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A methodology to model arbitrary holes and material interfaces (inclusions) without meshing the internal boundaries is proposed.
The numerical method couples the level set method (S. Osher, J.A. Sethian, J. Comput. Phys. 79 (1) (1988) 12) to the extended finite-
element method (X-FEM) (N. Moés, J. Dolbow, T. Belytschko, Int. J. Numer. Methods Engrg. 46 (1) (1999) 131). In the X-FEM, the
finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used
for representing the location of holes and material interfaces, and in addition, the level set function is used to develop the local en-
richment for material interfaces. Numerical examples in two-dimensional linear elastostatics are presented to demonstrate the accuracy
and potential of the new technique. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Defects such as pores, cracks, and inclusions are important to the structural integrity and durability of
components. For example, material interfaces in composites are modeled to predict the mechanical be-
havior and to establish macroscopic material properties. The accurate modeling of voids and inclusions is
hence of interest to both the theorist and the practitioner. In finite-element methods, the mesh is required to
conform to internal boundaries in the model. Although mesh generation is very well established in two
dimensions, meshing arbitrary number and distribution of defects and inclusions is still a time-consuming
and burdensome task.

In this paper, we describe the modeling of internal boundaries from a different viewpoint, by using the
level set method within the framework of the extended finite-element method (X-FEM) [8]. In the X-FEM,
the finite-element approximation is enriched by additional functions through the notion of partition of
unity [7]. The recognition and use of partition of unity enrichment strategy to solve boundary-value
problems with internal boundaries is due to Oden and co-workers [4,5,9,10] — the numerical technique was
coined as the generalized finite-element method (GFEM). Strouboulis et al. [14] used local enrichment
functions in the GFEM for modeling re-entrant corners in two dimensions, and in [15], enrichment
functions for holes are proposed.



In the X-FEM, the additional functions are used to model cracks, voids or inhomogeneities, and also to
improve accuracy in problems where some aspects of the functional behavior of the solution field are
known a priori. As opposed to the GFEM in which the analytical solution of a given boundary-value
problem is embedded into the finite-element space, in the X-FEM the proximity to the finite-element
method is consistently sought by carrying out only the requisite enrichment to model the internal boundary
(crack or inclusion) of interest. The GFEM is amenable to accurate numerical solutions with coarse meshes
and provides the capability of p-type adaptivity. In the X-FEM, less dependence on known closed-form
solutions is emphasized which provides for greater flexibility to solve a wider range of problems. For a few
applications in the above spirit, see [3,8] for crack modeling in two dimensions, and [16,17] for three-
dimensional elastostatics and fatigue crack growth modeling.

The level set method is a numerical technique for tracking moving interfaces [11]. The evolving interface
is represented as the zero level set of a function of one higher dimension (i.e., ¢(x,¢) = 0). The motion of
the interface is embedded in a hyperbolic equation in terms of ¢(x,¢#). In this paper we pursue two-
dimensional elastostatic applications, and hence the interface is static. The interface for geometric entities
such as holes and inclusions is represented by the level set function. In addition, using ¢, the local en-
richment function for material interfaces is constructed.

The outline of this paper is as follows. In the next section, we give a brief introduction to the X-FEM,
and in Section 3, the level set method is introduced. In Section 4, the modeling of voids and inclusions is
addressed. The strong and weak forms of the Galerkin method for two-dimensional elastostatics, along
with the discrete equations for the X-FEM are given in Section 5. In Section 6, two different approaches for
the numerical integration of the weak form are described. Numerical results are presented in Section 7, and
we close with some concluding remarks in Section 8.

2. The X-FEM

In the finite-element method, the presence of flaws or inhomogeneities such as cracks, voids, and in-
clusions must be taken into account in the mesh generation process — the edges of the element must conform
to these geometric entities.

The X-FEM aims to alleviate much of the burden associated with mesh generation for problems with
voids and interfaces by not requiring the finite-element mesh to conform to internal boundaries. The es-
sence of the X-FEM lies in sub-dividing a model into two distinct parts: mesh generation for the domain
(excluding internal boundaries); and enriching the finite-element approximation by additional functions
that model the internal boundaries.

Consider a domain Q C R* which is partitioned into finite elements, and let N = {m,na,...,n,} be a
set of m nodes in the mesh. In addition, let , C  be a region for which some enrichment is required.
For a material interface, the domain €, is the curve representing the material interface and in the case of
a void, €, is the region occupied by the void. The X-FEM displacement approximation assumes the
general form:

w(x) = o+ Y d,xY(x)a, (w, a, € RY), (1)

nreEN nyeNS
where the nodal set N¥ is defined as
Ng:{l’lji I’IJEN, (,{)Jﬂ.ngw} (2)

In the above equation, w; = supp (n,) is the support of the nodal shape function ¢,(x), which consists of
the union of all elements with n; as one of its vertices. The choice of the enrichment function y(x) for voids
and material interfaces will be described in Section 4.



3. The level set method

The level set method [11] is a numerical technique for tracking moving interfaces. It is based upon the
idea of representing the interface as a level set curve of a higher-dimensional function ¢(x, 7). In keeping
with the applications pursued in this paper, we consider one-dimensional curves in R?.

A moving interface I'(f) C R* can be formulated as the level set curve of a function ¢ : R* x R — R,
where

Irt)={xeR: o(x,t) =0}. (3)
One important example of such a function ¢ would be the signed distance function

¢(x,1) = + min |x —xrl], (4)
xrel(t)

where the sign is positive (negative) if x is outside (inside) the contour defined by I'(¢) (we assume that the
interface I'(¢) is such that one can define an interior and exterior to it).

The evolution of the interface is then embedded in the evolution equation for ¢, which is given by Osher
and Sethian [11]

@, + F|[Vol =0, (5a)
¢(x,0) given, (5b)

where F(x, t) is the speed of the interface at x € I'(¢) in the direction of the outward normal to the interface.
The key advantages of this method are that it is computed on a fixed Eulerian mesh, handles topological
changes in the interface naturally, and can easily be formulated in higher dimensions. Application of the
level set method to various problems in engineering and the applied sciences can be found in [13].

For our purposes in this paper, the interface is static, so we only use the level set theory for representing
the interface. For circular voids, we use

9(x,0) = min {|x—xi|| -}, (6)
ey
where Q. is the domain of the ith void, n is the number of circular voids, and x! and 7 are the center and
radius of the ith void, respectively.

Consider an elliptical void with semi-major and semi-minor lengths of @ and b, respectively, with the axes
oriented along the local %; and X, axes, respectively. In addition, let ¢ = Re be the mapping between the
global and the local unit base vectors. Now, the coordinates of a point in the local orthogonal coordinate
system with the origin at the center of the ellipse is given by: X = R(x — x.), where X, is the center of the
ellipse. Letting & = (&,,&,), and &, = X /a and &, = %, /b, the equation of the ellipse in the local coordinate
system is: f(&) = ||€|| — 1 = 0. Hence a level set function for elliptical voids is given by

¢(x,0) = min f(&), (7a)

f(E&) =g -1, (7b)
!

- (54) .

X =R'(x —x.), (7d)

where 7, is the number of elliptical voids. Note that in Eq. (7a), @ is a level set function, but not a signed
distance function. In order to obtain the signed distance function ¢ to an elliptical void (interface), one
applies the fast marching method to Eq. (9) with G(x) = 1.



Now, consider a polygonal void, whose interface I', (I', = |J;_, ;) consists of p segments: I; = [x;, X,

L, = [x3,%3],...,1, = [x,,x;]. The level set function for a polygonal interface is given by
@(X7 0) = ||X - Xmin”Sgn((X - Xmin) ' nmin)a (Sa)
_J1 if =0,
Sgn(é) - { _1 lf 5 < O, (8b)
I~ Xl = min [Ix x| (8¢)
i=12,..p

where X is the orthogonal projection of x on the interface I', and ny;, is the outward normal to the
interface at Xpi,. If no unique normal is defined at x;,, the sign is positive if X — X, belongs to the cone of
normals at X,,;, and negative otherwise.

In Fig. 1, the level set function for a hexagonal interface is shown. For more general interfaces given only
as a parameterized curve, the signed distance function is most efficiently calculated using the fast marching
method [12], which optimally solves an equation of the form

1
Vol = — 9
¥l = g7 ©)
where G : R* — R is given. If we take G(x) = 1 and apply the fast marching method to Eq. (9), we can
obtain the signed distance function to the interface. This method can be applied to both rectilinear meshes
[13] and also to general triangulated meshes [1].

4. Modeling voids and inclusions

Level set methods are used to track the evolution of material interfaces. The geometric description of an
interface (for instance, boundary of a hole or inclusion) is represented by the zero level set curve
¢ = ¢(x,t) = 0. In essence, the physical description of the interface is converted to a discrete functional
representation through the function ¢(x, ¢). The geometrical degrees of freedom at a fixed set of points x;
(nodes) are used to determine ¢, and hence the location of the interface. In this study, each finite-element
node is associated with a geometrical degree of freedom for the level set function. Finite-element inter-
polation is used to compute ¢ at any point x in the domain

p(x) = Zd)l(x)q)h (10)

where the summation is over all nodes in the connectivity of the element that contains x, ¢,(x) are standard
finite-element shape functions, and ¢, are the nodal values of the level set function. The internal boundaries
are then approximately piecewise linear for bilinear quadrilateral elements and exactly linear for three-
noded triangular elements.

In the X-FEM, there is no need to mesh internal boundaries. The computational geometry issues that are
associated with the finite-element mesh and the internal geometric entities (such as cracks or inclusions) are
an important consideration in the X-FEM computations. In light of this, the level set method is an ap-
pealing choice that would greatly simplify and speed-up the geometric computations in the X-FEM. In
addition, the level set function can also be used to construct enrichment functions within the X-FEM
framework. This provides the motivation and seemingly natural choice to use the level set method in
conjunction with the X-FEM.

4.1. Voids
The modeling of voids in the X-FEM is carried out using an enrichment function ¥ (x) for nodes that

intersect the boundary of the void. If the node lies outside the void ¥V(x) = 1, and ¥ (x) = 0 if the node is
in the interior of the void. In [2], the discretization of the boundary of the hole was independent of the
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Fig. 1. Level set function for a hexagonal interface: (a) mesh; (b) level set function.

finite-element mesh. The degrees of freedom associated with nodes whose support is entirely inside the void
are removed from the system of equations. In the two-dimensional implementation, instead of using V' (x),
elements that intersect the boundary of the hole are partitioned such that the weak form is not integrated in
the void interior [2].

In this work, the point of departure in the modeling of voids lies in using the level set method to rep-
resent the voids, and all geometric computations that pertain to the void are carried out using the level set
function ¢. The level set method provides a convenient and appealing means to model voids with greater
flexibility and better computational efficiency. In addition, the finite-element mesh and the internal geo-
metric boundary are linked, whereby a self-consistent representation of the internal boundary is obtained
for a given finite-element mesh.



The computation of the level set function for voids is described in Section 3. For circular voids, the
geometrical degrees of freedom indicated in Eq. (10) are evaluated using Eq. (6)

o= min {I (| -} (11)
X€Q;

i=1,2,...n¢

4.2. Inclusions

Inclusions are inhomogeneities in a matrix with differing material properties. The modeling of inclusions
requires the satisfaction of the Hadamard condition, namely

F'—F =a®@n", (12)

where F is the deformation gradient, n* is the outward normal to the material interface, and a is an ar-
bitrary vector in the plane. In [6], a technique for incorporating discontinuities in derivatives for meshless
methods was proposed. The use of the level set function ¢ in the X-FEM provides an elegant and simplified
means to achieve the same end. Using /() as the local enrichment, the X-FEM displacement approxi-
mation for two-dimensional domains with inclusions assumes the form:

u'(x) = Z ¢, (X)u; + Z o, (p(x))a; (u,a, € R?), (13)

nyeN nyeNy

where the nodal set Nj is defined as
NI:{I’IJZI’ZJEN, COerlzw}, (14)

where I'7 is the boundary of the inclusion (material interface), and the nodal set N is defined in Section 2.
The enrichment function y(¢(x)) = |¢(x)| is used in the elements that intersect the material interface, and it
is smoothed away from the interface. By construction, since ¢, # 0, the displacement derivatives u;, are
discontinuous across I7.

The level set functions for inclusions follows that which is described in Section 3 for voids. We associate
a level set function ¢ with every distinct material-pair interface (4—B). Hence, all inclusions with interface-
pair 4;-B; are represented by the same level set function, and the number of distinct level set functions is
equal to the number of distinct material-pair interfaces. The geometrical degrees of freedom ¢, for circular
inclusions are evaluated analogous to that given in Eq. (11).

4.2.1. Nodal enrichment

The level set function ¢ is used to develop the local enrichment function for material interfaces. In order
to determine the nodes that need to be enriched, the level set function ¢ is used. We first loop over the
elements of the mesh. For a given element, if there exists two nodes n; and n; in the connectivity of the
element such that ¢,¢, < 0, we add the element ¢ to the set T of finite elements that intersect the interface.
The enriched nodal set N, consists of all nodes that are in the connectivity of the elements in the set T. The
above algorithm ensures that if a node belongs to two edges that both lie on the interface, then the node is
not enriched. Hence the finite-element space is obtained (no enrichment) if the interface lies precisely on
element edges.

Let /() be the enrichment function for a material interface. A first and apparent choice for the en-
richment function is: /(@) = |p|. A second alternative is to take ¥ (@) = |@| only in the elements that in-
tersect the interface. Since the enrichment functions exist over the domain of support of the nodes, these
enrichment functions are required to be computed one element layer on either side of the elements that
intersect the material interface. If N, is the set of nodes that are enriched, and ¢, are the level set function
values at these nodes, then y, = ¢, at these nodes. Let Ny, = {n,.1,n,.,,...,n,} be the set of nodes that
belong to the adjacent element (outward and inward from the interface), such that n; € N, are sorted in



increasing value of the level set function ¢. Initially, the value of i, is set to ¢, for the nodes in N, then we
compute a new value for i at these nodes based on the following algorithm:
e forJ=p+1toJ=¢q

o create the set P,, where

P, = {n, € NeUN, : |y, < |¢,| and n;, n; share an edge in the mesh}.
o minimize the following expression to obtain ,:
. v, — o ’
min Z <L1 , (15)
n €Py

where L; is the distance from node »; to node n;.
e end for
The solution to the minimization problem in Eq. (15) is explicitly given by

1/

Vy= ) e, = (16)
! ﬂ]zel;j s ' ZnKEPJ 1/L12<
and hence the modified enrichment function is given by
Y(x) = (x) = | D ¢(x)vy|- (17)
1

5. Governing equations

In this section, we present the governing equations of linear elastostatics, together with the weak form
and the discrete system for the X-FEM. The case of internal boundaries is considered in the presentation.

5.1. Strong form

Consider a body which is described by an open bounded domain @ C R?, with boundary I'. The
boundary I is composed of the sets I',, I';, I', and I'}, such that I' = I, U I, U™ | T, U™, T';. All the internal
holes I'j are assumed to be traction-free, and traction continuity holds along the material interfaces I';. The
field equations of elastostatics are:

V-6+b=0 in Q, (18a)
6=0C g (18b)
e=Vu, (18c¢)

where V; is the symmetric gradient operator and C is the tensor of elastic moduli for a homogeneous
isotropic material.
The essential and natural boundary conditions are:

u=u onll,, (19a)
6-n=t onl, (19b)
6-n,=0 onl) i=1,2,...,m), (19¢)
[6-n]=0 onl), (i=1,2,...,n), (19d)

where n is the unit outward normal to @, and u and t are prescribed displacements and tractions, re-
spectively.



5.2. Weak form

Let u be the displacement solution for the stated elastostatic boundary-value problem, with &(u) the
corresponding Cauchy stress tensor. Let u € V be the displacement trial solution, and v € V,, be any set of
kinematically admissible test functions (virtual displacements). The space V = H'(Q) is the Sobolev space
of functions with square-integrable first derivatives in Q, and V, = H{(Q) is the Sobolev space of functions
with square-integrable first derivatives in Q and vanishing values on the essential boundary I',. The weak
form of the governing equation and associated boundary conditions can be written as

Find u € V such that

/Qo'(u):s(v)dQ:/wadQ—&-/rf-vdF Vv € V. (20)

5.3. Discrete system

Consider the Bubnov—Galerkin implementation for the X-FEM in two-dimensional linear elasticity. In
the X-FEM, finite-dimensional subspaces V* C V and Vg C V, are used as the approximating trial and test
spaces. The weak form for the discrete problem can be stated as:

Find u" € V" C V such that
/ o(u") : e(v") = / b-vth—i—/ t-v'dlL W'e V) CV,. (21)
Qh Qh 1"/1

In a Bubnov—Galerkin procedure, the trial functions u" as well as the test functions v* are represented as
linear combinations of the same shape functions. The trial and test functions are:

w'(x) =Y (0w + Y b, ()i ((x))ay, (22)
Vi(x) = Z ¢, (x)v; + Z ¢, (x)¥(o(x))by, (23)

where ¢,(x) are the finite-element shape functions, ¢(x) is the level set function, and ¥(¢(x)) is the en-
richment function for a material interface.

On substituting the trial and test functions from Eq. (22) in Eq. (21), and using the arbitrariness of nodal
variations, the following discrete system of linear equations is obtained:

Kd =f, (24)
where
K, = / B/ CB,dQ, (25a)
Qh
f, / b,1dr + / $,bdo, (25b)
rt ol

where q§ ; = ¢, for a finite-element displacement degree of freedom, and d;, = ¢,y for an enriched degree of
freedom. In the above equations, C is the constitutive matrix for an isotropic linear elastic material, and the
matrix B; is given by

(Z)I,x O
B=|0 ¢, (26)
(Z)I,y (iltx



6. Numerical integration

In standard finite-element methods, each finite element is associated with a material type; however, in the
X-FEM, since internal boundaries of geometric entities do not conform to the mesh, such an association
does not exist a priori. Using the level set function ¢, we can consider two different computational strategies
to perform the numerical integration of the weak form. In the first approach, we establish the association
between an element or sub-element (partitioned element) and a material type, and use Gauss quadrature
rules in each element to carry out the numerical integration. Alternatively, since the material type of a point
x in the domain is known by the sign of ¢(x), a quad-tree or octree sub-division in two- and three di-
mensions, respectively, in conjunction with Gauss quadrature, Simpson’s rule, or other quadrature rules, is
a possible candidate for the numerical integration.

In order to implement the first approach in two dimensions, we partition the finite elements that intersect
the boundary of the hole or inclusion, into triangles. The level set function ¢ is used to obtain the one-
dimensional segments of the interface, where each segment sub-divides a finite element 7 € T (see Section
4.2.1) into precisely two domains. An algorithm is implemented to partition a finite element 7 € T that is cut
by a segment [a, b], where a and b lie on the edges of 7. The edges of the element ¢ are traversed and if for a
particular edge e with nodal connectivity [nf, n5], @594 < 0, then the intersection point X, is determined by

X=X ), E= - (27)

The points a and b are found using the above relations. An illustration of the partitioning is depicted in
Fig. 2 for an elliptical interface. In Fig. 2, the discretization of the elliptical interface that is realized by the
level set computations is shown, along with the partitioned sub-elements on either side of the interface. If
the discretized segment of an interface lies along an edge of a finite element, then the element is not par-
titioned. The above approach is accurate and feasible in two dimensions, since the discretization of the
interface into linear segments and the partitioning of the finite elements into sub-triangles is readily per-
formed. In three dimensions, however, the interface is represented by the union of triangles, and hence the
implementation of a partitioning algorithm for the finite elements is non-trivial. In three-dimensional
computations, the second approach we allude to has merit. By an octree sub-division of the finite elements
that intersects the interface, and integrating on a given cell if all its vertices lie on the same side of the
interface, an easy-to-implement algorithm emerges.

L T
i Interface
45‘1
/X — . - - -
g Material A
N
C1 o

Material B | | . ,

BN L

Fig. 2. Partitioning and material typing of sub-elements.



7. Numerical results

Three problems in two-dimensional elastostatics are presented to illustrate the accuracy of the new
technique. We first solve the problem of an infinite plate with a circular hole under uniaxial tension, and
then study two problems of a bimaterial subjected to pure displacement boundary conditions. Since all
problems possess an exact solution, a convergence analysis is performed to study the accuracy and rate
of convergence of the proposed method. The error in the energy norm that is used in the analysis is
defined as

=t 0 = ( /Q (s—s")TC(s—s")dQ)l/z. (28)

7.1. Infinite plate with a circular hole

An infinite plate with a traction-free circular hole under uniaxial tension (gy = 1) along x; is con-
sidered. The exact solution to this problem is given in [18]. In the numerical model, we consider a
square domain of edge length L with a circular hole of radius a at its center. We impose the
exact tractions on the boundary of the square domain, with appropriate constraints added to remove
rigid body modes. The material properties chosen are: Young’s modulus £ = 10° and Poisson’s ratio
v=20.3.

In polar coordinates (r, ), the exact stress distribution for gy = 1 is given by

4

a (3 3a

an(r,0) =1- 2 (2 (cos 20 + cos 4())) 3 74 cos 40, (29a)
2 1 4

on(r,0) = — ;1—2 <§ (cos260 — cos 40)) - % % cos 40, (29b)
2 1 4

opp(r,0) = — % (5 (sin 20 + sin 40)) % % sin 40, (29¢)

where a is the radius of the circular hole. The displacement components are:

3

uy (r,0) = % [g(rﬂ— 1)cos0+2§((1 + k) cos 0 + cos 30) —2% cos3()}, (30a)
alr . a . : a .

uy(r,0) = S ;(K -3) sm(9+2;((1 — «)sin 0 + sin 30) — 2; sin 36|, (30b)

where p is the shear modulus and x (Kolosov constant) is defined as

3 —4v (plane strain),

K=K 3_— 31
li—i—t (plane stress). 31

In the numerical computations, L =2 and plane strain conditions are assumed. A convergence study
is carried out using equi-spaced rectangular L, x L, meshes: L, =10, 20, 40, 80, 160 are used in
the computations. The analyses are performed for two different hole radii: a = 0.3 and a = 0.4. In Fig. 3,
the plot of the error in the energy norm versus the mesh spacing is shown on a log-log plot. The rate of
convergence (R) in the energy norm is 0.96, which compares well to the optimal rate of one.

In order to assess the accuracy of the use of level sets in the X-FEM for modeling voids, we
compare the finite-element solution to that obtained by the new technique for a mesh with approxi-
mately the same number of unknowns. The radius of the hole a = 0.4. The finite-element mesh used

10
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Fig. 3. Rate of convergence in energy norm for the plate with a hole problem.
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Fig. 4. Mesh used in the X-FEM computations.

consists of 3088 three-noded triangular elements with 1569 nodes (hole explicitly modeled by the mesh),
and the corresponding mesh for the X-FEM implementation has 3406 three-noded triangular ele-
ments and 1704 nodes (Fig. 4). In Fig. 4, the nodes that are removed from the discrete system are
indicated by the dark circles. The number of unknowns in the FE computations is 3135, and that in the
X-FEM computations is 3103. A contour plot of the normal stress ¢;; using the two approaches is
presented in Fig. 5. It is seen that the agreement between the results obtained by the two methods is
excellent.

7.2. Bimaterial bar
Consider a bimaterial bar (Q = Q; U ;) of length L = 2 with material moduli £/ in ©, and E, in Q,,

where Q; = (—1,¢) and Q, = (¢, 1). The interface Iy is located at x; = £. For the pure Dirichlet problem

1"
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In order to explore the appropriate enrichment function for the material interface, we simulate a one-di-
mensional bimaterial problem in a two-dimensional domain. Since the exact displacement solution is
piecewise linear for the bimaterial bar in one dimension, we seek an enrichment function for the material
interface that preserves the equivalence between the discrete X-FEM space and the discrete FEM space in
which the interface is explicitly modeled using finite elements. By analyzing the numerical results for the
bimaterial bar problem, we can generalize the enrichment methodology for general curvilinear interfaces in
two dimensions, with an aim towards accuracy and convergence rate that are on par with finite elements in
which the interface is explicitly modeled using elements.

We consider a two-dimensional domain Q = (—1,1) x (—1,1) with the material interface I'; located at
& x (—1,1). Let Young’s modulus and Poisson’s ratio in Q; = (—1,¢) x (—=1,1) be E; = 1, v =0, and that
in Q= (1) x(—1,1) be E; =10, v =0. Numerical results are computed on an equi-spaced 10 x 10
regular finite-element mesh with five different locations of the interface: £ = 0.01, 0.05, 0.1, 0.15, and 0.19.
The enrichment functions i = |¢| and = i are considered. In Fig. 6(a), the finite-element mesh and the
interface are shown for £ = 0.1, and in Fig. 6(b), the enrichment function y is illustrated. The numerical
results for the relative error in the energy norm are presented in Table 1. On using yy = || as the enrichment
function, a linear approximation is not obtained in elements that are adjacent to those intersected by the
interface. This adversely affects the energy error norm results. However, by using the enrichment function 1/}
shown in Fig. 6(b), a linear approximation is obtained in Q which leads to very accurate results. The
numerical results for this model problem indicate that the enrichment function away from the material
interface needs to be a constant in order to pass the bimaterial patch test.

gdl

0.12

0.10

|
0.08 | .

0.06 ¢ L

|
0.04 | L

Enrichment function

o0e |

0.00 ‘ b -
X 0 -06 02 02 06 10

(a) 1 (b) X

Fig. 6. Bimaterial bar problem: (a) mesh; (b) enrichment function W (&=0.1).

Table 1
Relative error in the energy norm for the bimaterial bar problem

Interface location ¢ Enrichment

lo| v
0.01 8.3 x 1072 3.0 x 1078
0.05 1.6 x 107! 2.8 x 1078
0.10 1.8 x 107! 2.1x10°8
0.15 1.8 x 107! 3.8x 1078
0.19 1.6 x 107! 3.6 x 1078
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7.3. Bimaterial boundary-value problem

In Fig. 7, a body composed of two different materials is shown. The material constants are constant in 2,
and Q,, but there is a discontinuity in the material constants across the interface I'j (r = @). The Lamé
constants in @, are chosen as: A; = y; = 0.4, and those in ©, are: 1, = 5.7692, u, = 3.8461. These corre-
spond to E; = 1, v; = 0.25, and E, = 10, v, = 0.3. We impose the linear displacement field: u; = x|, uy = x;
(u, = r, up = 0) on the boundary I'; (r = b). Navier’s equation in polar coordinates reduces to

ALY -

By considering displacement and traction continuity across the interface, the exact displacement solution
can be written as

Kl —Zé)a—}—Z—i]r, 0<r<a,

() = N (35a)
(r—”—)oc—l—";, a<r<b,
uy = 0, (35b)
where

2
o= 2()"1 :"_/’tl +l’t2)2b 5 . (35C)
(22 + wp)a® + (1 + ) (b* — a*) + b

The radial (¢,.) and hoop (gg) strains are given by:

(1 —2—§>O€+2—§, 0<r<a,
e (r) = (36a)

2 2
(l—i—lr’—z)(x—lr’—z, a<r<b,

Fig. 7. Bimaterial boundary-value problem.
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where the appropriate Lamé constants are to be used in the evaluation of the normal stresses. The shear
components of the stress and strain tensors are zero.

In the numerical model, we consider a square plate (L x L, L = 2) with a circular inclusion (€;) of radius
a = 0.4. On the boundary of the plate, the exact tractions using Eq. (37a) are imposed (¢ = 0.4 and b = 2.0
are chosen) with appropriate displacement constraints added to remove rigid body modes. A convergence
study is conducted using equi-spaced rectangular L, x L, meshes: L, = 10, 20, 40, 80. The finite-element
computations are carried out using three-noded triangular elements.

The convergence analysis is carried out for three cases using the X-FEM: (a) no enrichment; (b) en-
richment function ¥ = |¢|; and (c¢) enrichment function y = v, where y, is the modified level set function
based on the smoothing procedure described in Section 4.2.1. The motivation for the smoothing procedure
presented in Section 4.2.1 stems from the numerical experiments conducted in Section 7.2. The enrichment
functions for the 20 x 20 mesh is shown in Fig. 8. In all the above cases, the weak form is integrated
appropriately by partitioning the elements that are intersected by the interface. The degrees of freedom of
the meshes used in the FEM and in the X-FEM computations are presented in Table 2. The numerical
results for the convergence in energy norm are shown in Fig. 9. The accuracy and rate of convergence of the
X-FEM with the smoothed form of the enrichment are significantly better than the other two cases. The
rate (R = 0.91) using the enrichment function y, is also on par with the optimal rate of unity which is
obtained using finite elements with the interface truly modeled by the mesh.

Even though the enrichment function y, used in this paper is appropriate from an accuracy and con-
vergence viewpoint, a more general enrichment methodology which would be valid for a wider class of
interface problems is attractive. To this end, one can consider the enrichment nodal data y, as also un-
knowns in the statement of the principle of virtual work (variational form). The nodal data i, are known
on nodes that are in the connectivity of the elements that intersect the interface: the modulus of the level set
function (|¢|) is an appropriate choice for this purpose. On elements that are one layer on either side (outer
and inner) of these elements, the i, are to be determined by the numerical procedure. As an initial guess,

Table 2
Degrees of freedom for the meshes used for the bimaterial problem
Mesh (k) FEM X-FEM (no enrichment) X-FEM (enrichment)
0.2 277 239 287
0.1 915 879 991
0.05 3559 3359 3599
0.025 13,693 13,119 13,615
1.5 | ~
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Fig. 9. Rate of convergence in energy norm for the bimaterial problem.
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the ¥, can be set using the smoothing procedure given in Eqgs. (15)—(17). Thereafter, an iterative scheme
between the solution of the minimization problem with respect to {u;,a;} and that with respect to y;, would
provide the minimization of the global problem. This would result in an optimum choice for i,, and an
appropriate form for the enrichment function y which is best suited for a given problem.

8. Conclusions

A methodology to model arbitrary holes and material interfaces (inclusions) without meshing the in-
ternal boundaries was proposed. The numerical method couples the level set method [11] to the X-FEM [8].
In the X-FEM, the finite-element space is enriched by adding additional functions to the approximation
using the notion of partition of unity. The level set function ¢ is used to represent holes and inclusions, and
in addition, ¢ is used to develop the local enrichment for material interfaces to model inclusions.

Numerical examples in two-dimensional linear elastostatics were presented to test the accuracy of the
new technique. For the plate with a hole problem, a convergence study was performed for two different
radii of the hole. Optimal rate of convergence in energy norm (((h)) was obtained using the new technique.
A bimaterial boundary-value problem with pure displacement boundary conditions was also considered.
Issues pertaining to appropriate choice of enrichment functions for material interfaces were addressed, and
a suitable enrichment function was derived that yielded accurate results and near optimal rate of conver-
gence for the two-dimensional bimaterial problem. This study demonstrated that by incorporating level set
functions in the X-FEM, we obtain a powerful and accurate numerical technique for the modeling of voids
and inclusions without meshing the internal boundaries. The new technique is simple and versatile, and the
results indicate its potential and promise in the modeling of interfacial phenomena in solid and fluid me-
chanics.
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