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a b s t r a c t

This paper proposes a new topology optimization method, which can adjust the geometrical complexity
of optimal configurations, using the level set method and incorporating a fictitious interface energy
derived from the phase field method. First, a topology optimization problem is formulated based on
the level set method, and the method of regularizing the optimization problem by introducing fictitious
interface energy is explained. Next, the reaction–diffusion equation that updates the level set function is
derived and an optimization algorithm is then constructed, which uses the finite element method to solve
the equilibrium equations and the reaction–diffusion equation when updating the level set function.
Finally, several optimum design examples are shown to confirm the validity and utility of the proposed
topology optimization method.
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1. Introduction

This paper proposes a new level set-based topology optimiza-
tion method, which can control the geometrical complexity of ob-
tained optimal configurations, using a fictitious interface energy
based on the concept of the phase field model [1–4]. The novel as-
pect of the proposed method is the incorporation of level set-based
boundary expressions and fictitious interface energy in the topol-
ogy optimization problem, and the replacement of the original
topology optimization problem with a procedure to solve a reac-
tion–diffusion equation.

Structural optimization has been successfully used in many
industries such as automotive industries. Structural optimization
can be classified into sizing [5,6], shape [7–11] and topology opti-
mization [12–14], the last offering the most potential for exploring
ideal and optimized structures. Topology optimization has been
extensively applied to a variety of structural optimization prob-
lems such as the stiffness maximization problem [12,15], vibration
problems [16–18], optimum design problems for compliant mech-
anisms [19,20], and thermal problems [21–23], after Bensdøe and
Kikuchi [12] first proposed the so-called Homogenization Design
Method. The basic concepts of topology optimization are (1) the
extension of a design domain to a fixed design domain, and (2)
replacement of the optimization problem with material distribu-
tion problem, using the characteristic function [24]. A homogeniza-
ll rights reserved.
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tion method [12,25–28] is utilized to deal with the extreme
discontinuity of material distribution and to provide the material
properties viewed in a global sense as homogenized properties.
The Homogenization Design Method (HDM) has been applied to
a variety of design problems. The density approach [29], also called
the SIMP (Solid Isotropic Material with Penalization) method
[30,31], is another currently used topology optimization method,
the basic idea of which is the use of a fictitious isotropic material
whose elasticity tensor is assumed to be a function of penalized
material density, represented by an exponent parameter. Bendsøe
and Sigmund [32] asserted the validity of the SIMP method in view
of the mechanics of composite materials. The phase field model
based on the theory of phase transitions [1–4] is also used as an-
other approach toward regularizing topology optimization prob-
lems and penalizing material density [33–38]. In addition to the
above conventional approaches, a different type of method, called
the evolutionary structural optimization (ESO) method [18,39], has
been proposed. In this method, the design domain is discretized
using a finite element mesh and unnecessary elements are re-
moved based on heuristic criteria so that the optimal configuration
is ultimately obtained as an optimal subset of finite elements.

Unfortunately, the conventional topology optimization meth-
ods tend to suffer from numerical instability problems [40,41],
such as mesh dependency, checkerboard patterns and grayscales.
Several methods have been proposed to mitigate these instability
problems, such as the use of high-order finite elements [40] and fil-
tering schemes [41]. Although various filtering schemes are cur-
rently used, they crucially depend on artificial parameters that
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lack rational guidelines for determining appropriate a priori
parameter values. Additionally, optimal configurations can include
highly complex geometrical structures that are inappropriate from
an engineering and manufacturing standpoint. Although a number
of geometrical constraint methods for topology optimization
methods have been proposed, such as the perimeter control meth-
od [42] and member size control method [43,44], the parameters
and the complexity of obtained optimal configurations are not un-
iquely linked. Furthermore, geometrical constraint methods often
make the optimization procedure unstable. Thus, a geometric con-
straint method in which the complexity of the optimal configura-
tion can be set uniquely, and which also maintains stability in
the optimization procedure, has yet to be proposed.

A different approach is used in level set-based structural opti-
mization methods that have been proposed as a new type of struc-
tural optimization method. Such methods implicitly represent
target structural configurations using the iso-surface of the level
set function, which is a scalar function, and the outlines of target
structures are changed by updating the level set function during
the optimization process. The level set method was originally pro-
posed by Osher and Sethian [45] as a versatile method to implicitly
represent evolutional interfaces in an Eulerian coordinate system.
The evolution of the boundaries with respect to time is tracked
by solving the so-called Hamilton–Jacobi partial differential equa-
tion, with an appropriate normal velocity that is the moving
boundary velocity normal to the interface. Level set methods are
potentially useful in a variety of applications, including fluid
mechanics [46–48], phase transitions [49], image processing [50–
52] and solid modeling in CAD [53].

In level set-based structural optimization methods, complex
shape and topological changes can be handled and the obtained
optimal structures are free from grayscales, since the structural
boundaries are represented as the iso-surface of the level set func-
tion. Although these relatively new structural optimization meth-
ods overcome the problems of checkerboard patterns and
grayscales, mesh dependencies have yet to be eliminated.

Sethian and Wiegmann [54] first proposed a level set-based
structural optimization method where the level set function is up-
dated using an ad hoc method based on the Von Mises stress. Osher
and Santosa [55] proposed a structural optimization method where
the shape sensitivity is used as the normal velocity, and the struc-
tural optimization is performed by solving the level set equation
using the upwind scheme. This proposed method was applied to
eigenfrequency problems for an inhomogeneous drum using a
two-phase optimization of the membrane where the mass density
assumes two different values, while the elasticity tensor is con-
stant over the entire domain.

Belytschko et al. [56] proposed a topology optimization using
an implicit function to represent structural boundaries and their
method allows topological changes by introducing the concept
of an active zone where the material properties such as Young’s
modulus are smoothly distributed. Wang et al. [57] proposed a
shape optimization method based on the level set method where
the level set function is updated using the Hamilton–Jacobi equa-
tion, also called the level set equation, based on the shape sensi-
tivities and the proposed method was applied to the minimum
mean compliance problem. Wang and Wang [58] extended this
method to a multi-material optimal design problem using a ‘‘col-
or” level set method where m level set functions are used to rep-
resent 2m different material phases. Luo et al. [59] and Chen et al.
[60] proposed a level set-based shape optimization method that
controls the geometric width of structural components using a
quadratic energy functional based on image active contour tech-
niques. Allaire et al. [61] independently proposed a level set-
based shape optimization method where the level set function
is updated using smoothed shape sensitivities that are mapped
to the design domain using a smoothing technique. A simple ‘‘er-
satz material” approach was employed to compute the displace-
ment field of the structure, and optimal configurations were
obtained for the minimum compliance problem for both struc-
tures composed of linear elastic and non-linear hyperelastic
material, and compliant mechanism structural design problems.
Allaire and Jouve [62] also extended their method to lowest
eigenfrequency maximization problems and minimum compli-
ance problems having multiple loads. Recently, numerous exten-
sions of the level set-based method have been presented, such as
the use of different expressions [63], the use of a specific numer-
ical method such as meshless methods [64], the use of mathe-
matical approaches in the optimization scheme [65], and other
applications [66–70].

The above level set-based structural optimization methods can
be said to be a type of shape optimization method, since the shape
boundaries of target structures are evolved from an initial config-
uration by updating the level set equation using shape sensitivities.
Therefore, topological changes that increase the number of holes in
the material domain are not permitted, although topological
changes that decrease the number of holes are allowed. As a result,
the obtained optimal configurations strongly depend on the given
initial configuration. Rong and Liang [71] and Yamada et al. [72]
pointed out that in level set-based structural optimization using
the Hamilton–Jacobi equation, the movement of the structural
boundaries stops at the boundaries of the fixed design domain be-
cause the level set function has a non-zero value there, and as a re-
sult, inappropriate optimal configurations are obtained. To provide
for the possibility of topological changes, Allaire et al. [73] intro-
duced the bubble method [74] to a level set-based shape optimiza-
tion method using topological derivatives [75–77]. In Allaire’s
method [73], structural boundaries are updated based on
smoothed shape sensitivities using the level set equation and holes
are introduced during the optimization process. Appropriate opti-
mal configurations were obtained using several different initial
configurations, however parameter setting with respect to the
introduction of holes during the optimization process was difficult
and potentially affected the obtained optimal configurations.

Wang et al. [78] proposed an extended level set method for a
topology optimization method based on one of their previously
proposed methods [57]. In their method [78], an extended velocity
which has a non-zero value in the material domain is introduced
and the level set function is not re-initialized to maintain the prop-
erty of a signed distance function. Topological changes including
the introduction of holes in a material domain are therefore al-
lowed, however the extended velocity cannot be logically deter-
mined, since the level set equation is derived based on the
boundary advection concept. As a result, it is difficult to define
appropriate extended velocities and the definition of the extension
velocities in large measure determines the shape of the obtained
optimal structures.

In level set-based shape optimization methods using the Ham-
ilton–Jacobi equation, the level set function must be re-initialized
to maintain the signed distance characteristic of the function. This
re-initialization operation [79–81] is not an easy task, and a num-
ber of level set-based topology optimization methods that do not
depend on boundary advection concepts have been proposed re-
cently. Wei and Wang [65,66] proposed a piecewise constant level
set method used in their topology optimization method. In this
method, an objective functional is formulated as the sum of a pri-
mary objective functional and a structural perimeter, which regu-
larizes the optimization problem. However, obtained optimal
configurations can differ dramatically depending on the initial con-
figuration, since the setting of certain parameters of the constraint
functional for the piecewise constant level set function greatly af-
fects the updating of the level set function.
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In this research, we propose a topology optimization method
using a level set model incorporating a fictitious interface energy
derived from the phase field concept, to overcome the numerical
problems mentioned above. The proposed method, a type of topol-
ogy optimization method, also has the advantage of allowing not
only shape but also topological changes. In addition, the proposed
method allows the geometrical complexity of the optimal configu-
ration to be qualitatively specified, a feature resembling the perim-
eter control method, and does not require re-initialization
operations during the optimization procedure. In the following
sections, a topology optimization problem is formulated based on
the level set method, and the method of regularizing the optimiza-
tion problem by introducing a fictitious interface energy is ex-
plained. The reaction–diffusion equation that updates the level
set function is then derived. Here, we use the ersatz material ap-
proach to compute the equilibrium equations of the structure on
an Eulerian coordinate system. The proposed topology optimiza-
tion method is then applied to the minimum mean compliance
problem, the optimum design problem of compliant mechanisms
and the lowest eigenfrequency problem. Next, an optimization
algorithm for the proposed method is constructed using the finite
element method. Finally, to confirm the validity and utility of the
proposed topology optimization method, several numerical exam-
ples are provided for both two- and three-dimensional cases.

2. Formulations

2.1. Topology optimization method

Consider a structural optimization problem that determines the
optimal configuration of a domain filled with a solid material, i.e., a
material domain X that denotes the design domain, by minimizing
an objective functional F under a constraint functional G concern-
ing the volume constraint, described as follows:

inf
X

FðXÞ ¼
Z

X
f ðxÞdX ð1Þ

subject to GðXÞ ¼
Z

X
dX� Vmax 6 0; ð2Þ

where Vmax is the upper limit of the volume constraint and x repre-
sents a point located in X. In conventional topology optimization
methods [12], a fixed design domain D, composed of a material do-
main X such that X � D, and another complementary domain rep-
resenting a void exists, i.e., a void domain DnX is introduced. Using
the characteristic function vX 2 L1 defined as

vXðxÞ ¼
1 if x 2 X;

0 if x 2 D nX;

�
ð3Þ

the above structural optimization problem is replaced by a material
distribution problem, to search for an optimal configuration of the
design domain in the fixed design domain D as follows:

inf
vX

FðvXðxÞÞ ¼
Z

D
f ðxÞvXðxÞdX ð4Þ

subject to GðvXðxÞÞ ¼
Z

D
vXðxÞdX� Vmax 6 0: ð5Þ

In the above formulation, topological changes as well as shape
change are allowed during the optimization procedure.

However, it is commonly accepted that topology optimization
problems are ill-posed because the obtained configurations ex-
pressed by the characteristic function can be very discontinuous.
That is, since the characteristic function v is defined as a subset
of a bounded Lebesgue space L1 which is only assured integrabil-
ity, the obtained solutions may be discontinuous anywhere in the
fixed design domain. To overcome this problem, the design domain
is relaxed using various regularization techniques such as the
homogenization method [26–28]. In the homogenization method,
microstructures that represent the composite material status are
introduced. In two-scale modeling, microstructures are continu-
ously distributed almost everywhere in the fixed design domain
D. The regularized and sufficiently continuous physical properties
are obtained as the homogenized properties. Burger and Stainko
[38], Wang and Zhou [33,37] and Zhou and Wang [34,35] proposed
an alternative regularization method using the Tikhonov regulari-
zation method [82]. In these methods, by adding a Cahn–Hilliard-
type penalization functional [1] to an objective functional, the
topology optimization problem is regularized and the material
density penalized. The phase field model utilized in certain struc-
tural optimization methods employs a regularization technique
based on the imposition of some degree of shape smoothness,
but these methods also yield optimal configurations that include
grayscales.

In these regularization techniques, the existence of grayscales is
allowed in the obtained optimal configurations. Although such
grayscales can be interpreted as being micro-porous in the physical
sense, they are problematic in the engineering sense since such
obtained optimal solutions are difficult to interpret as practical de-
signs that can be manufactured. Furthermore, the optimal configu-
rations obtained by conventional topology optimization methods
can include highly complex structures that are also inappropriate
from an engineering and manufacturing standpoint. To mitigate
these problems, a method using a perimeter constraint [42] and
methods using a density gradient constraint [43,44] have been pro-
posed. In the former, however, the obtained results crucially de-
pend on artificial parameters that require appropriate, but
elusive, values to obtain desired results. And in the latter, use of
the density gradient constraint increases grayscales. Also, methods
employing perimeter or density gradient constraints are poor at
adjusting the geometrical complexity of the obtained optimal con-
figurations, since the relation of the geometrical complexity of the
configuration and the optimization parameters cannot be uniquely
determined. Hitherto, a method that allows the geometrical com-
plexity of obtained optimal structures to be manipulated has not
been proposed.

On the other hand, level set-based structural optimization
methods have been proposed [45,57,61]. In these methods, the le-
vel set function /(x) is introduced to represent a boundary oX be-
tween the material and void domains. That is, the boundary is
expressed using the level set function /(x) as follows:

/ðxÞ > 0 for 8x 2 X n @X;
/ðxÞ ¼ 0 for 8x 2 @X;
/ðxÞ < 0 for 8x 2 D nX:

8><>: ð6Þ

Using the above level set function, an arbitrary topology as well as
shape of the material domain X in domain D can be implicitly rep-
resented, and level set boundary expressions are free of grayscales.
In level set-based methods, the evolution of the boundaries with re-
spect to fictitious times is tracked by solving the so-called Hamil-
ton–Jacobi partial differential equation (explained below), with an
appropriate normal velocity that is the velocity of the moving
boundary normal to the interface. However, as Allarie et al. [61] dis-
cussed, this problem is basically ill-posed, and in order to regularize
the structural optimization problems, certain smoothness, geomet-
rical, or topological constraint, such as a perimeter constraint [85]
must be imposed. Furthermore, topological changes that increase
the number of holes in the material domain may not occur,
although topological changes that decrease the number of holes
are allowed. As a result, the obtained optimal configurations
strongly depends on the given initial configuration.
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In this research, to overcome the above major problems in the
conventional topology optimization methods and level set-based
structural optimization methods, we propose a new level set-based
topology optimization method using a fictitious interface energy
based on the phase field model.

In the proposed approach, first, the definition of the level set
function is modified per the following equation to introduce the
fictitious interface energy in the phase field model to regularize
the topology optimization problem:

1 P /ðxÞ > 0 for 8x 2 X n @X;
/ðxÞ ¼ 0 for 8x 2 @X;
0 > /ðxÞP �1 for 8x 2 D nX:

8><>: ð7Þ

We assume that the distribution of the level set function / must
have the same property of distribution as the phase field variable
in the phase field method. Based on this assumption, the level set
function / has upper and lower limit constraints imposed in Eq.
(7). In addition, in sufficiently distant regions from the structural
boundaries, the value of the level set function must be equivalent
to 1 or �1.

Here, by adding a fictitious interface energy term derived from
the concept of the phase field model to the objective functional, the
regularized topology optimization problem is described using the
relaxed characteristic function that is a function of the level set
function, defined as follows:

inf
/

FRðv/ð/Þ;/Þ ¼
Z

D
f ðxÞv/ð/ÞdXþ

Z
D

1
2
sjr/j2 dX ð8Þ

subject to Gðv/ð/ÞÞ ¼
Z

D
v/ð/ÞdX� Vmax 6 0; ð9Þ

where FR is a regularized objective functional and v/(/) 2 L2 is a
sufficiently smooth characteristic function, since the level set func-
tion / is assumed to be continuous and is formulated as

U ¼ f/ðxÞj/ðxÞ 2 H1ðDÞg: ð10Þ

As a result, the former optimization problem is replaced with a
problem to minimize the energy functional, which is the sum of
the objective functional and the fictitious interface energy, where
s > 0 is a regularization parameter representing the ratio of the fic-
titious interface energy and the objective functional.

Note that the fictitious interface energy term here is equivalent
to the so-called Chan–Hilliard energy, and it plays a very important
role in regularizing the optimization problem. By introducing this
term, the optimization problem is sufficiently relaxed and the ob-
tained optimal configurations have sufficient smoothness. The
optimization problem also becomes numerically stable. It is well-
known that the Chan–Hilliard energy converges exactly to the
perimeter. As a result, our optimal configurations are obtained un-
der an implicitly imposed geometrical constraint. This regulariza-
tion is called the Tikhonov regularization method, and details
concerning its theoretical background are available in the litera-
ture [82,83]. It is possible to control the degree of complexity of ob-
tained optimal structures by adjusting the value of the coefficient
of regularization s. Strictly speaking, the regularization technique
employed here is a perimeter constraint method, just as regulariza-
tion techniques applied to the original topology optimization
method implicitly impose geometric constraints. We note that Lei-
tao and Scherzer [84] proposed a shape optimization method
incorporating the Tikhonov regularization method and level set
method, however the basic concept of their method differs from
ours, which is a topology optimization method.

Next, the optimization problem represented by (8) and (9) is
reformulated using Lagrange’s method of undetermined multipli-
ers. Let the Lagrangian be F and the Lagrange multiplier of the vol-
ume constraint be k. The optimization problem is then formulated
as

inf
/

FRðv/ð/Þ;/Þ ¼
Z

D
f ðxÞv/ð/ÞdX

þ k
Z

D
v/ð/ÞdX� Vmax

� �
þ
Z

D

1
2
sjr/j2 dX

ð11Þ

¼
Z

D

�f ðxÞv/ð/ÞdX� kVmax þ
Z

D

1
2
sjr/j2 dX;

ð12Þ

where the density function of the Lagrangian �f ðxÞ is such that
�f ðxÞ ¼ f ðxÞ þ k. The optimal configuration will be obtained by solv-
ing the above optimization problem.

Next, the necessary optimality conditions (KKT-conditions) for
the above optimization problem are derived as follows:

dFRðv/ð/Þ;/Þ
d/

;U

* +
¼ 0; kGðv/ð/ÞÞ ¼ 0; k P 0; Gðv/ð/ÞÞ 6 0;

ð13Þ

where the notation dFRðv/ð/Þ;/Þ
d/ ;U

� �
represents the Fréchet derivative

of the regularized Lagrangian FR with respect to / in the direction of
U. The level set function describing the optimal configurations sat-
isfies the above KKT-conditions. Conversely, solutions obtained by
Eq. (13) are optimal solution candidates, but obtaining this level
set function directly is problematic. Here, the optimization problem
is replaced by a problem of solving time evolutional equations,
which will provide optimal solution candidates.

2.2. The time evolutional equations

Let a fictitious time t be introduced, and assume that the level
set function / is also implicitly a function of t, to represent struc-
tural changes in the material domain X over time. In past level
set-based structural optimization method research [57,61], the
outline of target structures is updated by solving the following
time evolutional equation:

@/ðx; tÞ
@t

þ VNðx; tÞjr/ðx; tÞj ¼ 0 in D; ð14Þ

where VN(x, t) is the normal velocity function, which is given as a
smoothed shape derivative of material domain X since the above
equation represents shape changes during fictitious optimization
process times. Therefore, level set-based structural optimization
methods using Eq. (14) are essentially shape optimization methods.
That is, only the shape boundary of the material domain evolves
during the optimization process, and topological changes that gen-
erate holes in the material domain do not occur. As a result, the ini-
tial configuration settings profoundly affect the obtained optimal
configuration.

To provide for the possibility of topological changes, Allaire
et al. [73] proposed a method for introducing holes using topolog-
ical derivatives [75–77], a concept that is basically the same as the
bubble method [74] where the optimal position at which a hole is
to be introduced is analytically derived. However, in Allaire’s
method, the obtained optimal structure depends on the setting of
various parameters and it can be difficult to stably obtain optimal
structures. Especially in problems where heat conduction and
structural configuration are coupled, or static electric field, heat
conduction and structural configuration are coupled, we encoun-
tered situations where convergence was poor and stably obtained
optimal structures were elusive [70].

A new update method is developed in this research to replace
the use Eq. (14). Here, we assume that variation of the level set
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function /(t) with respect to fictitious time t is proportional to the
gradient of the Lagrangian F, as shown in the following:

@/
@t
¼ �Kð/ÞdFR

d/
in D; ð15Þ

where K(/) > 0 is a coefficient of proportionality. Substituting Eq.
(12) into Eq. (15), we obtain the following:

@/
@t
¼ �Kð/Þ

dFðv/Þ
d/

� sr2/

 !
in D: ð16Þ

Here, we note that the derivatives dFðv/Þ
d/ equivalent to the topological

derivatives [75–77] defined as

dtF ¼ �
@Fðv/Þ
@v/

¼ lim
�!0

FðX�;xÞ � FðXÞ
jnð�Þj ; ð17Þ

where X�;x ¼ X� B� is the material domain with a hole, B� is a
sphere of radius � centered at x and n is a function that decreases
monotonically so that n(�) ? 0 as �? 0, because the objective func-
tional F is formulated using the characteristic function v/. As a re-
sult, in our method, topological changes that increase the number
of holes are allowed, since they are equivalent to the sensitivities
with respect to generating structural boundaries in the material do-
main. In future work, we hope to discuss the theoretical connection
between the characteristic function and topological derivatives in
detail. On the other hand, the level set-based structural optimiza-
tion method proposed by Wang et al. [57] is essentially a type of
shape optimization method, since the sensitivities have non-zero
values only on the structural boundaries.

Furthermore, we assume that the boundary condition of the le-
vel set function is a Dirichlet boundary condition on the non-de-
sign boundary, and a Neumann boundary condition on the other
boundaries, to represent the level set function independently of
the exterior of the fixed design domain D. Then, the obtained time
evolutionary equation with boundary conditions are summarized
as follows:

@/
@t ¼ �Kð/Þ � @Fðv/Þ

@v/
� sr2/

� �
in D;

@/
@n ¼ 0 on @D n @DN;

/ ¼ 1 on @DN:

8>>><>>>: ð18Þ

Note that Eq. (18) is a reaction–diffusion equation, and that the pro-
posed method ensures the smoothness of the level set function.

Next, the time derivative of the regularized Lagrangian FR is ob-
tained using Eq. (12) and (15) as follows:

dFR

dt
¼
Z

D

dFR

d/
@/
@t

dD ¼
Z

D

dFR

d/
�Kð/ÞdFR

d/

 !
dD ð*ð15ÞÞ

¼ �
Z

D
Kð/Þ dFR

d/

 !2

dD 6 0: ð19Þ

The above equation implies that when the level set function is up-
dated based on Eq. (16), the sum of the original Lagrangian F and
the fictitious interface energy decreases monotonically.

2.3. The minimum mean compliance problem

The above proposed method is now applied to a minimum
mean compliance problem. Consider a material domain X where
the displacement is fixed at boundary Cu and traction t is imposed
at boundary Ct. A body force b may also be applied throughout the
material domain X. Let the displacement field be denoted as u in
the static equilibrium state. The minimum compliance problem is
then formulated as follows:
inf
/

F1ðvÞ ¼ lðuÞ ð20Þ

subject to aðu;vÞ ¼ lðvÞ for 8v 2 U u 2 U; ð21Þ

GðvÞ 6 0; ð22Þ

where the notations in the above equation are defined as

aðu;vÞ ¼
Z

D
�ðuÞ : E : �ðvÞv/ dX; ð23Þ

lðvÞ ¼
Z

Ct

t � v dCþ
Z

D
b � vv/ dX; ð24Þ

GðvÞ ¼
Z

D
vdX� Vmax; ð25Þ

where � is the linearized strain tensor, E is the elasticity tensor, and

U ¼ fv ¼ v iei : v i 2 H1ðDÞ with v ¼ 0 on Cug: ð26Þ

Next, the sensitivity of Lagrangian F1 for the minimum compliance
problem is derived. The Lagrangian F1 is the following:

F1 ¼ lðuÞ � aðu;vÞ þ lðvÞ þ kG: ð27Þ

The sensitivity can be simply obtained using the adjoint variable
method by

@F1

@v/

; ~v/

* +
¼ @lðuÞ

@u
; du

� �
@u
@v/

; ~v/

* +

� @aðu;vÞ
@u

; du
� �

@u
@v/

; ~v/

* +

� @aðu;vÞ
@v/

; ~v/

* +
þ k

@G
@v/

; ~v/

* +
; ð28Þ

where the adjoint field is defined as follows:

aðv;uÞ ¼ lðuÞ for 8u 2 U v 2 U: ð29Þ

Therefore, the time evolutionary equation (18) of the minimum
mean compliance problem is as follows:

@/
@t
¼ �Kð/Þð�ðuÞ : Ev/ : �ðvÞ � k� sr2/Þ in D: ð30Þ
2.4. The optimum design problem of compliant mechanisms

Next, the proposed method is applied to an optimum design
problem of compliant mechanisms. Consider a material domain
X where the displacement is fixed at boundary Cu and traction
tin is imposed at boundary Cin.

Let the displacement field be denoted as u1 in the static equilib-
rium state. The optimum design problem of compliant mecha-
nisms is then formulated as follows [20]:

inf
/

F2ðvÞ ¼ �l2ðu1Þ ð31Þ

subject to aðu1;vÞ ¼ l1ðvÞ for 8v 2 U u1 2 U; ð32Þ

GðvÞ 6 0; ð33Þ

where the notations in the above equation are defined as

l1ðvÞ ¼
Z

Cin

tin � v dC; ð34Þ

l2ðvÞ ¼
Z

Cout

tout � v dC; ð35Þ

where tout is a dummy traction vector representing the direction of
the specified deformation at output port Cout. Based on Sigmund’s
formulation, a non-structural distributed spring is located at bound-
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ary Cout, and sufficient stiffness at boundary Cout is obtained by
maximizing the mutual mean compliance, since this provides a
reaction force from the spring due to the deformation at boundary
Cout, which serves to automatically maximize the stiffness.

Next, the sensitivity of Lagrangian F2 for the design of compliant
mechanisms is derived. The Lagrangian F2 is the following:

F2 ¼ �l2ðu1Þ þ aðu1;vÞ � l1ðvÞ þ kG: ð36Þ

The sensitivity can be simply obtained using the adjoint variable
method by

@F2

@v/

; ~v/

* +
¼ � @l2ðu1Þ

@u1
; du1

� �
@u1

@v/

; ~v/

* +

þ @aðu1;vÞ
@u1

; du1

� �
@u1

@v/

; ~v/

* +

þ @aðu1;vÞ
@v/

; ~v/

* +
þ k

@G
@v/

; ~v/

* +
; ð37Þ

where the adjoint field is defined as follows:

aðv;u1Þ ¼ l2ðu1Þ for 8u1 2 U v 2 U: ð38Þ

Therefore, the time evolutionary equation (18) of the optimum de-
sign problem of compliant mechanisms is as follows:

@/
@t
¼ �Kð/Þ ��ðu1Þ : Ev/ : �ðvÞ � k� sr2/

� �
in D: ð39Þ
Initialize level set function φ(x)

Compute objective functional

Convergence ? End
Yes

No

Solve equilibrium equation using the FEM

Compute sensitivities respect to objective functional

Update level set function φ (x)  using the FEM

Fig. 1. Flowchart of optimization procedure.
2.5. The lowest eigenfrequency maximization problem

Next, the proposed method is applied to a lowest eigenfrequen-
cy maximization problem. Consider a fixed design domain D
with fixed boundary at Cu. The material domain X is filled with
a linearly elastic material. The objective functional for the lowest
eigenfrequency maximization problem can be formulated as
follows:

inf
/

F3 ¼ �
Xq

k¼1

1
x2

k

 !�1

¼ �
Xq

k¼1

1
kk

 !�1

; ð40Þ

where xk is the kth eigenfrequency, kk is kth eigenvalue and q is an
appropriate number of eigenfrequencies from the lowest eigen-
mode. Therefore, the topology optimization problem, including
the volume constraint, is formulated as follows:

inf
/

F3 ¼ �
Xq

k¼1

1
kk

 !�1

ð41Þ

subject to G 6 0; ð42Þ
aðuk;vÞ ¼ kkbðuk;vÞ ð43Þ

for 8v 2 U; uk 2 U; k ¼ 1; . . . ; q; ð44Þ

where the above notation b(uk,v) is defined in the following
equation,

bðuk;vÞ ¼
Z

X
quk � v dX; ð45Þ

where uk is the corresponding kth eigenmode and q is the density.
Next, the sensitivity of Lagrangian F3 for the design of compliant

mechanisms is derived. The Lagrangian F3 is the following:

F3 ¼ �
Xq

k¼1

1
kk

 !�1

þ
Xq

k¼1

ak aðuk;vkÞ � kkbðuk;vkÞð Þ þ kG for ak 2 R:

ð46Þ

The sensitivity can be simply obtained using the adjoint variable
method by
dF3

dv/

; ~v/

* +
¼

Xq

k¼1

1
kk

 !�2

�
Xq

k¼1

1
k2

k

@aðuk;vkÞ
@v/

; ~v/

* + "

� kk
@bðuk;vkÞ

@v/

; ~v/

* +!#
þ k

@G
@v/

; ~v/

* +
; ð47Þ

where the adjoint field is defined as follows:

aðuk;vkÞ ¼ kkbðuk;vkÞ for 8uk 2 U vk 2 U: ð48Þ

Therefore, the time evolutionary equation (16) of the lowest eigen-
frequency maximization problem is as follows:

@/
@t
¼ �Kð/Þ

Xq

k¼1

1
kk

 !�2Xq

k¼1

�ðukÞ : Ev/ : �ðvkÞ � kkqv/uk � vk

k2
k

 !8<:
� k� sr2/

o
in D: ð49Þ
3. Numerical implementations

3.1. Optimization algorithms

The flowchart of the optimization procedure is shown in Fig. 1.
As this figure shows, the initial configuration is first set. In the

second step, the equilibrium equations are solved using the finite
element method. In the third step, the objective functional is com-
puted. Here, the optimization process is finished if the objective
functional has converged, otherwise the sensitivities with respect
to the objective functional are computed. In the fourth step, the le-
vel set function / is updated based on Eq. (18) using the finite ele-
ment method. Here, the Lagrange multiplier k is estimated to
satisfy the following:

Gð/ðt þ DtÞÞ ¼ 0: ð50Þ

In addition, the volume constraint is handled using the augmented
Lagrangian method [86–88].

3.2. Scheme of the system of time evolutionary equations

In this research, we develop a scheme for a system of time evo-
lutionary equations (18). First, we introduce a characteristic length
L and an extended parameter C to normalize the sensitivities, and
Eq. (18) can then be replaced by dimensionless equations as
follows.
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@/
@t ¼ �Kð/Þ �C @F

@v/
� sL2r2/

� �
in D;

@/
@n ¼ 0 on @D n @DN ;

/ ¼ 1 on @DN;

8>><>>: ð51Þ

where C is defined as

C ¼
c
R

D dXR
D

@F
@v/

			 			dX
: ð52Þ

Next, Eq. (51) is discretized in the time direction using the Finite
Difference Method as follows:

/ðtþDtÞ
Dt � Kð/ðtÞÞsL2r2/ðt þ DtÞ
¼ Kð/ðtÞÞC @F

@v/
þ /ðtÞ

Dt

/ ¼ 1 on @DN
@/
@n ¼ 0 on @D=@DN;

8>>>>><>>>>>:
ð53Þ

where Dt is the time increment. Next, the above equations are
translated to a weak form as follows, so they can be discretized
using the finite element method.R

D
/ðtþDtÞ

Dt
~/dDþ

R
Dr

T/ðt þ DtÞðsL2Kð/ðtÞÞr~/ÞdD

¼
R

D Kð/ðtÞÞC @F
@v/
þ /ðtÞ

Dt

� �
~/dD

for 8~/ 2 eU;
/ ¼ 1 on @DN;

8>>>>><>>>>>:
ð54Þ

where eU is the functional space of the level set function defined by

eU ¼ f/ðxÞj/ðxÞ 2 H1ðDÞ with / ¼ 1 on @DNg: ð55Þ

Discretizing equation (54) using the finite element method, the fol-
lowing equation is derived:

TUðt þ DtÞ ¼ Y;
/ ¼ 1 on @DN;

�
ð56Þ

where U(t) is the nodal value vector of the level set function at time
t and T and Y are described as follows:

T ¼
[e
j¼i

Z
Ve

1
Dt

NT NþrT NKð/ðtÞÞsL2rN
� �

dVe; ð57Þ

Y ¼
[e

j¼i

Z
Ve

Kð/ðtÞÞC @F
@v/

þ /ðx; tÞ
Dt

 !
NdVe; ð58Þ

where e is the number of elements and
Se

j¼i represents the union set
of the elements, j is the number of elements and N is the interpola-
tion function of the level set function.

The upper and lower limit constraints of the level set function
are not satisfied when the level set function is updated based on
Eq. (56). To satisfy the constraints, the level set function is replaced
based on the following rule after updating the level set function

if k/k > 1 then / ¼ signð/Þ: ð59Þ
Fixed design domain D

1.0m

0.
8m

t
Γu

Fig. 2. Fixed design domain and boundary conditions of model A.
3.3. Approximated equilibrium equation

In this research the ersatz material approach is used [61]. That
is, the equilibrium equation (60) is approximated by Eq. (61)Z

D
�ðuÞ : E : �ðvÞvdX ¼

Z
Ct

t � v dCþ
Z

D
b � vvdX; ð60ÞZ

D
�ðuÞ : E : �ðvÞHað/ÞdX ¼

Z
Ct

t � v dCþ
Z

D
b � vHað/ÞdX; ð61Þ

where Ha(/) is the Heaviside function approximated as
Ha1ð/Þ ¼
d ð/ < 0Þ;
1 ð0 6 /Þ

�
ð62Þ

or

Ha2ð/Þ ¼
d ð/ < �wÞ;

1
2þ

/
w

15
16�

/2

w2
5
8� 3

16
/2

w2

� �� �� �
ð1� dÞ þ d ð�w < / < wÞ;

1 ðw < /Þ;

8>><>>:
ð63Þ

where w represents the width of transition and d > 0 represents the
ratio of material constants, namely, Young’s modulus values be-
tween the void and material domains. Parameter d is introduced
to ensure stable analyses of the fixed design domain when using
the finite element method. In this research, the volume constraint
function G(X) which is defined by Eq. (9) is also approximated, as
follows:

Gð/Þ ¼
Z

D
Hgð/ÞdX� Vmax: ð64Þ

As shown in the following equation, Hg(/) is the smoothed Heavi-
side function whose width of transition is 2, since as shown in Eq.
(7), the level set function values range from �1 to 1

Hgð/Þ ¼
0 ð/ ¼ �1Þ;
1
2þ

/
2

15
16�

/2

4
5
8� 3

64 /2
 �� �
ð�1 < / < 1Þ;

1 ð/ ¼ 1Þ:

8>><>>: ð65Þ

We note that intermediate regions between the material and void
domains are not allowed in the approximation with respect to the
material distribution (61), which eliminates grayscales completely.
In the approximation with respect to the volume calculation (64),
intermediate regions are allowed for numerical stability. Elimina-
tion of grayscales is important when using the equilibrium equa-
tions but is not important in the volume calculation.

4. Numerical examples

4.1. Two-dimensional minimum mean compliance problems

In this subsection, several numerical examples are presented to
confirm the utility and validity of proposed optimization method
for two and three-dimensional minimum compliance problems.
In these examples, the isotropic linear elastic material has Young’s
modulus = 210 GPa, Poisson’s ratio = 0.31 and parameter d in
approximated Heaviside function (62) is set to 1 � 10�3. Fig. 2
shows the fixed design domain and the boundary conditions of
model A and Fig. 3 shows the same for model B.

4.1.1. Effect of the initial configurations
First, using model A, we examine the effect of different initial

configurations upon the resulting optimal configurations. The reg-
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Fig. 3. Fixed design domain and boundary conditions of model B.
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ularization parameter s is set to 1 � 10�4, parameter c is set to 0.5
and the characteristic length L is set to 1 m. Parameter K(/) is set to
1, the upper limit of the volume constraint Vmax is set to 40% of the
volume of the fixed design domain and parameter d in approxi-
mated Heaviside function (62) is set to 1 � 10�3.

The fixed design domain is discretized using a structural mesh
and four-node quadrilateral plane stress elements whose length
Initial configuration Step 10
(a) Cas

Initial configuration Step 10
(b) Cas

Initial configuration Step 10
(c) Cas

Initial configuration Step 10
(d) Cas

Fig. 4. Initial configurations, intermediate
is 6.25 � 10�3 m. Fig. 4 shows four cases and their obtained opti-
mal configurations, each using a different initial configuration.
The initial configuration for Case 1 has the material domain filled
with material; for Case 2, the initial configuration has two holes;
for Case 3, the initial configuration has many holes; and for Case
4, the initial configuration has material filling the material domain
in the upper half of the fixed design domain.

In all cases, the optimal configurations are smooth, clear and
nearly the same. That is, an appropriate optimal configuration
was obtained for all initial configurations. We confirm that the
dependency of the obtained optimal configurations upon the initial
configurations is extremely low.

4.1.2. Effect of finite element mesh size
Second, using model A, we examine the effect of the finite ele-

ment mesh size upon the resulting optimal configurations. The reg-
ularization parameter s is set to 8 � 10�5, parameter c is set to 0.2,
the characteristic length L is set to 1 m, parameter K(/) is set to 1,
the upper limit of the volume constraint Vmax is set to 40% of the
volume of the fixed design domain and parameter d in approxi-
Step 50 Optimal configuration
e 1

Step 50 Optimal configuration
e 2

Step 50 Optimal configuration
e 3

Step 50 Optimal configuration
e 4

results and optimal configurations.
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mated Heaviside function (62) is set to 1 � 10�3. The initial config-
urations in all cases have the material domain filled with material
in the Fixed design domain. The fixed design domain is discretized
using a structural mesh and four-node quadrilateral plane stress
elements. We examine three cases whose degree of discretization
is subject to the following mesh parameters: 80 � 60, 160 � 120
(a) 80×60 mesh (b) 160×12

Fig. 5. Optimal configurations: (a) 80 � 60 mesh;

(a) Case 1 (b) Case 2

Fig. 6. Optimal configurations: (a) s = 5 � 10�4; (b) s

Initial configuration

Initial configuration

Step 10

Step 10

(a) Case

(b) Case

Initial configuration

Initial configuration

Step 10

Step 10

(c) Case

(d) Case

Fig. 7. Initial configurations, intermediate results and optimal configurations
and 320 � 240. Fig. 5 shows the optimal configuration for each
case.

Again, all obtained optimal configurations are smooth, clear and
practically identical. That is, an appropriate optimal configuration
can be obtained regardless of which degree of discretization was
used here. We confirm that dependency with regard to the finite
0 mesh (c) 320×240 mesh

(b) 160 � 120 mesh and (c) 320 � 240 mesh.

(c) Case 3 (d) Case 4

= 5 � 10�5; (c) s = 3 � 10�5 and (d) s = 2 � 10�5.

Step 50

Step 50

Optimal configuration

Optimal configuration

 1

 2

Step 50

Step 50

Optimal configuration

Optimal configuration

 3

 4

: (a) s = 5 � 10�4; (b) s = 2 � 10�4; (c) s = 1 � 10�4 and (d) s = 1 � 10�5.
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element mesh size is extremely small provided that the finite ele-
ment size is sufficiently small.

4.1.3. Effect of the regularization parameter s
We now examine the effect that different regularization param-

eter s values have upon the resulting optimal configurations. In
model A, parameter c is set to 0.5, the characteristic length L is
set to 1 m, parameter K(/) is set to 1, the upper limit of the volume
constraint Vmax is set to 40% of the volume of the fixed design do-
main and parameter d in approximated Heaviside function (62) is
set to 1 � 10�3. The initial configuration in all case has the material
domain filled with material in the fixed design domain. The fixed
design domain is discretized using a structural mesh and four-node
quadrilateral plane stress elements whose length is 6.25 � 10�3 m.
We examine four cases where the regularization parameter s is set
to 5 � 10�4, 5 � 10�5, 3 � 10�5 and 2 � 10�5, respectively. Fig. 6
shows the optimal configuration for each case.

Next, using model B, parameter c is set to 0.5, the characteristic
length L is set to 1 m, and the upper limit of the volume constraint
Vmax is set to 50% of the volume of the fixed design domain. The ini-
tial configurations again have the material domain filled with
Fig. 9. Initial configurations an

Fixed design domain D

2.0m

1m

t
Γu

Fig. 8. Fixed design domain and boundary conditions of model C.
material in the fixed design domain. The fixed design domain is
discretized using a structural mesh and four-node quadrilateral
plane stress elements whose length is 6.25 � 10�3 m. We examine
four cases where the regularization parameter s is set to 5 � 10�4,
2 � 10�4, 1 � 10�4 and 1 � 10�5, respectively. Fig. 7 shows the
optimal configuration for each case.

The obtained optimal configurations are smooth and clear and
we can confirm that the use of the proposed method’s s parameter
allows the complexity of the optimal structures to be adjusted at
will.

4.1.4. Effect of the proportional coefficient K(/)
Next, we now examine the effect that different definitions of

proportionality coefficient K(/) have upon the resulting optimal
configurations, using four initial configurations. The fixed design
d optimal configurations.

Γ
0.4m

Fixed design domain D

Non-design domain

u Γu

1.0m

2.0m

Symmetric boundary 

Fig. 10. Fixed design domain and boundary conditions for three-dimensiona
design problem.
l



Fig. 13. Fixed design domain and boundary conditions.
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domain and boundary condition are shown in Fig. 8. The isotropic
linear elastic material has Young’s modulus = 210 GPa, Poisson’s
ratio = 0.31 and parameter d and w in approximated Heaviside
function (63) is set to 1 � 10�3 and 1, respectively. Parameter c is
set to 0.5, the characteristic length L is set to 1 m, regularization
parameter s is set to 5 � 10�4 and the upper limit of the volume
constraint Vmax is set to 40% of the volume of the fixed design do-
main. The fixed design domain is discretized using a structural
mesh and four-node quadrilateral plane stress elements.

We examine three cases, where the coefficient of proportional-
ity K(/) is set as follows:

Kcosð/Þ ¼
1
2
þ cos

p
2

/
� �

; ð66Þ

Ksinð/Þ ¼ 1þ 1
2

sin
p
2

/
� �

; ð67Þ

K1ð/Þ ¼ 1: ð68Þ
Fig. 11. Optimal configurations: (a) s = 2 � 10�4 and (b) s = 2 � 10�5.

0.
25

m

0.05m

Fixed design domain D
Non-design domain 1

Non-design domain 2

(a) Design domain and boundary conditions (b)   Optimal configuration

Fig. 12. Fixed design domain, boundary conditions and optimal configuration for a mechanical part model.



Fig. 14. Optimal configurations: (a) non-uniform cross-section surface and (b) uniform cross-section surface.
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Fig. 15. Fixed design domain for a two-dimensional compliant mechanism.
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Fig. 9 shows the different initial and optimal configurations for each
case.

In all cases, the optimal configurations are smooth, clear and
nearly the same. That is, an appropriate optimal configuration
was obtained for all three definitions of K(/), and we confirm that
the dependency of the obtained optimal configurations upon these
definitions is extremely low.
Fig. 16. Configurations of the two-dimensional compliant mech
4.2. Three-dimensional minimum mean compliance problems

4.2.1. Effect of the regularization parameter s
First, we now examine the effect that different values of the reg-

ularization parameter s have upon the resulting optimal configura-
tions in a three-dimensional design problem. The isotropic linearly
elastic material has Young’s modulus = 210 GPa and Poisson’s ra-
tio = 0.31. Fig. 10 shows the fixed design domain and boundary
conditions.

Parameter c is set to 0.5, the characteristic length L is set to 1 m,
and the upper limit of the volume constraint Vmax is set to 40% of
the volume of the fixed design domain. The initial configurations
have the material domain filled with material in the fixed design
domain. The fixed design domain is discretized using a structural
mesh and eight-node hexahedral elements whose length is
1 � 10�2 m. We examine two cases where the regularization
parameter s is set to 2 � 10�4 and 2 � 10�5, respectively. Fig. 11
shows the optimal configuration for each case.

The obtained optimal configurations are smooth and clear, and
we can confirm that the use of the proposed method’s s parameter
allows the complexity of the optimal structures to be adjusted at
will for the three-dimensional case as well.

4.2.2. Discretization using a non-structural mesh
Second, we show a design problem of a mechanical part model

where a nonstructural mesh is employed. The isotropic linear elas-
tic material has Young’s modulus = 210 GPa and Poisson’s ra-
tio = 0.31. The regularization parameter s is set to 5 � 10�5,
parameter c is set to 0.5, the characteristic length L is set to 1 m,
anism: (a) optimal configuration and (b) deformed shape.



Fig. 17. Fixed design domain for a three-dimensional compliant mechanism.

Fig. 18. Configurations of the three-dimensional the compliant mechanisms: (a

Fixed design domain D

0.
5m

1.0m

Fixed design domain D

Concentrated mass M

ig. 19. Fixed design domain for the two-dimensional the lowest eigenfrequency
aximization problem.
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F
m

and the upper limit of the volume constraint Vmax is set to 45% of
the volume of the design domain. The initial configurations have
the material domain filled with material in the fixed design do-
main. Fig. 12 shows the fixed design domain, boundary conditions
and obtained optimal configuration.

As shown, the obtained optimal configuration obtained by the
proposed method is smooth and clear when a unstructublue mesh
is used.

4.2.3. Uniform cross-section surface constraint
Next, we consider the use of a uniform cross-section surface

constraint, which is important from a manufacturing standpoint.
) non-uniform cross-section surface and (b) uniform cross-section surface.
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Γu
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Fig. 21. Fixed design domain for the three-dimensional lowest eigenfrequency
maximization problem.
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A geometrical constraint can easily be imposed by using an aniso-
tropic variation of the regularization parameter s. That is, if a com-
ponent in the constraint direction of regularization parameter s is
set to a large value, the level set function will be constant in the
constraint direction. As a result, in this scenario, obtained optimal
configurations will reflect the imposition of a uniform cross-sec-
tion surface constraint. Here, we show the effect that a uniform
cross-section surface constraint has upon the obtained optimal
configuration for a three-dimensional case. The isotropic linear
elastic material has Young’s modulus = 210 GPa and Poisson’s ra-
tio = 0.31. Fig. 13 shows the fixed design domain and boundary
conditions.

Parameter c is set to 0.5, the characteristic length L is set to 1 m,
and the upper limit of the volume constraint Vmax is set to 30% of
the volume of the design domain. The initial configurations have
the material domain filled with material in the fixed design do-
main. The fixed design domain is discretized using a structural
mesh and eight-node hexahedral elements whose length is
1 � 10�2 m. Case (a) has an isotropic regularization parameter
s = 4 � 10�5 as a non-uniform cross-section surface case. Case (b)
has anisotropic component coefficients of the regularization
parameter applied, where s = 4 � 10�5 in direction x1 and x2, and
s = 4 in direction x3, so that a uniform cross-section constraint is
imposed in direction x3. Fig. 14 shows the optimal configuration
for the two cases.

The obtained optimal configurations are smooth and clear, and
we can confirm that our method can successfully impose a uniform
cross-section surface constraint.

4.3. Optimum design problem for a compliant mechanism

4.3.1. Two-dimensional compliant mechanism design problem
Next, our proposed method is applied to the problem of finding

an optimum design for a compliant mechanism. The isotropic lin-
ear elastic material has Young’s modulus = 210 GPa and Poisson’s
ratio = 0.31. Fig. 15 shows the fixed design domain and boundary
conditions.

Parameter c is set to 0.5, characteristic length L is set to 100 lm,
regularization parameter s is set to 1 � 10�4 and the upper limit of
the volume constraint Vmax is set to 25% of the volume of the fixed
design domain. The approximated Heaviside function (63) is used.
Parameter d is set to 1 � 10�3 and w is set to 1. The initial config-
urations have the material domain filled with material in the fixed
design domain. The fixed design domain is discretized using a
structural mesh and four-node quadrilateral elements whose
length is 0.5 lm. Fig. 16 shows the optimal configuration and the
deformed shape.

As shown, the obtained optimal configuration is smooth and
clear, and we can confirm that the obtained optimal configuration
deforms in the specified direction.

4.3.2. Three-dimensional compliant mechanism design problem
We applied the proposed method to a three-dimensional com-

pliant mechanism design problem and consider the use of a uni-
(a) Case 1 (b) Case

Fig. 20. Optimal configurations for the two-dimensional lowest eigenfrequency maxi
parameter s = 1.0 � 10�5; (c) regularization parameter s = 1.0 � 10�6.
form cross-section surface constraint. The isotropic linear elastic
material has Young’s modulus = 210 GPa and Poisson’s ratio = 0.31.
Fig. 17 shows the fixed design domain and boundary conditions.

Parameter c is set to 0.5, characteristic length L is set to 100 lm
and the upper limit of the volume constraint Vmax is set to 20% of
the volume of the fixed design domain. The approximated Heavi-
side function (63) is used, parameter d is set to 1 � 10�3 and w is
set to 1. The initial configurations have the material domain filled
with material in the fixed design domain. The fixed design domain
is discretized using a structural mesh and eight-node hexahedral
elements whose length is 1 lm. Case (a) has an isotropic regulari-
zation parameter s = 1 � 10�4 as a non-uniform cross-section sur-
face case. Case (b) has anisotropic component coefficients of the
regularization parameter applied, where s = 1 � 10�4 in directions
x1 and x3, and s = 5 � 10�1 in direction x2, so that a uniform cross-
section constraint is imposed in direction x2. Fig. 18 shows the
optimal configurations.

As shown, the obtained optimal configurations are smooth and
clear, and we can confirm that our method can successfully impose
a uniform cross-section surface constraint.

4.4. The lowest eigenfrequency maximization problem

4.4.1. Two-dimensional design problem
Finally, the proposed method is applied to the lowest eigenfre-

quency maximization problem. The isotropic linear elastic material
has Young’s modulus = 210 GPa, Poisson’s ratio = 0.31 and mass
density = 7,850 kg/m3. Fig. 19 shows the fixed design domain and
boundary conditions for the two-dimensional lowest eigenfre-
quency maximization problem.

As shown, the right and left sides of the fixed design domain are
fixed and a concentrated mass M = 1 kg is set at the center of the
fixed design domain. The fixed design domain is discretized using
a structural mesh and four-node quadrilateral elements whose
 2 (c) Case 3

mization problem: (a) regularization parameter s = 1.0 � 10�4; (b) regularization



Fig. 22. Optimal configurations of the three-dimensional lowest eigenfrequency maximization problem.
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length is 5 � 10�3 m. Parameter c is set to 0.5, characteristic length
L is set to 1 m, K(/) is set to 1 and the upper limit of the volume
constraint Vmax is set to 50% of the volume of the fixed design do-
main. The Approximated Heaviside function (62) is used, and
parameter d is set to 1 � 10�2. We examine three cases where
parameter s is set to 1.0 � 10�4, 1.0 � 10�5, and 1.0 � 10�6, respec-
tively. Fig. 20 shows the obtained optimal configurations.

The obtained optimal configurations are smooth and clear, and
we can confirm that the use of the proposed method’s s parameter
allows the complexity of the optimal structures to be adjusted at
will for the lowest eigenfrequency maximization problem as well.

4.4.2. Three-dimensional design problem
Fig. 21 shows the fixed design domain and boundary conditions

for a three-dimensional lowest eigenfrequency maximization
problem.

The isotropic linear elastic material has Young’s modu-
lus = 210 GPa, Poisson’s ratio = 0.31, mass density = 7,850 kg/m3

and a concentrated mass M = 80 kg is set at the center of the fixed
design domain. The fixed design domain is discretized using a
structural mesh and eight-node hexahedral elements whose length
is 1 � 10�3 m. Parameter c is set to 0.5, characteristic length L is set
to 1 m, K(/) is set to 1 and the upper limit of the volume constraint
Vmax is set to 30% of the volume of the fixed design domain. The
Approximated Heaviside function (62) is used, and parameter d
is set to 1 � 10�2. Fig. 22 shows the optimal configurations.

As shown, the obtained optimal configurations are smooth and
clear.

5. Conclusions

This paper proposed a new topology optimization method
incorporating level set boundary expressions based on the concept
of the phase field method and applied it to minimum mean compli-
ance problems, optimum compliant mechanism design problems,
and lowest eigenfrequency maximization problems. We achieved
the following:

(1) A topology optimization method was formulated, incorpo-
rating level set boundary expressions, where the optimiza-
tion problem is handled as a problem to minimize the
energy functional including a fictitious interface energy. Fur-
thermore, a method for solving the optimization problem
using a reaction–diffusion equation was proposed.

(2) Based on the proposed topology optimization method, min-
imum mean compliance problems, optimum design problem
of compliant mechanisms, and lowest eigenfrequency max-
imization problems were formulated, and an optimization
algorithm was then constructed. A scheme for updating
the level set function using a time evolutional equation
was proposed.
(3) Several numerical examples were provided to confirm the
usefulness of the proposed topology optimization method
for the various problems examined in this paper. We con-
firmed that smooth and clear optimal configurations were
obtained using the proposed topology optimization method,
which also allows control of the geometrical complexity of
the obtained optimal configurations. The obtained optimal
configurations show minimal dependency upon the finite
element size or initial configurations. In addition, we
showed that uniform cross-section surface constraints can
easily be imposed by using an anisotropic variation of the
regularization parameter s.
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