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a b s t r a c t

In this paper, we propose a novel level set evolution model in a partial differential equation
(PDE) formulation. According to the governing PDE, the evolution of level set function is
controlled by two forces, an adaptive driving force and a total variation (TV)-based regular-
izing force that smoothes the level set function. Due to the adaptive driving force, the
evolving level set function can adaptively move up or down in accordance with image
information as the evolution proceeds forward in time. As a result, the level set function
can be simply initialized to a constant function rather than the widely-used signed distance
function or piecewise constant function in existing level set evolution models. Our model
completely eliminates the needs of initial contours as well as re-initialization, and so
avoids the problems resulted from contours initialization and re-initialization. In addition,
the evolution PDE can be solved numerically via a simple explicit finite difference scheme
with a significantly larger time step. The proposed model is fast enough for near real-time
segmentation applications while still retaining enough accuracy; in general, only a few
iterations are needed to obtain segmentation results accurately.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation has been, and still is, an important area in image analysis and computer vision. For a given image, its
goal is to separate the image domain into a set of regions which are visually distinct and uniform with respect to certain
properties, such as grey level, texture or color.

To perform the image segmentation task, many successful techniques including geometric active contour models using
the level set method [1] have been presented. The use of level set method allows us to handle complex geometry and even
changing topology, without the need of user-interaction [2]. According to the way representing the surface, applications of
the level set method in image segmentation can be typically divided into two classes: the standard level set method [3–9]
and the piecewise constant level set method [10–12]. The surface is represented by the zero level set of a Lipschitz function
in the standard level set method, while it is represented by discontinuities of a piecewise constant function in the piecewise
constant level set framework. In this paper, we confine our discussion to the standard level set method for image
segmentation.

In the standard level set method [1,3,4], the level set function can develop shocks, very sharp and/or flat shape during the
evolution, which makes further computation highly inaccurate. To avoid these problems, a common numerical scheme is to
initialize the level set function to a signed distance function to initial contour before the evolution, and then to periodically
re-initialize the level set function to be a signed distance function to the evolving curve during the evolution. Indeed, such
initialization and re-initialization are crucial and cannot be avoided in the standard level set method. From the practical
viewpoints, however, such initialization and re-initialization are fraught with its own problems, such as the determinations
. All rights reserved.
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of where to define the initial contour and when and how to re-initialize the level set function to a signed distance function
[13]. Recently, Li et al. [6,7] proposed a novel level set evolution model without re-initialization. It employed a deviation
penalization energy to preserve the level set function close to a signed distance function, thus not only the re-initialization
is entirely eliminated, but also the level set function can be initialized to a piecewise constant function. Unfortunately, the
initial piecewise constant function also needs to be computed from an initial contour or several initial contours that partition
the image domain into different regions; it still has the problems resulted from contours initialization, such as how and
where to define the initial contours.

In this paper, we propose a new level set evolution model in a partial differential equation (PDE) formulation. According
to the evolution PDE, the level set evolution is controlled by two forces, an adaptive driving force that ensures the level set
function to adaptively move up or down according to image information, a TV (total variation)-based regularizing force that
smoothes the level set function. Due to the adaptive driving force, the level set function can be simply initialized as a positive
constant function rather than the signed distance function [3–5,9] or piecewise constant function [6–8], and thus completely
eliminates the need for initial contours. Also, re-initialization is not necessary in our model because the level set function is
no longer required to keep as a signed distance function. In addition, a simple explicit finite difference scheme with a sig-
nificantly larger time step can be used for solving the evolution PDE numerically.

The remainder of this paper is organized as follows. Section 2 reviews an early geometric active contour [3], the level set
evolution model without re-initialization [6,7] and their limitations. The idea of TV-based regularization [14] in image res-
toration is also summarized in this section. The proposed model is introduced in Section 3. Section 4 presents numerical
algorithm and validates our model by experiments, followed by the discussions of the parameters in Section 5. This paper
is summarized in Section 6.
2. Related works

2.1. An early geometric active contour

An early geometric active contour, introduced by Caselles et al. [3], is based on the theory of curve evolution [15] and the
level set method [1].

Let /(x,y, t) be a Lipschitz function whose zero level set defines the evolving curve C(x,y, t). In the level set method, the
evolution of the curve /(x,y, t) along its normal direction with speed F is implicitly defined via the following nonlinear evo-
lution PDE [1]:
@/
@t
¼ Fjr/j; ð1Þ
with initial condition /(x,y,0) = /0(x,y), where /0(x,y) is the initial level set function corresponding to the initial curve
C(x,y,0).

A particular case is the motion derived by mean curvature, where F = div (r//jr/j) = j is the curvature of the level curve
of / passing though (x,y). The Eq. (1) becomes
@/
@t
¼ jjr/j: ð2Þ
An early geometric active contour model [3] based on Eq. (2) is given by the following evolution equation:
@/
@t ¼ gðjrIÞðjþ mÞjr/j
/ðx; y;0Þ ¼ /0ðx; yÞ;

(
ð3Þ
where m P 0 is a constant serving as a balloon force, and gðjrIjÞ ¼ 1
1þjrðGr�IÞj2

is an edge-stopping function derived from the
image. In Eq. (3), the term g(jrIj)(j + m) determines the overall evolution speed of level sets of /(x,y, t) along their normal
direction. The use of curvature j has the effect of smoothing the contour, while the use of m has the effect of shrinking or
expanding contour at a constant speed. The speed of contour evolution is coupled with the image data through a multipli-
cative stopping term g(jrIj).

In implementing this model via the level set method, it is necessary to initialize the level set function to a signed distance
function and periodically reshape it during the evolution by the following PDE [16]:
@/
@t
¼ signð/̂Þð1� jr/jÞ; ð4Þ
with initial condition /ðx; y;0Þ ¼ /̂ðx; yÞ, where /̂ is the function to be re-initialized, and sign(�) is the signum function. When
the steady state of the initial value problem (4) is reached, / will be a distance function having the same zero level set as /̂.
This is commonly known as the re-initialization procedure in the level set formwork.

The initial signed distance function is defined by an initial contour or several initial contours in the image domain. Nat-
urally, the problem of contour initialization arises; we have to choose suitable initial contours to correctly detect objects of
interest in a given image, e.g., the initial contour must encircle all the objects to be detected or several contours must be
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used. In addition, the re-initialization is crucial and cannot be avoided as a numerical remedy for evolution. However, from
the practical viewpoints, it can be quite complicated and expensive, and is fraught with its own problems, such as when and
how to reinitialize.
2.2. Level set evolution model without re-initialization

To the problem of re-initialization, Li et al. [6,7] recently introduced a variational level set formulation that eliminates the
need for re-initialization. In their model, the level set evolution PDE is directly derived from the minimization of an energy
functional of level set functions.

They first proposed an energy functional, then minimized it using the standard steepest descent method and obtained the
level set evolution equation as follows [6]:
@/
@t
¼ l D/� div

r/
jr/j

� �� �
þ kdð/Þdiv g

r/
jr/j

� �
þ mgdð/Þ; ð5Þ
where l, k > 0 and m are constants. The first term penalizes the deviation of / from a signed distance function and plays a key
role in this model. The second and third term, corresponding to the gradient flows of the weighted length of the zero level set
of / and the weighted area of the region {(x,y)j/(x,y) < 0}, respectively, would smoothly drive the motion of the zero level set
toward the desired edges. Dirac function d(�) is the derivative of one-dimensional Heaviside function.

Due to the penalizing term, the level set function driven by Eq. (5) is naturally and automatically kept as an approximate
signed distance function during the evolution; therefore, the re-initialization procedure is completely eliminated. Also, this
level set evolution model has two main advantages over the traditional level set formulations. First, it can be implemented
using a simple finite difference scheme instead of the complex upwind scheme as in traditional level set formulations, and a
significantly larger time step can be used for solving Eq. (5) numerically. Second, the level set function / (x,y, t) can be effi-
ciently initialized by a piecewise constant function as follows:
/0ðx; yÞ ¼
�q; ðx; yÞ 2 R;

0; ðx; yÞ 2 @R;

þq; ðx; yÞ 2 X� R;

8><
>: ð6Þ
where R is an arbitrary open region in the image domain X, q > 0 is a constant.
However, the initial level set function in Eq. (6) is in fact defined by the initial contour @R. Such initialization of level set

function still cannot avoid the problem of contour initialization, such as where and how to initialize the contours.
2.3. TV-based regularization

TV-based regularization was first introduced by Rudin et al. in their pioneering work [14] for image restoration problems.
Over the years, the ROF model has been extended to many other image restoration tasks, and has been modified in a variety
of ways to improve its performance [17–19]. The revolutionary aspect of this model is its regularization term that allows for
discontinuities but at the same time disfavors oscillations. The ROF model was originally formulated in [14] for gray image in
the following form:
min
1
2

R
X
ðu�u0Þ2dxdy¼r2

Z
X
jrujdxdy: ð7Þ
Here, the function u0ðx; yÞ : X! R represents the given observed image, which is assumed to be corrupted by Gaussian noise
of variance r2. The objective functional in Eq. (7) is the total variation (TV) of the function u(x,y).

Regardless of the fitting constrain, the minimization of the objective functional can be achieved by solving the following
Euler–Lagrange equation:
@u
@t
¼ div

ru
jruj

� �
;ujt¼0 ¼ u0; ð8Þ
where div (ru/jruj) actually denotes the mean curvature of the level set of u passing through (x,y). The effects of Eq. (8) in
noise removal can be explained as follows. The level curves in the neighborhoods of noise points on the image have high
curvatures. The level curves of the viscosity solution to Eq. (8) shrink with the speed of the mean curvature and eventually
disappear. Consequently, the level curves with very high curvature (noise) disappear much faster than those with relatively
lower curvatures. As the time t proceeds, the result of TV regularization tends to be a smoother version of the original image
u0.
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3. The proposed model

As we all know, the level set evolution models in [3–9] are highly sensitive to the contour initialization in terms of seg-
mentation result and iteration number. One important reason is that their level set functions must be initialized to either a
signed distance function [3–5,9] or a piecewise constant function [6–8], all of which are computed from an initial contour or
several initial contours in image domain. In this section, we propose a novel level set evolution model, in which the level set
function can be simply initialized to a positive constant function, and so completely eliminates the need for initial contours.

With our model, the evolution of the level set function / is controlled by two forces, an adaptive driving force Fadp and a
TV-based regularizing force Freg, according to the following governing equation:
@/
@t
¼ aFadp þ bFreg ; ð9Þ
where both a and b are positive constants controlling the weight of the corresponding term. The details of these forces are
discussed in the subsequent subsections.

3.1. Adaptive driving force

For a given image I : X! R and a Lipschitz function /ðx; yÞ : X! R, where X � R2 is the image domain, we define the
adaptive driving force as
f ðI; c1; c2Þ ¼ sign Iðx; yÞ � c1 þ c2

2

� �
; ð10Þ
with
c1ð/Þ ¼
R

X
Iðx;yÞHð/ðx;yÞÞdxdyR
X

Hð/ðx;yÞÞdxdy
; if

R
X Hð/ðx; yÞÞdxdy – 0;

c2ð/Þ ¼
R

X
Iðx;yÞHð�/ðx;yÞÞdxdyR
X

Hð�/ðx;yÞÞdxdy
; if

R
X Hð�/ðx; yÞÞdxdy – 0;

8>><
>>: ð11Þ
where H(�) is the one-dimensional Heaviside function. For the corresponding ‘‘degenerate’’ cases (i.e.
R

X Hð/ðx; yÞÞdxdy ¼ 0, orR
X Hð�/ðx; yÞÞdxdy ¼ 0Þ, the values of both c1(/) and c2(/) are initialized to the intensity average of the whole image. For the

‘‘nondegenerate’’ cases, c1 (/) and c2(/) are in fact the intensity averages of I(x,y) in the regions {(x,y)j/ > 0} and {(x,y)j/ < 0},
respectively.

The interesting property of f(I,c1,c2) can easily be seen from a simple example as follows. We assume that the image I(x,y)
is formed by two regions R0 and R1 of piecewise constant intensities with different values 200 and 100, respectively, where
the region R0 represents the object (square) (see Fig. 1); mathematically,
Iðx; yÞ ¼
200; ðx; yÞ 2 R0;

100; ðx; yÞ 2 R1:

�
ð12Þ
Besides, the function /(x,y) is defined by a closed curve C (e.g., the signed distance function to the curve C), having the fol-
lowing properties:
/ðx; yÞ > 0; ðx; yÞ 2 inðCÞ;
/ðx; yÞ ¼ 0; ðx; yÞ 2 C;

/ðx; yÞ < 0; ðx; yÞ 2 outðCÞ;

8><
>: ð13Þ
where in(C) and out(C) stand for the ‘‘inside’’ and ‘‘outside’’ regions divided by the curve C, respectively.
For all possible cases in the position of the curve, it is easily obtained that
100 <
c1 þ c2

2
< 200: ð14Þ
This can be seen easily as illustrated in Fig. 1, where four cases may happen according to the position of the curve C. If the
curve C is outside the object (Fig. 1(a)), then 100 < c1 < 200, c2 = 100; thus 100 < c1þc2

2 < 150 < 200. If the curve C is inside the
object (Fig. 1(b)), then c1 = 200, 100 < c2 < 200; thus 100 < 150 < c1þc2

2 < 200. If the curve C is partially inside and outside the
object (Fig. 1(c)), then 100 < c1 < 200, 100 < c2 < 200; thus 100 < c1þc2

2 < 200. Finally, if the curve C is just on the boundary of
the object (Fig. 1(d)), then c1 = 200, c2 = 100; thus 100 < c1þc2

2 ¼ 150 < 200.
It follows from Eq. (14) that the values of f(I,c1,c2) are positive and negative inside and outside the object (square), respec-

tively, for all possible cases in the position of the curve; also see Fig. 1(e)–(h).
In order to stop the zero level set evolution just on the desired edges, we multiply f(I,c1,c2) by the following edge-stopping

function:



Fig. 1. For all possible cases in the position of the curve, Eq. (14) holds, and values of f(I,c1,c2) are positive and negative inside and outside the object
(square), respectively. (a)–(d): A binary image together with four distinct locations of the curve; (e)–(f): 3-D plots of the corresponding f(I,c1,c2).
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gðjrIrjÞ ¼ exp � jrIrj
20

� �
; ð15Þ
where Ir = Gr⁄I, Gr is a Gaussian kernel with standard deviation r. The adaptive driving force Fadp is thus defined as
FadpðI;/Þ ¼ gðjrIrjÞsign Iðx; yÞ � c1 þ c2

2

� �
; ð16Þ
where c1 and c1 are given in Eq. (11).
The level set function / driven by the following evolution PDE:
@/
@t
¼ FadpðI;/Þ ð17Þ
can adaptively move up or down according to image information due to the sign variability of the force Fadp(I,/). This can be
clearly seen from a simple experiment for a binary image as shown in Fig. 2, in which the level set function /evolves accord-
ing to Eq. (17), starting with a constant function shown in Fig. 2(b). Fig. 2(c) shows the 3-D plot of the level set function after
Contribution of the adaptive driving force Fadp to level set evolution. (a) A binary image (128 � 128); (b) 3-D plot of initial constant level set function;
l set function after one iteration using Eq. (17).
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only one iteration. It is obviously seen that the level set function / really moves up inside the object (square) and moves
down outside the object. This can be easily explained as follows: the positive (negative) values of Fadp(I,/) makes the level
set function move up (down) inside (outside) the object. The property that the level set function adaptively moves up or
down according to image information allows the level set function to be initialized to a constant function. We will discuss
this further in next subsection.

3.2. TV-based regularizing force

As the existing level set evolution models, for our model it is also necessary to add a regularizing term into the evolution
equation to smooth the level set function /. About regularization, most of models focus on penalizing the length of contours
(zero level set), in the spirit of the Mumford–Shah functional [20]. For our model, we pursue the idea of TV regularization
[14] in image denoising and define the following regularizing force for the level set function /:� �
Freg ¼ gðjrIrjÞdiv
r/
jr/j ; ð18Þ
where g is still defined by Eq. (15).
TV-based regularization was proposed for removing noise while preserving the edges in an image. In applied mathemat-

ics, TV-based models and analysis appear in more classical applications such as elasticity and fluid dynamics. Due to the ROF
model [14], this notion has now become central also in image processing [21]. Here, we develop its idea and apply it to reg-
ularize the evolving level set function.

With the above defined forces Fadp and Freg, our model is expressed as
@/
@t
¼ gðjrIrjÞ af ðI; c1; c2Þ þ bdiv

r/
jr/j

� �� �
ð19Þ
with the initial and Neumann boundary conditions:
/ðx; y;0Þ ¼ /0ðx; yÞ in X;
@/
@n
¼ 0 on @X
The effect of the regularizing force in Eq. (19) is illustrated in Fig. 3. The first row shows the test image, which was obtained
by adding Gaussian noise with standard deviation 0.01 to a binary image shown in Fig. 2(a). The level set function evolves
according to Eq. (19) starting with a constant function shown in Fig. 2(b). In our experiment, we fix a = 5, and then take b = 0
and b = 10, respectively. The segmentation results and the 3-D plots of the corresponding level set function are shown in the
last two rows of Fig. 3. It is obvious that in the case of b = 0, the level set function / oscillates disorderly in the background
due to noise, while in the case of b = 10, as expected, the level set function / tends to keep ’’smooth’’, whose zero level set
becomes the contour that separates the object from the background.

It should be noted that if the image is noise-free, the effect of this regularization term can be neglected. However, real
images are always disturbed by noise more or less, so the regularization term must be included in our model.

3.3. Constant initialization of level set function

In our formulation, the adaptive driving force Fadp can drive the level set function to move up or down automatically
according to image information, and thus the resulting level evolution can be implemented by taking a constant initialization
scheme. Let X be the image domain, the initial level set function is defined as:
/0ðx; yÞ ¼ q; ðx; yÞ 2 X ð20Þ

where q is a positive constant.

The constant function in Eq. (20) is computed from the entire image domain, while both signed distance and piecewise
constant level set functions are computed from an initial contour or several initial contours in image domain. Such constant
initialization of level set function is not only computationally efficient, but also extremely convenient in practice; we need
not to consider the problems such as where and how to initialize the contours and only need to choose an arbitrary positive
constant as the initial level set function.

It should be pointed out that for many models, such as in [6,7], the level set function cannot be simply initialized to a
positive constant because the level set function starting with such initial function does not change during evolution at all.
This means that such models must have the initial contours. For our model, we can choose a positive constant as the initial
level set function. Although there is no zero level set for such positive constant function, the initial level set function can
move up or down according to the image information adaptively as the evolution proceeds forward in time. As a result,
the zero level set can be generated automatically and finally converges to the object edges.

4. Numerical algorithm and results

4.1. Numerical algorithm

Eq. (19) is implemented via a simple explicit finite difference scheme; the temporal and spatial partial derivatives are
approximated by the forward and central differences, respectively. There are several possible choices for the discretization



Fig. 3. Contribution of the regularizing force Freg to level set evolution. Upper row: Noisy image (128 � 128) with Gaussian noise of standard deviation 0.01;
Middle row: Final results after 10 iterations using Eq. (19) with a = 5, but b = 0 and b = 10, respectively, starting with the constant function / = 1; Lower
row: 3-D plots of the corresponding level set functions.
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of the TV term div (r//jr/j); see [14,22,23] for example. The work in [22] shows that the central difference is suitable for
the discretization of the TV term. Thus, we argue that the central difference scheme should be also suitable for the TV-based
regularizing force in the proposed model; indeed, we will see that this numerical scheme does remain numerically stable for
a large time step. Besides, in order to avoid the issue of singularity at jr/j = 0, jr/j is replaced with
jr/je ¼ ðjr/j2 þ e2Þ1=2
; 0 < e� 1; ð21Þ
which is a smooth approximation of jr/j [24].
Before starting with algorithm, we recall the standard notations for the finite difference scheme. Let h and Dt be the space

and time steps, respectively, (xi,yj) = (ih, jh) (1 6 i 6M,1 6 j 6 N) be the grid points where M � N corresponds to the image
size. Let /n

i;j ¼ /ðxi; yj;nDtÞ (n P 0) be an approximation of /(x,y, t) and Ii,j denotes the value of the image I at the grid point
(xi,yj). The partial derivatives @//@x and @//@y are approximated by the following central differences, respectively:
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D0
x/

n
i;j ¼

/n
iþ1;j � /n

i�1;j

2h
; D0

y/
n
i;j ¼

/n
i;jþ1 � /n

i;j�1

2h
: ð22Þ
Similarly for @Ir/@x and @Ir/ @y.
With the above notations, the numerical approximation to Eq. (19) is given by the following discrete equation:
/nþ1
i;j � /n

i;j

Dt
¼ gðjrIrji;jÞ af Ii;j; c1 /n

i;j

� �
; c2 /n

i;j

� �� �
þ bKn

i;j

� �
; ð23Þ
where
jrIrji;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

xðIrÞi;j
� �2

þ D0
yðIrÞi;j

� �2
r

;

f ðIi;j; c1ð/n
i;jÞ; c2ð/n

i;jÞÞ ¼ sign Ii;j �
c1ð/n

i;jÞ þ c2ð/n
i;jÞ

2

 !
;

Kn
i;j ¼ D0

x

D0
x/

n
i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D0
x/

n
i;j

� �2
þ D0

y/
n
i;j

� �2
þ e2

r
0
BB@

1
CCAþ D0

y

D0
y/

n
i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D0
x/

n
i;j

� �2
þ D0

y/
n
i;j

� �2
þ e2

r
0
BB@

1
CCA;
for i = 1, . . . ,M, j = 1, . . . ,N and with the boundary conditions obtained by reflection as
/n
�1;j ¼ /n

1;j; /n
Mþ1;j ¼ /n

M�1;j; /n
i;�1 ¼ /n

i;1; /n
i;Nþ1 ¼ /n

i;N�1:
The numerical algorithm is as follows:

1. Initialize the level set function /0
i;j ¼ /0ðxi; yjÞ and set n = 0.

2. Solve the discrete equation Eq. (23), to obtain /nþ1
i;j .

3. Check whether the evolution has converged. If not, set n = n + 1 and return to step 2.

Note that re-initialization is not necessary in our model because the level set function is no longer required to keep as a
signed distance function.

4.2. Experimental results

This subsection shows the results of the proposed model for both synthetic and real images. The level set function /(x,y, t)
is simply initialized to a constant function /0(x,y) = 1 for all experiments. Besides, unless otherwise specified, we use the fol-
lowing parameters: r = 1.5, a = 5, b = 1, h = 1 and Dt = 5.

The first experiment shows that our model allows for the constant initialization of the level set function and thus can
avoid the problems resulted from contour initialization. We apply our model to a real hand image shown in Fig. 4(a). As
shown in Fig. 4(b), our model successfully extracts the object (hand) after only one iteration. The corresponding final level
set function is shown in Fig. 4(c).

The second experiment shows that our model has capability to detect multiple objects or objects with interior holes. Two
sample images are plotted in the first row of Fig. 5, which are a cell image with certain objects crossing over the image
Segmentation of a real image, starting with the constant function / = 1. (a) Original image (93 � 93); (b) Final result after one iteration; (c) 3-D plot
orresponding level set function.
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boundary and a wrench image with interior holes in each object. Several well-known models, such as [4] and [6], fail to seg-
ment such images starting with only one initial curve, because it is impossible to choose an initial curve surround all the
edges of objects. By contrast, our model successfully detects all the objects (8 iterations) and/or the interior and exterior
edges (5 iterations); see the middle row of Fig. 5.

The third experiment shows that the proposed model can better handle images with boundary concavities or fake bound-
aries. The first row of Fig. 6 presents such images, a synthetic image with boundary concavities and a real plane image with
distinct shadow. The proposed model exactly captures the boundary concavity and the plane after only 1 and 7 iterations,
respectively.

The final experiment shows that our model is robust to noise. Fig. 7 shows the results obtained with the applications of
our model to two images with high level noise. The first row of Fig. 7 presents the original images. For noisy images, we in-
crease the value of b to improve the model’s performance; b = 5 for the first image and b = 10 for the second one. The seg-
mentation results and the corresponding level set functions are plotted in the second and third rows, respectively. We can
see from the second row that our model still extracted the objects, even if the images are heavily contaminated by noise.
Fig. 5. Segmentation for images with multiple objects or interior holes (Cell: 250 � 203, Wrench: 200 � 200). Upper row: Original images; Middle row:
Final results after 8 and 5 iterations, respectively, starting with the constant function / = 1; Lower row: 3-D plots of the corresponding level set functions.



Fig. 6. Segmentation for images with boundary concavities (114 � 101) or fake boundaries (135 � 125). Upper row: Original images; Middle row: Final
results after 1 and 7 iterations, respectively, starting with the constant function / = 1; Lower row: 3-D plots of the corresponding level set functions.
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5. Discussions

5.1. About the time step

The proposed model allows the use of a larger time step in the numerical implementation. The larger time step can speed
up the evolution, but may cause error in the boundary location if the time step is too large. If the time step is too small, the
algorithm clearly takes too much iteration to reach convergence. There should be a tradeoff between iteration numbers and
accuracy in boundary location. Our observations from experiments are that we can typically choose the time step in the
range between 1 and 10 for the used explicit finite difference method.

5.2. About the parameter q

As discussed in Section 3.3, our model allows the level set function /to be simply initialized to a constant function
/0(x,y) = q > 0. Our observation from experiments is that as the q value increases, the rate of convergence of the zero level



Fig. 7. Applications of our model to two images with high level noise. Upper row: Original images (152 � 152 and 200 � 200); Middle row: Final results
after 3 and 18 iterations, respectively, starting with the constant function / = 1; Lower row: 3-D plots of the corresponding level set functions.
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set to edge slows down gradually. Therefore, the constant q should be chosen as a smaller value to obtain a faster conver-
gence. In applications, we suggest that the constant qshould be chosen in the range between 0 and 5 for most images.
5.3. About the parameter a and b

In Eq. (9) or (19), aFadp is an external force which controls the deformation of the level set function to drive the motion of
the zero level set (contour) toward the desired object edges, while bFreg is a regularized force which controls the smoothness
of the contour to penalize complicated boundaries of regions and avoid the occurrence of isolated small regions (e.g., noise
points) in final segmentation. Therefore, the parameter a mainly controls the deformation of the level set function, while the
parameter b is mostly responsible for robustness to noise.

The motion of the level set function is mainly controlled by the external force aFadp; thus a larger a value can speed up the
curve evolution, while a smaller a value makes the evolution curve take too much iteration to reach convergence. However, if
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a value is too large, the robustness to noise may be reduced, especially for images with high noise; if a is too small, the seg-
mentation process may become unstable. By experiments, we find that the alpha equal to 5 (i.e., a = 5) is the best choice for
most images in terms of the rate of convergence, stability and the robustness to noise. This is a reason why we choose a = 5
as the default value of the proposed model.

Real images are usually corrupted by noise more or less, thus the regularized force must be used for smoothing the zero
level set (contour), i.e., b > 0. Our observation from experiments is as follows: if b is too small, the robustness to noise may be
reduced; if b is too large, the segmentation process may become unstable. In applications, the b value should be selected
according to the noise level: for images with small amounts of noise, we can choose b in the range between 0 and 5; for
images with large amount of noise, we need to choose b in the range between 5 and 10.

6. Conclusion

In this paper, we propose a PDE-based level set evolution model, in which the evolution PDE has two terms, an adaptive
driving term and a TV-based regularization term. The level set function can be simply initialized to a constant function that
eliminates the need for initial contours, and so completely avoids the problems resulted from contours initialization. The re-
initialization of the level set function is also not necessary in the proposed model. A simple explicit finite difference scheme
with a significantly larger time step is used for solving the evolution PDE numerically. The proposed model has been success-
fully applied to many synthesized and real images with promising results.
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