Computing over $\mathbb{Z}, \mathbb{Q}, K[X]$

Clément Pernet

M2-MIA Calcul Exact

Outline

Introduction

Chinese Remainder Theorem

Rational reconstruction
Problem Statement
Algorithms

Applications
Dense CRT codes
Extension to Cauchy Interpolation

Outline

Introduction

Chinese Remainder Theorem

Rational reconstruction
Problem Statement
Algorithms

Applications

Dense CRT codes
Extension to Cauchy Interpolation

Exact computations and arithmetic

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_{p}, \mathrm{GF}\left(p^{k}\right) \Rightarrow$ fixed size but specific arithmetic
- $K[X]$ for $K=\mathbb{Z}_{p}, \mathbb{Z} \ldots$

Key idea: change of representation

Deal with size of arithmetic: reduce to \mathbb{Z}_{p}

- Chinese Remainder Algorithm: $\mathbb{Z} \rightarrow \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{k}}$

$$
x<m_{1} \times \cdots \times m_{k} \in \mathbb{Z} \Leftrightarrow\left(x_{1} \in \mathbb{Z}_{m_{1}}, \ldots, x_{k} \in \mathbb{Z}_{m_{k}}\right)
$$

- p-adic Lifting: $\mathbb{Z} \rightarrow \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p}$

$$
x=x_{0}+x_{1} p+\ldots x_{k} p^{k}<p^{k+1} \in \mathbb{Z}_{p^{k}} \Leftrightarrow\left(x_{1} \in \mathbb{Z}_{p}, \ldots, x_{k} \in \mathbb{Z}_{p}\right)
$$

- Rational reconstruction: $\mathbb{Q} \rightarrow \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{p}$

$$
x=\frac{n}{d}=x_{0}+x_{1} p+\ldots x_{k} p^{k}\left[p^{k+1}\right] \Leftrightarrow\left(x_{1} \in \mathbb{Z}_{p}, \ldots, x_{k} \in \mathbb{Z}_{p}\right)
$$

Outline

Introduction

Chinese Remainder Theorem

Rational reconstruction
 Problem Statement
 Algorithms

Applications
Dense CRT codes
Extension to Cauchy Interpolation

Chinese remainder algorithm

If m_{1}, \ldots, m_{k} pariwise relatively prime:

$$
\mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^{m}$

begin

Compute an upper bound β on $|f(x)|$;
Pick $m_{1}, \ldots m_{k}$, pairwise prime, s.t. $m_{1} \ldots m_{k}>\beta$;
for $i=1 \ldots k$ do
Compute $y_{i}=f\left(x \bmod m_{i}\right) \bmod m_{i}$
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$
CRT: $\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{aligned} \Pi & =\prod_{i=1}^{k} m_{i} \\ \Pi_{i} & =\Pi_{/} m_{i} \\ Y_{i} & =\Pi_{i}^{-1} \bmod m_{i}\end{aligned}\right.$

Chinese remainder algorithm

If m_{1}, \ldots, m_{k} pariwise relatively prime:

$$
\mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^{m}$

begin

Compute an upper bound β on $|f(x)|$;
Pick $m_{1}, \ldots m_{k}$, pairwise prime, s.t. $m_{1} \ldots m_{k}>\beta$;
for $i=1 \ldots k$ do
Compute $y_{i}=f\left(x \bmod m_{i}\right) \bmod m_{i} ; \quad / *$ Evaluation */
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$; /* Interpolation */
CRT: $\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} m_{i} \\ \Pi_{i}=\Pi_{i} m_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod m_{i}\end{array}\right.$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow

Reduce P modulo $X-a$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials

Evaluation:
$P \bmod X-a$
Evaluate P in a

Interpolation:

$$
P=\sum_{i=1}^{k} y_{i} \prod_{j \neq i}\left(X-a_{j}\right)
$$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials | Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a

Interpolation:

$$
P=\sum_{i=1}^{k} y_{i} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \quad N=\sum_{i=1}^{k} y_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}
$$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials | Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a

Interpolation:

$$
P=\sum_{i=1}^{k} y_{i} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \quad N=\sum_{i=1}^{k} y_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}
$$

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

- size of coefficients
- degree of polynomials
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- \mathcal{O} (deg(result) $\left.\times T_{\text {algebr. }}\right)$

Chinese remaindering and evaluation/interpolation

Evaluate P in a
\leftrightarrow
Reduce P modulo $X-a$

Polynomials | Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a

Interpolation:

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

- size of coefficients
- degree of polynomials
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- $\mathcal{O}($ deg (result $\left.) \times T_{\text {algebr. }}\right)$
- $\operatorname{det}(n,\|A\|)=\mathcal{O}^{\sim}\left(n \log \mid A \| \times n^{\omega}\right)$
- $\operatorname{det}(n, d)=\mathcal{O}^{\sim}\left(n d \times n^{\omega}\right)$

Early termination

Classic Chinese remaindering

Deterministic

- bound β on the result
- Choice of the m_{i} : such that $m_{1} \ldots m_{k}>\beta$

Early termination

Classic Chinese remaindering

Deterministic

- bound β on the result
- Choice of the m_{i} : such that $m_{1} \ldots m_{k}>\beta$

Early termination

Probabilistic Monte Carlo

- For each new modulo m_{i} :
- reconstruct $y_{i}=f(x) \bmod m_{1} \times \cdots \times m_{i}$
- If $y_{i}==y_{i-1} \quad \Rightarrow$ terminated

Early termination

Classic Chinese remaindering

Deterministic

- bound β on the result
- Choice of the m_{i} : such that $m_{1} \ldots m_{k}>\beta$

Early termination

Probabilistic Monte Carlo

- For each new modulo m_{i} :
- reconstruct $y_{i}=f(x) \bmod m_{1} \times \cdots \times m_{i}$
- If $y_{i}==y_{i-1} \quad \Rightarrow$ terminated

Advantage:

- Adaptive number of moduli depending on the output value
- Interesting when
- pessimistic bound: sparse/structured matrices, ...
- no bound available

Outline

Introduction

Chinese Remainder Theorem

Rational reconstruction
Problem Statement
Algorithms

Applications
 Dense CRT codes
 Extension to Cauchy Interpolation

Informally
(Black-board)

Problem Statement

Definition (Rational Reconstruction Problem)

Let $A \in K[X]$ of degree n, and $B \in K[X]$ of degree $<n$. For a fixed $k \in\{1 \ldots n\}$, find $(R, V) \in K[X]$ satisfying:

$$
\operatorname{gcd}(V, A)=1, \operatorname{deg}(R)<k, \operatorname{deg}(V) \leq n-k \text { and } R=V B \quad \bmod A .
$$

$A=X^{n}$: Padé Approximation
$A=\prod_{i=1}^{n}\left(X-u_{i}\right)$: Cauchy Interpolation

Rational Reconstruction Problem

Existence of a solution: $k+n-k+1=n+1$ unknowns, for n equations
Uniqueness: A divides $R_{1}-V_{1} B$ and $R_{2}-V_{2} B$. Thus A divides

$$
\left.R_{1} V_{2}-R_{2} V_{1}=\left(R_{1}-V_{1} B\right) V_{2}-\left(R_{2}-V_{2} B\right) V_{1}\right)
$$

of degree $<n$.

Algorithm

$$
R=V B \quad \bmod A \Leftrightarrow V B+U A=R
$$

begin

```
R
    R0}\leftarrowB;\mp@subsup{U}{0}{}\leftarrow0;\mp@subsup{V}{0}{}\leftarrow1
    i\leftarrow1;
    while deg R
```



```
        U}\mp@subsup{|}{i+1}{}\leftarrow\mp@subsup{U}{i-1}{}-\mp@subsup{Q}{i}{}\mp@subsup{U}{i}{\prime}
        Vi+1}\leftarrow\mp@subsup{V}{i-1}{}-\mp@subsup{Q}{i}{}\mp@subsup{V}{i}{\prime}
        i\leftarrowi+1;
    if gcd(A, V
        return ( }\mp@subsup{R}{i}{},\mp@subsup{V}{i}{}
    else
        return 0
```


Outline

Introduction

Chinese Remainder Theorem

Rational reconstruction
 Problem Statement
 Algorithms

Applications
Dense CRT codes
Extension to Cauchy Interpolation

Dense interpolation with errors

Problem : CRT with errors

Given $\left(y_{i}, m_{i}\right)$ for $i=1 \ldots n$,
Find Y such that $Y=y_{i} \bmod m_{i}$ on at least $n-e$ values.
CRT codes [Mandelbaum]
\Rightarrow Based on Rational reconstruction

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

where $m_{1} \times \cdots \times m_{k}>x$ and $x_{i}=x \bmod m_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots & x_{n} \\
\hline
\end{array}
$$

where $m_{1} \times \cdots \times m_{n}>x$ and $x_{i}=x \bmod m_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
\begin{aligned}
& x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots & x_{n} \\
\hline
\end{array} \mathrm{l} \\
& \hline
\end{aligned}
$$

where $m_{1} \times \cdots \times m_{n}>x$ and $x_{i}=x \bmod m_{i} \forall i$

Definition

$$
\begin{aligned}
& (n, k) \text {-code: } C= \\
& \left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}} \text { s.t. } \exists x,\left\{\begin{array}{ll}
x & <m_{1} \ldots m_{k} \\
x_{i} & =x \bmod m_{i} \forall i
\end{array}\right\}\right.
\end{aligned}
$$

Principle

Property

$$
X \in C \text { iff } X<\Pi_{k}
$$

Redundancy : $r=n-k$

ABFT with Chinese remainder algorithm

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod m_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} m_{i}$

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod m_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} m_{i}$

Detects up to r errors:
If $X^{\prime}=X+E$ with $X \in C, \# I \leq r$,

$$
\text { then } X^{\prime}>\Pi_{k} \text {. }
$$

- Redundancy $r=n-k$, distance: $r+1$
- $\quad \Rightarrow$ can correct up to $\left\lfloor\frac{r}{2}\right\rfloor$ errors in theory
- More complicated in practice...

Correction

- $\forall i \notin I: E \bmod m_{i}=0$
- E is a multiple of $\Pi_{V}: E=Z \Pi_{V}=Z \prod_{i \notin I} m_{i}$
- $\operatorname{gcd}(E, \Pi)=\Pi_{V}$

Mandelbaum 78: rational reconstruction

$$
\begin{aligned}
& \qquad \begin{aligned}
X=X^{\prime}-E & =X^{\prime}-Z \Pi_{v} \\
\frac{X}{\Pi} & =\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}
\end{aligned} \\
& \Rightarrow\left|\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}\right| \leq \frac{1}{2 \Pi_{F}^{2}} \\
& \Rightarrow \frac{Z}{\Pi_{F}}=\frac{E}{\Pi} \text { is a convergent of } \frac{X^{\prime}}{\Pi} \\
& \Rightarrow \text { Rational reconstruction of } X^{\prime} \text { mod } \Pi \\
& \Rightarrow \text { Extended Euclidean Algorithm interrupted }
\end{aligned}
$$

Correction capacity

Mandelbaum 78:

- 1 symbol $=1$ residue
- Polynomial time algorithm if $e \leq(n-k) \frac{\log m_{\min }-\log 2}{\log m_{\max }+\log m_{\min }}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol $=1$ residue
- Polynomial time algorithm if $e \leq(n-k) \frac{\log m_{\min }-\log 2}{\log m_{\max }+\log m_{\min }}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

- Errors have variable weights depending on their impact $\Pi_{F}=\prod_{i \in I} m_{i}$
- Example: $m_{1}=2, m_{2}=3, m_{3}=101$
- 1 error $\bmod 2$ or $\bmod 3$, can be corrected, not $\bmod 101$
- limits to $|X|<2$, where $|X|<17$ is sufficient

Analogy with Reed Solomon

Dornstetter 87 Berlekamp/Massey \Leftrightarrow extended Euclidean Alg.
Gao02 Reed-Solomon decoding by extended Euclidean Alg.

- Chinese Remaindering over $K[X]$
- $m_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm

Analogy with Reed Solomon

Dornstetter 87 Berlekamp/Massey \Leftrightarrow extended Euclidean Alg.
Gao02 Reed-Solomon decoding by extended Euclidean Alg.

- Chinese Remaindering over $K[X]$
- $m_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm
\Rightarrow Generalization for m_{i} of degrees >1
\Rightarrow Variable impact, depending on the degree of m_{i}
\Rightarrow Necessary unification [Sudan 01,...]

Generalized point of view: amplitude code

Over a Euclidean ring \mathcal{A} with a Euclidean function ν, multiplicative and sub-additive, ie such that

$$
\begin{aligned}
\nu(a b) & =\nu(a) \nu(b) \\
\nu(a+b) & \leq \nu(a)+\nu(b)
\end{aligned}
$$

eg.

- over $\mathbb{Z}: \nu(x)=|x|$
- over $K[X]: \nu(P)=2^{\operatorname{deg}(P)}$

Definition

Error impact between x and $y: \Pi_{F}=\prod_{i \mid x \neq y\left[m_{i}\right]} m_{i}$
Error amplitude: $\nu\left(\Pi_{F}\right)$

Amplitude codes

Distance

$$
\begin{aligned}
\Delta: \begin{aligned}
\mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[m_{i}\right]} \log _{2} \nu\left(m_{i}\right)
\end{aligned}, r \text {. }
\end{aligned}
$$

$$
\Delta(x, y)=\log _{2} \nu\left(\Pi_{F}\right)
$$

Definition ((n, k) amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
C=\{x \in \mathcal{A}: \nu(x)<\kappa\},
$$

$n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa$. is a (n, k) amplitude code.

Definition ((n, k) amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
C=\{x \in \mathcal{A}: \nu(x)<\kappa\},
$$

$n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa$. is a (n, k) amplitude code.

Property (Quasi MDS)

$\forall(x, y) \in C$

$$
\Delta(x, y)>n-k-1
$$

\Rightarrow correction capacity $=$ maximal amplitude of an error that can be corrected

Definition ((n, k) amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
\begin{gathered}
C=\{x \in \mathcal{A}: \nu(x)<\kappa\}, \\
n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa . \text { is a }(n, k) \text { amplitude code. }
\end{gathered}
$$

Property (Quasi MDS)

$$
\begin{aligned}
& \forall(x, y) \in C, \mathcal{A}=K[X] \\
& \qquad \Delta(x, y) \geq n-k+1
\end{aligned}
$$

\sim Singleton bound
\Rightarrow correction capacity $=$ maximal amplitude of an error that can be corrected

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Interpretation of Mandelbaum's algorithm

Remark

Rational reconstruction \Rightarrow Partial Extended Euclidean Algorithm

Property

The Extended Euclidean Algorithm, applied to ($\Pi, E)$ and to $\left(X^{\prime}=X+E, \Pi\right)$, performs the same first iterations until $r_{i}<\Pi_{V}$.

$$
\begin{gathered}
u_{i-1} \Pi+v_{i-1} E=\Pi_{v} \\
u_{i} \Pi+v_{i} E=0
\end{gathered} \begin{gathered}
u_{i-1} \Pi+v_{i-1} X^{\prime}=r_{i-1} \\
u_{i} \Pi+v_{i} X^{\prime}=r_{i} \\
\Rightarrow v_{i} X=r_{i}
\end{gathered}
$$

Amplitude decoding, with static correction capacity Amplitude based decoder over R

Input: Π, X^{\prime}
Input: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude
Output: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

$$
\begin{aligned}
& u_{0}=1, v_{0}=0, r_{0}=\Pi \\
& u_{1}=0, v_{1}=1, r_{1}=X^{\prime} \\
& i=1 \\
& \text { while }\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right) \text { do } \\
& \quad \quad \text { Let } r_{i-1}=q_{i} r_{i}+r_{i+1} \text { be the Euclidean division of } r_{i-1} \text { by } r_{i} \text {; } \\
& \quad \begin{array}{l}
u_{i+1}=u_{i-1}-q_{i} u_{i} \\
v_{i+1}=v_{i-1}-q_{i} v_{i} \\
\quad i=i+1
\end{array} \\
& \text { return } X=\frac{r_{i}}{v_{i}}
\end{aligned}
$$

- reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity

Amplitude based decoder over R

Input: Π, X^{\prime}
Input: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude
Output: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

$$
\begin{aligned}
& u_{0}=1, v_{0}=0, r_{0}=\Pi ; \\
& u_{1}=0, v_{1}=1, r_{1}=X^{\prime} \\
& i=1 ; \\
& \text { while }\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right) \text { do } \\
& \qquad \quad \text { Let } r_{i-1}=q_{i} r_{i}+r_{i+1} \text { be the Euclidean division of } r_{i-1} \text { by } r_{i} ; \\
& \quad \begin{array}{l}
u_{i+1}=u_{i-1}-q_{i} u_{i} ; \\
v_{i+1}=v_{i-1}-q_{i} v_{i} \\
i=i+1 ;
\end{array} \\
& \text { return } X=\frac{r_{i}}{v_{i}}
\end{aligned}
$$

- reaches the quasi-maximal correction capacity
- requires an a priori knowledge of τ
\Rightarrow How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on $\nu(X)$
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redundancy effectively available

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- $u_{i+1} \Pi+v_{i+1} E=0$
$\Rightarrow E=-u_{i+1} \Pi / v_{i+1}$
\Rightarrow test if v_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(v_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- $u_{i+1} \Pi+v_{i+1} E=0$
$\Rightarrow E=-u_{i+1} \Pi / v_{i+1}$
\Rightarrow test if v_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(v_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

Example

$$
\begin{array}{c|lll}
m_{i} & 3 & 5 & 7 \\
\hline x_{i} & 2 & 3 & 2
\end{array}
$$

- $x=23$ with 0 error
- $x=2$ with 1 error

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$X=-r_{i} / v_{i}$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$X=-r_{i} / v_{i}$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Experiments

Size of the error	10	50	100	200	500	1000
$g=2$	$1 / 446$	$1 / 765$	$1 / 1118$	$2 / 1183$	$2 / 4165$	$1 / 7907$
$g=3$	$1 / 244$	$1 / 414$	$1 / 576$	$2 / 1002$	$2 / 2164$	$1 / 4117$
$g=5$	$1 / 53$	$1 / 97$	$1 / 153$	$2 / 262$	$1 / 575$	$1 / 1106$
$g=10$	$1 / 1$	$1 / 3$	$1 / 9$	$1 / 14$	$1 / 26$	$1 / 35$
$g=20$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$

Table: Number of remaining candidates after the gap detection: c / d means d candidates with a gap $>2^{g}$, and c of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26016$ ($m=1300$ moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Experiments

Figure: Comparison for $n \approx 200917$ ($m=10000$ moduli of 20 bits), $\kappa \approx 170667$ (8500 moduli) and $\tau \approx 10498$ (500 moduli).

Gap: Euclidean Algorithm down to the end \Rightarrow overhead

Dense rational function interpolation with errors (Cauchy interpolation)

$$
y_{i}=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}
$$

Rational function interpolation: Pade approximant

- Find $h \in K[X]$ s.t. $h\left(x_{i}\right)=y_{i}$
- Find f, g s.t. $h g=f \bmod \prod\left(X-x_{i}\right)$
(interpolation)
(Pade approx)

Dense rational function interpolation with errors (Cauchy interpolation)

$$
y_{i}=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}
$$

Rational function interpolation: Pade approximant

- Find $h \in K[X]$ s.t. $h\left(x_{i}\right)=y_{i}$
(interpolation)
- Find f, g s.t. $h g=f \bmod \prod\left(X-x_{i}\right)$
(Pade approx)
Introducing an error of impact $\Pi_{F}=\prod_{i \in I}\left(X-x_{i}\right)$:

$$
h g \Pi_{F}=f \Pi_{F} \quad \bmod \prod\left(X-x_{i}\right)
$$

Property

If $n \geq \operatorname{deg} f+\operatorname{deg} g+2 e$, one can interpolate with at most e errors

