Hybrid Systems: Verification and Controller Synthesis

Thao Dang
VERIMAG

Plan

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems
3. Safety verification of hybrid systems
4. Controller synthesis
5. Abstraction

Algorithmic Analysis of Hybrid Systems

- Formal verification: prove that the system satisfies a given property
- Controller synthesis: design controllers so that the controlled system satisfies a desired property
- We concentrate on invariance properties: all trajectories of the system stay in a subset of the state space

Algorithmic Analysis of Hybrid Systems

Thermostat example

Difficulties in analysis of hybrid systems

- Two-phase evolution
- Non-deterministic behavior
- Set of initial states
\Rightarrow How to characterize and represent set of trajectories (or tubes of trajectories) generated by continuous dynamics and discrete transitions

Algorithmic Analysis of Hybrid Systems

- Exact symbolic methods: applicable for restricted classes of hybrid systems (linear dynamics with special eigenstructures) [PappasLafferriereYovine 99]
- Approximate methods: using a variety of set representation
- Level set method (using Hamilton-Jacobi partial differential equation formulation) [TomlinLygerodSastry00]
- Polyhedral approximations [GreenstreetMitchell98, DangMaler98, ChutinanKrogh99, AsarinDangMaler01]
- Ellipsoidal calculus [KurzhanskiVaraiya00, BotchkarevTripakis00]

In our work, we use convex and orthogonal polyhedra to represent and compute reachable sets of hybrid systems (see later).

```
\(R^{0}:=Y ;\)
repeat \(k=0,1,2, \ldots\)
    if \(\left(R^{k} \cap \mathcal{B} \neq \emptyset\right)\) return unsafe /* \(\mathcal{B}\) : bad set */
    \(R^{k+1}:=R^{k} \cup \delta\left(R^{k}\right) ;\)
until \(R^{k+1}=R^{k}\)
return safe
```

\Rightarrow Computation of the following functions over subsets of the state space of hybrid systems: successor, union and intersection, emptiness checking.

Termination is not guaranteed.

EXAMPLE OF A NON-TERMINATING COMPUTATION

A 4-state PCD (piecewise-constant derivative) system

OUR APPROACH: POLYHEDRAL APPROXIMATION

To represent reachable sets, we use orthogonal polyhedra (unions of closed fulldimensional hyper-rectangles)

- Canonical representation \Rightarrow effective computations of Boolean operations, equivalence and emptiness checking, membership testing, and other geometric operations (face detection, etc.).
- Appropriate for over- and under-approximations of non-convex sets

Plan

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems

- Linear systems
- Non-linear systems

3. Safety verification of hybrid systems
4. Controller synthesis
5. Abstraction by projection

Reachability operators

Continuous system $\dot{\mathbf{x}}=f(\mathbf{x})$ where $\mathbf{x} \in \mathcal{X} ; f: \mathcal{X} \rightarrow \mathbb{R}^{n}$ continuous vector field. Let $\phi_{\mathbf{X}}(t)$ be the solution of the diff eq with \mathbf{x} as initial condition.

Given a time interval I and a set of states Y, successor operator $\delta_{I}(Y)=\left\{\mathbf{y} \mid \exists \mathbf{x} \in Y \exists t \in I \mathbf{y}=\phi_{\mathbf{X}}(t)\right\}$.

The reachable set from Y is $\delta(Y)=\delta_{[0, \infty)}(Y)$ (all states reachable after any nonnegative amount of time).

REACHABILITY ANALYSIS OF LINEAR SYSTEMS

A continuous linear system $\dot{\mathbf{x}}=A \mathbf{x}$. Initial set Y is a convex bounded polyhedron $Y=\operatorname{conv}(V)$ where $V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a finite set of vertices

- Reachable set at time $r \delta_{t}(Y)=\operatorname{conv}\left\{\delta_{t}\left(\mathbf{v}_{1}\right), \ldots, \delta_{t}\left(\mathbf{v}_{m}\right)\right\}$, and the successor of a point \mathbf{v} is $\delta_{t}(\mathbf{v})=e^{A t} \mathbf{v}$

- Reachable set during time interval [0, r],

Lemma: Given a time step $r \geq 0$, there exists $\varepsilon=\mathcal{O}\left(r^{2}\right)$ such that $\delta_{[0, r]}(Y) \subseteq$ $\operatorname{conv}\left(Y \cup \delta_{r}(Y)\right) \oplus \varepsilon B\left(\varepsilon\right.$-neighborhood of the convex hull of Y and $\left.\delta_{r}(Y)\right)$.

$X^{1}=\operatorname{conv}\left\{\delta_{r}\left(\mathbf{v}_{1}\right), \delta_{r}\left(\mathbf{v}_{2}\right)\right\} \quad C^{1}=\operatorname{conv}\left(X^{0} \cup X^{1}\right)$

$$
C_{o}^{1}=\operatorname{bloat}\left(C^{1}, \varepsilon\right)
$$

$G^{1}=\operatorname{grid}_{o}\left(C_{o}^{1}\right)$

Second iteration

$$
P^{2}=G^{1} \cup G^{2}
$$

No accumulation of error, approximation error is of order $\mathcal{O}\left(r^{2}\right)$.

- System $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{u}(t)$ where $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u}(\cdot) \in \mathcal{U}$.
- Admissible input function $\mathbf{u}(\cdot): \mathbb{R}^{+} \rightarrow U$ and U is a convex bounded polyhedron.
- Input can represent under-specified control or external disturbance

Computing reachable set $\delta_{t}(Y)$ at time r using the Maximal Principle

- The initial polyhedron can be written as intersection of half-spaces. Each halfspace $H=\{\mathbf{x} \mid\langle\lambda, \mathbf{x}\rangle \leq\langle\lambda, \mathbf{y}\rangle\} ; \lambda$: normal vector, \mathbf{y} : supporting point
- For every half-space H, there exists an input u^{*} s.t. calculating its successors under u^{*} is sufficient to derive a tight polyhedral approximation of $\delta_{t}(Y)$.
- Evolution of normal vector $\dot{\lambda}(t)=-A^{T} \lambda(t)$ (adjoint system) independent of input, $u^{*}(r) \in \arg \max \{\langle\lambda(r), \mathbf{u}\rangle \mid \mathbf{u} \in U\}$.

Plan

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems

- Linear systems
- Non-linear systems

3. Safety verification of hybrid systems
4. Controller synthesis
5. Abstraction

REACHABILITY ANALYSIS OF NON-LINEAR SYSTEMS

Consider a system $\dot{\mathbf{x}}=f(\mathbf{x}), f$ is Lipschitz.

We propose two techniques

- 'Face lifting': Propagate the boundary of the reachable set, extension of Euler scheme for sets
- 'Hybridization': Extension of the simulation method based on simplicial decomposion of the state space (the previous talk) [Girard et al 02].

FACE LIFTING TECHNIQUE

Continuity of trajectories: trajectory from a point $\mathbf{x} \in Y$ either remains in Y forever or traverses the boundary ∂Y after some time \Rightarrow it suffices to compute from ∂Y.

Lemma: Give a time step r, for each face e there exist v_{e} s.t. all trajectories starting from e stay in the neighborhood $N(e)$ for at least r time.

Face lifting technique: Principe

Over-approximating $\delta_{[0, r]}(Y)$ (reachable set during $[0, r]$)

1. For every face e of Y, construct the neighborhood $N(e)$
2. Lifting operation: For every face e of $Y, \hat{f}_{e}=\max \left\{f_{e}(\mathbf{x}) \mid \mathbf{x} \in N(e)\right\}$ where $f_{e}(\mathbf{x})$ projection of $f(\mathbf{x})$ on the outward normal of face e

- If \hat{f}_{e} is positive, lift $H(e)$ outward by the amount $r \hat{f}_{e}$ to obtain $H_{l}(e)$.

3. Intersect all the new half-spaces $H_{l}(e) \Rightarrow$ over-approximation of $\delta_{[0, r]}(Y)$.

FACE LIFTING TECHNIQUE ON ORTHOGONAL POLYHEDRA

- To avoid excessively conservative approximations, some faces must be split a priori \Rightarrow the result of the lifting operation is non-convex.
- Use orthogonal polyhedra which offer the advantages:
- Orthogonal polyhedra are closed under lifting operation
- Faces of an orthogonal polyhedron can be systematically enumerated.
- Efficient algorithms for the union operation and other required geometric operations.

Example: Airplane Safety [LygerosTomlinSastry97]

State variables x_{1}, x_{2} represent velocity and flight path angle of an aircraft
u_{1} : thrust, u_{2} : pitch angle.

Safe set $P=\left[V_{\min }, V_{\max }\right] \times\left[\gamma_{\min }, \gamma_{\max }\right]$

$$
\begin{aligned}
& \dot{x}_{1}=-\frac{a_{D} x_{1}^{2}}{m}-g \sin x_{2}+\frac{u_{1}}{m} \\
& \dot{x}_{2}=\frac{a_{L} x_{1}\left(1-c x_{2}\right)}{m}-\frac{g \cos x_{2}}{x_{1}}+\frac{a_{L} c x_{1}}{m} u_{2}
\end{aligned}
$$

Example: Airplane Safety [LygerosTomlinSastry97]

$u_{1}=T_{\max }, u_{2}=\Theta_{\min }$

$$
u_{1}=T_{\min }, u_{2}=\Theta_{\max }
$$

PLAN

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems
3. Safety verification of hybrid systems
4. Controller synthesis
5. Abstraction by projection

HYBRID SYSTEMS

Hybrid automata

- Staying conditions of each mode \mathcal{D}_{q}, transition guard $\mathcal{G}_{q q^{\prime}}$: convex polyhedra
- Reset maps: affine $\mathcal{R}_{q q^{\prime}}(\mathbf{x})=K_{q q^{\prime}} \mathbf{X}+P_{q q^{\prime}}$

Reachability of Hybrid Automata

The state (q, \mathbf{x}) of the system can change in two ways:

- continuous evolution: q remains constant, and \mathbf{x} changes continuously according to the diff. eq. at q
- discrete evolution (by making a transition): q changes, and \mathbf{x} changes according to the reset function.
\Rightarrow continuous-successor δ_{c} and discrete-successor $\delta_{q q^{\prime}}$

REACHABILITY COMPUTATION

- Computation of continuous-successors

- Computation of discrete-successors

$$
\delta_{q q^{\prime}}(q, Y)=\left\{\left(q^{\prime}, \mathcal{R}_{q q^{\prime}}\left(Y \cap \mathcal{G}_{q q^{\prime}}\right) \cap \mathcal{D}_{q^{\prime}}\right)\right\}
$$

\Rightarrow Boolean and geometric operations over orthogonal polyhedra

PLAN

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems
3. Safety verification of hybrid systems

4. Controller synthesis

5. Abstraction by projection

Switching Controller Synthesis: Setting

Plant: several 'continuous modes'

- Discrete switching controller continuously observes the state of the plant and decides which mode to select. We assume complete observability.
- Controller is non-deterministic, and feedback map $s: Q \times \mathcal{X} \rightarrow 2^{Q}$
- The overall system can be modeled as a hybrid automaton

Safety Controller Synthesis: Problem

- Problem:
- Given a hybrid automaton \mathcal{A} and a safe set \mathcal{S}
- How to restrict the guards and the staying conditions of \mathcal{A} so that all trajectories of the resulting automaton \mathcal{A}^{*} stay in \mathcal{S}.
- Solution [TomlinLygerosSastry00, AsarinDangMaler00]:
- Compute the maximal invariant set, that is the set of winning state.
- Winning states are the states from which the controller, by switching properly, ensures that all the trajectories of the controlled system lie within \mathcal{S}.

One Step Predecessor operator

The one step predecessor operator $\pi: 2^{Q \times \mathcal{X}} \rightarrow 2^{Q \times \mathcal{X}}$
Given a set $\mathcal{S}=\left\{\left(q, \mathcal{S}_{q}\right) \mid q \in Q\right\}, \pi(\mathcal{S})$ is the set of all states from which all trajectories

- stay indefinitely in \mathcal{S} without switching OR
- stay in \mathcal{S} for some time and then make a transition to another location and still in \mathcal{S}

Computation of the Maximal Invariant Set

$$
\begin{aligned}
& \mathcal{P}^{0}:=\mathcal{S} ; \\
& \text { repeat } k=0,1,2, \ldots \\
& \mathcal{P}^{k+1}:=\mathcal{P}^{k} \cap \pi\left(\mathcal{P}^{k}\right) ; \\
& \text { until } \mathcal{P}^{k+1}=\mathcal{P}^{k} \\
& \mathcal{P}^{*}:=\mathcal{P}^{k} ;
\end{aligned}
$$

\mathcal{P}^{*} : maximal invariant set
$\mathcal{A}^{*}: \mathcal{D}^{*}=\mathcal{D} \cap \mathcal{P}^{*}, \mathcal{G}^{*}=\mathcal{G} \cap \mathcal{P}^{*}$.
\mathcal{A}^{*} is the least restrictive automaton satisfying the desired safety property.

Computation of the operator π

- States from which the system stay indefinitely in \mathcal{S}_{q} without switching \Rightarrow backward reachable set from the complement of \mathcal{S}_{q}
- States from which the system stay in \mathcal{S}_{q} for some time and then make a transition to q^{\prime} and still in $\mathcal{S}_{q^{\prime}} \Rightarrow$ continuous-predecessors from $\mathcal{G}_{q q^{\prime}} \cap \mathcal{S}_{q^{\prime}}$ with staying condition $\mathcal{S}_{q^{\prime}}$
- Under-approximations

ExAMPLE: TWO-SPIRAL SYSTEM

PLAN

1. Algorithmic verification of hybrid systems
2. Reachability analysis of continuous systems
3. Safety verification of hybrid systems
4. Controller synthesis
5. Abstraction by projection

Abstraction by Projection: Introduction

- Dimension reduction method for continuous systems
- Basic idea: project away some variables the evolution of which is modeled as input in the dynamics of remaining variables
- A 'hybridization' method using ideas of qualitative simulation
- Goal:
- more precise than qualitative simulation
- less expensive than analysis of the original systems

$$
\left\{\begin{array}{l}
\dot{x}=f(x, y, z) \\
\dot{y}=g(x, y, z) \\
\dot{z}=h(x, y, z)
\end{array}\right.
$$

- f, g, h are Lipschitz continuous. We want to abstract away variable z
- Partition the domain of z into k disjoint intervals $\left\{\left[l^{1}, u^{1}\right),\left[l^{2}, u^{2}\right), \ldots\left[l^{k}, u^{k}\right]\right\}$, $l^{i+1}=u^{i}$ for all i
- If $z \in I_{z}^{i}=\left[l^{i}, u^{i}\right]$, the dynamics of x and y can be approximated by differential inclusion:

$$
\left\{\begin{array}{l}
\dot{x} \in F_{i}(x, y)=\left\{f(x, y, z) \mid z \in I_{z}^{i}\right\} \\
\dot{y} \in G_{i}(x, y)=\left\{g(x, y, z) \mid z \in I_{z}^{i}\right\}
\end{array}\right.
$$

- The original system is thus approximated by 2-dimensional hybrid system with k different continuous dynamics
- Switchings between continuous dynamics correspond to the reachability relation between adjacent intervals I_{z}^{i} :
- Transition from $I_{z}^{i}=\left[l^{i}, u^{i}\right)$ to $I_{z}^{i+1}=\left[l^{i+1}, u^{i+1}\right)\left(u^{i}=l^{i+1}\right)$ is possible if at the boundary the derivative of z is positive, i.e. $h\left(x, y, u_{i}\right)>0$
- Similarly, transition from I_{z}^{i+1} to I_{z}^{i} if $h\left(x, y, u_{i}\right)<0$
- These switching conditions are not sufficient \Rightarrow conservative approximation

- Our hybridization method introduces discontinuities
- We will "convexify" the dynamics at switching surfaces (to guarantee existence of solution, error bound)
- Between adjacent intervals I_{z}^{i} and $I_{z}^{j}(j=i+1)$, add a location with dynamics:

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x} \in F_{i j}(x, y)=\operatorname{co}\left\{F_{i}(x, y), F_{j}(x, y)\right\} \\
\dot{y} \in G_{i j}(x, y)=\operatorname{co}\left\{G_{i}(x, y), G_{j}(x, y)\right\}
\end{array}\right. \\
\cdots \quad h\left(x, y, u^{i}\right)>0 \quad h\left(x, y, u^{j}\right)>0
\end{gathered}
$$

- Resulting abstract system $\left(\dot{x}^{\prime}, \dot{y}^{\prime}\right) \in \mathcal{F}\left(x^{\prime}, y^{\prime}\right)$ is upper semi-continuous and onesided Lipschitz \Rightarrow We can prove error bound:
- Distance between trajectories of the original system and the abstract system is bounded:

$$
\left|(x(t), y(t))-\left(x^{\prime}(t), y^{\prime}(t)\right)\right| \leq\left|(x(0), y(0))-\left(x^{\prime}(0), y^{\prime}(0)\right)\right| e^{L t}+\frac{\Delta}{L}\left(e^{L t}-1\right)
$$

$-\Delta$: bound on the distance between the derivatives (which depends on the size of z mesh)

- First order method

Abstraction with Timing Information

- So far, we use only the sign of the derivative of z to determine switching conditions
- The time the system can stay with a dynamics (staying time) is omitted
- To inlude more timing information to obtain more precise abstraction
- Linear dynamics: staying time can be approximated numerically [Girard 03]
- For nonlinear dynamics: discretize \dot{z} into intervals and then estimate bounds on staying time.
- Additionally discretize the derivative of z into disjoint intervals
- Each location of the approximating automaton corresponds to an interval I_{z}^{i} of z and an interval $I_{\dot{z}}^{j}$ of \dot{z}
- Then, based on the intervals of derivatives of z we can estimate the bounds on the staying time and then embed this information in the switching conditions.

The domain of \dot{z} is partitioned into 3 intervals: $I_{\dot{z}}^{1}=(-\infty, a], I_{\dot{z}}^{2}=(-a, a), I_{\dot{z}}^{3}=$ $[a, \infty)$ where $a>0$.

- Linear Systems: abstract system is a linear system with uncertain input.
- Nonlinear systems: abstract system is a more general differential inclusions
- We focus on the case of multi-affine systems (which have numerous applications in biology, economy)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{1} x_{2} \\
\dot{x}_{2}=a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{1} x_{2}
\end{array}\right.
$$

Abstract away $x_{2} \Rightarrow$

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a_{1} x_{1}+b_{1} u+c_{1} u x_{2} \\
\|u(\cdot)\| \leq \delta
\end{array}\right.
$$

We obtain a bilinear control system

Consider a bilinear control system with additive and multipicative inputs

$$
\dot{x}(t)=f(x(t), u(t))=A x(t)+\sum_{j=1}^{l} u_{j}(t) B_{j} x(t)+C u(t)
$$

$x(t) \in \mathbb{R}^{n}$: state variables, input $u: \mathbb{R}^{+} \rightarrow U$ and $U \subset \mathbb{R}^{l}$ is a bounded convex polyhedron.

Basic idea: Applying the Maximum principle to find the 'optimal' input u^{*} which can be used to over-approximate the reachable set \Rightarrow require solving an optimal control problem for a bilinear system. For tractability purposes,

1. Restrict to piecesiwe constant inputs $u(t)=\bar{u}\left(t_{k}\right), t \in\left[t_{k}, t_{k+1}\right) \Rightarrow$ error in solution of order $O\left(r^{2}\right), r=\max \left\{t_{k+1}-t_{k}\right\}$ time step
2. To solve bilinear diff equations, treat the bilinear term as independent input (see next)

Represent the initial set Y as intersection of half-spaces.
For each half-space H with normal v and supporting point p.

$$
\begin{aligned}
\dot{\tilde{x}} & =A \tilde{x}+\sum_{j=1}^{l} \tilde{u}_{j} B_{j} \tilde{x}+C \tilde{u} \\
\dot{\tilde{q}} & =-\frac{\partial H}{\partial x}(\tilde{x}, \tilde{q}, \tilde{u}) \text { where } H(q, x, u)=\left\langle q, A x+\sum_{j=1}^{l} u_{j} B_{j} x+C u\right\rangle \\
\tilde{u}(t) & \in \operatorname{argmax}\left\{\left\langle\tilde{q}(t), \sum_{j=1}^{l} u_{j} B_{j} \tilde{x}(t)+C u\right\rangle \mid u \in U\right\}
\end{aligned}
$$

with initial conditions: $\tilde{q}(0)=v, \quad \tilde{x}(0)=p$.
Then,

- for all $t>0$, the half-space $H(t)$ defined by normal $\tilde{q}(t)$ and supporting point $\tilde{x}(t)$ contains the reachable set $\delta_{t}(Y)$,
- and the corresponding hyperplane is a supporting hyperplane of $\delta_{t}(Y)$.
- Solving the optimal control problem for arbitrary inputs is hard \Rightarrow restrict to piecewise constant inputs $u(t)=\bar{u}\left(t_{k}\right), t \in\left[t_{k}, t_{k+1}\right)$.
- Solving bilinear systems with piecewise constant input:

$$
x\left(t_{k+1}\right)=e^{A r} x\left(t_{k}\right)+\int_{0}^{r} a^{A(r-\tau)} b \bar{u}_{k} d \tau+\int_{0}^{r} a^{A(r-\tau)} B x\left(t_{k}+\tau\right) \bar{u}_{k} d \tau
$$

We approximate $x\left(t_{k}+\tau\right)$ for $\tau \in[0, r)$ by: $\pi(\tau)=\alpha \tau^{3}+\beta \tau^{2}+\gamma \tau+\sigma$ satisfying Hermite interpolation conditions:

$$
\pi(0)=x\left(t_{k}\right), \quad \dot{\pi}(0)=\dot{x}\left(t_{k}\right), \quad \pi(r)=x\left(t_{k+1}\right), \quad \dot{\pi}(r)=\dot{x}\left(t_{k+1}\right)
$$

- We obtain the coefficients of $\pi(\tau)$ as linear functions of $x\left(t_{k}\right)$ and $x\left(t_{k+1}\right)$
- Replace $x\left(t_{k}+\tau\right)$ by $\pi(\tau)$ in the integral we obtain an algebraic equation: $M_{k} x\left(t_{k+1}\right)=m_{k}$ allowing to determine the map between $x\left(t_{k+1}\right)$ and $x\left(t_{k}\right)$
- We can prove that the error is quadratic $O\left(r^{2}\right)$

A multi-affine system, used to model the gene transcription control in the Vibrio fischeri bacteria [Belta et al 03].

$$
\left\{\begin{array}{l}
\dot{x_{1}}=k_{2} x_{2}-k_{1} x_{1} x_{3}+u_{1} \tag{1}\\
\dot{x_{2}}=k_{1} x_{1} x_{3}-k_{2} x_{2} \\
\dot{x_{3}}=k_{2} x_{2}-k_{1} x_{1} x_{3}-n x_{3}+n u_{2}
\end{array}\right.
$$

State variables x_{1}, x_{2}, x_{3} represent cellular concentration of different species Parameters k_{1}, k_{2}, n are binding, dissociation and diffusion constants.
Control variables u_{1} and u_{2} are plasmid and external source of autoinducer.

Goal: drive the system through to the face $x_{2}=2$

Example: A biological system (CONT'D)

Reachability results obtained by abstracting away the variable x_{1}.

location $x_{1} \in[1.0,1.5]$

location $x_{1} \in[1.5,2.0]$

