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A tensor diffusion level set method is presented to extract infrared (IR) targets contour under a sky-
mountain-water complex background. The proposed model combines tensor diffusion operator and
the eigenvalues of tensor-image into a common energy minimization level set framework. By incorporat-
ing the information of image tensor diffusion operator into the external energy term, the level set func-
tion can move in a specific way. And eigenvalues of tensor-image are used for the regularization of zero
level curves in order to diminish the influence of image ‘clutter’ and noise. An additional benefit of the
proposed method is robust to initial conditions. Experimental results show very good performance of
the tensor diffusion level set method for IR targets contours extraction.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As a key technique in infrared (IR) alert and automatic target rec-
ognition system, IR targets detection has became one of the most
important topics in the field of IR image processing [1]. However,
IR targets detection is yet a difficult task. This difficult can be arises
from the fact that most IR images are characterized by complex back-
ground. Various techniques have been proposed for IR target detec-
tion. These methods include: thresholding algorithm [2,3], wavelet
transformation [4,5], stochastic algorithm [6] and real-time detec-
tion method [7], etc. Recently, variational level set method [8-10],
which express targets detection as the minimization of a functional,
have been well established and widely used in various image appli-
cations, including IR targets contours extraction [11,12] and medical
image segmentation [13,14]. The main advantages of this method is
that the variational models can be easily formulated under a princi-
pled energy minimization framework, and allow incorporation of
various prior knowledge, such as shape and intensity distribution,
for robust image segmentation [10]. This paper will focus on varia-
tional level set methods for IR targets contours extraction.

In image processing and computer vision applications, the level
set method [15] was first introduced independently by Caselles
et al. [16] and Malladi et al. [17] in the context of active contours
for image segmentation. The original idea is to implicitly represent
an interface as the zero level set of a function in higher dimension,
referred as to a level set function, and then the level set function is
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deformed according to an evolution partial differential equation
(PDE). A remarkable merit is that the level set function evolution
allows for cusps, corners, and automatic topological change of ac-
tive contour. Variational level set methods for image segmentation
involve minimizing an energy functional over a space of level set
functions using continuous gradient descent method. The energy
functional typically includes the internal energy that smoothes
the level set function and the external energy that drives the mo-
tion of the zero level set toward the desired image features, such
as objects boundaries.

However, the previous level set-based works on IR targets con-
tours extraction [11,12] represent an image by a scalar or vector in
dimensional space. In so doing, some useful information in the ori-
ginal data may not be captured well. As a consequence, these ap-
proaches typically experience difficulty handling images with a
significant portion of mixed pixels. In fact, pixel mixing often oc-
curs in real IR images from different modalities. By reason of light
or sun, some regions in background can produce higher gray-level
than objects, this phenomenon is called ‘pixel mixing’ or ‘clutter’.
Generally, ‘clutter’ can be seen as a special noise.

Recently, a number of algorithms for image processing with
structure tensor and tensor anisotropic diffusion have been pro-
posed and attracted great interest [18-21]. Structure tensor and ten-
sor diffusion directly treats the data as tensor, and thus effectively
avoids the problems derived from treating data as scalars or vectors.
This construction indeed allows for smoothing along discontinuities
of the tensor field, while smoothing across discontinuities is inhib-
ited [18]. In most applications, especially for IR image segmentation,
it is desirable that there is a filling-in effect of local information.

In this paper, we propose a tensor diffusion level set method to
extract IR targets contour. The proposed model combines tensor
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diffusion operator and the eigenvalues of tensor-image into a com-
mon energy minimization level set framework. By incorporating
the information of image tensor diffusion operator into the exter-
nal energy term, the level set function moves up or down in tran-
sition region. And the zero level curves can be generated
automatically at image locations which encounter two opposite
directions of flow. In addition, a weighted p(/4,1,)-Dirichlet inte-
gral as regularity term is presented to diminish the influence of im-
age ‘clutter’ and noise. So the targets contours in IR image with
complex background can be efficiently extraction. The tensor diffu-
sion level set method has an added benefit of allowing the use of a
more simple level set initialization scheme, i.e., the level set func-
tion can be initialized with a constant function. It is more easier to
use in practice than the widely used signed distance function or
binary function.

The remainder of this paper is organized as follows. In Section 2,
we review the structure tensor and tensor diffusion. The proposed
model is introduced in Section 3. Numerical algorithms and exper-
imental results are presented in Section 4. This paper is summa-
rized in Section 5.

2. The structure tensor and tensor diffusion

For a scalar image I, the classical structure tensor D is defined by
Gaussian smoothing of the tensor product of the image gradient,

ie [18]:
Go* I} Gy, a
Go*Ldy Go+l)

where V is gradient operator, G, is a Gaussian kernel with standard
deviation o, and subscripts x and y denote the partial derivatives.
Since the structure tensor is symmetric and semi-positive definite
matrix for each point (x,y)e Q, the eigenvalues (7, 1, where
J1 = /) are always non-negative. Its orthogonal eigenvectors v,
and eigenvectors v, provide the preferred local structure, and the cor-
responding eigenvalues 1, and /, provide the average contrast along
v1 and v, respectively. This means that v, is the orientation with the
highest gray value fluctuations and v, the preferred local orientation.
Constant areas in image are characterized by 4, = 2, = 0, local struc-
ture with larger variation, for example edge transition region, give
/1> Jp ~ 0, corners can be identified by 2; > 1, > 0.

Meanwhile, Weickert proposed a tensor diffusion in image pro-
cessing [18],

ol
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where div(-) is divergence operator, and D € R>*? is a symmetric po-
sitive semi-definite diffusion tensor. With the tensor structure D, we

call the divergence operator div(DVI) as a tensor diffusion operator.
By diagonalizing the structure tensor D, the structure tensor can

be described in terms of its eigenvalues and orthogonal unit
eigenvectors:
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Under local coordinate system (vq,03),

D=],(VI) =Gy« (VIVI") = (

ol ol
Vl_a—vlul +a—021)2 (4)
and the Eq. (2) can be rewritten as
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So the Eq. (2) provides the anisotropic diffusion in the true
sense. In this anisotropic case not only the diffusion is adapted lo-
cally to the data but also the direction of smoothing.

3. Tensor diffusion level set model

In this section, we propose a tensor diffusion level set evolution
strategy in terms of tensor diffusion operator and the eigenvalues
of tensor-image. The goal is to automatic extract the IR targets con-
tours under a sky-mountain-water complex background. The
overall energy functional in our proposed model consists of three
parts: external energy term E..(¢), regularity term E,.(¢) and
internal energy term P(¢), Thus the overall energy functional can
be described as

E(¢) = VEext(§) + 7Ereg(¢) + 1P(¢) (6)

where v, 4, u> 0 are constants. When the zero level set of ¢ finally
comes to a steady state, it will become the contours that separate IR
objects from the background.

For a given image I: 2 — R and a level set function ¢(x,y):
Q — R, where Q c R? is the image domain, we first formulate the
external energy E . {¢) as:

Eexi () = /Qdiv(],,(VI)VI) -Hq(—¢)dxdy 7)

and

H:(z) = % (1 + % arctan (g)) (8)
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where H,(-) is the smooth Heaviside function defined by [8].

In order to control the smoothness of the zero level set and fur-
ther avoid the occurrence of small, isolated regions in the final seg-
mentation, we construct the following functional as the geometric
regularization on the zero level set:

‘l o ,
Ere = niaz v P(/A1=/~2>d d 10
o0) = [ S BT (10)
and
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where §,(-) is the smooth Dirac function, 4, 1>(4; > ) are eigen-
values of the structure tensor J,(VI), K is a threshold. In this paper,
we choose threshold K=10. For each pair 4; and 1, we have
p(/l],/lz) € [1,15]

The functional (10) is in fact the weighted p-Dirichlet integral
with variable exponent, so we call it the weighted p(4,, 4,)-Dirich-
let integral.

In [9], Li et al., proposed an internal energy:

P9) =5 [ (V6] 17 dxdy (13)

which acts as a metric to characterize how close the level set func-
tion to a signed distance function. This metric will be adopted in our
model to make the evolving level set function behave approxi-
mately like a signed distance function.

With the above three metrics, the proposed functional (6) can
be rewrite as:

E(¢) :v/(;diUUJ(VI)VI) -H(—¢)dxdy

; # P(i1.2) 1 2
ﬂ/gp(?q,/lz)&"(@'vqb‘ dxdy+2u/9(|V</>\ 1)’dxdy  (14)
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In a dynamical scheme via steepest descent, minimizing the en-
ergy functional (14) with respect to ¢, we obtain the evolution
PDE:

%: 5.(9) (vdiv(,(VVI) + div VP2V )

1o @ver s n(ag-div( ) 15)

1
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3.1. Why use the tensor diffusion operator in external energy term?

In this subsection, we analyze the behavior of external energy
functional E.x(¢) (7). The behavior of E..{¢) is mainly controlled
by tensor diffusion operator div(Jo(VI)VI). In fact, we have known
from Section 2,

. 0 ol o (, ol

In image analysis application, the direction v; is considered to
be the direction across the image feature, and the direction v, is
considered to be the direction along the image feature. According
to the properties of 1; and 4,, we have div(J,(VI)VI) = 0 for image
flat areas. And div(J,(VI)VI) = %(il %) for image transition re-
gion, which indicates that a shift of intensity at image transition re-
gion along the direction v; can cause significant response of the
operator div(Jo(VI)VI). It is very important for level set evolution.

Let us now investigate the impact of tensor diffusion operator to
level set evolution by a simple example for a mollified step edge
image (Fig. 1a). In which the level set ¢ evolves according to PDE
associated with Ee(¢) as follows:

o

o = divUs(VVDo.(9) (17)

Fig. 1b shows the 1-D horizontal gray level profiles along the
center of the image I, div(J,(VI)VI), ¢pg and ¢1. (¢ is ¢ at iteration
k). We can seen from Fig. 1b that the operator div(Jo(VI)VI) is po-
sitive (negative) in transition region associated with the dark
(bright) side of the edge. The level set evolution starts with
¢o =1, and ¢ moves up (down) in transition region associated with
the dark (bright) side after 1 iteration. This can easily be explained.
div(Jo(VI)VI) > 0 (div(J5(VI)V I) < 0) results in 2 > 0(% < 0). Then

the function ¢ increases (decreases) in transition region, which
drives the level set function moving up (down) and causes the sign
of ¢ flip around edges. So the zero level curves can be generated
automatically at image locations where two opposite directions
of flow encounter after iteration k.

3.2. Why use the weighted p(2;, A2)-Dirichlet integral regularization?

Level set methods must impose some regularization constraints
on level set functions usually due to noise. Typically this is per-
formed by penalizing the length or weighted length of the zero level
set [8-10]. But its level lines tend to overlap for noisy image [22]. In
[22], two smoother regularizations [, |V¢[*dxdy and IV~
were introduced. They have exhibited certain capability of dealing
with noise image and allow the level lines to remain smoothing.
However the smoother regularization may cause the active con-
tours to pass through weak object boundary. Recently, Zhou et al.
[23] proposed a weighted p-Dirichlet integral as the geometric reg-
ularization on zero level set. Different value of p > 1 results in a
tradeoff between length regularization and smoother regulariza-
tion. But if the image intensities representing background are ‘clut-
ter’, this regularization may become sensitive to exponent p.

Here we introduce the p(/4,4)-Dirichlet integral regularization,
just as formula (10). The idea behind (10) is that the amount of reg-
ularization on zero level set can be adjusted automatically by the
exponent p(41,4) to fit the image feature. Under this situation of
the regularization on zero level set, three distinct cases are consid-
ered. (1) If 4; ~ /4, =~ 0, the local area is considered as foreground or
background area. In this case, p(1,4) —» 1.5, which ensures
p(41,42)-Dirichlet integral similar to the smoother regularization.
This regularization avoids occurrence of small, isolated regions in
the final segmentation. (2) If 1; > /1, ~ 0, the local neighborhood
is edge-shaped. Obvious, p(/1,42) — 1, this ensures the active con-
tours not to pass through weak object boundary. (3) 4; = 4, >0,
this means a corner is presented at this pixel. we put p(1,42) =1,
which ensures that the contour of corner will not be destroyed.

3.3. Flexible initialization of level set function

In standard level set methods [8,16,17], it is necessary to initial-
ize the level set function ¢ as a signed distance function (SDF). But
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Fig. 1. The contribution of div(J,(VI)VI) to level set function evolution driven by Eq. (17). (a) Original image I. (b) 1-D horizontal gray level profile along the center of the

image I, div(J(VI)VI), ¢o and ¢1.
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such initialization is fraught with its own problems, such as how
and where to define the initial contours. Some techniques for auto-
matic or optimal initialization have been proposed [24,25] to ad-
dress this problem. Recently, an efficient binary initialization
scheme was proposed [9] and attracted great interest. However,
it still need user intervention to define the initial contours, which
limits its applications in practice. Li et al. [26] proposed a nonzero
constant initialization scheme to address the problem of contours
initialization. In this paper, due to the introduction of the external
energy functional (7), the level set function ¢ allows adopting more
flexible initialization scheme as follows:

1. The initial level set function is a nonzero constant function [26],
such as

$o(X,y) = p,(x,y) € 2 (18)

where p is a nonzero constant.
2. The initial level set function is a signed distance function [8],
such as

7d((x7y)7c)7 (X,y) € ln(c)
¢0(X7y7 t) = 07 (X’y) eC (19)
+d((x,y),0), (x,y) € out(C)

where d((x,y), C) denotes the (shortest) Euclidean distance from the
point (x,y) to the curve ((t).
3. The initial level set function is a binary function [9], such as

+p, xy)eQ\w (20)

¢0(X7y) = {
where o is a region in the image domain €, and p > 0 is a constant.

To demonstrate effectiveness of the proposed initial scheme, we
apply the proposed initialization and tensor-value diffusion level
set model for the same image in Fig. 2. The level set evolution starts
with the following three case: (1) a nonzero constant level set
function; (2) a signed distance function; (3) a binary function. As
can be seen, the 3-D plot of initial level set function, the initial con-
tours, the segmentation results and the 3-D plot of final level set
function are shown in the first, second, third and forth column of
Fig. 2, respectively. Especially for the first case, the level set func-
tion is initialized as a nonzero constant level set function, so there
is no initial contour. Though we adopt different initial schemes and
initial contours, it can be clearly seen from the results in Fig. 2 that
we obtain the same desirable results. This experiment also shows
that our method robust to initial conditions.

(1) 20 iterations

Fig. 2. Tensor diffusion level set evolution with different initial conditions. The first column: 3-D figure of initial level set functions (18)-(20) (from top to bottom),
respectively. The second column: Initial contours correspond to different initial scheme. The third column: Final results of contours extraction. The forth column: 3-D figure of

final level set functions.
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It is worth noting that the constant initial scheme (18) can fas-
ter capture the targets contours (only 10 iterations) than the other
two initial scheme (30 or 20 iterations), and this kind of constant
initial scheme are more easier to use in practice than the widely
used signed distance function or binary function. So the level set
functions always are simply initialized to a nonzero constant func-
tion, i.e. ¢o(x,y) =1, for later experiments.

4. Numerical algorithm and experimental results
4.1. Implementation

The evolution Eq. (15) is implemented using a simple finite dif-
ference scheme. And all the spatial partial derivatives d¢/0x and
O¢[0y are approximated by the central difference, and the tempo-
ral partial derivative d¢/0t is discretized as the forward difference.
The approximation of Eq. (15) can be simply written as

g+ A L(4)) @

where ¢;; = ¢(i,j,nAt) with n > 0, and L(qﬁ,?j) is the spatial differ-
ence approximation of the right hand side in Eq. (15).

Computational cost is also important for level set evolution. In
our method, the regularity of the level set function ¢ is inherently

ensured by diyv(|Ve['“'*2?2V¢) and (m - 1)5;(¢)|V¢|”(""22>.
To compute more efficiently, the later can be canceled. Therefore
in our implementation, we adopt the following modified form of

Eq. (15)

9¢ _

o = 0:(9) (vdiv([o(VI)VI) + zdiy(|v¢\'3<“~"~z>*2v¢))

+ ,u(Ad) - diy(%)) (22)

4.2. Experimental results

The proposed tensor diffusion level set method has been ap-
plied to extraction targets in varied infrared image scenes. The le-
vel set function ¢(x,y,t) is simply initialized to ¢o(x,y)=1 for all

experiments. Besides, we use the following default setting of the
parameters for all the experiments: &¢=1.5, o=1.5 ©=0.04,
4=10 and time step At=5.0. We use relatively small parameter
v for the experiment in this section. In general, our method with
a smaller value v can produce less sensitivity to ‘clutter’, while it
is more robustness to weak object boundary when a larger v is
used. The full decision of value v depends on varied infrared image
scenes. We will give the exact value of v each time.

Fig. 3 demonstrates the proposed method effect of several IR
images under different ‘clutter’ background (150 x 56). All of them
are typical image with pixel mixing (see the first column of Fig. 3).
Because of the sun’s refraction, the waves of the sea produce many
high gray-level regions in infrared images. It has been regarded as a
difficult task in most case to extract target contours under ‘clutter’
backgrounds. The second to the forth column in Fig. 3 show how
our model works on these images. Level set evolution starts with
¢o =1, i.e., there are no initial contours. It can be seen from the sec-
ond column that some contours can emerge automatically after
only 1 iteration. The emergences of contours can be explained as
that the external energy term have influence on the change of ¢
in the entire image domain. Afterwards, the generated contours
evolve toward the desired objects boundaries, while some false
contours in background shrink gradually, as shown in the third
and forth column of Fig. 3. This shrinking phenomenon can be
interpreted as the influence of the adaptive regularity term. Finally,
the evolving curves convergence to the true boundary of each
shape after 50 iterations, as can be seen in the forth column of
Fig. 3. The results show that our model successfully detects all
the IR objects under different ‘clutter’ backgrounds.

Fig. 4 shows the segmentation results for five real IR images
with sky-mountain-water background (250 x 180) using the 2-D
maximum entropy thresholding model [3], the improved CV model
[11] and the propose model. In actual sky-mountain-water con-
flicts, the background of boats were quite complex. Moreover, part
of the boats are quite weak. For such image, the 2-D maximum en-
tropy model cannot segment them correctly. In fact, no matter
what threshold is selected, some part of the background/fore-
ground is incorrectly identified as the foreground/background, as
shown in the second column. The third column of Fig. 4 shows
erroneous results obtained by applying the improved CV model.
As can be seen, the mountain-water line has a serious impact on
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Fig. 3. Detective IR samples under clutter background using the proposed method (v = 0.0005). The first column: original infrared images under different clutter background.
The second column: Intermediate evolution results at the 1st iteration. The third column: Intermediate evolution results at the 5th iteration. The forth column: Finally

evolution results at the 40th iteration.



24 M. Li et al./Infrared Physics & Technology 55 (2012) 19-25

Fig. 4. Detective IR samples under sky-mountain-water background using the 2-D maximum entropy model [3], the improved CV model [11] and the propose model. The
first column: Original infrared images under different sky-mountain-water background. The second column: results of the 2-D maximum entropy model. The third column:
Finally results at the 10,000th iteration of improved CV model. The forth column: Finally results at the 40th iteration of our model with parameters v = 0.004, 0.004, 0.002,

0.002 and 0.005, respectively (from the top to the bottom).

the results of level set evolution. In addition, the improved CV
model cannot extract the weak object contour at the bottom of
the last image. Due to the introduction of multi-channel informa-
tion with structure tensor for our model, it avoids the influence
of mountain-water line. We can see from the forth column of
Fig. 4, our model extract successfully all the boats contours under
sky-mountain-water background.

5. Conclusion

A tensor diffusion level set method is proposed to extract IR tar-
gets contour under complex background. This framework utilizes
image tensor diffusion operator to integrate the information at each
image location, which drives the level set function up or down in
transition region, and located targets edges. While a weighted
p(4q,/2)-Dirichlet integral as regularity term is presented to dimin-
ish the influence of image ‘clutter’ and noise. So the targets contours
in image with complex background can be efficiently extraction. An-
other merit of the proposed method is robust to initial conditions.
Experimental results on IR images with different backgrounds dem-
onstrate the effectiveness of the tensor diffusion level set method.
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