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1. INTRODUCTION

Finite fields play a crucial role in computational algebra. Indeed, finite fields are the
basic representation used to solve many integer problems. The whole solutions are
then gathered via the Chinese remainders or lifted p-adically. Among those prob-
lems are integer polynomial factorization [Zassenhaus 1978], integer system solving
[Dixon 1982; Storjohann 2005], integer matrix normal forms [Dumas et al. 2001] or
integer determinant [Kaltofen and Villard 2005]. Finite fields are of intrinsic use
in polynomial linear algebra [Giorgi et al. 2003] but also in cryptology (e.g. large
integer factorization [Montgomery 1995], discrete logarithm computations [Odlyzko
2000]) or for error correcting codes. Moreover, nearly all of these problems involve
linear algebra resolutions. Therefore, a fundamental issue is to implement efficient
elementary arithmetic operations and very fast linear algebra routines over finite
fields.

We propose a way to implement the equivalent of the basic BLAS level 1, 2, and
3 numerical routines (respectively dot product, matrix-vector product and matrix-
matrix product), but over finite fields. We will focus on implementations over
fields with small cardinality, namely not exceeding machine word size, but with
any characteristic (consequently, we do not deal with optimizations for powers of
2 cardinalities). For instance, we show that symbolic matrix multiplication can be
as fast as numerical matrix multiplication (see section 3) when using word size
prime fields. Our aim is not to rebuild some specialized routines for each field
instance. Instead, the main idea is to use a very efficient and automatically tuned
numerical library as a kernel (e.g. ATLAS [Whaley et al. 2001]) and to make some
conversions in order to perform an exact matrix multiplication (i.e. without any loss
of precision). The efficiency will be reached by performing as few conversions as
possible. Several alternatives to this approach exist: one would be to implement a
core linear algebra with integer arithmetic. Unfortunately, new architectures focus
on numerical arithmetic and therefore by using integer arithmetic we would lose a
factor of 2 or 4 due to the SIMD (single instruction, multiple data) SSE speed-up of
the numerical routines. Note that SSE4 with some integer support is announced for
2008 and might then change some of this point of view. Anyway, another feature
of our approach is to rely on a large community of effort for the numerical handling
of linear algebra routines. We want to show in this paper that no real gain could
be obtained by trying to mimic their effort over just using it.

Then, building on this fast numerical blocks, we can use fast matrix multiplication
algorithms, such as Strassen’s or Winograd’s variant [Gathen and Gerhard 1999,
§12]. There, we use exact computation on a higher level and therefore do not suffer
from instability problems [Higham 1990].

Many algorithms have been designed to use matrix multiplication in order to be
able to prove an optimal theoretical complexity. In practice those exact algorithms
are only seldom used. This is the case, for example, in many linear algebra problems
such as determinant, rank, inverse, system solution or minimal and characteristic
polynomial. We believe that with our kernel, each one of those optimal complexity
algorithms can also be the most efficient. One goal of this paper is then to show the
actual effectiveness of this belief. In particular we focus on factorization of matrices
of any shape and any rank.
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Some of the ideas from preliminary versions of this paper [Dumas et al. 2002],
in particular the BLAS-based matrix multiplication for small prime fields, are now
incorporated into the Maple computer algebra system since its version 8 and also
into the 2005 version of the computer algebra system Magma. Therefore an ef-
fort towards effective reduction has been made [Dumas et al. 2004] in C++ and
within Maple by A. Storjohann[Chen and Storjohann 2003]. Effective reduction for
minimal and characteristic polynomial were proposed in [Dumas et al. 2005] and
A. Steel has reported on similar efforts within his implementation of some Magma
routines.

In this paper, the matrix factorization, namely the exact equivalent of the LU
factorization is thus extensively studied. Indeed, unlike numerical matrices, ex-
act matrices are very often singular, even more so if the matrix is not square !
Consequently, Ibarra, Moran and Hui have developed generalizations of the LU
factorization, namely the LSP and LQUP factorizations [Ibarra et al. 1982]. Then
we adapt this scheme to rank, determinant, inverse (classical or Moore-Penrose),
nullspace computations, etc. There, we will give not only the asymptotic complex-
ity measures but the constant factor of the dominant term. Most of these terms
will give some constant factor to the multiplication time and we will compare those
theoretical ratios to the efficiency that we achieve in practice. This will enable us
to give a measure of the effectiveness of our reductions (see especially section 6).

Now, we provide a full C++ package available directly [Dumas et al. 2006] or
through the exact linear algebra library LinBox1 [Dumas et al. 2002]. Extending
the work undertaken by the authors et al.[Pernet 2001; Dumas et al. 2002; Brassel
et al. 2003; Giorgi 2003; Dumas 2004; Dumas et al. 2004; Dumas et al. 2005], this
paper focuses on matrix multiplication with an extended Winograd variant opti-
mizing memory allocation ; on simultaneous triangular system solving; on matrix
factorization and improved constant factors of complexity for many linear alge-
bra equivalent routines (inverse, squaring, upper-lower or upper-upper triangular
multiplication, etc.).

The paper is organized as follows. Section 2 introduces some material for the eval-
uation of arithmetical costs of recursive algorithms; we also motivate our choice to
represent elements of a finite field; Then section 3 presents efficient ways to im-
plement matrix multiplication over generic prime fields, including a study of fast
matrix multiplication. Section 4 deals with the matrix multiplication based simulta-
neous resolution of n triangular systems. Laslty, section 5 presents implementations
of several matrix factorizations and their applications with a study of complexity
and of efficiency in practice.

2. PRELIMINARIES

2.1 Finite field arithmetic

The first task, to implement exact linear algebra routines, is to develop the under-
lying arithmetic. Indeed, any finite field, except GF (2), do not map directly to
the arithmetical units of nowadays processors and a software emulation is therefore
mandatory. This has been well studied in literature, and we refer to [Dumas 2004]

1www.linalg.org
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and references therein for a survey on this topic. Here, we recall the different ways
of implementing such arithmetic and we will motivate our choice of a particular one
for efficient linear algebra routines.

2.1.1 Implementations. Representation of finite fields elements plays a crucial
role in the efficiency of arithmetic operations. From now on, we will count arith-
metic operations in terms of field operations, that is we will count addition, sub-
traction, multiplication and division in the arithmetic complexity results.

A usual way to implement prime fields arithmetic is to map the elements of the
field to integers modulo a prime number, defined by its characteristic. From now
on, we will focus on prime fields with characteristic no greater than a word size
(e.g. 32 bits). In this basic case, various representations and arithmetics can be
used:

—Classical representation with integer divisions.
Integers between 0 and p−1 or between (1−p)/2 and (p−1)/2 are used; additive
group operations are done with machine integers operations followed by a test and
a correction; multiplication is followed by machine remaindering while division
is performed via the extended gcd algorithm.

—Montgomery representation.
This representation, proposed in [Montgomery 1985], allows to avoid costly ma-
chine remaindering within the multiplication. A shifted representation is used
and remaindering is replaced by multiplications. Note that others operations,
except the division, stay identical.

—Floating point inverse.
Another idea to reduce remaindering cost in multiplication is to precompute the
inverse of the characteristic p within a floating point number. Therefore, only two
floating point multiplications and some rounding are necessary. However, floating
point rounding may induce a ±1 error and then an adjustment is required, as
implemented in Shoup’s NTL library [Shoup 2002].

—Discrete logarithm (also called Zech logarithm).
Here, elements are seen as a power of a generator of the multiplicative group,
namely a primitive element. As a consequence, multiplicative group operations
can be performed only by addition or subtraction modulo p − 1. Nevertheless,
this representation makes the addition/subtraction more complicated in the field.
In particular, these operations need some table lookup; see [Dumas 2004, §2.4].

Extension fields, denoted GF (pk), are usually implemented via polynomials over
the prime field Z/pZ modulo an irreducible polynomial of degree k. Thus, opera-
tions in the extension reduce to polynomial arithmetic. An alternative is to tabulate
entries and use the Zech logarithm representation also. As for prime fields, some
representations can be used to avoid the costly remaindering phase within the mul-
tiplication. We will not discuss any implementations over extension field in this
paper. We let the reader refer to [Dumas 2007] for details on data structures, arith-
metic and matrix multiplication over small extension fields. From now on, when
we will refer to finite fields this will mean word-size prime fields and the extensions
for which the trick of [Dumas et al. 2002, §4] is usable.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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2.1.2 Ring homomoprphism and delayed reduction. As a primitive tool for im-
plementing linear algebra routines, the efficiency of the finite field representation
needs to be well studied. In [Dumas 2004] the author analyzes the efficiency of finite
field arithmetic according to a chosen representation. It has been shown that atomic
operations (e.g. addition, multiplication) can be performed more efficiently than
with the classic method depending on the architecture. In particular, it appears
that memory access based implementations (i.e. discrete logarithm) and float-
ing point based implementations (i.e. floating point inverse) are more efficient on
older architecture such as Ultra Sparc. Nevertheless, with newer architecture such
as Pentium III and Pentium 4, integer machine operations become more efficient
and outperform other implementations, except discrete logarithm for multiplicative
group operations.

However, for linear algebra, the primary operation is the succession of two oper-
ations: a multiplication followed by an addition; this operation is commonly called
AXPY (also “fused-mac” or FMA within hardware). This operation clearly influ-
ences the efficiency of vectors dot product which is one of the main operations of
classic linear algebra. However, optimized AXPY atomic operation is deprecated
since one would rather use delayed divisions. This technique consists in succes-
sive multiplications and accumulations without any division. Divisions intervene
either just before an overflow occurs within the hardware data, or only after a fixed
numbers of accumulations.

Indeed, any prime field Zp can be naturally embedded into Z by representing its
elements with an integer of an interval [m,M ], such that M − m = p − 1. The
reverse conversion consists in applying a reduction modulo p to the integer value.

The ring structure being preserved by these homomorphisms, any ring algorithm
over Zp can be transposed into a ring algorithm over Z.

Now the machine integer arithmetic uses a fixed number of bits γ for the integer
representation: γ = 32 for int, γ = 24 (resp. γ = 53) for single (resp. double)
precision floating point values, etc.

Using this approximate integer arithmetic, one has therefore to ensure that the
computation of the integer algorithm will not overflow the representation. Hence
for each integer algorithm, a bound on the maximal computed value has to be given,
depending on m and M .

For example, if the representation is interval is [0, p − 1], one can perform λ
accumulations without any divisions if

λ(p− 1)2 < 2γ ≤ (λ+ 1)(p− 1)2 (1)

Note that if signed words are available, a centered representation can be used (i.e.
−p−1

2 ≤ x ≤ p−1
2 for the storage of an element x of the odd prime field) and the

equation 1 becomes

λ

(
p− 1

2

)2

< 2γ−1 ≤ (1 + λ)
(
p− 1

2

)2

(2)

which improves λ by a factor of 2.
Hence, the bottleneck of divisions can be amortized since only

⌈
n
λ

⌉
divisions will

occur in a n-dimensional vector dotproduct.
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Contrary to atomic operations, floating point based implementations for dotprod-
uct tend to be the most efficient on average. In particular, timings are constant
and achieve almost half of the peak of arithmetical unit while the timings of others
implementations drop as soon as the size of the finite field increases. However,
when small primes are used, one can improve these timings to almost the peak of
the machine by using others implementations [Dumas 2004, §3.4].

According to these results and the necessity of genericity, we provide implementa-
tions based on generic finite fields (e.g. use of C++ template mechanism). However,
in this paper, we mainly use a floating point based implementation for our finite
fields arithmetic, called Zpz-double. This choice is principally motivated by the use
of optimized numerical basic linear algebra operations through the BLAS library.
Indeed, one can easily benefit from these libraries by simply mapping linear algebra
operations over finite fields to numeric computations and delayed divisions. This
will be extensively explained in sections 3 and 4. Therefore, the choice of floating
point based representations for finite field elements will be an asset since it will
avoid any data conversion. Possibly, we may use a different finite field implemen-
tation in order to compare efficiencies. There, we will use the notation Zpz-int,
meaning a word size integer based implementation. As we will see throughout the
rest of the paper, the combination of BLAS and Zpz-double implementation will
allow us to approach numerical efficiency for linear algebra problems over finite
fields.

2.2 Recursion materials for arithmetical complexity

The following two lemmas will be useful to study the constant factor of linear
algebra algorithms compared to matrix multiplication. The first one gives the
order of magnitude when the involved matrices will be square:

Lemma 2.1. Let m be a positive integer and suppose that

(1 ) T (m) = CT (m2 ) + amω + ε(m), with ε(m) ≤ gm2 for some constants C, a, ω, g.

(2 ) T (1) = e for some constant e.

(3 ) log2(C) < ω.

Then T (m) = O(mω).

Proof. Let t = log2(m). The recursion gives,

T (m) = CtT (1) + amω 1− ( C2ω
)t

1− C
2ω

+
t−1∑

i=0

Ciε(
m

2i
).

Then, on the one hand, if C 6= 4 this yields T (m) = a2ω

2ω−Cm
ω + kCt + g′m2, where

g′ < 4g
4−C and k < T (1) − a2ω

2ω−C − g′. On the other hand, when C = 4, we have
T (m) = a2ω

2ω−Cm
ω + k′Ct + gm2 log2(m), where k′ < T (1) − a2ω

2ω−C . In both cases,
with Ct = mlog2(C), this gives T (m) = a2ω

2ω−Cm
ω + o(mω).

Now we give the order of magnitude when the matrix dimensions differ:

Lemma 2.2. Let m and n be two positive integers and suppose that
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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(1 ) T (m,n) =
∑k
i=1 ciT (m2 , n−di m2 )+amω+bmω−1n+ε(m,n), with C =

∑k
i=1 ci,

D =
∑k
i=1 cidi, 2 < ω and ε(m,n) ≤ gm2 + hmn .

(2 ) T (1, F ) ≤ eF for a constant e.
(3 ) log2(C) < ω − 1

Then T (m,n) = O(mω +mω−1n).

Proof. As in the preceding lemma, we use the recursion and geometric sums to
get

T (m,n) =
k∑

i1=1

ci1 . . .

k∑

it=1

citT (1, n− f(d1, . . . , dt,m))+

mω

(
a

1− ( C2ω
)t

1− C
2ω

− bD1− ( C
2ω−1

)t

1− C
2ω−1

)
+ bmω−1n

1− ( C
2ω−1

)t

1− C
2ω−1

+
k∑

i1=1

ci1H(m/2, n− dim/2) . . .+
k∑

i1=1

ci1 . . .

k∑

it=1

citH(1, n− f(d1, . . . , dt,m))

(3)

Thus, we get

αmω + βmω−1n ≤ T (m,n) ≤ αmω + βmω−1n+ CtT (1, n) +
t∑

i=1

CiH(
m

2i
, n).

The last term is bounded by gm2 1−(C4 )t
1−C4

+ fmn
1−(C2 )t

1−C2
when C 6= 4 and C 6= 2. In

this case CtT (1, n) +
∑t
i=1 C

iH(m2i , n) ≤ mlog2(C)
(

(e+ 2g
C−2 )n+ 4g

C−4

)
= O(mω +

mω−1n). When C = 2, a supplementary log2(m) factor arises in the small factors,
but the order of magnitude is preserved since log2(C) + 1 = 2 < ω.

These two lemmas are useful in the following sections where we solve (e.g.suppose
T (m) = αmω in a recurring relation for α) to get the actual constant of the dom-
inant term. Thus, when we give an equality on complexities, this equality means
that the dominant terms of both complexities are equal. In particular, some lower
order terms may differ.

3. MATRIX MULTIPLICATION

We propose a design for a matrix multiplication kernel routine over a word-size
finite field, based on the three following features:

(1) delayed modular redution, as explained section 2.1.2,
(2) cache tuning and floating point arithmetic optimizations using BLAS,
(3) Strassen-Winograd fast algorithm.

3.1 Cache tuning using BLAS

In most of the modern computer architecture, a memory access to the RAM is
more than one hundred times slower than an arithmetic operation. To circumvent

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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this slowdown, the memory is structured into two or three levels of cache acting
as buffers to reduce the number of accesses to the RAM and reuse as much as
possible the buffered data. This approach is only valid if the algorithm involves
many computations with local data.

In linear algebra, matrix multiplication is the better suited operation for cache
optimization: it is the first basic operation, for which the time complexity O(n3)
is an order of magnitude higher than the space complexity O(n2). Furthermore
it plays such a central role in linear algebra, that every other algorithm will take
advantage of the tuning of this kernel routine.

These considerations have driven the development of basic linear algebra subrou-
tines (BLAS) [Dongarra et al. 1990; Whaley et al. 2001] for numeric computations.
One of its main achievement is the level 3 set of routines, based on a highly tuned
matrix multiplication kernel.

For computations on a word-size finite field, a similar approach could be devel-
oped, e.g. following [Gustavson et al. 1998] for block decomposition. Instead, we
propose to simply wrap these numerical routines to form the integer algorithm of
the delayed modular approach of the previous section. This will enable to take ben-
efit from both the efficiency of the floating point arithmetic and the cache tuning
of the BLAS libraries. Furthermore relying on the generic BLAS interface makes
it possible to benefit from the large variety of optimizations for all existing archi-
tectures and ensures a long term efficiency thanks to the much larger development
effort existing for numerical computations.
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Matrix multiplication over Z/65521Z on a XEON, 3.6 GHz

GOTO::dgemm FFLAS::classic FFLAS::fgemm long-block-40 long-noblock

Fig. 1. Blocking classical matrix multiplication, on a Xeon, 3.6GHz.

Figure 1 shows the advantage of this method (FFLAS::classic) compared to
two other implementations: the naive algorithm (long-noblock), and a hand-made
cache tuned implementation, based on block decomposition of the input matrices,
so that each block product could be performed locally in the L2 cache memory
(long-block-40, for a block dimension 40). The graph compares the computation
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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speed in millions of field operations per seconds (Mfops) for different matrix orders.
As a comparison we also provide the computation speed of the equivalent numerical
BLAS routine dgemm. This approach improves on the efficiency of the two other
methods over a finite field and the overhead of the modular reductions is limited.
Finally, the (FFLAS::fgemm) implementation is the most efficient thanks to the
combination of numerical computations and a fast matrix multiplication algorithm
which is discussed in the next section.

3.2 Winograd fast algorithm

The third feature of this kernel is the use of a fast matrix multiplication algorithm.
We will focus on Winograd’s variant [Gathen and Gerhard 1999, algorithm 12.1]
of Strassen’s algorithm [Strassen 1969]. We denote by MM(n) the dominant term
of the arithmetic complexity of the matrix multiplication. The value of MM(n)
thus reflects the choice of algorithm, e.g. MM(n) = 2n3 for the classical algorithm,
and mean that the actual complexity of the classical algorithm is 2n3 +O(n2). We
also denote by ω the asymptotic exponent of MM(n), it is thus 3 for the classical
algorithm, log2(7) ≈ 2.807354922 for the Strassen-Winograd variant, and the best
known exponent is about 2.375477 by [Coppersmith and Winograd 1990].

In [Higham 1990] Winograd’s variant is discarded for numerical computations
because of its bad stability and despite its better running time. In [Kaporin 2004]
aggregation-cancellation techniques of [Laderman et al. 1992] are also compared.
They also give better stability than the Winograd variant but worse running time.
For exact computation, stability is no longer an issue and Winograd’s faster variant
is thus preferred.

3.2.1 A Cascade structure. Asymptotically, this algorithm improves on the num-
ber of arithmetic operations required for matrix multiplication from MM(n) = 2n3

to MM(n) = 6n2.8074. But for a given n, the total number of arithmetic operations
can be reduced by switching after a few recursive levels of Winograd’s algorithm
to the classic algorithm. Table I compares the number of arithmetic operations
depending on the matrix order and the number of recursive levels.

Recursive levels of Winograd’s algorithm

n Classic 1 2 3 4 5 6

4 112 144 214
8 960 1024 1248 1738
16 7936 7680 8128 9696 13126
32 64512 59392 57600 60736 71712 95722
64 520192 466944 431104 418560 440512 517344 685414

Table I. Number of arithmetic operations in the multiplication of two n× n matrices

This phenomenon is amplified by the fact that additions in classic matrix multipli-
cation are cheaper than the ones in Winograd algorithm since they take advantage
of the cache optimization of the BLAS routine. As a consequence, the optimal
number of recursive levels depends on the architecture and must be determined
experimentally. It can be described by a simple parameter: the matrix order w for

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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which one recursive level is as fast the classic algorithm. Then the number of levels
l is given by the formula

l =
⌊
log2

n

w

⌋
+ 1.

3.2.2 Schedule of the algorithm. We based our implementation of Winograd’s
algorithm on two different schedules. For the operation C ← A×B we use that of
[Douglas et al. 1994, Fig. 1] and for the extended C ← αA×B+βC, that of [Huss-
Lederman et al. 1996, Fig. 6] that we recall in table II. More details about tasks
scheduling and memory efficient variants of Winograd’s algorithm can be found in
[Dumas et al. 2007].

# operation loc. # operation loc.

1 S1 = A21 +A22 X1 12 S4 = A12 − S2 X1

2 T1 = B12 −B11 X2 13 T4 = T2 −B21 X2

3 P5 = αS1T1 X3 14 C12 = αS4B22 + C12 C12

4 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C12

5 C12 = P5 + βC12 C12 16 P4 = αA12T4 − βC21 C21

6 S2 = S1 −A11 X1 17 S3 = A11 −A21 X1

7 T2 = B22 − T1 X2 18 T3 = B22 −B12 X2

8 P1 = αA11B11 X3 19 U3 = αS3T3 + U2 X3

9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C22

10 U2 = αS2T2 + P1 X3 21 U6 = U3 − C21 C21

11 U1 = αA12B21 + C11 C11

Table II. Schedule for operation C ← αA×B + βC with 3 temporaries

3.2.3 Control of the overflow. Since Winograd’s algorithms will be used with
delayed modular reductions, one has to ensure that any intermediate computation
will fit in the underlying fixed-size integer representation being used. Indeed, inter-
mediate values can become large in this algorithm, and the former bound for the
dot-product no-longer holds.

The main result of this section is that, in the worst case, the largest intermediate
computation occurs during the recursive computation of the sixth recursive product
P6 (see appendix A). This result generalizes [Dumas et al. 2002, theorem 3.1] for
the computation of AB + βC.

Theorem 3.1. Let A ∈ Zm×k, B ∈ Zk×n C ∈ Zm×n be three matrices and
β ∈ Z with mA ≤ ai,j ≤ MA, mB ≤ bi,j ≤ MB and mC ≤ ci,j ≤ MC . Moreover,
suppose that 0 ≤ −mA ≤ MA, 0 ≤ −mB ≤ MB, 0 ≤ −mC ≤ MC , MC ≤ MB

and |β| ≤ MA,MB. Then every intermediate value z involved in the computation
of A×B + βC with l (l ≥ 1) recursive levels of Winograd algorithm satisfy:

|z| ≤
(

1 + 3l

2
MA +

1− 3l

2
mA

)(
1 + 3l

2
MB +

1− 3l

2
mB

)⌊
k

2l

⌋

Moreover, this bound is optimal.

The proof is given in appendix A.
Using a positive integer representation of the prime field elements (integers be-

tween 0 and p− 1), the following corollary holds:
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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Corollary 3.2 Positive modular representation. Using the same nota-
tions, with ai,j , bi,j , ci,j , β ∈ [0 . . . p− 1], we have

|z| ≤
(

1 + 3l

2

)2 ⌊
k

2l

⌋
(p− 1)2

Instead, using a balanced representation (integers between −p−1
2 and p−1

2 ), this
bound can be improved:

Corollary 3.3 Balanced modular representation. Using the same no-
tations with ai,j , bi,j , ci,j , β ∈ [−p−1

2 . . . p−1
2 ], we have

|z| ≤
(

3l

2

)2 ⌊
k

2l

⌋
(p− 1)2

Corollary 3.4. One can compute l recursive levels of Winograd algorithm
without modular reduction over integers of γ bits as long as k < kWinograd where

kWinograd =

(
2γ+2

((1 + 3l)(p− 1))2 + 1

)
2l

for a positive modular representation and

kWinograd =

(
2γ+2

(3l(p− 1))2 + 1

)
2l

for a balanced modular representation.

3.3 Timings and comparison with numerical routines

This section presents experiments of our implementation of the matrix multiplica-
tion kernel described above.

The experiments use two different BLAS library: the automatically tuned BLAS
ATLAS [Whaley et al. 2001], and the BLAS by Kazushige Goto [Goto and van de
Geijn 2002] refered to as GOTO. We used the gcc compiler version 4.1 on the Xeon
machine and the icc compiler version 9.0 on the Itanium. We recall that dgemm
refers to the BLAS matrix multiplication routine over double precision floating
point numbers. Similarly, we named our routine over a word-size finite field fgemm.

n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.38s 2.73s 8.59s 36.34s 95.21 134.03s 190.21s 258.08
dgemm 0.37s 2.98s 10.02s 46.10s 126.38s 188.97s 267.83s 368.30s

A
T

L
A

S

fgemm
dgemm

1.02 0.92 0.86 0.79 0.75 0.71 0.71 0.70

fgemm 0.36s 2.53s 7.95s 33.44s 87.46s 124.86s 177.25s 238.00s
dgemm 0.34s 2.65s 8.90s 41.01s 112.31s 167.20s 237.16s 325.62s

G
O

T
O

fgemm
dgemm

1.05 0.96 0.89 0.82 0.78 0.75 0.75 0.73

Table III. Comparison between fgemm and dgemm on a Xeon, 3.6GHz
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n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.46s 3.22s 10.14s 42.28s 110.64s 163.53s 225.08s 296.56s
dgemm 0.45s 3.49s 11.45s 53.12s 144.45s 215.53s 305.21s 419.00s

A
T

L
A

S

fgemm
dgemm

1.01 0.92 0.89 0.80 0.77 0.76 0.74 0.71

fgemm 0.43s 2.99s 9.35s 39.21s 104.07s 152.12s 209.22s 277.32s
dgemm 0.40s 3.18s 10.61s 48.88s 133.75s 200.11s 283.94s 390.37s

G
O

T
O

fgemm
dgemm

1.06 0.94 0.88 0.80 0.78 0.76 0.74 0.71

Table IV. Comparison between fgemm and dgemm on Itanium2, 1.3GHz

The tables III and IV report timings obtained for both exact and numeric matrix
multiplication. First the comparison shows that the exact computation over a
word size finite field (modulo 65521 on these tables) can reach a similar range
of efficiency as the numerical computation. For increasing matrix dimensions, the
exact computation becomes even more efficient (see also figure 1), thanks to the use
of Winograd’s algorithm (improvement factor between 13% and 29% for dimension
10 000).

These experiments also show the advantage of relying on a generic interface
for numerical BLAS: the exact computation will directly take advantage of the
improvements of the best numerical routine. This appears when comparing GOTO
and ATLAS on these two target architecture, where GOTO is about 10% faster.

4. TRIANGULAR SYSTEM SOLVING WITH MATRIX RIGHT/LEFT HAND SIDE

We now discuss the implementation of solvers for triangular systems with matrix
right hand side (or equivalently left hand side). The resolution of such systems plays
a central role in many linear algebra problems, e.g. it is the second main operation
in block Gaussian elimination after matrix multiplication as will be recalled in
section 5.1. This operation is commonly named trsm in the BLAS convention. In
the following, we will consider without loss of generality the resolution of an upper
triangular system with matrix right hand side, i.e. the operation B ← U−1B, where
U is m×m upper triangular and B is m× n.

Following the approach of the BLAS numerical routine, our implementation is
based on a block recursive algorithm to reduce the computation to matrix multi-
plications.

Now similarly to our approach with matrix multiplication, the design of our im-
plementation also focuses on delaying the modular reductions as much as possible.
As will be shown in section 4.2, delaying the whole resolution leads to a quick
growth in the size of coefficients. Therefore we also present in section 4.3 another
way of delaying these modular reductions. We lastly present how to combine these
two techniques within a multi-cascade algorithm.
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4.1 The block recursive algorithm

Algorithm trsm recalls the block recursive algorithm.

Algorithm 1: trsm (A,B)

Data: A ∈ Z/pZm×m, B ∈ Z/pZm×n.
Result: X ∈ Z/pZm×n such that AX = B.
begin

if m = 1 then
X := A−1

1,1 ×B
else

/* splitting matrices into two blocks of sizes
⌊
m
2

⌋
and

⌈
m
2

⌉

A X B︷ ︸︸ ︷[
A1 A2

A3

] ︷ ︸︸ ︷[
X1

X2

]
=

︷ ︸︸ ︷[
B1

B2

]

*/
X2 :=trsm (A3, B2)
B1 := B1 −A2X2

X1 :=trsm (A1, B1)

end

Lemma 4.1. Algorithm trsm is correct and the leading term of its arithmetic
complexity over Z/pZ is

TRSM(m,n) =
1

2ω−1 − 2

⌈ n
m

⌉
MM(m)

This complexity is m2n using classic matrix multiplication.

Proof. Extending the previous notation MM (n), we denote by MM (m,k,n)
the cost of multiplying a m×k by a k×n matrices. The cost function TRSM(m,n)
satisfies the following equation:

TRSM(m,n) = 2TRSM(
m

2
, n) + MM(

m

2
,
m

2
, n).

Let t = log2(m). Although the algorithm works for any n, we restrict the complexity
analysis to the case where m ≤ n for the sake of simplicity. We then have:

TRSM(m,n) = 2TRSM(
m

2
, n) +

1
2ω−1

⌈ n
m

⌉
MM(m)

= 2tTRSM(1, n) +
1

2ω−1

⌈ n
m

⌉
MM(m)

1− ( 2
2ω−1

)t
1− 2

2ω−1

.

As TRSM(1, n) = 2n and
(
2ω−1

)t = mω−1, we obtain the expected complexity
TRSM(m,n) = 1

2ω−1−2

⌈
n
m

⌉
MM(m) +O(m2 +mn).
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4.2 Delaying reductions globally

As for matrix multiplication, the delayed computation relies on the fact that ring
operations over the finite field can be replaced by ring operations over Z using the
ring homomorphisms described in section 2.1.2. However, triangular system reso-
lutions involve, in the general case, field operations: the divisions by the diagonal
elements of the triangular matrix. Therefore this technique is only valid with unit
diagonal matrices.

In the general case, the triangular matrix is made unit diagonal by the following
factorization: A = DU , where D is diagonal and U is unit diagonal upper trian-
gular. Then the system UX = D−1B only involves ring operations and can be
solved over Z. This normalization leads to an additional cost of O(mn) arithmetic
operations (see [Dumas et al. 2004] for more details).

Now the integer computation with a fixed sized arithmetic (e.g. the floating point
arithmetic) is exact as long as all intermediate results of the computation do not
exceed the bit capacity of the representation. Therefore we now propose bounds
on the values computed by the algorithm over Z.

Theorem 4.2. Let T ∈ Zn×n be a unit diagonal upper triangular matrix and
b ∈ Zn, with m ≤ Ti,j ≤ M and m ≤ bi ≤ M and m ≤ 0 ≤ M . Let x =
(xi)i∈[1...n] ∈ Zn be the solution of the system Tx = b. Then ∀ k ∈ [0 . . . n− 1] :

{ −uk ≤ xn−k ≤ vk for k even,
−vk ≤ xn−k ≤ uk for k odd

with {
uk = M−m

2 (M + 1)k − M+m
2 (M − 1)k,

vk = M−m
2 (M + 1)k + M+m

2 (M − 1)k.

Proof. First note the following relations:

∀k



uk ≤ vk
−muk ≤ Mvk
−mvk ≤ Muk

The third one comes from

Muk +mvk =
M2 −m2

2
((M + 1)k − (M − 1)k) ≥ 0.

The proof is now an induction on k, following the system resolution order. The
initial case k = 0 correspond to the first step: xn = bn, leading to

−u0 = m ≤ xn ≤M = v0.

Suppose now that the inequalities hold for k ∈ [0 . . . l] and prove them for k = l+1.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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If l is odd, l + 1 is even.

xn−l−1 = bn−l−1 −
nX

j=n−l
Tn−l−1,jxj

≤ M +

l−1
2X
i=0

max(Mu2i,−mv2i) + max(Mv2i+1,−mu2i+1)

≤ M

0
B@1 +

l−1
2X
i=0

u2i + v2i+1

1
CA

≤ M

0
B@1 +

l−1
2X
i=0

M −m
2

(M + 2)(M + 1)2i +
M +m

2
(M − 2)(M − 1)2i

1
CA

≤ M

„
1 +

M −m
2

(M + 2)
(M + 1)l+1 − 1

(M + 1)2 − 1
+
M +m

2
(M − 2)

(M − 1)l+1 − 1

(M − 1)2 − 1

«

≤ M −m
2

(M + 1)l+1 +
M +m

2
(M − 1)l+1 = vl+1.

Similarly,

xn−l−1 ≥ m−
l−1
2X
i=0

max(Mv2i,−mu2i) + max(Mu2i+1,−mv2i+1)

≥ m−M
l−1
2X
i=0

v2i + u2i+1

≥ m−M
l−1
2X
i=0

M −m
2

(M + 2)(M + 1)2i − M +m

2
(M − 2)(M − 1)2i

≥ m−M
„
M −m

2
(M + 2)

(M + 1)l+1 − 1

(M + 1)2 − 1
− M +m

2
(M − 2)

(M − 1)l+1 − 1

(M − 1)2 − 1

«

≥ M −m
2

(M + 1)l+1 − M +m

2
(M − 1)l+1 = ul+1.

For l even, a similar proof leads to

−vl+1 ≤ xn−l−1 ≤ ul+1.

Corollary 4.3. Using the notation of theorem 4.2,

|x| ≤ M −m
2

(M + 1)n−1 +
M +m

2
(M − 1)n−1.

Moreover this bound is optimal.

Proof. The sequence (vk) is increasing and always greater than (uk). Thus
∀ k ∈ [0 . . . n− 1] |xn−k| ≤ uk ≤ vk ≤ vn−1.

Now the vector x = (xi)i∈[1...n] ∈ Zn such that ∀ k ∈ [0 . . . n − 1] |xn−k| = vk
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satisfies the system Tx = b with

T =




. . . . . . . . . . . . . . .
1 M m M

1 M m
1 M

1



, b =




...
m
M
m
M




Therefore the bound is reached.

The following corollaries apply this result to the positive and balanced modular
representations.

Corollary 4.4 Positive modular representation. For 1 ≤ i, j ≤ n, if
Ti,j , bi ∈ [0 . . . p− 1], then

|x| ≤ p− 1
2

(pn−1 + (p− 1)n−1).

Corollary 4.5 Balanced modular representation. For 1 ≤ i, j ≤ n, if
Ti,j , bi ∈ [−p−1

2 . . . p−1
2 ], then

|x| ≤ p− 1
2

(
p+ 1

2

)n−1

.

Remark 4.6. The balanced modular representation improves the bound by a fac-
tor of 2n−1.

As a consequence, one can solve a unit diagonal triangular system of dimension
n using arithmetic operations with integers stored on γ bits if

p− 1
2

(pn−1 + (p− 1)n−1) < 2γ (4)

for a positive representation and

p− 1
2

(
p+ 1

2

)n
< 2γ (5)

for a balanced representation.
For instance, using the double floating point representation (53 bits of mantissa)

the maximal dimension of the system is 34 (resp. 52) for a positive (resp. balanced)
representation of Z3. For larger fields, this maximal dimension becomes quickly
very small: with p = 1001, n ≤ 5 (resp. n ≤ 6) for a positive (resp. balanced)
representation.

In the following, we will denote by tdel(p, γ) the maximum dimension for the reso-
lution with delayed modular reductions. This dimension is small, and this approach
can therefore only be used as a terminal case of the recursive block algorithm. This
first cascade algorithm is characterized by the threshold tdel. For efficiency, we used
in our implementation the BLAS routine trsm to perform the delayed computation
over Z. Despite the small dimension of the blocks, we will see in section 4.4 that
this approach can slightly improve the efficiency of the computation when the finite
field is small.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2008.
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4.3 Delaying reductions in the update phase only

The block recursive algorithm consists in several matrix multiplications of differ-
ent dimensions. In most cases, the matrix multiplications are done over Z with
a modular reduction on the result only. But part of these result matrices will
be accumulated to other matrix multiplications in later computations. Therefore
these intermediate modular reductions could be delayed even more by allowing to
accumulate these results over Z as much as possible.

This technique can be applied within the former cascade algorithm, to produce a
double cascade structure. The key idea is to split the matrices at two levels as shown
on figure 2: a fine grain splitting with the dimension tdel of the previous section, and

U =
i

i B 1..i−1

B i

V X

X i

1..i−1

Fig. 2. Splitting for the double cascade trsm algorithm

a coarse grain splitting with the dimension tupdate such that all recursive calls of
dimension lower than tupdate can let the matrix multiplication updates accumulate
without modular reductions. Choosing tupdate = kWinograd (from corrolary 3.4)
will ensure this property. To adjust together the dimensions of the two block
decompositions, we set tsplit = btWinograd/tdelc tdel.

Algorithm 2: trsm-rec-BLAS-delayed :

Data: A ∈ Z/pZm×m, B ∈ Z/pZm×n
Result: X ∈ Z/pZm×n s.t. AX = B
begin

Compute tdel from equation (4 or 5)
Compute tWinograd from corrolary (3.4)
tsplit = btWinograd/tdelc tdel

foreach block column of A of dimension m× tsplit of the form



Vi
Ui
0


 do

Xi = trsm-partial-delayed(Ui, Bi)
Xi = Xi mod p
B1...i−1 = B1...i−1 − ViXi

B1...i−1 = B1...i−1 mod p

return X
end
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Algorithm 3: trsm-partial-delayed

Data: A ∈ Z/pZm×m, B ∈ Z/pZm×n, m must be lower than tupdate

Result: X ∈ Z/pZm×n s.t. AX = B
begin

if m ≤ ndel then
B = B mod p
X = dtrsm(A,B) ; /* the BLAS routine */
X = X mod p

else
/* (splitting of the matrix into blocks of dimension

⌊
m
2

⌋
and

⌈
m
2

⌉
) */

A X B︷ ︸︸ ︷[
A1 A2

A3

] ︷ ︸︸ ︷[
X1

X2

]
=

︷ ︸︸ ︷[
B1

B2

]

X2 := trsm-partial-delayed(A3, B2)
B1 := B1 −A2X2 ; /* without modular reduction */
X1 := trsm-partial-delayed(A1, B1)

return X
end

Algorithm 2 is a loop on every block of column dimension tupdate. For each of
them, the triangular system is solved using algorithm 3 and the update is performed
by a matrix multiplication over Z followed by a modular reduction. Algorithm 3 is
simply the cascade algorithm of the previous section: the block recursive algorithm
1 with the fully delayed algorithm as a terminal case. The matrix multiplication up-
dates are performed over Z without any reduction of the result, since the threshold
tupdate allows to accumulate them.

4.4 Experiments

We now compare three implementations of the trsm routine over a word size finite
field:

. Pure recursive (Pure-Rec): Simply algorithm 1,

. Recursive-BLAS (Rec-BLAS): The cascade algorithm formed by the recursive
algorithm and the BLAS routine dtrsm as a terminal case. It differs from algorithm
3 by the fact that the matrix multiplication B1 := B1 − A2X2 is always followed
by a modular reduction.

. Recursive-BLAS-Delayed (Rec-BLAS-Delayed): algorihtm 2.

We compare these three variants over finite fields with different cardinalities, so
as to make the parameters tdel and tupdate vary as in the following table:

p dlog2 pe tdel tupdate

5 3 23 2 147 483 642
1 048 583 20 2 8190
8 388 617 23 2 126
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Fig. 3. Comparison of the trsm variants for p = 5, 1 048 583, 8 388 617, on a Pentium4-3,2Ghz-1Go
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In the experiments of figure 3, the matrix B is square (m = n). One can first
notice the gain provided by the use of the first cascade with the delayed dtrsm
routine by comparing the curves rec-BLAS and pure-rec for p = 5. This advantage
shrinks when the characteristic gets larger, since tdel = 2 for p = 1 048 583 or
p = 8 388 61.

Now the introduction of the coarse grain splitting, delaying the reductions in the
update phase improves by up to 500 Mfops the computation speed. This gain is
similar for p = 5 and p = 1 048 583 since in both cases n < tupdate and there is
therefore no modular reduction between the matrix multiplications.

Lastly for p = 8 388 617, the speed drops down since more reductions are re-
quired. The variants pure-rec and rec-BLAS are penalized by their dichotomic
splitting, creating too many modular reductions after each matrix multiplication.
Now rec-BLAS-delayed has the best efficiency since the double cascade structure
minimizes the number of reductions.

We now give a comparison of this implementation with the equivalent routine of
the original BLAS dtrsm. As for matrix multiplication in section 3.3, we compare
the routines according to two different BLAS implementations (i.e. ATLAS and
GOTO) and two different architectures. Nevertheless, we do not present the results
with ATLAS on Xeon architecture due to the surprisingly poor efficiency of ATLAS
dtrsm during our tests. In the following, ftrsm denotes the trsm routine over 16-
bits prime field (i.e. Z65521) using the ZpZ-double implementation.

n 1000 2000 3000 5000 7000 8000 9000 10000

ATLAS ftrsm 0.37s 1.93s 5.73s 23.63s 62.50s 91.67s 121.84s 166.74s

ftrsm 0.25s 1.66s 5.08s 21.47s 55.95s 80.77s 111.57s 150.81s
dtrsm 0.17s 1.35s 4.50s 20.64s 56.19s 83.85s 119.18s 163.33s

G
O

T
O

ftrsm
dtrsm

1.47 1.23 1.13 1.04 1.00 0.96 0.94 0.92

Table V. Timings of triangular solver with matrix hand side on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

ftrsm 0.34s 2.28s 7.11s 30.26s 77.43s 112.01s 158.00s 214.31s
dtrsm 0.26s 1.95s 6.37s 28.60s 76.44s 113.78s 161.19s 219.31s

A
T

L
A

S

ftrsm
dtrsm

1.31 1.17 1.12 1.06 1.01 0.98 0.98 0.98

ftrsm 0.30s 2.00s 6.23s 26.67s 68.22s 104.32s 137.96s 192.37s
dtrsm 0.21s 1.61s 5.36s 24.59s 67.35s 100.42s 142.43s 195.79s

G
O

T
O

ftrsm
dtrsm

1.43 1.24 1.16 1.08 1.01 1.04 0.97 0.98

Table VI. Timings of triangular solver with matrix hand side on Itanium2, 1.3GHz

Tables V and VI show that our implementation of exact trsm solving is not far
from numerical performances. Moreover, on our Xeon architecture, with GOTO
BLAS, we are able to achieve even better performances than numerical solving for
matrices of dimension greater than 7 000.

The good performance of our implementation is mostly achieved with the efficient
reduction to fast matrix multiplication and the double cascade structure. Figure 4
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Fig. 4. Comparing triangular system solving with matrix multiplication on a Xeon, 3.6GHz

shows the ratio of the computation time of our trsm compared with matrix mul-
tiplication routine. According to lemma 4.1, this ratio is 1/2 with ω = 3 and 2/3
with ω = log2 7. In practice, our implementation only performs a few recursive calls
of Winograd’s algorithm, and the ratio appears to be between 0.5 and 0.666 as soon
as the dimension is large enough, showing the good efficiency of the reduction to
matrix multiplication.

5. FINITE FIELD MATRIX FACTORIZATIONS

We now come to one of the major interest of linear algebra over finite field: ma-
trix multiplication based algorithms. The classical block Gaussian elimination is
one of the most common algorithm to achieve a reduction to matrix multiplica-
tion [Strassen 1969]. Nevertheless, our main concern here is the singularity of the
matrices since we want to derive efficient algorithms for most problems (e.g. rank
or nullspace). One approach there is then to use a triangular form of the input
matrix. Hence, matrix triangularization algorithm plays a central role for this ap-
proach. In this section we focus on practical implementations of triangularization
in order to efficiently deal with rank profile, unbalanced dimensions, memory man-
agement, recursive thresholds, etc. In particular we demonstrate the efficiency of
matrix multiplication reduction in practice for many linear algebra problems.

5.1 Triangularizations

The classical block LDU or LUP factorizations (see [Aho et al. 1974]) can not be
used due to their restriction to non-singular case. Instead one would rather use the
LQUP factorization of [Ibarra et al. 1982]. We here propose a fully in-place variant
and analyze its behaviour.

The LQUP factorization is a generalization of the well known block LUP factor-
ization for the singular case [Bunch and Hopcroft 1974]. Let A be a m× n matrix,
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we want to compute the quadruple < L,Q,U, P > such that A = LQUP . The
matrix L is lower triangular, P and Q are permutation matrices and U is a rank r
upper triangular matrix with its r first rows non-zero.

The algorithm with best known complexity computing this factorization uses a
divide and conquer approach and reduces to matrix multiplication [Ibarra et al.
1982]. Let us describe briefly the behavior of this algorithm.

The algorithm is recursive: first, it splits A in halves and performs a recursive
call on the top half. After some row permutations, It thus gives the T , Y and L1

blocks of figure 5, together with some row permutations stored in Q. Then, after
some column permutations ([XZ] = [A21A22]P ), the algorithm computes G such
that GT = X via trsm, replaces X by zeroes and eventually updates Z = Z −GY .
The third step is a recursive call on Z, followed by an update of Q. We let the
readers refer e.g. to [Bini and Pan 1994, (2.7c)] for further details.

Furthermore, our implementation of LQUP also uses the trick proposed in [Du-
mas et al. 2004, §4.2], namely storing L in its compressed form L̃.

This triangularization is thus fully in-place.

Z

Y

X

1

T
L
~

GG

Fig. 5. Principle of the LQUP factorization

Lemma 5.1. The dominant term of the time complexity of algorithm LQUP with
m ≤ n is

LQUP(m,n) =
(⌈ n

m

⌉ 1
2ω−1 − 2

− 1
2ω − 2

)
MM(m).

The latter is nm2 − 1
3m

3 with classical multiplication.

Proof. Lemma 2.2 ensures that the cost is O(mω + nmω−1). We thus just
have to look for the constant factors. Then we write LQUP(m,n) = αmω +
βnmω−1 = LQUP(m/2, n) + TRSM(m/2, r) +R(m/2, r, n− r) + LQUP(m/2, n−
r), where r is the rank of the first m/2 rows. This gives αmω + βnmω−1 =
α(m/2)ω+βn(m/2)ω−1+ 1

2ω−1−2

⌈
m
2r

⌉
MM(r)+

⌈
m(n−r)

2r2

⌉
MM(r)+α(m/2)ω+β(n−

r)(m/2)ω−1. With m ≤ n, the latter is maximal for r = m/2, and then, writing
MM(x) = Cωx

ω, we identify the coefficient on both sides: β = β
2ω−1 + Cω

2ω−1 + β
2ω−1 ,

and α = 2 α
2ω − β

2ω −Cω 2ω−6
2ω(2ω−4) . Solving for β and α gives the announced terms.

5.2 Performance and comparison with numerical routines

Fast matrix multiplication routine of section 3.2 allowed us to speed up matrix mul-
tiplication as well as triangular system solving. These improvements are of great
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interest since they directly improve efficiency of triangularization. We now com-
pare our exact triangularization over finite field with numerical triangularization
provided within LAPACK library [Anderson et al. 1999]. In particular, we use an
optimized version of this library provided by ATLAS software in which we use two
different BLAS kernel: ATLAS and GOTO.

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.32s 1.84s 4.89s 19.34s 48.94s 73.86s 97.50s 131.11s
dgetrf 0.17s 1.19s 3.83s 16.90s 45.32s 67.44s 94.83s 130.15s

A
T

L
A

S

lqup
dgetrf

1.88 1.55 1.28 1.14 1.08 1.10 1.03 1.01

lqup 0.25s 1.52s 4.47s 17.93s 44.54s 67.88s 89.63s 119.65s
dgetrf 0.15s 1.03s 3.33s 14.84s 39.58s 58.61s 82.89s 113.47s

G
O

T
O

lqup
dgetrf

1.67 1.48 1.34 1.21 1.13 1.16 1.08 1.05

Table VII. Performance of matrix triangularization (for Z/65521Z and floats) on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.38s 2.20s 6.36s 25.22s 61.64s 89.74s 127.43s 163.68s
dgetrf 0.20s 1.47s 4.61s 20.26s 53.57s 79.37s 111.66s 152.42s

A
T

L
A

S

lqup
dgetrf

1.85 1.50 1.38 1.25 1.15 1.13 1.14 1.07

lqup 0.34s 2.00s 5.81s 23.11s 56.80s 83.90s 113.66s 150.82s
dgetrf 0.16s 1.17s 3.80s 17.07s 46.18s 69.00s 97.56s 134.01s

G
O

T
O

lqup
dgetrf

2.21 1.72 1.53 1.35 1.23 1.22 1.16 1.13

Table VIII. Performance of matrix triangularization (for Z/65521Z and floats) on Itanium2-1.3GHz

Tables VII and VIII show efficiency obtained with our exact triangularization
based on fast matrix multiplication and the one obtained with numerical compu-
tation. There, “dgetrf” computes a floating point LU factorization of a general
m × n matrix using partial pivoting with row interchanges. Exact computation is
done in the prime field of integers modulo 65521. We are now mostly able to reach
the speed of numerical computations. More precisely, we are able to compute the
triangularization of a 10 000 × 10 000 matrix over a finite field in about 2 minutes
on a Xeon 3.6GHz architecture. This is only 5% slower than the best numerical
computation.

We could have expected that our speed would have been even better than numer-
ical approach since we take advantage of Strassen-Winograd’s multiplication while
numerical computations are not. However, in practice we do not fully benefit from
fast matrix multiplication since we work at most with matrices of half dimension of
the input matrix due to the recursive structure of the algorithm. Then, the number
of Winograd calls is at least one less than within matrix multiplication routines. In
our tests, it appears that we only use 3 calls on our Xeon architecture and 1 call
on the Itanium2 architecture according to matrix multiplication threshold. This
explains the better performance on the Xeon compared to numerical routines than
the Itanium2 architecture.
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Note also that in order to take even more into account data locality one can
develop a version of LQUP where blocks are maintained as square as possible.
Indeed, as soon as the RAM is full, data locality becomes more important than
memory saves. The TURBO method [Dumas and Roch 2002] addresses this issue.
A first implementation of TURBO has been studied in [Dumas et al. 2004, §4.5] and
it reveals to be the fastest for large matrices, despite its bigger memory demand
[Dumas et al. 2004, Figure 6]. This is advocating further uses of recursive blocked
data formats and of more recursive levels of TURBO.

5.3 Comparison with the multiplication

The LQUP factorization and the trsm routines reduce to matrix multiplication as
we have seen in the previous sections. Theoretically, as classic matrix multiplication
requires 2n3 − n2 arithmetic operations, the factorization, requiring at most 2

3n
3

arithmetic operations, could be computed in about 1
3 of the time. However, when

Winograd fast matrix multiplication algorithm is used this ratio becomes 2
5 . Figure

6 shows that the experimental behavior of the factorization is not very far from this
theoretical ratio.
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Fig. 6. Comparing matrix triangularization with matrix multiplication on a Xeon, 3.6GHz

6. APPLICATIONS

In this section, we use our matrix multiplication, matrix factorization and matrix
solvers as basic routines to perform other linear algebra routines. For instance,
from the two routines (i.e. LQUP and trsm), one can also directly derive several
other algorithms, e.g.:

—The rank is the number of non-zero rows in U .
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—The determinant is the product of the diagonal elements of U (stopping when-
ever a zero is encountered).

In the following, we first give the theoretical complexities with explicit constant
terms. These constants depend on the kind of matrix multiplication used (fast or
classical). In order to validate our approach we then compare this theoretical ratios
to some experimental ones.

6.1 Nullspace basis

Computing a right nullspace basis with the LQUP factorization is immediate on a
m× n full rank matrix, where m ≤ n: if U = [U1U2], the matrix U−1

1 U2 completed
with identity matrix yields a basis for the nullspace of A.

This requires NS(m;n) = LQUP (m;n) + TRSM(m;n−m). which gives

NS(m;n) = (
⌈ n
m

⌉ 2
2ω−1 − 2

− 1
2ω − 2

)MM(m) (6)

The latter is (m2n− 1
3m

3)+(n−m)m2 = 2m2n− 4
3m

3 with classical multiplication.
One can notice that computing a right nullspace of the transposed of the input
matrix yields a left nullspace basis.

6.2 Triangular multiplications

6.2.1 Triangular matrix multiplication. To perform the multiplication of a tri-
angular matrix by a dense matrix via a block decomposition in halves, one requires
four recursive calls and two dense matrix-matrix multiplications. The cost is thus
TRMM(n) = 4TRMM(n/2) + 2MM(n/2), solving for TRMM(n) = αMM(n)
yields

TRMM(n) =
1

2ω−1 − 2
MM(n). (7)

The latter is n3 with classical multiplication.

6.2.2 Upper-lower Triangular matrix multiplication. The block multiplication
of a lower triangular matrix by an upper triangular matrix is

[
A1 A2

A4

]
×
[
B1

B3 B4

]
=
[
A1B1 +A2B3 A2B4

A4B3 A4B4

]

The cost is thus UTLT(n) = 2UTLT(n/2) + 2TRMM(n/2) + MM(n/2), solving
for UTLT(n) = αMM(n) yields

UTLT(n) =
2ω

(2ω − 4)(2ω − 2)
MM(n). (8)

The latter is 2
3n

3 with classical multiplication.

6.2.3 Upper-Upper Triangular matrix multiplication. Now the block version is
even simpler (of course the lower lower multiplication is similar):

[
A1 A2

A4

]
×
[
B1 B2

B4

]
=
[
A1B1 A1B2 +A2B4

A4B4

]
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The cost is thus UTUT(n) = 2UTUT(n/2) + 2TRMM(n/2), which yields

UTUT(n) =
4

(2ω − 4)(2ω − 2)
MM(n). (9)

The latter is 1
3n

3 with classical multiplication.

6.3 Squaring

6.3.1 A×AT . Suppose we want to compute A times its transpose, even with a
diagonal in the middle. The block version is
»
A1 A2

A3 A4

–
×
»
D1

D4

–
×
»
AT1 AT3
AT2 AT4

–
=

»
A1D1A

T
1 +A2D4A

T
2 A1D1A

T
3 +A2D4A

T
4

A3D1A
T
1 +A4D4A

T
2 A3D1A

T
3 +A4D4A

T
4

–

Since ADAT is symmetric, the lower left and upper right are just transpose of
one another. The other corners (upper left and lower right) are computed via
recursive calls. Thus the arithmetic cost of this special product is AAT (n) =
4AAT (n/2) + 2MM(n/2) + 3ADD(n/2) + 2(n/2)2

Ignoring the cost of the three additions and the diagonal multiplications, this
yields

AAT (n) =
2

2ω − 4
MM(n). (10)

The latter is n3 with classical multiplication. One can note that when A is rectan-
gular with m ≤ n the cost extends to

AAT (m;n) =
⌈ n
m

⌉ 2
2ω − 4

MM(m). (11)

6.3.2 Symmetric case. When A is already symmetric, and if the diagonal is
unitary, the constant factor decreases. Indeed, in this case A2 = AT3 and then one
of the four recursive calls is saved. Also one of the remaining three recursive calls
is a call to a non symmetric AAT . Therefore the cost is now: SymAAT (n) =
2SymAAT (n/2) +AAT (n/2) + 2MM(n/2), once again ignoring n2. This yields

SymAAT (n) =
2(2ω − 3)

(2ω − 4)(2ω − 2)
MM(n). (12)

The latter is 5
6n

3 with classical multiplication.

6.3.3 Triangular case. We here view the explicit computation of LTDL for in-
stance as a special case of upper-lower triangular matrix multiplication, but where
both matrices are symmetric of one another. We also show that we can add an
extra diagonal factor in the middle at a negligible cost. Consider then
[
L1

L3 L4

]
×
[
D1

D4

]
×
[
LT1 LT3

LT4

]
=
[
L1D1L

T
1 L1D1L

T
3

L3D1L
T
1 L3D1L

T
3 + L4D4L

T
4

]

Thus it requires two recursive calls, a call to AAT (with a diagonal in the middle)
only one call to TRMM as both lower-left and upper-right corners are transpose of
one another. This yields

LTL(n) =
4

(2ω − 4)(2ω − 2)
MM(n). (13)
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The latter is 1
3n

3 with classical multiplication.

6.4 Symmetric factorization

For the sake of simplicity, we here consider the LU factorization of a generic rank
profile symmetric n× n matrix A. We could describe how to perform this decom-
position with the permutation and the possible rank deficiency in the blocks, but
we here only analyze the cost of such a LDLT factorization. The idea is that one

can recursively decompose A =
[
A1 A2

AT2 A4

]
=
[
L1

G L2

]
×
[
D1

D2

]
×
[
LT1 GT

LT2

]
.

Well, this requires a recursive call to compute L1 and D1 ; a TRSM to com-
pute G such that L1D1G

T = A2 ; an AAT to compute GD1G
T and a recur-

sive call to compute L2D2L
T
2 = A4 − GD1G

T . The cost is thus LDLT (n) =
2LDLT (n/2) + TRSM(n/2) +AAT (n/2), which yields

LDLT (n) =
4

(2ω − 4)(2ω − 2)
MM(n). (14)

The latter is 1
3n

3 with classical multiplication.

6.5 Matrix inverse

6.5.1 Triangular matrix inverse. To invert a triangular matrix via a block de-
composition, one requires two recursive calls and two triangular matrix multiplica-
tions.

[
A1 A2

A4

]−1

=
[
A−1

1 −A−1
1 A2A

−1
4

A−1
4

]

The cost is thus INVT(n) = 2INVT(n/2) + 2TRMM(n/2) which yields

INVT(n) =
2

2ω − 2
TRMM(n) =

4
(2ω − 4)(2ω − 2)

MM(n). (15)

The latter is 1
3n

3 with classical multiplication.

6.5.2 Matrix inverse. To invert a dense matrix, one needs to compute an LQUP
decomposition, then to invert L and permute it with Q−1. A TRSM is then required
to solve UX = Q−1L−1. Applying P−1 to X yields the inverse. The cost is then
INV (n) = LQUP (n) + INVT(n) + TRSM(n). This gives

INV (n) =
3× 2ω

(2ω − 4)(2ω − 2)
MM(n). (16)

The latter is INV (n) = 2n3 with classical multiplication.

6.5.3 Symmetric inverse. If A is symmetric, one can decompose it into a LDLT

factorization instead of the LU . Therefore, its inverse is then only one INV T
for both L−1 and L−T followed by an LTL. The cost is then SymINV (n) =
LDLT (n) + INVT(n) + LTL(n) which yields

SymINV (n) =
12

(2ω − 2)(2ω − 4)
MM(n). (17)

The latter is SymINV (n) = n3 with classical multiplication.
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6.5.4 Full-rank Moore-Penrose pseudo-inverse. A is a rectangular full rank m×
n matrix. We suppose, without loss of genericity, that m ≤ n. The Moore-Penrose
inverse of A is thus A† = AT (AAT )−1, see e.g. [Saunders 2001] and references
therein. Computing the Moore-Penrose inverse is then just a LDLT decomposition
of the symmetric matrix AAT , followed by two rectangular system solvings:

MPINV (m;n) = AAT (m;n) + LDLT (m) + 2TRSM(m;n).

The cost is then

MPINV (m;n) =
(⌈ n

m

⌉ 6
2ω − 4

+
4

(2ω − 2)(2ω − 4)

)
MM(m) (18)

The latter is 3m2n + 1
3m

3 with classical multiplication. This correspond e.g. to
the normal equations numerical resolution [Golub and Van Loan 1996, algorithm
5.3.1].

6.5.5 Rank deficient Moore-Penrose pseudo-inverse. In this case, one needs to
compute a full-rank decomposition of A. This is done by performing the LQUP
decomposition of A and if A is of rank r, selecting the first r columns of L (call

them Lr =
[
L1

G

]
) and the first r rows U (call them Ur = [U1|Y ]), forgetting the

permutation P . We have A = LrUr and we modify the formula [Noble 1966, (7)]
as follows:

A† =
[

I

Y TU−T1

] (
(L1 + L−T1 GTG)(U1 + Y Y TU−1

1 )
)−1

[I|L−T1 GT ]. (19)

We note W = (L1 +L−T1 GTG)(U1 +Y Y TU−1
1 ). We compute W by two squarings,

two TRSM and a classical matrix multiplication. We perform a reversed LU decom-
position on W to get W = UwLw. Now we compute LT1 Uw and LwU

T
1 by upper-

upper triangular multiplication and H = (LT1 Uw)−1GT and Z = Y T (LwUT1 )−1 by

two TRSM. Now, A† =
[
W−1 L−1

w H
ZU−1

w ZH

]
. W−1 is two triangular inverses and an

upper lower product. ZH is a rectangular multiplication and the last two blocks
are obtained by two triangular solvings.

MPINVr(m;n) = LQUP(m;n)+AAT (r;m−r)+AAT (r;n−r)+3TRSM(r,m−r)
+ 3TRSM(r, n− r) + MM(r) + LQUP(r) + 2UTUT(r) + 2INVT(r) + UTLT(r)

+R(n− r; r;m− r) (20)

The latter is 2rmn+ 2r2m+ 2r2n+m2n− 1
3m

3− 4
3r

3 with classical multiplication.
To get an idea, numerical computations based on the Cholesky factorization of AAT

presented in [Courrieu 2005] as faster than SVD or QR or iterative methods would
require 3m2n+ 2r2m+ 3r3 flops.

6.5.6 Performances and comparisons with numerical routines. As for triangu-
lar system solving and matrix triangularization, we now compare performances of
matrix inversion for triangular and dense matrices with numerical computation
and with matrix multiplication. Our comparison with numerical computation is
still based on LAPACK library with two different BLAS kernel (i.e. ATLAS and
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GOTO). We do not present the result of triangular matrix inversion over our Xeon
architecture according to the bad behavior of “dtrsm” function which is the main
routine used by LAPACK for triangular matrix inversion. Our base field is the
prime field of integers modulo 65521 using a Zpz-double representation and we use
fast matrix multiplication of section 3.2.

n 1000 2000 3000 5000 7000 8000 9000 10000

ATLAS tri. inv 0.11s 0.70s 2.17s 9.21s 24.21s 35.53s 49.95s 68.26s

tri. inv 0.10s 0.62s 1.90s 8.00s 20.97s 30.77s 43.38s 58.98
dtrtri 0.18s 1.04s 2.90s 10.97s 26.85s 38.57s 52.93s 70.95s

G
O

T
O

tri.inv
dtrtri

0.56 0.60 0.66 0.73 0.78 0.80 0.82 0.83

Table IX. Timings of triangular matrix inversion on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

tri. inv 0.19s 1.03s 3.02s 11.91s 31.71s 44.43s 61.37s 82.55s
dtrtri 0.08s 0.58s 2.55s 11.39s 30.50s 44.52s 63.34s 85.19s

A
T

L
A

S

tri.inv
dtrtri

2.25 1.77 1.18 1.05 1.04 1.00 0.97 0.97

tri. inv 0.15s 0.85s 2.47s 10.10s 26.10s 38.29s 53.65s 72.74s
dtrtri 0.08s 0.61s 1.96s 8.77s 23.68s 35.73s 49.84s 69.10s

G
O

T
O

tri.inv
dtrtri

1.90 1.40 1.26 1.15 1.10 1.07 1.08 1.05

Table X. Timings of triangular matrix inversion on Itanium2, 1.3GHz

Tables IX and X illustrate the performances of our exact triangular matrix inver-
sion regarding performances of LAPACK routine “dtrtri”. Results show that our
exact computations tend to catch up with the numerical ones and even outperform
them on Itanium2 with ATLAS for large matrices (dimension greater than 8000).

One can notice that the implementation of triangular matrix inversion provided
by GOTO is quite efficient compare to ATLAS, and thus lead our exact compu-
tation to be more efficient but not better than numerical ones. Here again, this
demonstrates that exact triangular matrix inversion over finite field is not much
more costly than its numerical counterpart.

Now, Tables XI and XII provide the same comparisons for dense matrix inversion.
For numerical computation references we use the routine “dgetri” in combination
with the factorization routine “dgetrf” to yield matrix inverse. On both architec-
ture with ATLAS BLAS kernel, exact computations become the most efficient when
matrix dimension is getting larger. Numerical computation is only better than ex-
act on the Itanium 2 architecture with GOTO BLAS kernel. In this particular
application, the benefit of fast matrix multiplication is important since it allows to
outperform numerical performances.

As shown in previous section, matrix inversion algorithms reduce to matrix mul-
tiplication. Figures 7 and 8 show the correlation between matrix inversion per-
formances and matrix multiplication performances; triangular and dense case are
studied.
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n 1000 3000 5000 7000 8000 9000 10000

inverse 0.75s 13.57s 54.52s 141.19s 206.26s 285.19s 385.35s
dgetrf+dgetri 0.69s 16.94s 80.83s 222.07s 368.66s 531.29s 761.28s

A
T

L
A

S
inverse

dgetrf+dgetri
1.09 0.80 0.67 0.64 0.56 0.54 0.51

inverse 0.63s 11.82s 48.56s 125.30s 179.17s 256.12s 343.91s
dgetrf+dgetri 0.55s 13.02s 58.36s 159.21s 232.30s 328.55s 450.46s

G
O

T
O

inverse
dgetrf+dgetri

1.15 0.91 0.83 0.79 0.77 0.78 0.76

Table XI. Timings of matrix inversion on a Xeon, 3.6GHz

n 1000 3000 5000 7000 8000 9000 10000

inverse 1.01s 17.27s 69.24s 173.21s 256.67s 353.02s 483.08s
dgetrf+dgetri 0.60s 14.29s 66.08s 184.74s 276.09s 393.62s 541.37s

A
T

L
A

S

inverse
dgetrf+dgetri

1.67 1.21 1.05 0.94 0.93 0.90 0.89

inverse 0.85s 14.92s 61.00s 153.78s 226.68s 313.84s 422.78s
dgetrf+dgetri 0.47s 11.45s 51.33s 139.00s 207.36s 293.02s 402.72s

G
O

T
O

inverse
dgetrf+dgetri

1.80 1.30 1.19 1.11 1.09 1.07 1.05

Table XII. Timings of matrix inversion on Itanium2, 1.3GHz

According to section 6.5.1, the ratio of triangular matrix inversion and matrix
multiplication is 4/(2ω − 4)(2ω − 2); which gives a theoretical ratio of 1/6 when
classic matrix multiplication is used. However this ratio increase to ≈ 0.267 when
Winograd fast matrix multiplication is used (i.e. ω = log2 7). Since our matrix
multiplication routine is using fast matrix multiplication, the asymptotic behavior
of this ratio should tend to the latter. However we observe in practice that our
performances are beyond this ratio. This is due to the hybrid matrix multiplication
which uses both Winograd and classic algorithms. So the practical ratio obtained
here is really close to the theoretical one since it should asymptotically lie between
0.2674 and 0.166.
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Fig. 7. Comparing triangular matrix inversion
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From section 6.5.2 one can express the ratio between dense matrix inversion
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and matrix multiplication as respectively 1 with classic algorithm and 1.4 with
Winograd algorithm. In practice we observe that dense matrix inversion ratio is just
above the asymptotic behavior of Winograd based inversion. This certainly could
be explained by the number of different algorithms involved in this application.
In particular it involves three different reductions to matrix multiplications; which
may be of a little influence on the final performances. Moreover, we do not take
into account memory effect which can play a crucial role in performances as already
demonstrated by ATLAS software with optimized BLAS [Whaley et al. 2001]. In
our test we used a naive approach which leads us to use 2n2 elements in memory.
Decreasing this memory will certainly allow us to get better performances. In
particular, it is not known yet how to perform matrix inversion in place using a
reduction to matrix multiplication.

7. CONCLUSIONS

We have achieved the goal of approaching the efficiency of the numerical linear
algebra library but for word-size prime fields. We showed that exact computation
can benefit from Winograd fast matrix multiplication algorithm and then even leads
to outperform the efficiency of the well known BLAS and LAPACK libraries.

This performance is achieved through efficient reduction to matrix multiplication
where we took care of minimizing the ratio and also by reusing the numerical com-
putation as much as possible. We also showed that from our routines one can easily
implement efficient algorithms for many linear algebra problems (e.g. null-space,
generalized inverse, etc.). Note that approximate timings for these algorithms can
be derived from the timings provided with our main routines.

One can try to design block algorithms where the blocks fit in the cache of a
specific machine to reach very good efficiency. By reusing BLAS library this has
been proven to be almost useless for matrix multiplication in [Dumas et al. 2002]
and we think we proved here that this is not mandatory also for any dense linear
algebra routine. Therefore, using recursive block algorithms, efficient numerical
BLAS and fast matrix multiplication algorithms one can approach the numerical
performance or even surpass them over some finite fields. Moreover, long range
efficiency and portability are warranted as opposed to every day tuning. Except for
small matrices where the conversions increase slightly the running time, and except
for the LQUP transform, we have shown that all our exact routines can be faster
than their numerical counterparts.

Besides, the exact equivalent of stability constraints for numerical computations
is coefficient growth. Therefore, whenever possible, we computed and improved
theoretical bounds on this growth (e.g. bounds 4.5 and 3.3). Those optimal bounds
enable further uses of the BLAS routines.

Further developments include:
• The main case where our wrapping of BLAS is insufficient is for very small
matrices where benefits of BLAS are limited and fast algorithms are not useful.
Here, a design using the finite field directly might improve the speed.
• More generally, a Self-adapting Software [Dongarra and Eijkhout 2003] would
allow to provide hybrid implementations with best empirical thresholds.
• The technique of wrapping BLAS becomes useless when finite fields are larger
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than the corresponding bound of feasibility (e.g. p > 226 for matrix multiplication).
At a non negligible price the Chinese remainder algorithm could be used to authorize
the use of BLAS. Optimizing this scheme would then be an interesting way to
provide similar results for larger finite fields.
• Finally, extending the out of core versions by more recursive data format and
the building of a parallel library is promising. Also, in the case of parallelism, our
all-recursive approach enables a very efficient “sequential-first” parallelization as
shown e.g. in [Dumas et al. 2006] for triangular system solving.

A. APPENDIX

The proof of theorem 3.1 is given in an appendix, available online at the ACM
Digital Library.
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