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Abstract. A new data structure is presented for geometrically modeling multi-
objects. The model can exhibit elastic and fluid-like behavior to enable 
interpretability between tasks that require both deformable registration and 
active contour segmentation. The data structure consists of a label mask, 
distance field, and springls (a constellation of disconnected triangles). The 
representation has sub-voxel precision, is parametric, re-meshes, tracks point 
correspondences, and guarantees no self-intersections, air-gaps, or overlaps 
between adjacent structures. In this work, we show how to apply existing 
registration algorithms and active contour segmentation to the data structure; 
and as a demonstration, the data structure is used to segment cortical and 
subcortical structures (74 total) in the human brain. 
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1 Introduction 

Deformable registration [1, 2] has become a popular technique for reliably and 
automatically segmenting multiple objects with little prior knowledge of anatomy or 
imaging technology. The output of the algorithm is a displacement field describing 
where voxel locations in the target image map to in the source image. This 3D-to-3D 
mapping allows any geometric structures identified in the source image to be warped 
into the target image to create a segmentation of the target [3]. To overcome the 
registration algorithm's lack of prior knowledge, there is a strong assumption that the 
target's anatomy is a smooth elastic deformation of the source's anatomy. This is rarely 
the case, leading to what is known as "atlas bias" where the warped source image still 
resembles the source image, possibly more than the target. One way to reduce bias is to 
repeat the registration with different source images and combine segmentations 
afterwards to create an "average" [4]. Methods that combine multiple segmentations 
produce "average" segmentations that are smoother than any individual segmentation 
[5]. Alternatively, one can reduce bias and increase the image segmentation's fidelity 
by following elastic registration with "fluid-like" segmentation [6, 7]. Segmentation 
reduces atlas bias from the registration phase because the deformation is driven by 
information in the target image alone. Traditional geometric data structures used to 
cascade registration and segmentation either lose information and / or do not preserve 
important geometric properties. We now review those data structures and the 
challenges each one poses. 



496 B.C. Lucas, M. Kazhdan, and R.H. Taylor 

 

2 Previous Work 

Meshes. Triangle meshes have the ability to encode surface labels and track point 
correspondences. Displacement fields produced by registration can be directly applied 
to triangle meshes. Even though displacement fields represent smooth elastic 
deformations, the deformed triangle mesh can have sharp edges and cusps that were 
not present in the original mesh. To reduce artifacts, the mesh must be smoothed and 
re-sampled (re-meshed) to produce a higher quality mesh. Re-meshing is challenging 
and interferes with point correspondences in non-intuitive ways [8]. Re-meshing 
becomes more difficult when deformations are fluid-like, objects share boundaries or 
slide against each other, and practical geometric constraints are enforced. These 
constraints include: the mesh should not intersect adjacent structures or itself, and it 
should not create air-gaps between adjacent structures.  

Level Sets. Objects can be represented with sub-voxel precision as level sets [9]. 
Level sets are functions of 3D space that are stored as images. A common choice for 
level set function is the signed distance field; in which, image intensities measure the 
minimum distance to the object's boundary. Level sets naturally enforce that 
structures do not self-intersect, and it is simple to enforce that they do not overlap or 
have air-gaps [10]. The drawback to level sets is that they do not maintain point 
correspondences or surface labels, and application of a displacement field requires re-
sampling the level set image, which acts as a low-pass filter by smoothing underlying 
geometric structures. 

Label Masks. It is common for objects to be manually segmented with a painting tool 
to produce binary masks. These masks are then merged together to create a label mask 
image. Displacement fields can be applied to labels by warping and re-sampling the 
label mask image. Re-sampling acts as a low-pass filter that smoothes underlying 
structures; and because label image values are region indicators, only nearest-
neighbor interpolation can be used. Label masks have only voxel precision and have 
no ability to maintain point correspondences or surface labels.  

Overview. Recently, a geometric data structure was presented that has properties of 
both meshes and level sets [11]. Spring Level Sets (SpringLS) couple a constellation 
of disconnected triangle surface elements (springls) with a level set. This work 
extends SpringLS to the multi-object case and shows how to use it for registration and 
segmentation. The new data structure is a combination of three existing data 
structures: a constellation of springls, a label mask, and a distance field. The new 
Multi-Object Level Set (MUSCLE) data structure is simultaneously all previously 
mentioned representations and addresses the drawbacks of each. To demonstrate, we 
cascade diffeomorphic Demons [12] registration and active contour segmentation [9] 
to segment and label 74 structures in MR images of the human brain.  

3 Method 

Representation. The Springl Constellation + Label Mask + Distance Field 
(MUSCLE) data structure is depicted in Fig. 1. A springl ࡿ௡ is a triangular surface 
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element consisting of a particle ݌௡ and three springs connecting the particle to each of 
the triangle’s vertices ݍ௡,௠ (Fig. 1a). Each springl maintains an object label ݈௡ࣦ߳ ൌሼ1, ڮ ,  ௡ to a point on the݌ ሽ and a correspondence point ܽ௡ that maps the particleܮ
original model. Each object has its own springl constellation that encloses the object's 
interior. Constellations for all objects (Fig. 1b) are merged into one constellation for 
storage and manipulation. The label mask ߯: Ω ฽ ࣦ (Fig. 1c) maps each voxel in the 
image domain Ω ؿ ࣬ଷ to an object label ݈. The distance field ߰: Ω ฽ ࣬ (Fig. 1d) 
measures the distance of each voxel to the nearest object represented by level sets ߮௟: Ω ฽ ࣬ (i.e. ߰ሺ࢞ሻ ൌ min௟|߮௟ሺ࢞ሻ|). The signed distance ߮௟ for each object can be 
recovered at the boundary Λ௟ ൌ ሼࣨ߳࢟׌ |࢞ሺ࢞ሻ s.t. ߪ௟ሺ࢞ሻ ് ሻሽ (1)࢟௟ሺߪ

of each region ݈, where ࣨሺ࢞ሻ is the 6-connected neighborhood of voxel ࢞ and the 
sign ߪ௟ሺ࢞ሻ is indicated by,  ߪ௟ሺ࢞ሻ ൌ ቄെ1 ߯ሺ࢞ሻ ൌ ݈1 (2) .݁ݏ݅ݓݎ݄݁ݐ݋

 

Fig. 1. (a) Diagram of springl. (b) Springl constellation for two objects. (c) label mask. (d) 
clamped distance field. (e) Raycast rendering of MUSCLE data structure.  

We use the convention that distance measurements at locations inside the object have 
negative values and outside positive values. The partially reconstructed level set ෤߮ ௟ ׷  Λ௟ ฽ ࣬ is given by ෤߮ ௟ሺ࢞ሻ ൌ ሻ. ෤߮࢞ሻ ߰ሺ࢞௟ሺߪ ௟ measures the signed distance at the 
boundary (Λ௟) between objects and provides enough information to extract an iso-
surface with marching cubes [13] or recover the entire signed distance field for each 
object with fast-marching [9]. More importantly, the "label mask + distance field" 
data structure avoids having to store and manipulate independent level set images for 
each object. For an ܯ ൈ ܯ ൈ  objects, the amount of memory ܮ image containing ܯ
needed to store the MUSCLE data structure is ܱሺܯଷ ൅   .ଷሻ for label masksܯଷሻ for independent level sets, and ܱሺܯܮଶሻ  for meshes, ܱሺܯܮଶሻ. This is compared to ܱሺܯܮ
 
Level Set Evolution. MUSCLE, like SpringLS, maintains a mesh and level set 
representation of the same geometry. To keep them consistent during deformation, 
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level sets are evolved to minimize their distance to the constellation. This is 
accomplished by first constructing the clamped distance field for all springls: ߱ሺ࢞ሻ ൌ minሼ2݀௠௔௫, ݀ଵሺ࢞ሻ … ݀ேሺ࢞ሻሽ (3)

where ݀௡ሺ࢞ሻ is the distance from location ࢞ to springl ݊, and ݀௠௔௫ ൌ 0.5 is the 
clamped distance. Level sets ෤߮ ௟ are evolved to minimize the following:  ܧ ൌ ෍ න ቀଵଶ൫߱ሺ࢞ሻ൯ଶ ൅ ׏|ߣ ෤߮௟ሺ࢞ሻ|ቁ ሺߜ ෤߮௟ሺ࢞ሻሻ݀࢞௟  (4)

where ߣ is a regularization weight that controls the model's smoothness. Solving the 
Euler-Lagrange equations, eq. 4 can be minimized with the following scheme: ෤߮ ௟௭ାଵሺ࢞ሻ ൌ ෤߮௟௭ሺ࢞ሻ െ ఌሺߜݐ∆ ෤߮௟௭ሺ࢞ሻሻ ൬߱ሺ࢞ሻ߱׏ሺ࢞ሻ · ሻห࢞ఝ෥೗೥ሺ׏ሻห࢞ఝ෥೗೥ሺ׏ ൅ ׏ߣ · ሻห൰ (5)࢞ö෨೗೥ሺ׏ሻห࢞ఝ෥೗೥ሺ׏

where ߜఌሺ݀ሻ is a compactly supported approximation to the dirac delta. The iterative 
scheme is implemented with Multi-Object Geodesic Active Contours (MOGAC) [14] 
because it uses the "label mask + distance field" data structure and does not create air-
gaps or overlaps between adjacent structures. Equipped with the MUSCLE data 
structure and evolution scheme, we now discuss how to use them for registration.  

Global Registration. Deformable registration is sensitive to the initial alignment of 
source and target images. To obtain a good initialization, an image-based global 
registration algorithm such as FLIRT [15] can be used to estimate an affine 
transformation between source and template images. The 4 ൈ 4 transformation matrix ࡭ is then applied to the springls constellation (Fig. 2a), labels mask, and distance 
field. Nearest-neighbor interpolation is used, and must be used, to transform the label 
mask, and trilinear interpolation is used for the distance field. The interpolator acts as 
a filter on both the labels and distance field, producing iso-surfaces not quite as 
smooth as the originals (Fig. 2b). However, transformations can be applied to the 
constellation without interpolation. The label mask and distance field are then evolved 
to minimize the distance between their iso-surfaces and the constellation (eq. 5). Fig. 
2c illustrates that this method is effective at boosting the fidelity of level sets that 
undergo global registration.  

 

 
(a) (b) (c) 

Fig. 2. Cortical surface after applying Affine transformation to (a) triangle mesh, (b) label mask 
and distance field (c) MUSCLE after 20 iterations of eq. 5 with ߣ ൌ 1 

Deformable Registration. Once source and target images have been roughly aligned 
with global registration, they are  more precisely aligned with deformable registration. 
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Image based registration algorithms output a displacement field ݒԦ௧௦: Ω ฽ ࣬ଷ 
describing the offset of each location in the target image ܫ௧: Ω ฽ ࣬ maps in the 
source image ܫ௦: Ω ฽ ࣬. The source image, label mask, or distance field, can be 
transformed into the target via ܫ௧ሺ࢞ሻ ؑ ࢞௦൫ܫ െ  ሻ൯. Displacements fields࢞Ԧ௧௦ሺݒ
representing the forward mapping ݒԦ௦௧: Ω ฽ ࣬ଷ can be applied to mesh vertices ݍ௡,௠ 
in the springls constellation to obtain new positions ́ݍ௡,௠ via ́ݍ௡,௠ ൌ ௡,௠ݍ ൅ݒԦ௦௧൫ݍ௡,௠൯.  Unfortunately, most registration algorithms produce displacement fields 
that are not isomorphic (i.e. ݒԦ௦௧൫࢞ െ ሻ൯࢞Ԧ௧௦ሺݒ ്  ሻ). A different procedure is࢞Ԧ௧௦ሺݒ
needed for transforming label masks and distance fields so that their iso-surfaces are 
well aligned with springl constellations. To do so, springls are incrementally 
displaced along linear trajectories from source to target:  ݍ௡,௠ሺݐሻ ൌ ௡,௠ሺ0ሻݍ ൅ Ԧ௦௧ݒݐ ቀݍ௡,௠ሺ0ሻቁ (6)

where ݐ א ሾ0,1ሿ. After each displacement step ݇ s.t. ݐ ൌ ݇ for ݐ∆݇ ൌ 0, 1, … , 1ڿ ⁄ݐ∆  ,ۀ
the label mask and distance field are evolved to track the moving mesh via eq. 5. The 
step size is chosen to be ∆ݐ ൑ ݀௠௔௫ max௡,௠ฮݒԦ௦௧൫ݍ௡,௠൯ฮ⁄ . The iterative scheme in eq. 
5 is repeated 4 times per iteration of eq. 6. Fig. 3a illustrates that applying a 
displacement field to a mesh can create thin cusp structures that self-intersect. In the 
MUSCLE framework, the level set representation that is evolved with the mesh 
cannot develop self-intersections, but it can change topology (Fig. 3b). The simple-
point test can be added to the level set method [16] to preserve the object's topology 
(Fig. 3c).  

(a) (b) (c) 

Fig. 3. Cortical surface after applying displacement field to (a) triangle mesh, (b) MUSCLE (c) 
MUSCLE with topology-preservation constraint. Back-face of the surface is shown in red, 
indicating self-intersection. Red circle indicates region with topology change.  

Active Contour Segmentation. After registration, active contour methods are used to 
better align the model with anatomical boundaries visible in the target image. An 
active contour segmentation framework has been developed for SpringLS [11]. It 
consists of five phases: advection, relaxation, re-sampling, level set evolution, and 
hole filling. We extend the advection phase to multiple objects by considering 
advection equations of the following form, ೏೛೙೏೟ ൌ λ஡൫ρ௟೙ሺ݌௡ሻ െ max௟መఢࣨሺ௣೙ሻ ௔௡ௗ ௟መஷ௟೙ ρ௟መሺ݌௡ሻ൯࢔ሬሬԦ௡ ൅ λఙ࣌ሬሬԦሺ݌௡ሻ, (7)
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MUSCLE brain parcellations were constructed for 10 subjects from the OASIS 
cross-sectional database [20]. Each parcellation was used to segment the other 9 
subjects (90 experiments total) via the following pipeline: 1) each skull-stripped MRI 
was affine registered to the target; 2) The affine registered image was deformably 
registered to the target with diffeomorphic Demons [12]; 3) the displacement field 
and affine transformation were applied to the MUSCLE parcellation; 4) the MUSCLE 
parcellation was evolved with active contour methods to find the central surface 
produced by CRUISE. To find the central surface represented by level set ߰௖ ׷   Ω ฽࣬, we use ρ௟ሺ࢞ሻ ൌ Hக൫߰௖ሺ࢞ሻ൯ where Hகሺxሻ ൌ atanሺx ε⁄ ሻ with ε ൌ 0.25, λ஡ ൌ 1, and λఙ ൌ 0. Fig. 5. shows one example of the registration + segmentation (reg+seg) 
pipeline. Table 1 compares the accuracy of several approaches. Labeling accuracy is 
measured with the extended Jaccard metric [7].  

MUSCLE reg+seg and Hybrid Warp [6] have similar pipelines. MUSCLE 
augments Hybrid Warp by providing a data structure with which to represent full 
brain parcellations that can re-sample / re-mesh under geometric constraints (i.e. no 
self-intersections, air-gaps, or overlaps). CVS [7] uses a tetrahedral mesh (tet-mesh). 
Tet-meshes are difficult to use for registration because diffeomorphic deformations 
require safeguards to avoid tetrahedral inversion. MUSCLE places no restrictions on 
diffeomorphic deformations and has other useful geometric properties. For example, 
MUSCLE iso-surfaces are smooth, which is not always the case for meshes (Fig. 3) 
and rarely the case for iso-surfaces extracted from label masks. It is important to have 
smooth surfaces (along with point correspondences) because  cortical surface analysis 
is often sensitive to surface curvature [17]. MUSCLE associates gyral labels with 
springls on the central surface instead of voxels in the GM, which partially explains 
why cortical labeling accuracy is higher for MUSCLE. In HAMMER and CVS, the 
sampling density of voxel-based gyral labels is affected by GM thickness. Regions 
where the GM is thin often report lower labeling accuracy because the Jaccard metric 
is sensitive to a labeled region's volume size. MUSCLE evenly samples the cortical 
surface with springls so that gyral labeling is unaffected by GM thickness. MUSCLE 
reg+seg produces less accurate subcortical segmentations than other works because it 
uses Demons instead of HAMMER. Subcortical segmentation with Demons and a 
label mask representation has an accuracy of 54.3±13.6%. MUSCLE's slightly lower 
accuracy (53.1±13.8%) is due to smoothing (eq. 4). Subcortical structures have 
sharper features than the central surface, so they should have a smaller smoothing 
weight (ߣሻ. To improve subcortical accuracy, one could use HAMMER for 
registration and disable / reduce smoothing in subcortical regions. 

 
(a)                                 (b)                                 (c)                                        (d) 

Fig. 5. MUSCLE parcellations for (a) source, (b) source after applying displacement field (18 
sec) and affine transform (7 sec), (c) target, and (d) source after reg+seg (21 min total, 1.1M - 
1.4M springls, 256ଷ voxels, 100 active contour iterations). Computation times do not include 
FLIRT (10 min), Diffeomorphic Demons (1 hr), or CRUISE (2.5 hrs). Dual Intel E5630 (8 
cores). Source code available at http://code.google.com/p/imagesci/. 
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Table 1. Performance summary. Distance measurements are for cortical surface only. 
Accuracies for referenced works do not reflect the same parcellations, datasets, or sample sizes. 

Pipeline Geometric 
Representation 

Template to 
Subject 

Subject to 
Template 

Subcortical
Label Acc.

Cortical  
Label Acc. 

MUSCLE reg only MUSCLE 1.29±0.45 mm 1.05±0.36 mm 53.1±13.8% 80.1±2.6% 
MUSCLE reg + seg MUSCLE 0.40±0.05 mm 0.25±0.01 mm 52.8±13.0% 81.2±2.7% 
HAMMER [2, 7] Label mask -- -- 66.8±6.7% 36.6±6.0% 
Hybrid Warp [6] Triangle mesh 0.45±0.05 mm 0.37±0.05 mm -- -- 
CVS [7] Tet-mesh  1.5 to 2.5 mm -- 70.5±4.6% 54.4±10% 
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