Q) by logB(Q). This gives the probability refinement † . Since Q

is not known at the beginning, one can minor it there by p−1
2

since p− 1 must

be even whenever p ≥ 3. Now for the complexity. For the computation of

B, we use a Newton-Raphson’s approximation. The second step depends on

the factorization method. Both complexities here are given by the application

of Pollard’s rho algorithm. Indeed Pollard’s rho would require at worst L =

2⌈B⌉ loops and L = O(
√

B) on the average thanks to the birthday paradox.

∗ Using fast integer arithmetic this can become :

O
(
√

1
ε log(p) log2(log(p)) log(log(log(p)))+ log2(p) log2(log(p)) log(log(log(p)))

)

;

but the worst case complexity is O
(

1
ε log2(p) + log4(p) log(log(p))

)

.
† Note that one can dynamically refine B as more factors of p − 1 are known.

5

Now each loop of Pollard’s rho is a squaring and a gcd, both of complexity

O(log2 p). We conclude by the fact that (1 + 2
p−1

)(1 − 1
B

)logB
p−1

2 = 1 − ε so

that B ≤ 1
ε
‡ . For the remaining steps, there is at worst log p distinct factors,

thus log p distinct αi, but only log log p on the average. Each one requires a

modular exponentiation which can be performed with O(log3 p) operations

using recursive squaring. Now, to get a correct αi, at most O(log log p) trials

should be necessary. However, by an argument similar to that of theorem 1,

less than 1− 1
pi

of the αi are such that α
p−1

pi

i ≡ 1. This gives an average number

of trials of 1+ 1
pi

, which is bounded by a constant. This gives log× log3 × log log

in the worst case (distinct factors × exponentiation × number of trials) and

only log log× log3 ×2 on the average.

3 Industrial-strength primitive roots

Of course, the only problem with this algorithm is that it is not polynomial.

Indeed the partial factorization up to factors of any given size is still exponen-

tial. This gives the non polynomial factor
√

1
ε
. Other factoring algorithms with

better complexity could also be used, provided they can guarantee a bound on

the unfound factors. For that reason, we propose another algorithm with an at-

tainable number of loops for the partial factorization. Therefore, the algorithm

is efficient and we provide experimental data showing that it also has a very

good behavior with respect to the probabilities: Heuristic 2: Apply Algorithm

‡ We let 1− ǫ′p = (1− ǫ)/(1+ 2
p−1) and y = ω(Q). With this we can solve for B and

find Bǫ′p = ǫ′p/(1 − (1 − ǫ′p)
1/y). The latter is easily shown increasing for 0 < ǫ′p < 1

as soon as y ≥ 1. It is thus bounded by its value at ǫ′p = 1, which is 1. Therefore,

B ≤ 1
ǫ′p

< 1
ǫ independently of p and Q.

6

1 with B ≤ log2(p) log2(log(p)). With Pollard’s rho factoring, the algorithm

has now an average bit polynomial complexity of : O
(

log3(p) log(log(p))
)

(just

replace B by log2(p) log2(log(p)) and use L =
√

B). In practice, L could be

chosen not higher than a million: in figures 1 we choose Q with known factor-

ization and compute φ(Q)
Q−1

; the experimental data then shows that in practice

−7000

−6000

−5000

−4000

−3000

−2000

−1000

 0

 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

lo
g 2

(1
−

φ(
Q

)/
(Q

−
1)

)

Number of bits of Q

50 factors
30 factors
10 factors

2 factors
−100

−90

−80

−70

−60

−50

−40

−30

 10000 20000 30000 40000 50000
lo

g 2
(1

−
φ(

Q
)/

(Q
−

1)
)

Number of bits of Q

500 factors
400 factors
300 factors
200 factors
100 factors

Fig. 1. Actual probability of failure (powers of 2) with L = 220

no probability less than 1 − 2−40 is possible even with L as small as 220.

Provided that one is ready to accept a fixed probability, further improve-

ments on the asymptotic complexity can be made. Indeed, D. Knuth said

”For the probability less than (1
4
)25 that such a 25-times-in-row procedures gives

the wrong information about n. It’s much more likely that our computer has

dropped a bit in its calculations, due to hardware malfunctions or cosmic radia-

tions, than that algorithm P has repeatedly guessed wrong.” § We thus provide

a version of our algorithm guaranteeing that the probability of incorrect an-

swer is lower than 2−40: Algorithm 3: If p is small (p < 44905100), factor p−1

completely, otherwise apply Algorithm 1 with B = log5.231534p. With Pollard’s

rho factoring, the average asymptotic bit complexity is then O(log4.615767 p):

Factoring numbers lower than 44905100, takes constant time. Now for larger

primes and B = logα(p), we just remark that (1 + 2
p−1

)(1 − 1
B

)logB
p−1

2 is in-

§ More precisely, cosmic rays only can be responsible for 105 software errors in 109

chip-hours at sea level[5] . At 1GHz, this makes 1 error every 255 computations.

7

creasing in p, so that it is bounded by its first value. Numerical approximation

of α so that the latter is 1 − 2−40 gives 5.231534. The complexity exponent

follows as it is 2 + α
2
. One can also apply the same arguments e.g. for a

probability 1 − 2−55 and factoring all primes p < 2512 (since 513-bit num-

bers are nowadays factorizable), then slightly degrading the complexity to

O(log5.229768p). We have thus proved that a probability of at least 1 − 2−40

can always be guaranteed. In other words, our algorithm is able to efficiently

produce “industrial-strength” primitive roots.

This is for instance illustrated

 0

 200

 400

 600

 800

 1000

 1200

 1400

 256 512 1024 2048 4096 8192

Prime size

Time (s)

GAP
Maple

Magma
PARI−GP

Heuristic 2 (1−2−40)
Algorithm 3 (1−2−40) ; (1−2−55)

Fig. 2. Generations of primitive roots

when comparing our algorithm,

implemented in C++ with GMP,

to existing software (Maple 9.5,

Pari-GP, GAP 4r4 and Magma

2.11) ¶ on an Intel PIV 2.4GHz.

This comparison is shown on fig-

ure 2. Of course, the comparison

is not fair as other softwares are

always factoring p−1 completely. Still we can see the huge progress in primitive

root generation that our algorithm has enabled.

4 Conclusion

We provide here a new very fast and efficient algorithm generating primitive

roots. On the one hand, the algorithm has a polynomial time bit complexity

when all existing algorithms where exponential. This is for instance illustrated

when comparing it to existing software on figure 2. On the other hand, our

¶ swox.com/gmp, maplesoft.com, pari.math.u-bordeaux.fr, gap-system.org,

magma.maths.usyd.edu.au 8

algorithm is probabilistic in the sense that the answer might not be a primitive

root. We have seen in this paper however, that the chances that an incorrect

answer is given are less important than say “hardware malfunctions”. For this

reason, we call our answers “Industrial-strength” primitive roots.

An application of our algorithm is a new primality test: attempt to construct

a primitive root for a number n with algorithm 1 ; if n is prime, the algorithm

will succeed, otherwise the α
p−1

pi

i will be 1 too often [2]. When a given probability

of success is required, this algorithm can be competitive with repeated appli-

cations of Miller-Rabin’s test and allows to quantify the information gained

by finding elements of large order.

References

[1] E. Bach, Comments on search procedures for primitive roots, Mathematics of

Computation 66 (220) (1997) 1719–1727.

[2] J. Dubrois and J-G. Dumas. Polynomial time algorithms computing industrial-

strength primitive roots. Tech. Rep. arXiv cs.SC/0409029 (2004).

[3] P. D. T. A. Elliott and L. Murata, On the average of the least primitive root

modulo p, Journal of The london Mathematical Society 56 (2) (1997) 435–454.

[4] T. Itoh and S. Tsujii, How to generate a primitive root modulo a prime, IPSJ

SIG Technical Report 1989-AL-9-2 (1989).

[5] T. O’Gorman, J. Ross, A. Taber, J. Ziegler, H. Muhlfeld, C. Montrose, H. Curtis,

and J. Walsh. Field testing for cosmic ray soft errors in semiconductor memories.

IBM Journal of Research and Development, 40(1):41–50, January 1996.

[6] J. v. Gathen and I. Shparlinski, Orders of Gauß periods in finite fields, Applicable

Algebra in Engineering, Communication and Computing 9 (1998) 15–24.

9

