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SUMMARY

Structural shape and topology optimization using level set functions is becoming increasingly popular.
However, traditional methods do not naturally allow for new hole creation and solutions can be depen-
dent on the initial design. Various methods have been proposed that enable new hole insertion; however, the
link between hole insertion and boundary optimization can be unclear. The new method presented in this
paper utilizes a secondary level set function that represents a pseudo third dimension in two-dimensional
problems to facilitate new hole insertion. The update of the secondary function is connected to the primary
level set function forming a meaningful link between boundary optimization and hole creation. The perfor-
mance of the method is investigated to identify suitable parameters that produce good solutions for a range
of problems. Copyright © 2012 John Wiley & Sons, Ltd.

Received 15 March 2011; Revised 5 April 2012; Accepted 3 June 2012

KEY WORDS: topology optimization; level set method; hole insertion; compliance minimization

1. INTRODUCTION

Structural topology optimization aims to provide solutions that are independent of the initial design.
This enables great potential for finding optimal designs with potentially novel configurations. The
early approaches to topology optimization for continuum structures split the design domain into
discrete elements [1, 2]. The design variables become the amount of material within each element,
enabling dramatic changes in shape and topology. However, solutions produced by element-based
methods often possess checkerboard patterns, which are regarded as numerical artifacts and not
realistic arrangements of material [3,4]. Various methods have been proposed to eliminate checker-
board patterns. However, solutions can depend on the introduction of additional constraints [5],
computational cost is increased by using higher order elements [3, 4], or a heuristic sensitivity
smoothing scheme is employed [6]. Another drawback of element-based methods is that solu-
tions often contain ‘fuzzy’ unclear boundaries and require post processing to extract a practical
design [7, 8].

Boundary-based methods are an alternative approach to topology optimization. This paradigm
inherently produces designs with clearly defined boundaries and solutions do not possess checker-
board patterns [9]. The bubble method is a boundary-based topology optimization method that
extends spline-based shape optimization by introducing a criterion to insert new holes [10]. How-
ever, shape optimization and hole insertion are performed consecutively. Thus, the bubble method
is inefficient as a topology optimization method, because topology can only be changed after the
shape of the current design has converged. Furthermore, topology optimization often involves large
movement of boundaries and merging or splitting of holes. When using splines, special methods
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HOLE INSERTION FOR TOPOLOGY OPTIMIZATION 119

are often required to split and merge holes [11]. Large boundary movement can cause control
point bunching, or spreading, leading to a poorly represented boundary. An alternative method for
boundary representation is to use a discretized implicit function. This naturally allows for complex
topology changes and large boundary movements, without requiring special treatment or additional
methods [12, 13].

The level set method is currently a popular method for optimizing structures defined by an implicit
function. The level set method was originally developed as a flexible and robust computational tool
to track the motion of interfaces [14, 15]. The direct approach to level set based structural opti-
mization is to update the implicit function using a velocity function derived from shape sensitivity
analysis, such that the design progresses iteratively towards an optimum [12, 13]. However, the
direct level set optimization method cannot create new holes during optimization, at least for two-
dimensional (2D) problems. This is a significant limitation for topology optimization, because the
solution can be dependent on the initial design, or number of holes.

Various methods have been proposed to enable hole creation for the direct level set method.
Topological derivatives are a popular mechanism for this, because they indicate the change in objec-
tive when a small hole is inserted into the design. Several methods have been proposed to introduce
topological derivatives into the level set method. One approach is to add a forcing term to the
implicit function update step, allowing new holes to emerge in favorable locations during optimiza-
tion [16,17]. However, the strength of the forcing term can affect efficiency and stability. Also, if the
implicit function is initialized as a signed distance function, it is more difficult for holes to emerge
further away from the boundary. Indeed, topological derivatives can be exclusively employed to
update the implicit function, without considering shape derivatives [18, 19].

However, by far the most common approach is to create a small hole during optimization of the
existing boundaries via the front-tracking algorithm. One approach is to use topological derivatives
to indicate the locations of new holes after a number of boundary updates have been performed
[20]. Noting that topological derivative is proportional to local strain energy, a similar hole creation
approach has been presented where new holes are created in low strain energy regions at every spec-
ified number of iterations [21]. However, the number of iterations between hole creations is arbitrary
and this can lead to a slow convergence and/or even suboptimal solutions. An alternative approach
has been formulated where a hole is created in areas of low stress [22]. The adaptive inner front
method creates holes by removing a specified volume of material, again with low strain energy [23].
Although these criteria of strain energy or stress offers a mechanism that is easy to understand in
terms of where to create a hole, it is difficult to establish when it is more optimal to create a hole or
to continue with boundary updates. Numerical parameter(s) is often introduced to control the hole
creation but the selection of these values is usually problem dependent and arbitrary. This can result
in a mismatch of optimalities between the existing boundaries and new holes and this inconsistency
can lead to a suboptimal solution.

The level set optimization method proposed by Yamada et al. [24] allows holes to emerge dur-
ing optimization. This method differs from the direct level set method in several ways. First, the
implicit function is limited to be between �1 and C1. A fictitious interface energy term is added
to objective function, which regularizes the optimization problem. Constraints are also added to the
objective function using Lagrange multipliers. The Lagrangian is then optimized using derivatives
that are equivalent to topological derivatives. The optimization of the Lagrangian replaces the tra-
ditional level set update equation that is used in the direct method. This approach allows holes to
emerge during optimization, because the derivatives are equivalent to topological derivatives and
the implicit function is updated over the entire domain, each step.

In the direct level set method, extension velocities are derived from shape sensitivities computed
at the boundary of the structure. An alternative approach is to compute extension velocities over the
entire domain from derivatives of a Lagrangian objective function [25]. These derivatives are phys-
ically meaningful because they are a measure of mutual energy density. The implicit function over
the entire domain can then be updated each iteration. This allows holes to nucleate where the exten-
sion velocity is negative within the structure. However, the optimization problem is ill-posed, which
can cause significant numerical instabilities. Therefore, a sensitivity filtering method is employed to
smooth the extension velocity field and stabilize the method.
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120 P. D. DUNNING AND H. A. KIM

The discretized implicit function can be approximated using radial basis functions (RBFs). The
design variables become the expansion coefficients of the RBFs at each discrete point or node. If
sensitivities are computed at each node then holes can emerge naturally when the coefficients are
updated [26]. Holes can also emerge near the boundary in an RBF type approach if a volume inte-
gral method is used to compute shape sensitivities within a narrow band around the boundary [27].
The spectral level set method uses a finite Fourier series to reduce the number of design variables
[28]. Design variables are the coefficients of the Fourier series that can be freely altered during opti-
mization to change topology and introduce new holes. However, the topology and number of holes
is restricted by the number of the function coefficients. The evolutionary structural optimization
method has also been combined with the direct level set method to enable the creation of new holes
[29]. The approach is to compute a performance index for each node based on the local values of
strain energy. During the optimization, holes are created around a small number of nodes that have
a low value of the performance index.

Despite the different level set and implicit function optimization approaches, the direct approach
is still attractive, because there are robust and efficient numerical procedures readily available that
have been developed for various applications of the level set method [14, 15]. However, most exist-
ing hole creation techniques for the direct method focus mainly on finding optimal locations to
create new holes and do not consider whether creating a new hole is more beneficial than updating
the boundary in that iteration. This is because there is no clear link between shape and topology
optimization and holes are inserted at arbitrary times during the optimization. The need for a con-
nection between shape and topological derivatives has also been recognized by other researchers,
for example, [30].

This paper introduces a novel hole insertion technique for the direct level set based optimiza-
tion method when solving two-dimensional problems. The method is derived from the observation
that holes can be naturally created in three-dimensional (3D) problems by intersection of two
approaching level set surfaces. Our approach utilizes this phenomenon by introducing a pseudo
third dimension into the two-dimensional problem. The paper is organized as follows. First the direct
level set structural optimization method is presented, including shape sensitivity analysis. Next, the
details of our numerical implementation of the direct approach are presented. Then the new hole
creation method is introduced, including its numerical implementation, followed by investigations
of its performance using classic compliance minimization examples.

2. LEVEL-SET-BASED STRUCTURAL OPTIMIZATION

This section introduces the minimization of the compliance problem and briefly reviews how the
problem can be solved using the level set method. First, the structure is defined by an implicit
function �.x/, so that its zero level set coincides with the boundary:

8<
:
�.x/ > 0, x 2�S

�.x/D 0, x 2 �S

�.x/ < 0, x …�S

(1)

where�S is the domain of the structure and �S is the boundary of the structure. The compliance of
the structure, C.u, �/ is minimized subject to an upper limit on structural volume

Minimize:C.u,�/D
R
�

E".u/".u/H.�/d�
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R
�

H.�/d�6 Vol�R
�

E".u/".v/H.�/d�D
R
�

bvH.�/d�C
R
�S

f vd�S

uj�D D 0 8v 2 U

(2)

where � is a domain larger than �S such that �S � �, Vol� is the limit on material volume, E
is the material property tensor, ".u/ the strain tensor under displacement field u, U is the space of
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kinematically permissible displacement fields, v is any permissible displacement field, b are body
forces, f are surface tractions, and H.�) is the Heaviside function

H.�/D

²
1, � > 0
0, � < 0

(3)

The key principle of level-set-based optimization is to use shape sensitivity analysis to define a
velocity function that progresses the structure towards an optimum. This update process is usually
performed by solving a Hamilton–Jacobi type equation

@�.x, t /

@t
Cr�.x, t /

dx

dt
D 0 (4)

where t acts as a fictitious time domain. Equation (4) can be discretized and rearranged to produce
a convenient update formula for optimization

�kC1i D �ki ��t
ˇ̌̌
r�ki

ˇ̌̌
Vn,i (5)

where Vn,i is a discrete value of the velocity function acting normal to the boundary at point i ,�t
is a discrete time step and k is the current iteration.

The shape derivative for the compliance objective function, Equation (2), is [13]

C 0 .u,�/D
Z
�N

�
E".u/".u/� 2

�
@.f u/

@n
C �.f u/C bu

��
Vnd�N

�

Z
�D

E".u/".u/Vnd�D

, (6)

where Vn is a velocity function normal to boundary and a positive velocity moves the boundary
inward, n is the unit normal vector, � is the mean curvature and � D �N [ �D. For practical
reasons the portion of the boundary subject to surface tractions and displacement boundary con-
ditions is often fixed during optimization. Therefore, the �N part of the boundary is split so that
�N D �F[�0, where �F is the part subject to surface tractions and �0 the free part of the boundary
that is permitted to move during optimization. To fix �F and �D during optimization, the velocity
function is defined to be zero along those parts of the boundary. Under this condition, the shape
derivative, Equation (6), simplifies to

C 0 .u,�/D
Z
�0

.E".u/".u/� 2bu/ Vnd�0. (7)

The shape sensitivity, & (u/ of the compliance function along the free boundary is defined here as

&.u/DE".u/".u/� 2bu. (8)

The goal of the optimization problem is to minimize the compliance function, Equation (2). Thus,
the velocity function can be simply defined from the shape sensitivity to produce a negative sign
of the shape derivative, Equation (7)

Vn D�&.u/D�E".u/".u/C 2bu. (9)

The velocity function is then used to update the implicit function using Equation (5), thus improving
the structure with respect to the objective. However, the velocity function does not account for the
volume constraint. The most common approach to handle constraints is to transform the constrained
problem into an unconstrained one using the Lagrange multiplier method. The unconstrained
compliance problem is then

Minimize: NC.u,�/D
Z
�

E".u/".u/H.�/d�C �

Z
�

H.�/d� (10)
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where � is a positive Lagrange multiplier. The shape derivative of the second part of the
unconstrained problem can be easily evaluated and the shape derivative for Equation (10) is

NC 0 .u,�/D
Z
�0

.&.u/� �/ Vnd�0. (11)

Therefore, the velocity function can be simply redefined as

Vn D �� &.u/. (12)

3. NUMERICAL IMPLEMENTATION

This section presents our numerical implementation of the direct level set method to solve the
compliance problem, Equation (2). First the design domain is discretized using equal-sized square
elements, with edge length h. The implicit function �.x/, Equation (1), is discretized at nodes of
these elements and interpolated using bilinear shape functions. The initial values of �.x/ are defined
as a signed distance function, such that their sign is defined by Equation (1) and their magnitude is
equal to the distance from the grid node to the nearest boundary point. The elements are also used to
perform the finite element analysis required to compute displacements and sensitivities. This fixed
mesh approach to finite element analysis is popular in level set structural optimization because of
its simplicity and efficiency compared with the fitted mesh approach. However, fixed elements can
be intersected by the boundary.

A popular and efficient method to handle intersected elements is to approximate their stiffness
using the area fraction of material within the element

KA D
˛A

˛I
KI, (13)

where KA is the stiffness matrix of an approximated element, KI is the stiffness matrix of an
element completely filled with material, ˛I is the area of the complete element and ˛A is the
area of material within the approximated element. The elements used in our implementation are
plane four-node bilinear elements [31]. However, the area fraction weighted fixed grid approach
can have a destabilizing effect on optimization because of poor computation of boundary sensitivi-
ties [32–35]. Therefore, sensitivity computation is improved by employing a weighted least squares
technique [36].

The time step in Equation (5) is constrained by the Courant–Friedrichs–Lewy condition for
stability: �t D h=2jVn,i jmax. The velocity function defined in Equation (12) is only applicable
to the points along the boundary. To update the level set function using Equation (5), discrete veloc-
ity values, Vn,i , are required at all grid points. This is achieved using a velocity extension technique
that extrapolates velocities away from the boundary [37]. This method ensures the preservation of
the signed distance property by using the fast marching method to solve the following equation for
extension velocities, Vext:

r�temprVext D 0, (14)

where �temp is a temporary signed distance implicit function. Preserving the signed distance property
of the implicit function is desirable because it promotes stability in the level set method.

Further efficiency is gained by combining the extension velocity method with the narrow band
approach, so that extension velocities are only computed within a local region around the boundary
and not over the entire domain [38]. The extent of the narrow band region is called the bandwidth,
!. Extension velocities are only calculated for nodes that meet the criterion: �! 6 �0i 6C!, where
�0i is the initial value of the signed distance function at node i . This local region is fixed until the
boundary approaches its limits; then a new narrow band region is defined from the updated signed
distance function. However, the signed distance function is only maintained within the narrow band.
Thus, before a new region is defined, the implicit function is reinitialized to a signed distance func-
tion over the entire design domain to maintain stability. The reinitialization approach adopted in this
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Figure 1. Level set optimization algorithm flowchart.

work is to use the current zero level set as a starting point to solve the eikonal equation using the
fast marching method [37]

jr�j D 1. (15)

The upwind finite difference scheme for gradient calculation of � in Equation (5) is often employed
by level set methods because of its favorable stability [14]. This scheme is utilized here where
each gradient component is approximated using the higher order weighted essentially nonoscillatory
method [39] that improves the stability and accuracy of the scheme.

When employing the Lagrange multiplier approach to handle the volume constraint, a fixed value
of � can be used [13]; however, this does not necessarily guarantee constraint satisfaction. An alter-
native is to compute � each iteration, assuming the volume of the structure is conserved during
boundary propagation [12]. However, this approach can encounter difficulties because preserving
volume or mass using the level set method can be problematic [40]. We introduce a robust approach
for handling the volume constraint by using an algorithm to compute a � value that exactly satisfies
the constraint each iteration. Because we found the relationship between � and volume change is
often approximately linear, the value of � is efficiently calculated at each iteration using Newton’s
method and a numerical approximation for the boundary integral that defines volume change.

A simple termination criterion is employed, based on the maximum change in objective function
over the previous 10 iterations

�C k D

�
Cmmax �C

m
min

�
�
CmmaxCC

m
min

� , m 2 Œk � 9, k� , (16)

where C k is the compliance computed at iteration k and the optimization process is stopped if
�C k < 	 , where 	 is a small positive number. The algorithm used to solve the minimization of
compliance problem, Equation (2), is illustrated in Figure 1.

4. HOLE INSERTION METHOD

4.1. Concept overview

It has been observed that new holes can emerge naturally in 3D problems when two zero level
set surfaces cross without breaking the connectivity of the shape or void. It is proposed to exploit
this phenomenon to facilitate natural hole creation in 2D problems. To mimic the hole insertion
mechanism that occurs in 3D problems, a secondary implicit level set function is introduced, N�.x/,
to represent a pseudo-third-dimension for the 2D continuum. The pseudo-third-dimension acts
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as a fictitious thickness for the 2D structure. However, it is assumed that the thickness is suffi-
ciently small compared with the dimensions of the 2D structure, allowing thickness effects to be
ignored. The secondary implicit level set function is initialized to an artificial height, Nh above the
structure domain

N�0.x/D

²
C Nh, x 2�S

� Nh, x …�S
. (17)

The values of the initialization also define the upper and lower bounds of the secondary implicit
function: � Nh 6 N�.x/ 6 Nh. An update of the secondary implicit function during each iteration of the
optimization is performed in a similar manner as the primary level set function, Equation (5)

N�kC1i D N�ki ��t
NVn,i , (18)

where velocity values are computed at internal nodes from sensitivity values in the same manner as
boundary velocities

NVn D N�� N&.u/, (19)

where N&.u/ is the sensitivity used to update the secondary implicit function.
The link between the shape and topological updates are established by using the same shape sen-

sitivity for the primary level set function as the secondary function, N&.u/ D &.u/. This completes
the analogy of the emergence of a hole as shape optimization in 3D. This is also consistent with the
basis of existing methods that identify that the shape and topological derivatives are proportional to
each other [23,30]. However, the key difference in this method is that a hole is created only when it
is more optimal to do so compared with updating the existing boundaries.

The consistent definition of sensitivities for the update of both implicit functions forms a meaning-
ful link between boundary shape optimization and topological optimization via new hole creation.
This link is further strengthened by using a consistent velocity function definition by setting N�D �
in Equation (19). Using the same Lagrange multiplier in both velocity functions ensures that the
algorithm treats both aspects of the optimization, shape of the boundary and topology, equally.
Therefore, this approach allows the objective to progress smoothly to an optimum solution, because
the holes will only appear when favourable compared with boundary shape optimization. This is
demonstrated with the numerical examples in Section 5.

A new hole is created when N�.x/ becomes negative within the region of �S , and the new hole
is added to the primary level set function by simply copying N�.x/onto �(x/ within �S . The pro-
gression of the secondary implicit function is linked to the primary one by using a common value
for �t in Equations (5) and (18) and a consistent velocity definition by setting N� D � in Equation
(19) and by using the same sensitivity definition. Therefore, shape and topology optimization is
inherently connected and holes are created when they are beneficial compared with boundary shape
optimization. Figure 2 shows an illustration of the proposed hole insertion method.

The optimization could be performed entirely with the secondary implicit function. However,
the evolution of the primary implicit function through the level set method promotes stability and
smoothness of the boundary during the optimization. Therefore, the primary implicit function is
used to produce a smooth and optimal boundary for the structure, whereas the secondary function is
used to optimize the topology of the structure.

4.2. Numerical implementation

In practice some care is required when utilizing the secondary implicit function as a device for new
hole insertion. First, the choice of the initial artificial height, Nh in Equation (17) affects the ease and
frequency that holes can emerge. A larger value of Nh represents a thicker structure causing holes to
emerge more gradually, whereas a smaller Nh value allows holes to emerge more frequently.

In the narrow band region, the primary implicit function is updated using extension velocities
derived from boundary movement. Therefore, the implicit function value may be updated by either
the primary or secondary implicit function within the narrow band. This choice of update is removed
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Figure 2. Overview of hole insertion method using two implicit functions.

by limiting hole insertion to the part of �S that is not part of the narrow band region, as shown
in Figure 2.

The primary implicit level set function is unlikely to remain a signed distance function when a
new hole is created, because values are simply copied from the secondary function. Thus, gradients
of the primary implicit function may become too flat or steep around newly created holes, which
can adversely affect the stability of the method. This is avoided by reinitializing the primary implicit
function to be a signed distance function after a new hole is inserted. It was also found beneficial
to reinitialize the secondary implicit function using Equation (17), whenever the primary function
is reinitialized.

The velocity function used to update the secondary implicit function, Equation (19), is based on
the derivative of the objective function. Therefore, the emergence of new holes through secondary
implicit function update is similar to the gradient descent method. Hence, a move limit is introduced
to prevent large steps occurring during optimization. A limit, ˇ is applied to the maximum volume
of material removed from the structure when new holes are inserted. If this limit is exceeded, then
the value of N� is recomputed so that the limit is satisfied. This computation is performed iteratively
using a numerical estimate on new hole volume.

The volume of material removed because of hole insertion is numerically estimated for a trial
value of N�. First, a temporary updated secondary implicit function, N�t is computed using Equations
(18) and (19) and the trial value of N�. If no value of N�t within the structure becomes negative then no
new holes are created and N�t becomes the updated secondary implicit function. Otherwise, the new
hole volume is computed by summing volume estimates from each node with a negative N�t value
that lies within the structure, but outside the narrow band, using neighboring values, Figure 3.

To improve the stability of the method, it was found necessary to prevent very small holes being
created. A small hole is identified if the four neighboring N�t values to a node with negative N�t are
all positive. If this occurs then small hole creation is prevented at the node by assigning a small
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Figure 3. Hole volume estimate for a node near the narrow band region.

positive N�t value. This ensures that the size of the initial hole is greater than a single element. Once
this check has been performed, new hole volume around a node, i is estimated using

Voli D 0.25h2
X

j
ˆi
�
N�t ,j
�

, j 2
�
ix�1, ixC1, iy�1, iyC1

	
, (20)

where ˆi
�
N�t ,j
�

is defined by

ˆi
�
N�t,j
�
D

²
N�t,i
ı�
N�t,i � N�t,j

�
, if N�t,j > 0

1 , if N�t,j < 0
. (21)

However, the secondary function is not copied onto the narrow band region of the primary func-
tion. Thus, the value for N�t,j used in Equation (21) for nodes inside the narrow band is the current
primary function value.

If the new hole volume estimated by summing values computed using Equation (20) for N�t with
N� D � is greater than the limit, then N� is modified to meet the limit using Newton’s method. The

Figure 4. Level set optimization algorithm flowchart with hole insertion.
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iterative Newton’s method is terminated when a new hole volume estimate is within 1% of the
limit value.

If N� is modified to meet the new hole volume limit, so that N�¤ �, then the link between primary
and secondary function update is invalidated. Thus, primary function update by boundary propa-
gation, Equation (5), is not performed if N� ¤ �. Normally, if N� D �, then both hole insertion and
boundary propagation can be performed during the same iteration. The complete set optimization
algorithm, with the new hole creation method, is illustrated in Figure 4.

5. PARAMETER INVESTIGATIONS

We investigate the numerical parameters and their influences on optimization. These parameters are:
narrow bandwidth, !, new hole volume limit, ˇ, and initial artificial height, Nh. Bandwidth and arti-
ficial height are defined in terms of the element edge length, h and hole volume limit is defined as
a percentage of the current structure volume. The effects of these parameters are investigated using
numerical examples to identify suitable values that generally produce good results.

5.1. Cantilever beam

A cantilever beam with aspect ratio 2 : 1 is used for the investigation, Figure 5. The material prop-
erties are 1.0 and 0.3 for Young’s modulus and Poisson’s ratio, respectively. The design domain is
discretized using 160 � 80 unit sized (h D 1) square elements and the volume constraint is set to
50% of the design domain.

Figure 5. Cantilever beam 2 : 1, initial design and boundary conditions.

Figure 6. Cantilever beam solutions for band width, ! D 4h. Compliance values, (C ,�102/ are for final
solution at the iteration (it) shown.
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A range of values are chosen for each parameter: Nh D 0.5h, h, 2hI ˇ D 0.5%, 1%, 2% of
�SI! D 4h, 6h. The minimization of compliance problem, Equation (2), is solved using the new
hole insertion optimization method, Figure 4, for each combination of parameter values. This pro-
duces a range of solutions, which are summarised in Figure 6 .! D 4h/ and Figure 7 .! D 6h/. The
termination criterion, 	 D 0.5� 10�3 was used for all problems.

The results of the investigation show that the solution topologies are dependent on the param-
eter values. However, the general shape and topology of the structures is reasonably similar and
the objective function values of all solutions are within around 1%. This suggests that solutions are
not significantly affected by the chosen parameters and the proposed method consistently finds the
topological solutions with equivalent performance in practice. However, some generalisations on
the effect of each parameter may be drawn from this example.

In general, the larger bandwidth, ! D 6h produces solutions with more consistent shape and
topology that converge in fewer iterations compared with ! D 4h. Because hole insertion is pro-
hibited inside the bandwidth, a larger bandwidth prevents holes being inserted close to each other.
This attribute of larger bandwidths thus has an effect of precluding numerical errors near bound-
aries or in narrow regions between two boundaries and allows the optimization to progress more
smoothly. Lower values of the artificial height, Nh allow new holes to emerge more frequently dur-
ing optimization and, as a consequence, solutions obtained with lower values tend to possess more
holes than solutions obtained using higher Nh values. Also, smaller values for the new hole volume
limit, ˇ were active more often during optimization iterations than larger values. Furthermore, the
largest limit considered, ˇ D 2% was often only active once or twice during optimization and
not active at all for ! D 6h, Nh D 1.0. Therefore, a larger limit on new hole volume is less likely
to disrupt the optimization by having to modify the N� value, which prevents update by boundary
propagation. However, a limit is still required to prevent too much material being removed in a
single iteration.

5.2. Simply-supported beams

The parameter investigation was repeated for two further examples, giving a total of 54 cases, and
similar results were obtained. Therefore, complete results of these additional investigations are
omitted for brevity. The overall results suggest that using a bandwidth, ! D 6h, artificial height,

Figure 7. Cantilever beam solutions for bandwidth, ! D 6h. Compliance values, (C ,�102/ are for final
solution at the iteration (it) shown.
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Figure 8. Michell structure: (a) initial design and boundary conditions; (b) design after 35 iterations; (c) 70
iterations; and (d) converged solution after 107 iterations.

Figure 9. Michell structure, convergence history.

Nh D h and volume limit, ˇ D 2% usually achieves smooth convergence often with fewer iter-
ations. In our experience we observe this finding to be generally applicable to a wider range of
optimization problems.

The results for the two additional examples using the recommended parameter values are pre-
sented for demonstration. The material properties for both examples are 1.0 and 0.3 for Young’s
modulus and Poisson’s ratio, respectively, and the termination criterion is 	 D 0.5 � 10�3. The
first example is a Michell type structure, Figure 8(a), discretized using 160 � 80 unit sized square
elements and the volume constraint is set to 40% of the design domain. The convergence history for
this example is shown in Figure 9.

The second additional example is a Messerschmitt-Bölkow-Blohm (MBB). Using symmetry con-
ditions about the vertical axis, only the right half of the beam is considered, Figure 10(a). The design
domain is discretized using 180�60 unit sized square elements and the volume constraint is set to
40%. The convergence history is shown in Figure 11.

The numerical investigation allowed for some general observations on the performance of the
algorithm. First, examples exhibit reasonably smooth convergence with no significant oscillations
or discontinuities in compliance. A smoother convergence is more evident with an increasing band-
width, for example, ! D 6h. A close examination of the topological changes does not show
holes disappearing immediately after creation or significant movement of newly created holes. This
supports that the link between hole insertion and boundary propagation, created through a consistent
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Figure 10. MBB beam: (a) initial design and boundary conditions; (b) design after 30 iterations; (c) 50
iterations; and (d) converged solution after 109 iterations.

Figure 11. MBB beam, convergence history.

velocity function definition for the update of both implicit functions, is maintained throughout the
optimization. The step-increases in the compliance value observed in the early stages of optimiza-
tion coincide with the insertion of new holes when the new hole volume limit is active, Figures 9
and 11. In these incidences, the N� value is modified, but the topological evolutions do not show dis-
ruptions or sudden changes. Once the volume constraint is satisfied (around iteration 70 in Figure 9
and iteration 60 in Figure 11), compliance is minimised while maintaining the volume and the small
peaks in compliance coincide with topological changes where thin bars are eliminated because the
mesh size cannot represent them.

Most new holes are inserted during the initial stages of the optimization, before the volume con-
straint is reached. This is shown in the intermediate designs for the Michell structure, Figures 8(b)
and (c), and MBB, Figures 10(b) and (c). After the constraint is reached, often only a few iterations
are required to obtain the final solution. This suggests that new holes are created in optimal locations
and are retained in the final solution.

6. FURTHER NUMERICAL EXAMPLES

6.1. Cantilever beam with different initial designs

The cantilever beam example, Figure 5, is optimized again using different initial designs with and
without hole insertion. Three different initial designs are chosen and the solutions obtained are
shown in Figure 12. The convergence criterion for all solutions is 	 D 10�3.
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Figure 12. Cantilever solutions with different initial designs. Compliance values, (C ) are for final solutions
at the iteration (it) shown.

As expected, solutions obtained without the hole insertion method are highly dependent on the
initial design and there is a difference of up to 20% in final compliance values. In contrast, solu-
tions obtained with hole insertion are more consistent and there is only about a 1% difference in
the final compliance values, Figure 12. This demonstrates that the proposed hole insertion method
reduces the dependency on the initial design, thus improving the reliability of the direct level set
optimization method.

6.2. Multiple load cases

This section employs the level set method with the proposed hole insertion method to solve a mini-
mization of compliance problem subject to multiple load cases. First, the multiple load case problem
is stated as

Minimize:C.u,�/D
mP
iD1

wi
R
�

E".ui /".ui /H.�/d�

Subject to:
R
�

H.�/d�6 Vol�
, (22)

where m is the number of separate load cases and wi is the weight for load case i . If there are no
body forces, then ui is the solution to the following static equilibrium equation:Z

�

E".ui /".v/H .�/ d�D

Z
�S

fivd�S , ui j�D D 0 8v 2 U. (23)

The shape sensitivity for the multiple load case problem, &m can be derived as [41]

&m D

mX
iD1

wiE".ui /".ui /. (24)

This shape sensitivity can be used to construct velocity functions for the primary and secondary
implicit function update in the same fashion as the single load case problem, Equations (12) and
(19), respectively.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:118–134
DOI: 10.1002/nme



132 P. D. DUNNING AND H. A. KIM

A beam with multiple load cases is optimized using the new hole insertion method. The beam
is shown in Figure 13(a) and has three load cases, fi , spaced equally along the bottom edge. Each
load case has a magnitude of 2.0 and a weight of 1.0. The material properties are 1.0 and 0.3 for
Young’s modulus and Poisson’s ratio, respectively, and the termination criterion is 	 D 0.5� 10�3.
The beam is discretized using 200 � 50 unit-sized square elements and the volume constraint is set
to 40% of the design domain. The convergence history for this example is shown in Figure 14.

The multiple load case beam converges to a solution after 144 iterations with a total compliance
value of 4.67�102, Figure 13(d). This solution is in good agreement with that obtained using an
element based method [1]. The convergence of the objective function (Figure 14) again shows a
smooth optimization, with a few jumps early in the optimization because of hole insertion. This

Figure 13. Beam optimization for multiple load cases: (a) initial design and boundary conditions; (b) design
after 25 iterations; (c) 40 iterations; and (d) converged solution after 144 iterations.

Figure 14. Beam optimization for multiple load cases, convergence history.
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demonstrates that the proposed hole insertion method can obtain a good solution for a multiple load
case problem.

The examples presented here are all two-dimensional and the secondary implicit function can be
thought of as describing the thickness of the structure in a third dimension. However, this concept
can easily be extended to allow hole insertion for three-dimensional problems, although the physical
analogy of the secondary implicit function becomes obscure.

7. CONCLUSIONS

In this paper a new technique for inserting holes when using the direct level set based topology
optimization method is presented and investigated. Holes are allowed to emerge through update
of a secondary implicit level set function that describes a pseudo-thickness of a two-dimensional
structure. The update of the secondary function is linked to the primary level set function using
common values for the time step and volume constraint Lagrange multiplier and the velocity func-
tion is defined using the same shape sensitivity definition. This approach provides a meaningful
link between boundary propagation and creation of new holes and achieves smooth convergence to
optimum solutions.

Investigations using classic minimization of compliance problems show that solutions are not sig-
nificantly affected by the choice of parameters. However, a suitable set of parameters is indentified
that provide good solutions to the problems considered. It is also observed that most holes emerge
during the early stages and are often retained in the final solution, suggesting that holes are created
in optimal locations. Overall, the new hole insertion method is able to smoothly obtain optimum
solutions for a range of examples and is not significantly sensitive to the choice parameters or the
initial design.
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