EJC Algorithmique et Calcul Formel, 2 avril 2004, Grenoble

# Hybrid Systems: Verification and Controller Synthesis

Thao Dang VERIMAG

# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction

# ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS

- Formal verification: prove that the system satisfies a given property
- Controller synthesis: design controllers so that the controlled system satisfies a desired property
- We concentrate on invariance properties: all trajectories of the system stay in a subset of the state space

#### ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS

## Thermostat example





#### Difficulties in analysis of hybrid systems

- Two-phase evolution
- Non-deterministic behavior
- Set of initial states
- ⇒ How to characterize and represent set of trajectories (or tubes of trajectories) generated by continuous dynamics and discrete transitions

## Algorithmic Analysis of Hybrid Systems

- Exact symbolic methods: applicable for restricted classes of hybrid systems (linear dynamics with special eigenstructures) [PappasLafferriereYovine 99]
- Approximate methods: using a variety of set representation
  - Level set method (using Hamilton-Jacobi partial differential equation formulation) [TomlinLygerodSastry00]
  - Polyhedral approximations [GreenstreetMitchell98, DangMaler98, ChutinanKrogh99, AsarinDangMaler01]
  - Ellipsoidal calculus [KurzhanskiVaraiya00, BotchkarevTripakis00]

In our work, we use convex and orthogonal polyhedra to represent and compute reachable sets of hybrid systems (see later).

## ABSTRACT VERIFICATION ALGORITHM

```
R^0:=Y;
repeat k=0,1,2,\ldots
if (R^k\cap\mathcal{B}
eq\emptyset) return unsafe /* \mathcal{B}: bad set */
R^{k+1}:=R^k\cup\delta(R^k);
until R^{k+1}=R^k
return safe
```

⇒ Computation of the following *functions over subsets* of the state space of hybrid systems: successor, union and intersection, emptiness checking.

Termination is not guaranteed.

# Example of a non-terminating computation

A 4-state PCD (piecewise-constant derivative) system



#### OUR APPROACH: POLYHEDRAL APPROXIMATION

To represent reachable sets, we use orthogonal polyhedra (unions of closed full-dimensional hyper-rectangles)

- Canonical representation  $\Rightarrow$  effective computations of Boolean operations, equivalence and emptiness checking, membership testing, and other geometric operations (face detection, etc.).
- Appropriate for over- and under-approximations of non-convex sets



# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
  - Linear systems
  - Non-linear systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction by projection

#### REACHABILITY OPERATORS

Continuous system  $\dot{\mathbf{x}} = f(\mathbf{x})$  where  $\mathbf{x} \in \mathcal{X}$ ;  $f : \mathcal{X} \to \mathbb{R}^n$  continuous vector field. Let  $\phi_{\mathbf{X}}(t)$  be the solution of the diff eq with  $\mathbf{x}$  as initial condition.

Given a time interval I and a set of states Y, successor operator  $\delta_I(Y) = \{ \mathbf{y} \mid \exists \mathbf{x} \in Y \ \exists t \in I \ \mathbf{y} = \phi_{\mathbf{X}}(t) \}.$ 

The reachable set from Y is  $\delta(Y) = \delta_{[0,\infty)}(Y)$  (all states reachable after any non-negative amount of time).



#### REACHABILITY ANALYSIS OF LINEAR SYSTEMS

A continuous linear system  $\dot{\mathbf{x}} = A\mathbf{x}$ . Initial set Y is a convex bounded polyhedron Y = conv(V) where  $V = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$  is a finite set of vertices

• Reachable set at time r  $\delta_t(Y) = conv\{\delta_t(\mathbf{v}_1), \dots, \delta_t(\mathbf{v}_m)\}$ , and the successor of a point  $\mathbf{v}$  is  $\delta_t(\mathbf{v}) = e^{At}\mathbf{v}$ 



• Reachable set during time interval [0, r],

Lemma: Given a time step  $r \geq 0$ , there exists  $\varepsilon = \mathcal{O}(r^2)$  such that  $\delta_{[0,r]}(Y) \subseteq conv(Y \cup \delta_r(Y)) \oplus \varepsilon B$  ( $\varepsilon$ -neighborhood of the convex hull of Y and  $\delta_r(Y)$ ).

# REACHABILITY ANALYSIS OF LINEAR SYSTEMS (CONT'D)



No accumulation of error, approximation error is of order  $\mathcal{O}(r^2)$ .

## LINEAR SYSTEMS WITH UNCERTAIN INPUT

- System  $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + \mathbf{u}(t)$  where  $\mathbf{x} \in \mathcal{X}$  and  $\mathbf{u}(\cdot) \in \mathcal{U}$ .
- Admissible input function  $\mathbf{u}(\cdot): \mathbb{R}^+ \to U$  and U is a convex bounded polyhedron.
- Input can represent under-specified control or external disturbance



# LINEAR SYSTEMS WITH UNCERTAIN INPUT (CONT'D)

Computing reachable set  $\delta_t(Y)$  at time r using the Maximal Principle

- The initial polyhedron can be written as intersection of half-spaces. Each half-space  $H = \{ \mathbf{x} \mid \langle \lambda, \mathbf{x} \rangle \leq \langle \lambda, \mathbf{y} \rangle \}$ ;  $\lambda$ : normal vector,  $\mathbf{y}$ : supporting point
- For every half-space H, there exists an input  $u^*$  s.t. calculating its successors under  $u^*$  is sufficient to derive a *tight polyhedral approximation* of  $\delta_t(Y)$ .
- Evolution of normal vector  $\dot{\lambda}(t) = -A^T \lambda(t)$  (adjoint system) independent of input,  $u^*(r) \in \arg\max\{\langle \lambda(r), \mathbf{u} \rangle \mid \mathbf{u} \in U\}$ .



# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
  - Linear systems
  - Non-linear systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction

#### REACHABILITY ANALYSIS OF NON-LINEAR SYSTEMS

Consider a system  $\dot{\mathbf{x}} = f(\mathbf{x})$ , f is Lipschitz.

We propose two techniques

- 'Face lifting': Propagate the boundary of the reachable set, extension of Euler scheme for sets
- 'Hybridization': Extension of the simulation method based on simplicial decomposion of the state space (the previous talk) [Girard et al 02].

## FACE LIFTING TECHNIQUE

Continuity of trajectories: trajectory from a point  $\mathbf{x} \in Y$  either remains in Y forever or traverses the boundary  $\partial Y$  after some time  $\Rightarrow$  it suffices to compute from  $\partial Y$ .

Lemma: Give a time step r, for each face e there exist  $v_e$  s.t. all trajectories starting from e stay in the neighborhood N(e) for at least r time.



# Face lifting technique: Principe

Over-approximating  $\delta_{[0,r]}(Y)$  (reachable set during [0,r])

- 1. For every face e of Y, construct the neighborhood N(e)
- 2. Lifting operation: For every face e of Y,  $\hat{f}_e = \max\{f_e(\mathbf{x}) \mid \mathbf{x} \in N(e)\}$  where  $f_e(\mathbf{x})$  projection of  $f(\mathbf{x})$  on the outward normal of face e
  - If  $\hat{f}_e$  is positive, lift H(e) outward by the amount  $r\hat{f}_e$  to obtain  $H_l(e)$ .
- 3. Intersect all the new half-spaces  $H_l(e) \Rightarrow \text{over-approximation}$  of  $\delta_{[0,r]}(Y)$ .



## FACE LIFTING TECHNIQUE ON ORTHOGONAL POLYHEDRA

- To avoid excessively conservative approximations, some faces must be split a priori  $\Rightarrow$  the result of the lifting operation is non-convex.
- Use orthogonal polyhedra which offer the advantages:
  - Orthogonal polyhedra are closed under lifting operation
  - Faces of an orthogonal polyhedron can be systematically enumerated.
  - Efficient algorithms for the union operation and other required geometric operations.



# Example: Airplane Safety [LygerosTomlinSastry97]

State variables  $x_1$ ,  $x_2$  represent velocity and flight path angle of an aircraft

 $u_1$ : thrust,  $u_2$ : pitch angle.

Safe set  $P = [V_{min}, V_{max}] \times [\gamma_{min}, \gamma_{max}]$ 

$$\dot{x}_1 = -\frac{a_D x_1^2}{m} - g \sin x_2 + \frac{u_1}{m}$$

$$\dot{x}_2 = \frac{a_L x_1 (1 - c x_2)}{m} - \frac{g \cos x_2}{x_1} + \frac{a_L c x_1}{m} u_2$$

# Example: Airplane Safety [LygerosTomlinSastry97]



$$u_1 = T_{max}, u_2 = \Theta_{min}$$



$$u_1 = T_{min}, u_2 = \Theta_{max}$$

# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction by projection

## Hybrid systems

#### Hybrid automata

- Staying conditions of each mode  $\mathcal{D}_q$ , transition guard  $\mathcal{G}_{qq'}$ : convex polyhedra
- Reset maps: affine  $\mathcal{R}_{qq'}(\mathbf{x}) = K_{qq'}\mathbf{x} + P_{qq'}$



# REACHABILITY OF HYBRID AUTOMATA

The state  $(q, \mathbf{x})$  of the system can change in two ways:

- $\bullet$  continuous evolution: q remains constant, and  ${\bf x}$  changes continuously according to the diff. eq. at q
- discrete evolution (by making a transition): q changes, and  $\mathbf{x}$  changes according to the reset function.
- $\Rightarrow$  continuous-successor  $\delta_c$  and discrete-successor  $\delta_{qq'}$



# REACHABILITY COMPUTATION

• Computation of continuous-successors



• Computation of discrete-successors

$$\delta_{qq'}(q,Y) = \{ (q', \mathcal{R}_{qq'}(Y \cap \mathcal{G}_{qq'}) \cap \mathcal{D}_{q'}) \}$$

 $\Rightarrow$  Boolean and geometric operations over orthogonal polyhedra

# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction by projection

#### SWITCHING CONTROLLER SYNTHESIS: SETTING

Plant: several 'continuous modes'

- Discrete switching controller continuously observes the state of the plant and decides which mode to select. We assume complete observability.
- Controller is non-deterministic, and feedback map  $s: Q \times \mathcal{X} \to 2^Q$
- The overall system can be modeled as a hybrid automaton

#### Discrete switching controller



# SAFETY CONTROLLER SYNTHESIS: PROBLEM

#### • Problem:

- Given a hybrid automaton  $\mathcal A$  and a safe set  $\mathcal S$
- How to restrict the guards and the staying conditions of  $\mathcal{A}$  so that all trajectories of the resulting automaton  $\mathcal{A}^*$  stay in  $\mathcal{S}$ .
- Solution [TomlinLygerosSastry00, AsarinDangMaler00]:
  - Compute the maximal invariant set, that is the set of winning state.
  - Winning states are the states from which the controller, by switching properly, ensures that all the trajectories of the controlled system lie within S.

# ONE STEP PREDECESSOR OPERATOR

The one step predecessor operator  $\pi: 2^{Q \times \mathcal{X}} \to 2^{Q \times \mathcal{X}}$ 

Given a set  $S = \{(q, S_q) \mid q \in Q\}$ ,  $\pi(S)$  is the set of all states from which all trajectories

- stay indefinitely in S without switching OR
- ullet stay in  ${\mathcal S}$  for some time and then make a transition to another location and still in  ${\mathcal S}$



## COMPUTATION OF THE MAXIMAL INVARIANT SET

$$egin{aligned} \mathcal{P}^0 &:= \mathcal{S}; \ \mathbf{repeat} \ k = 0, 1, 2, \dots \ & \mathcal{P}^{k+1} &:= \mathcal{P}^k \cap \pi(\mathcal{P}^k); \ \mathbf{until} \ \mathcal{P}^{k+1} &= \mathcal{P}^k \ & \mathcal{P}^* &:= \mathcal{P}^k; \end{aligned}$$

 $\mathcal{P}^*$ : maximal invariant set

 $\mathcal{A}^*:\,\mathcal{D}^*=\mathcal{D}\cap\mathcal{P}^*,\,\mathcal{G}^*=\mathcal{G}\cap\mathcal{P}^*.$ 

 $\mathcal{A}^*$  is the least restrictive automaton satisfying the desired safety property.

## Computation of the operator $\pi$

- States from which the system stay indefinitely in  $S_q$  without switching  $\Rightarrow$  backward reachable set from the complement of  $S_q$
- States from which the system stay in  $S_q$  for some time and then make a transition to q' and still in  $S_{q'} \Rightarrow$  continuous-predecessors from  $\mathcal{G}_{qq'} \cap S_{q'}$  with staying condition  $S_{q'}$
- Under-approximations







# PLAN

- 1. Algorithmic verification of hybrid systems
- 2. Reachability analysis of continuous systems
- 3. Safety verification of hybrid systems
- 4. Controller synthesis
- 5. Abstraction by projection

#### ABSTRACTION BY PROJECTION: INTRODUCTION

- Dimension reduction method for continuous systems
- Basic idea: project away some variables the evolution of which is modeled as input in the dynamics of remaining variables
- A 'hybridization' method using ideas of qualitative simulation
- Goal:
  - more precise than qualitative simulation
  - less expensive than analysis of the original systems

#### **PROJECTION**

$$\begin{cases} \dot{x} = f(x, y, z) \\ \dot{y} = g(x, y, z) \\ \dot{z} = h(x, y, z) \end{cases}$$

- f, g, h are Lipschitz continuous. We want to abstract away variable z
- Partition the domain of z into k disjoint intervals  $\{[l^1, u^1), [l^2, u^2), \dots [l^k, u^k]\},$   $l^{i+1} = u^i$  for all i
- If  $z \in I_z^i = [l^i, u^i]$ , the dynamics of x and y can be approximated by differential inclusion:

$$\begin{cases} \dot{x} \in F_i(x,y) = \{ f(x,y,z) \mid z \in I_z^i \} \\ \dot{y} \in G_i(x,y) = \{ g(x,y,z) \mid z \in I_z^i \} \end{cases}$$

#### **HYBRIDIZATION**

- The original system is thus approximated by 2-dimensional hybrid system with k different continuous dynamics
- Switchings between continuous dynamics correspond to the reachability relation between adjacent intervals  $I_z^i$ :
  - Transition from  $I_z^i = [l^i, u^i)$  to  $I_z^{i+1} = [l^{i+1}, u^{i+1})$  ( $u^i = l^{i+1}$ ) is possible if at the boundary the derivative of z is positive, i.e.  $h(x, y, u_i) > 0$
  - Similarly, transition from  $I_z^{i+1}$  to  $I_z^i$  if  $h(x, y, u_i) < 0$
  - These switching conditions are not sufficient  $\Rightarrow$  conservative approximation



#### REMEDY DISCONTINUITIES

- Our hybridization method introduces discontinuities
- We will "convexify" the dynamics at switching surfaces (to guarantee existence of solution, error bound)
- Between adjacent intervals  $I_z^i$  and  $I_z^j$  (j = i + 1), add a location with dynamics:

$$\begin{cases} \dot{x} \in F_{ij}(x,y) = co\{F_i(x,y), F_j(x,y)\} \\ \dot{y} \in G_{ij}(x,y) = co\{G_i(x,y), G_j(x,y)\} \end{cases}$$



#### Convergence Result

- Resulting abstract system  $(\dot{x}', \dot{y}') \in \mathcal{F}(x', y')$  is *upper semi-continuous* and *one-sided Lipschitz*  $\Rightarrow$  We can prove error bound:
  - Distance between trajectories of the original system and the abstract system is bounded:

$$|(x(t), y(t)) - (x'(t), y'(t))| \le |(x(0), y(0)) - (x'(0), y'(0))|e^{Lt} + \frac{\Delta}{L}(e^{Lt} - 1)|e^{Lt} - \frac{\Delta}{L}(e^{Lt} - 1)|e^{Lt}$$

- $-\Delta$ : bound on the distance between the derivatives (which depends on the size of z mesh)
- First order method

## ABSTRACTION WITH TIMING INFORMATION

- $\bullet$  So far, we use only the sign of the derivative of z to determine switching conditions
- The time the system can stay with a dynamics (staying time) is omitted
- To include more timing information to obtain more precise abstraction
  - Linear dynamics: staying time can be approximated numerically [Girard 03]
  - For nonlinear dynamics: discretize  $\dot{z}$  into intervals and then estimate bounds on staying time.

### ABSTRACTION WITH TIMING INFORMATION: NONLINEAR DYNAMICS

- $\bullet$  Additionally discretize the derivative of z into disjoint intervals
- Each location of the approximating automaton corresponds to an interval  $I_z^i$  of z and an interval  $I_z^j$  of  $\dot{z}$
- Then, based on the intervals of derivatives of z we can estimate the bounds on the staying time and then embed this information in the switching conditions.

### Abstraction with Timing Information: nonlinear dynamics

The domain of  $\dot{z}$  is partitioned into 3 intervals:  $I_{\dot{z}}^1 = (-\infty, a], I_{\dot{z}}^2 = (-a, a), I_{\dot{z}}^3 = [a, \infty)$  where a > 0.



### COMPUTATION ISSUES

- Linear Systems: abstract system is a linear system with uncertain input.
- Nonlinear systems: abstract system is a more general differential inclusions
- We focus on the case of multi-affine systems (which have numerous applications in biology, economy)

#### ABSTRACTION OF MULTI-AFFINE SYSTEMS

$$\begin{cases} \dot{x}_1 = a_1x_1 + b_1x_2 + c_1x_1x_2 \\ \dot{x}_2 = a_2x_1 + b_2x_2 + c_2x_1x_2 \end{cases}$$

Abstract away  $x_2 \Rightarrow$ 

$$\begin{cases} \dot{x}_1 = a_1 x_1 + b_1 \mathbf{u} + c_1 \mathbf{u} x_2 \\ ||\mathbf{u}(\cdot)|| \le \delta \end{cases}$$

We obtain a bilinear control system

#### REACHABILITY ANALYSIS OF BILINEAR CONTROL SYSTEMS

Consider a bilinear control system with additive and multipicative inputs

$$\dot{x}(t) = f(x(t), u(t)) = Ax(t) + \sum_{j=1}^{l} u_j(t)B_jx(t) + Cu(t)$$

 $x(t) \in \mathbb{R}^n$ : state variables, input  $u : \mathbb{R}^+ \to U$  and  $U \subset \mathbb{R}^l$  is a bounded convex polyhedron.

**Basic idea**: Applying the Maximum principle to find the 'optimal' input  $u^*$  which can be used to over-approximate the reachable set  $\Rightarrow$  require solving an optimal control problem for a bilinear system. For tractability purposes,

- 1. Restrict to piecesiwe constant inputs  $u(t) = \bar{u}(t_k), t \in [t_k, t_{k+1}) \Rightarrow$  error in solution of order  $O(r^2), r = \max\{t_{k+1} t_k\}$  time step
- 2. To solve bilinear diff equations, treat the bilinear term as independent input (see next)

#### APPLYING THE MAXIMUM PRINCIPE

Represent the initial set Y as intersection of half-spaces.

For each half-space H with normal v and supporting point p.

$$\dot{\tilde{x}} = A\tilde{x} + \sum_{j=1}^{l} \tilde{u}_{j} B_{j} \tilde{x} + C\tilde{u}$$

$$\dot{\tilde{q}} = -\frac{\partial H}{\partial x} (\tilde{x}, \tilde{q}, \tilde{u}) \text{ where } H(q, x, u) = \langle q, Ax + \sum_{j=1}^{l} u_{j} B_{j} x + Cu \rangle$$

$$\tilde{u}(t) \in argmax \{ \langle \tilde{q}(t), \sum_{j=1}^{l} u_{j} B_{j} \tilde{x}(t) + Cu \rangle \mid u \in U \}$$

with initial conditions:  $\tilde{q}(0) = v$ ,  $\tilde{x}(0) = p$ .

Then,

- for all t > 0, the half-space H(t) defined by normal  $\tilde{q}(t)$  and supporting point  $\tilde{x}(t)$  contains the reachable set  $\delta_t(Y)$ ,
- and the corresponding hyperplane is a supporting hyperplane of  $\delta_t(Y)$ .

#### REACHABILITY ANALYSIS OF BILINEAR CONTROL SYSTEMS

- Solving the optimal control problem for arbitrary inputs is hard  $\Rightarrow$  restrict to piecewise constant inputs  $u(t) = \bar{u}(t_k), t \in [t_k, t_{k+1}).$
- Solving bilinear systems with piecewise constant input:

$$x(t_{k+1}) = e^{Ar}x(t_k) + \int_0^r a^{A(r-\tau)}b\bar{u}_k d\tau + \int_0^r a^{A(r-\tau)}Bx(t_k + \tau)\bar{u}_k d\tau$$

We approximate  $x(t_k + \tau)$  for  $\tau \in [0, r)$  by:  $\pi(\tau) = \alpha \tau^3 + \beta \tau^2 + \gamma \tau + \sigma$  satisfying Hermite interpolation conditions:

$$\pi(0) = x(t_k), \quad \dot{\pi}(0) = \dot{x}(t_k), \quad \pi(r) = x(t_{k+1}), \quad \dot{\pi}(r) = \dot{x}(t_{k+1})$$

- We obtain the coefficients of  $\pi(\tau)$  as linear functions of  $x(t_k)$  and  $x(t_{k+1})$
- Replace  $x(t_k + \tau)$  by  $\pi(\tau)$  in the integral we obtain an algebraic equation:  $M_k x(t_{k+1}) = m_k$  allowing to determine the map between  $x(t_{k+1})$  and  $x(t_k)$
- We can prove that the error is quadratic  $O(r^2)$

#### Example: A biological system

A multi-affine system, used to model the gene transcription control in the *Vibrio* fischeri bacteria [Belta et al 03].

$$\begin{cases}
\dot{x_1} = k_2 x_2 - k_1 x_1 x_3 + u_1 \\
\dot{x_2} = k_1 x_1 x_3 - k_2 x_2 \\
\dot{x_3} = k_2 x_2 - k_1 x_1 x_3 - n x_3 + n u_2
\end{cases}$$
(1)

State variables  $x_1$ ,  $x_2$ ,  $x_3$  represent cellular concentration of different species Parameters  $k_1$ ,  $k_2$ , n are binding, dissociation and diffusion constants. Control variables  $u_1$  and  $u_2$  are plasmid and external source of autoinducer.

Goal: drive the system through to the face  $x_2 = 2$ 

# Example: A biological system (cont'd)

Reachability results obtained by abstracting away the variable  $x_1$ .







uncontrolled system (u = 0) location  $x_1 \in [1.0, 1.5]$ 

location  $x_1 \in [1.5, 2.0]$