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mances of our method.

A nonparametric local region-based active contour driven by a local histogram fitting energy is presented.
The energy is defined in terms of an evolving curve and two fitting histograms that approximate the dis-
tribution of object and background locally through a truncated Gaussian kernel. The kernel width for
computing the fitting histograms should be different on different pixels, since the same kernel width
applied may cause local minima of the energy. Three inequalities are introduced to determine whether
larger kernel width should be considered. We do not assume any distributions in the presented method.
The method therefore belongs to a nonparametric local region based active contour, and it can segment
the regions whose distribution is hard to be predefined. Experimental results show desirable perfor-

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Active contour model (ACM) (Kass et al., 1988) is a very popular
image segmentation technique, and has been widely utilized in
many applications in computer vision. The basic idea is to evolve
a closed curve so as to minimize a given energy functional. The
evolving curve will stop when the energy functional reaches its
minimum through gradient descent method. ACM can be
categorized to two major classes: edge-driven and region-driven
according to the type of extracted image features.

Edge-driven ACM utilizes image gradient to attract the evolving
curve toward the boundary of desired object (Melonakos et al.,
2008; Kass et al., 1988; Paragios et al.,, 2004; Caselles et al.,
1997). These methods can locally stop the evolution when the
evolving curve reaches a high gradient. However, their resistance
to noise is still quite limited. A constant flow is added to edge-
driven ACM in order to enlarge the capture range, but it is hard
to choose an appropriate one, since either too large or too small
one applied will cause undesirable segmentation result.

Region-driven ACM utilize more global information for segmen-
tation due to different statistics of intensity or texture in the
regions. Therefore, these methods are robust to noise and further-
more able to segment objects with weak boundary or even without
edge. It is very important to model the distribution of the object
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and background in a region-driven ACM. Generally speaking,
region-driven ACM can be further categorized to parametric and
nonparametric methods, which is based on whether a predefined
distribution is applied to estimate the intensity of the regions.

Gaussian and Gaussian Mixture distribution are popular models
applied in parametric region-driven ACM. Chan-Vese model (C-V)
(Chan and Vese, 2001) is based on the assumption of object and
background intensity homogeneous. In fact, the probability density
functions in C-V are Gaussian distribution with different means
but same variance. In (Rousson and Deriche, 2002; Shang et al.,
2008), the authors assume the distributions of each regions are
Gaussian with means and variances undetermined. Shang (Shang
et al., 2010) model regions by Gaussian Mixture model with several
means and variances of Gaussian distribution to segment abdomen
CT image. Although, the parametric region-based ACM can be ap-
plied in a variant of applications, such as medical image analysis
(Shang et al., 2008) and aerial image partitioning (Cao et al,,
2008), the object and the background in many images are hard
to be described by a predefined distribution.

Nonparametric region-driven ACM does not suffer from the
above limitation, since the distributions of different regions are
estimated by a nonparametric statistical method. In (Jehan-Bes-
son et al., 2003), the method is to minimize chi-2 distance func-
tion between a reference histogram of the region in previous
image and a current estimated histogram for object tracking. In
(Freedman and Zhang, 2004), Kullback-Leibler distance and Bhat-
tacharyya distance for tracking distribution is presented, and the
method is successfully applied to prostate segmentation in CT
image which the grey level of the prostate is very similar in
intensity with the soft tissues around it (Freedman et al., 2005).
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In (Kim et al.,, 2005), the authors present to maximize mutual
information between the region labels and the image pixel inten-
sities, namely minimize the conditional entropy which is repre-
sented by the probability density functions of each region
approximated by Kernel Density Estimation. A histogram-based
appearance model is present to segment kidney in CT image
(Broadhurst et al., 2006), which Principle Component Analysis is
utilized to learn appearance model from histograms computed
from a set of learning sequence. Wasserstein distance using accu-
mulative distribution function is introduced to histogram-based
ACM (Chan et al., 2007), which claims the method outperforms
the one that is pointwise with respect to histogram bins. In (Ni
et al., 2009), a local histogram based active contour model using
Wasserstein distance is presented. They compute the local histo-
gram of the pixel in a patch, and then decide whether the pixel
belongs to the inside region or outside region through computing
the Wasserstein distance of the local histogram and the histo-
gram inside and outside the closed curve. Although the method
uses the local histograms, the histogram inside and outside the
closed evolving curve are still computed globally. In (Chen and
Radke, 2009), Kernel Density Estimation is applied to estimate
the distribution of the histogram of rectum and background from
a series of abdomen CT image, then they combine the learned his-
togram feature with a statistical shape model to evolve the active
contour model.

Region-driven ACM can get more robust and global segmenta-
tion results, but most of the time the object is distinguished by lo-
cal variations. Thus, a compromise between global and local
feature is needed. Some researchers attempt to join edge and re-
gion-driven ACM (Chakraborty et al., 1996; Paragios and Deriche,
2002; Xie and Mirmehdi, 2004). However, the region and edge fea-
ture may not locally correspond (Xie and Mirmehdi, 2008), and
there is no guideline to tell how to balance the local (usually edge
feature) and global (usually region feature) feature. More recently,
local region-driven ACM have been presented (Li et al.,, 2008;
Zhang et al., 2010a; Wang et al., 2009; Lankton and Tannenbaum,
2008; Luo and Wu, 2011). The basic idea is to construct a local fit-
ting energy in a local region confined by a kernel function. When a
large kernel width is chosen, the model performs like a region-dri-
ven active contour model; when a small kernel width is chosen, the
model performs like an edge-driven one. Thus, if an appropriate
kernel width is chosen, the model can integrate the merits of edge
and region-driven ACM. These methods achieve good performance
on intensity inhomogeneity image which is hard to segment cor-
rectly using C-V model or piecewise smooth case of Mumford-
Shah model (Tsai et al., 2001; Vese and Chan, 2002). However,
these models lead to new drawbacks such as global coherence
and homogeneous area problems (Piovano and Papadopoulo,
2008). The main reason of these new emerging problems is that
there is no guideline to address the size of the kernel width.

In this paper, a nonparametric local region-based ACM driven
by local histogram fitting energy is introduced. There are two main
contributions. Firstly, local histogram fitting energy functional is
introduced. The optimization of our method can drive the evolving
curve according to local nonparametric statistical information rep-
resented by histogram. Secondly, three distances are defined to de-
cide whether the current kernel width is appropriate. If any of the
three distances is satisfied, the kernel width would be enlarged.
Thus, different kernel width for computing the fitting histograms
is utilized at different pixels.

The rest of the paper is organized as follows. Section 2 intro-
duces local histogram based ACM. Section 3 presents our method.
Firstly, a local histogram fitting energy is presented. Then three
distances is defined to decide whether the kernel width is appro-
priate. At last, the paper gives the detail implementation using fast
level set method and a technique to reduce the number of

histogram bins to speed up the computation. The experiments in
Section 4 demonstrate our method, and Section 5 concludes the

paper.
2. Background and problem statement

A nonparametric region-driven ACM has been presented in (Ni
et al., 2009; Chan et al., 2007). Let Q is the image domain. A given
grey image I(x) : Q — [0, L] with two regions is isolated by a closed

curve C. C is able to evolve toward the ideal boundary of seg-

mented objects. Denote the region inside and outside the curve C
by ¥ and X respectively. Let N¥ be the local patch centered at x
with radius r (patch scale). Define the local histogram and cumula-
tive distribution function of a pixel x € Q by

{y eN;nQ:Iy) =2}

o =" e

(1)

{y e N nQ:1(y) <z}
IN N Q|

Fi(z) = (2)

The energy functional of the local histogram based ACM takes
the regional integral of histogram distances between the local his-
togram and the histogram of objects and background. The energy
function is defined as (Ni et al., 2009)

E(C,P,,P;) = Length(E)+i/D(Pi,P’r‘)dX+i D(P,,PYdx  (3)
JE Jze

where P; and P, are two constant histogram inside and outside the
evolving curve C, respectively. 1 is a constant parameter. D(,) is a
histogram distance. There are several kinds of histogram distance
defined by different measure (Ma et al., 2010). Assume two histo-
grams h and g with bin index z € [0,R]. The common definition of
histogram distances which have been used in some scientific liter-
ature are listed below:

Dy (hg) = [ Ih@) -~ (2)dz (4)
1/2
wtg) = ([ o - gz 5)
_ [* @) -
Dy>(h,g) = A W (6)
R
DKL(h,g):/O h(z)log%Jrg(z)log%dz (7)

Dy(h,g) = /0 ' Jh@g@z (8)
/h n)dn — /g n)dn|d

They are L; distance, L, distance, Chi-2 distance (Jehan-Besson
et al., 2003), Kull-back Leibler distance (Freedman and Zhang,
2004; Freedman et al., 2005), Bhattacharyya distance (Freedman
and Zhang, 2004) and Wasserstein distance (Ni et al., 2009; Chan
et al., 2007) from (4)-(9). These distance measures are defined
by different theories and individual characteristics. The histogram
distance D(,) in (3) can be chosen from any of the distance listed
above.

The energy functional in (3) can be represented in terms of level
set method (Osher and Fedkiw, 2003) as follows:
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E($,Po. Py) = / VH((X) dX + 7 / H($(x))D

+?~/Q(1 — H(¢(x)))D(Po, Py)dx (10)

(Pi, P)dx

where H(-) and ¢ are the Heaviside function and the level set func-
tion, respectively.

The curve evolution function is obtained by first choosing Was-
serstein distance and then minimizing the above energy functional
by variational and gradient descent method. The obtained curve

evolution function are shown as follows: (Ni et al., 2009; Chan

et al., 2007)

= JoH(¢(x))dx 11
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where §(-) is Dirac function.
If L, distance is utilized, we get
_ JoH($(x))P}(z)dx
Pi(z) - Qfg H(qb(x))dx (14)
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Our purpose of this study is illustrated in Fig. 1. Although the
method of local histogram based ACM apply local histogram of
the current pixels, the histogram of object and background are
computed in global domain, see (11), (12), (14), and (15). Thus, if
there are some background pixels that the local histogram of them
are more similar to the object than the background, for example
the mound in Fig. 1(a) and (b), the segmentation results will be
fault, since it is inappropriate to decide the curve evolution by
measuring the distance of the local histogram and the global mean
histogram in this experiment. If the scale of local statistics is en-
larged by increasing r, the problem still exists in Fig. 1(c) and (d).
Moreover, the real boundary of the object is not accurate in
Fig. 1(c) and (d). The only need is to model the background and ob-
ject locally. It is difficult to say which segmentation result is better
in Fig. 1(a) and (b) using L; distance and Wasserstein distance
respectively. We believe there is no method superior to other
one under any circumstances. Therefore, only L; distance is applied

(b)

to illustrate our idea in this study. There is literature on how to de-
cide the patch scale r adaptively (Hong et al., 2008), but this is not
our focus. Instead, a fixed patch scale r is set to 3.

3. Proposed method
3.1. Local histogram fitting energy

In this section, a nonparametric region-driven ACM using local
histogram fitting energy is presented. For a given point X € Q, the
region is localized by a Gaussian kernel. The local histogram fitting
energy is defined as follows:

PY)dy + / Kqs(x

—¥)Dy, (P5, PY)dy (17)

where P¥ and P} are the fitting histograms that approximate the
distribution inside and outside the evolving curve C in position
X, respectively. K,(x —y) is a Gaussian kernel with variance ¢ > 0.
It is represented by a truncated one as follows:

Ko (d) = {cexp <—%> if|dj<p
0 if |d|>p

where c is a normalizing constant. p is the kernel width which de-
fines the size of Gaussian mask, usually p is set to 2¢. The Gaussian
mask can be computed by the method introduced in (Jain et al.,
1995).

The local histogram fitting energy is a weighted distance of the
local histogram P! to the fitting histogram P} and P} with K,(x —y)
as the weight assigned to each local histogram PY at y. The weights
are dominated by the distance between x and y. The local histo-
gram fitting energy can be formulated in terms of the level set form
as follows:

EXF (g, PX, PX /H P)Kp(x — y/\P"

+ /Q (1 - H($)Ko(x— ) /0 IPX(2)
~ PY(2)|dzdy (18)

EY (C, X, PY) / Ko(X —y)Dy, (P*

(z)|dzdy

Our ultimate goal is to minimize the local histogram fitting en-
ergy for all of the points in the whole image domain. Thus, the total
energy is defined by:

8PP = [ [VH(p(x
/\VH )\der)//H(qb x-y)
/\P Z)‘dZdde+A//

CH(@)Ko(x —y) / IPy(2) — PX(2)dzdydx  (19)

\dx+}/EL”F (¢, P, PX)dx

(d)

Fig. 1. Segmentation results using local histogram based ACM. The green curve in (a) and (c) are the segmentation results using L; distance with r = 3 and r = 8, respectively.
The green curve in (b) and (d) are the segmentation results using Wasserstein distance with r = 3 and r = 8, respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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For a fixed level set function ¢, the energy functional E(¢, P}, P%)
with respect to P¥ and P} is minimized respectively. The updating
functions of local fitting histograms can be obtained and are listed

as follows:

 JoH($)Ks(x — y)PY(z)dy
Pite) = JoH(®)Ks(x — y)dy

(20)

(1 = H)Ko(x— y)P 2)dy
Po@) = T Hig)K, (x - y)dy

Energy functional E(¢, P, P5) with Pf and P} fixed is minimized

stisto

with respect to ¢. The gradient descent function of ¢ is as follows:

9 _
ar
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3.2. Varying the kernel width of the local fitting histogram

We introduce the local histogram fitting energy and make the
model described in (10) has the ability of evolving the curve by
local statistics using (19). Unfortunately, it brings in new problems
summarized in Fig. 2. The green curve in Fig. 2(a) is the initializa-
tion, some part of which is placed outside the object. The yellow
and red blocks (p = 6) in Fig. 2(b) are the statistical range for
computing the local fitting histograms P(z) and Pi(z) by (20)
and (21). One problem is that the local fitting histograms on each
pixel of the red block inside and outside the evolving curve in
Fig. 2 (b) are very similar, since the local histograms in this area
are very similar. It leads to the value of evolution function (22)
equal to 0. There is no curve evolution on this kind of points, see
the evolving curve inside the leopard in Fig. 2(b)-(d). Another
problem is that various parts of the evolving curve may evolve
independently by computing their own local fitting histograms,
such as the yellow and red block in Fig. 2(b). The yellow point on
the green in Fig. 2(b) will evolve using its own local fitting histo-
grams which are irrelevant to the real object.

The reason of the two problems in Egs. (20)-(22) is lack of glo-
bal region information. A solution is to increase the kernel width p.

(a)

Disadvantage of the solution is that it extracts objects inaccurately.
Fig. 3 shows the performances when larger kernel width is applied.
The results in Fig. 3(a) and (b) suffer from the same problem of the
result shown in Fig. 2(d). Fig. 3(c) and (d) show the results using
more global statistics to compute the local fitting histogram, but
they fail to discriminate the leopard from the mound. These exper-
iments indicate that if a small p is applied, more fine results in real
boundary will be obtained, but it creates too many local minima; if
a larger p is applied, global information will be involved, but the
curve will leak out from the real boundary as a result of lacking
of the local information. Since none of the p applied in the exper-
iments of Fig. 3 obtains a satisfactory result, the kernel width p of
the local fitting histograms is argued to be varying during the curve
evolution.

Our goal in this section is to use different kernel width p at dif-
ferent pixel to compute the local fitting histograms during curve
evolution. The size of p is based on the similarity of the local fitting
histograms inside and outside the evolving curve. If the two local
fitting histograms are similar, which means that the local fitting
histograms cannot correctly approximate the object and back-
ground, p should be increased; if the two local fitting histograms
are very different, which means that the local fitting histograms
can discriminate the object and background, p should not be chan-
ged. Three distances are defined to compare the similarity of the
local fitting histograms of pixel x inside and outside the evolving
curve. The three distances are defined as follows:

Minln < M < MaxIn (23)
D(P}y, Py )
MinOut < M < MaxOut (24)
D(P;., Poc)
D(Py¢. Pic) <& (25)

where P}, P¥. are the local fitting histograms at position x com-
puted by (20) inside the evolving curve using larger kernel width
p =L and current kernel width p = C respectively. P;; and P; . are
the local fitting histograms at position x computed by (21) outside
the evolving curve using larger kernel width p = L and current ker-
nel width p = C respectively. MinIn, MaxIn, MinOut, MaxOut and ¢

(d)

Fig. 2. Problems of active contour model using local histogram fitting energy: (a) initialization; (b, c) the evolution process; and (d) the final result. The kernal width in this

experiment is set to p = 6.

(a) ' (b)

(c) ' (d)

Fig. 3. Segmentation results using fixed p: (a-d) are the segmentation results using p = 10, p = 20, p = 30 and p = 40 respectively.
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are predefined thresholds. Chi-2 distance (6) is utilized in the
formula (23)-(25).

The inequality (23) and (24) are relative distances of the local
fitting histograms of current kernel width. An absolute distance be-
tween P . and P}, is defined in (25). Our method here is that a lar-
ger kernel width to compute the local fitting histograms and evolve
the curve at x will be applied when any inequality in (23)-(25) is
satisfied.

3.3. Implementation

The grey level of an image is often 256 (8-bit) or 4096 (12-bit).
It is time consuming to compute the local histograms and the local
fitting histograms using too rich grey level. Therefore original his-
togram is divided into B bins having an equal number of entries
(Ojala et al., 2002). Then, a map is constructed for each image to
be processed, which can map the bins from original grey level to
the bins from new created grey level.

A fast two-cycle (FTC) level set method has been proposed (Shi
and Karl, 2008) which report two orders of magnitude faster than
the conventional one (Osher and Fedkiw, 2003). Integer-value sign
function is applied to represent the evolving curve implicitly,
which define that the value at all pixels outside the curve is 3, ex-
cept at border pixels where the value is 1; the value at all pixels in-
side the curve is —3, except at border pixels where the value is —1.
Thus, the evolving curve is described by bilateral linked lists that
the values are —1 and 1. FTC divides the evolution speed F (usually
F=0¢/ot) by a data dependent speed F, and a smoothness
regularization speed Fi, respectively. Sign of these speeds
computed in the bilateral linked lists decide the direction of
evolution. Since FTC utilize a Gaussian filter to smooth the evolving
curve and keep the evolving curve regularized, the smoothness
term V - (V¢/|V¢]) in (22) is not needed for data dependent speed.
Thus, the data dependent speed of our algorithm is defined by:

R R
Fa= [ Ketx=y) [ (P2) = P2)| - P3(2) ~ P@)dzdy  (26)

The smoothness regularization speed Fiye in our implementation is
defined as same as that in FTC. F; and F, are used to evolve the
curve alternatively, which will perform better when there are noise
in the image.

For numerically computing the F, of point x on the bilateral
linked list via (26), a given kernel width p is required, for example
p = 6. Then, ¢ can be obtained by ¢ = p/2 = 3 and the Gaussian
mask can be computed via the method introduced in (Jain et al.,

1995). For each pixel overlapped by the Gaussian mask, the local
fitting histograms should be computed via (20) and (21) respec-
tively, and then [}(|PX(z) — PY(2)| — |[PX(z) — PY(2)|)dz is computed
via L; distance between local fitting histograms and local histo-
gram of x. These values are multiplied by the corresponding Gauss-
ian mask value, and are added together to get the final F,.

Usually, L is set to 5C-10C. In particular, it can cover the whole
image plane, namely L = oo, then the local histogram fitting energy
(18) will be the energy of the local histogram-based ACM in (10)
and the local fitting histogram in (20) and (21) will be the global
mean histogram defined in (14) and (15). Thus, local histogram-
based ACM is a special case of our method.

The process of our algorithm can be summarized as follows

. Reduce the original gray level of the image to be processed;
. Select patch scale r, current kernel width C, larger kernel width
L, thresholds Minin, Maxin, MinOut, MaxOut and ¢;

3. Initialize the evolving curve and compute the local histogram of
each pixel;

4. Compute the local fitting histograms of the pixels in the bilat-
eral linked list using current kernel width C;

5. Compute the local fitting histograms of the pixels in the bilat-
eral linked list using larger kernel width L;

6. Check whether any of the inequality (23)-(25) is satisfied, if yes,
using the larger kernel width and the corresponding local fitting
histograms to evolve the curve (22) via FTC; if not, using the
current kernel width and the corresponding local fitting histo-
grams to evolve the curve (22) via FTC;

7. Check whether convergence or maximum number of iterations

is reached. If not, go back to step 4.

N —

4. Experimental results

Our algorithm is coded by C++. All of the experiments in this
section are run in a release version of our code on an Intel Core 2
Quad Q8200 2.33 GHz CPU, 3.5 GB RAM computer. The bin number
B and the patch scale r in the experiments of this section are set to
25 and 3, respectively.

The experiments in Fig. 4 show the evolution process from the
initial curve (first column) to the final curve (fourth column) using
local histogram fitting energy with varying kernel width. The first
row of the experiments in Fig. 4 shows the segmentation results
using C =6 and L = 30. The parameters of inequality (23)-(25)
are set as Minln = MinOut = 0.9, MaxOut = MaxIn=1.1 and
& = 0.2. The result in Fig. 4(d) is better than that in Figs. 1-3, since

Fig. 4. Segmentation using varying kernel width: (a, e) the initialization; (b-d) the evolution process using C = 6 and L = 30; and (f-h) the evolution process using C = 6 and

L=oc.
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(i) ()

Fig. 5. Segmentation of natural texture images: the green closed contours in (a) and (f) are the initialization of the evolving curve; (b, g) the results of local histogram-based
active contour model introduced in Section 2 using L, distance with 256 bins; (c, h) the results of local histogram-based active contour introduced in Section 2 using L,
distance with 25 bins; (d, i) the results using Local histogram fitting energy with fixed kernel width presented in Section 3.1; and (e, j) the results using Local histogram fitting
energy with varying kernel width presented in Section 3.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 6. Comparations of our method with other commonly used ACM. From left column to reight column are the segmentation results via the C-V model, the method
presented by Ni et al. (2009), the method presented by Zhang et al. (2010b), LBF (Li et al., 2008), and LIF (Zhang et al., 2010a) respectively.

the local statistical feature and varying kernel width are applied.
The second row of the experiments in Fig. 4 shows the
segmentation results using C = 6 and L = co that is a special case
when the domain of larger kernel width covers the whole image
plane. The parameters of inequality (23)-(25) are set as
MinIn = MinOut = 0.98, MaxOut = MaxIn = 1.02 and ¢ =0.1. The
size of the leopard picture in this experiment is 268 x 202. The
segmentation results in Fig. 4(d) and (h) are very similar, and the
computation times are 38.14s and 3.52s, respectively.

The experiments in Fig. 5 show the improvement of our method
step by step. When the image has a complex content, it is not
appropriate to determine the curve evolution by comparing the
distance between the local histogram and global mean histograms,
see the results in Fig. 5(b), (¢), (g) and (h). And there are not too
many differences in this segmentation results when 256 or 25 bins
are applied, which demonstrate that it is appropriate to reduce the
number of histogram bins. The method using local histogram
fitting energy introduced in Section 3.1 will be fall into the local
minima in Fig. 5(d) and (i) when the initial curve is not initialized
near the real boundary. Our methods perform well in Fig. 5(e) and
(j) by varying the kernel width of the local fitting histograms. In
this experiment, C = 6 and L = co. The parameters of the inequali-
ties are set as MinIn = MinOut = 0.98, MaxOut = MaxIn = 1.02 and
& = 0.1. The sizes of the images in Fig. 5(a) and (f) are 300 x 200
and 300 x 200, and the computation times of our presented meth-
od in Fig. 5(e) and (j) are 3.35s and 7.42s, respectively.

A comparison of the accuracy in extracting the true boundary of
the object is performed between our method and other five
popular ACMs: the C-V model (Chan and Vese, 2001), the local
histogram based ACM using Wasserstein distance (Ni et al,
2009), the ACM driven by region-based sign pressure force (Zhang
et al., 2010b), the local binary fitting (LBF) energy model (Li et al.,

2008) and the local image fitting energy model (Zhang et al,,
2010a) in Fig. 6. The C-V model fails to segment the images, since
it is hard to address the segmentation of nature texture image
without texture feature analysis (Cao et al., 2008). The methods
presented by Ni using Wasserstein distance which can faithfully
measure the distance between two histograms by comparing bin
to bin histogram measures. However, it is not appropriate to com-
pare a local histogram of a pixel to the global mean histogram. The
third column in Fig. 6 present the segmentation results via the
method proposed in (Zhang et al., 2010b), which assumes the
intensity inside and outside the evolving curve are homogeneous.
In texture images, however, it is unwise to use the mean inside
and outside the contour to represent the object and background.
The results of LBF (Li et al., 2008) are shown in the fourth column
of Fig. 6. LBF model which are proposed to address the intensity
inhomogeneous problem via local fitting function. However, the
kernel width of the local fitting function of the LBF is fixed. As
we discussed in Section 3.2 and the experiments in Fig. 3, a same
kernel width applied may cause local minima of the energy func-
tional during the curve evolution. Different kernel widths are used
to perform the experiment, but none of the results is satisfactory.
The results of LIF (Zhang et al., 2010a) are shown in the final col-
umn of Fig. 6. LIF method also uses a fixed kernel width during
the curve evolution, so it may be trapped by local minima. More-
over the evolution function of LIF method is defined as follows:

99 _ (I —I"m,

2 —m)o(9)

where m; and m, are the local mean intensity of the background
and object confined by a kernel width. I' is the LFI proposed in
(Zhang et al., 2010a). I is the intensity of the image. It is noticed that
if m; =m, in the above equation, the curve will not evolve
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(c)

Fig. 7. Liver segmentation: (a) the initialization; (b) the segmentation results using Minln = MinOut = 0.99, MaxOut = MaxIn = 1.01 and ¢ = 0.05; and (c) the segmentation

results using MinIn = MinOut = 0.98, MaxOut = MaxIn = 1.02 and ¢ = 0.1.

Fig. 8. Noise image segmentation. The parameters in this experiment are set by Minln = MinOut = 0.98, MaxOut = MaxIn = 1.02, ¢ =0.1,C =6 and L = .

anymore. Thus, the evolving curve will be trapped in some homoge-
neous region such as the contour pointed out by the red arrow in
the last figure of Fig. 6.

Fig. 7 presents the results for liver segmentation in abdomen CT
slicers. We use C =6 and L = o in this experiment. The curve is
initialized by a small closed circle inside the liver in Fig. 5(a). The
segmentation results are shown in (b) and (c) using different
parameters. The results are very similar, except some vessel inside
the liver will be missed when we apply a larger range of the
inequalities.

Fig. 8 shows the segmentation results with and without
Gaussian noise respectively. The first column shows the initializa-
tion of the active contour. The second column shows the segmen-
tation results without noise disturbance. Gaussian noise of mean
25.5 and variance 25.5% is added to the image. The segmentation
results of these noise polluted images are shown in the third
column of Fig. 8. The noise will disturb the computation of the local
histograms. Without tuning the parameters of the inequalities
(23)-(25), our method can give similar results to the unpolluted
images. We therefore drew a conclusion that the noise influences
all of the histograms equally.

5. Conclusion

In this paper, a nonparametric local region-based active contour
model in level set framework is presented. Our method applies the
nonparametric statistic and does not predefine any kind of distri-
bution of each region. It is not appropriate to use a fixed kernel
width when compute the local fitting histograms and evolve the
curve. A method for varying the kernel with is presented in this
study. Three inequality equations are defined. If any of the one is
satisfied, a larger kernel width is encouraged. The bin number is

reduced and fast level set method is used to improve the computa-
tional speed. The experimental results demonstrate that the
proposed method is able to segment texture images and low
contrast image.
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