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a b s t r a c t

In this paper, we present a new segmentation method using the level set framework for medical

volume images. The method was implemented using the surface evolution principle based on the

geometric deformable model and the level set theory. And, the speed function in the level set approach

consists of a hybrid combination of three integral measures derived from the calculus of variation

principle. The terms are defined as robust alignment, active region, and smoothing. These terms can

help to obtain the precise surface of the target object and prevent the boundary leakage problem. The

proposed method has been tested on synthetic and various medical volume images with normal tissue

and tumor regions in order to evaluate its performance on visual and quantitative data. The

quantitative validation of the proposed segmentation is shown with higher Jaccard’s measure score

(72.52%–94.17%) and lower Hausdorff distance (1.2654 mm–3.1527 mm) than the other methods such

as mean speed (67.67%–93.36% and 1.3361 mm–3.4463 mm), mean-variance speed (63.44%–94.72%

and 1.3361 mm–3.4616 mm), and edge-based speed (0.76%–42.44% and 3.8010 mm–6.5389 mm). The

experimental results confirm that the effectiveness and performance of our method is excellent

compared with traditional approaches.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Segmentation is the process of separating objects in an image. For
volume medical images, its field of application is wide. For example,
3D visualizations of anatomic structures could benefit enormously
from exact segmentation. Thus, volume segmentation is becoming an
increasingly important part of computer-based medical applications
for diagnosis and analysis of anatomical data. However, segmentation
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in medical imaging is considered to be a very difficult problem, even
though methods specialized for a particular volume usually provides
better results [1]. Recently, the use of a geometric deformable model
approach to extract the deformable surface from a volume image has
become very common [2]. In particular, many researchers have
explored the use of deformable models for volume segmentation.
Active deformable models are the most popular methods for the
volume segmentation of Region-Of-Interest (ROI) in medical images,
implicitly in the form of a level set function or explicitly as a snake
function. Moreover, the popularly of the level set method has
increased because it can handle complex geometries and topological
changes. The level set is a shape-driven tool based on a defined speed
function that can grow and shrink and take the shape of any complex
object of interest. The level set method does not generally depend on
the parameters settings of the model [3]. This makes it a very
attractive and flexible method for shape modeling and object detec-
tion. Another advantage of the level set approach is that the entire
segmentation procedure is fully automatic and is based on the initial
model. Unlike other methods, the extension of the algorithm to a
volume dataset is straightforward and does not require additional
mechanisms. These properties make the level set method a state-of-
the-art method for segmentation, especially volume segmentation.
Therefore, the focus of our paper is on a geometric deformable model
for ROI segmentation in medical images.
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However, it is difficult to detect object volumes based on an
active contour model that is sensitive to certain circumstances.
One problem is that the active contour formulation entails the
tuning of several parameters. In order to overcome the difficulty
of adjusting parameters, a partial differential equation is used for
immediate user feedback on the parameter settings of the active
contour model. The user can tune the parameters and control the
shape of the active contour model by solving the partial differ-
ential equation [4,5]. In particular, Leventon et al. performed
more generic and automated detection of tumor regions through
level set evolution with statistical shape information [6]. But, the
disadvantage of their method is that it may be difficult to obtain
statistical prior knowledge in various cases, especially for tumor
segmentation. T. Chan et al. proposed active contours to detect
object regions in a given image based on the theory of curve
evolution and level sets without boundary information [7]. Also,
level set approaches based on K-mean clustering and fuzzy
classification are proposed in [8–10]. In these methods a cluster-
ing step is performed and the deformable model then grows on
top of the clustered pixels. For the speed function of the level set,
Ho et al. implemented the histogram of a difference image fitted
by parametric distributions for both the enhanced parts and the
noisy background [11]. Many level set algorithms may be distin-
guished on the basis of their speed functions. Some approaches, for
example, require user interaction while others rely on prior estima-
tion of the tumor density function [12].

In this paper, we are interested in segmentation of tumor and
normal tissue in medical volume images using geometric deform-
able models based on evolution theory and the level set method.
Our approach handles topological changes of deformable surfaces
using several geometric integral measures. These measures are
derived by the hybrid method, which considers a region and
boundary information for tumor tissue. They contain three terms
called robust alignment, active region, and smoothing. First, the
alignment term should move the model towards the boundaries
of objects given in the input images dataset. This is decided by the
inner product of the surface normal and the gradient of an input
image for which the normal best aligns with the image gradient.
Second, the active region term efficiently splits the interior and
exterior of the surface of the object. This model can not only
overcome some of the weaknesses in the boundary-based model
such as dependency of local information and initialization, but it
can also optimally partition a given image into some homogenous
regions. Third, the smoothing term helps to ensure a smooth
surface by eliminating noise. This is determined by the mean
curvature computed at a given point. The new method is
iteratively applied with the weighted average of three terms until
we obtain the optimal segmentation result. Finally, we have
proposed an algorithm that can update the parameter values
iteratively. This also provides the basis for a numerical scheme
that is used by geometric deformable models.

The remainder of our paper consists of five sections. In Section
2, we introduce the active deformable model and the level set
theory. Section 3 proposes the hybrid speed function in the level
set method. Section 4 provides a detailed analysis of the accuracy
and robustness of the proposed algorithm. In Section 5, we show
the various segmentation results for medical volume images, and
we conclude our paper in Section 6.
2. Active deformable model

2.1. Geometric integral measures for active surfaces

Let S(r,s):R2-R3 be a parameterized two-dimensional surface
in 3D space defined as follows: S(r,s)¼{(x(r,s),y(r,s),z(r,s)):
0rrrL1,0rsrL2}. Then, the energy functional E(S) for a surface
S can be defined as two types of integral measures that are related
via the Green theorem [13]. The first functional integrates the
function g(S(r,s)) defined on the surface, and is considered as a
surface based measure in the general form of:

E1ðSÞ ¼

Z L1

0

Z L2

0
gðSðr,sÞÞdrds: ð1Þ

The second functional integrates the values of the function
f(x,y,z) inside the surface, and is usually referred to as a volume
based measure,

E2ðSÞ ¼

ZZZ
OS

f ðx,y,zÞdxdydz: ð2Þ

Formally, we search for the optimal surface S, such that

S¼ argmin
S

EðSÞ or S¼ argmax
S

EðSÞ: ð3Þ

In this case, if we have a surface integral of the general form:

EðSÞ ¼

ZZ
S
LðSðr,sÞÞdrds, ð4Þ

then the surface that minimizes (or maximizes) this functional,
can be identified by a partial differential equation known as the
Euler–Lagrange equation:
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A dynamic process known as gradient descent that moves an
arbitrary surface towards a minimum (or maximum) of E(S), is
given by the surface evolution equation:

@S

@t
¼�

@EðSÞ

@S
, ð6Þ

where we added a virtual time parameter t to our surface in order
to allow its evolution into a family of surfaces S((r,s),t). The key
idea is to evolve the surface S from some initialization, in the
direction of the negative energy gradient, and this is implemented
by the gradient descent equation:

@S

@t
¼�

@EðSÞ

@S
¼ F � N

!
: ð7Þ

It models evolution along the normal N
,

with a speed function F.

2.2. Representing an active surface with the level set approach

When considering an active surface model for segmenting 3D
volume data, one option is to adopt an implicit representation of a
surface using the level set model. This method specifies a surface
S as a level set of a 3D scalar volume function:

f : O�Rþ-R, ð8Þ

where O�R3 is the range of the surface model. Thus, a surface S

can be expressed as the following level set:

S¼ fw9fðw,tÞ ¼ kg: ð9Þ

For a surface which evolves along the normal N
,

with a speed F,
one can derive a corresponding partial differential equation for
the embedding function f in the following manner [3]. Since the
function f always takes a zero value on the surface, the total time
derivative of f at the surface locations must vanish:

rfðw,tÞ
@S

@t
þ
@fðw,tÞ

@t
¼ 0 ð10Þ
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By inserting the definition of the normal N
,
¼�ðrf=9rf9Þ, we

can obtain the evolution equation for f:

ft ¼
@f
@t
¼ 9rf9 � F: ð11Þ

By derivation, this equation only specifies the evolution of f
and the values of the speed function F at the location of the
surface.

Because the evolution of the surface is equivalent to the
evolution of the level set function, a surface can be defined as
the border between the positive and negative areas of the level
set function. So the surface can be identified simply by checking
the sign of the level set function f. Furthermore, the initial level
set function f0 can be based on the signed distance from the
initial surface as given by:

f0ðwÞ ¼ 7Dðw,NwðS0ÞÞ, ð12Þ

where 7D(a,b) denotes the signed distance between a and b, and
Nw(S0) denotes the nearest neighboring voxel on initial surface S0.
And the initial level set function f0 is zero at the initial surface
points of S0.

2.3. Boundary and region information models for active surfaces

In general, active surface models can be broadly classified into
two basic deformable models. They are the boundary-based
models (which are often referred to as edge-based) that rely on
the generation of a strength image and the extraction of promi-
nent edges, and region-based models that rely on the homoge-
neity of spatially localized features and properties.

The models based on boundary information have used local
filtering techniques such as edge detection operators. These
models can provide a closed curve as a compromise between
the regularity of the curve and important boundary features.
Recently, Caselles et al. [16] have proposed the geodesic active
contour model in combination with the level set theory. This is
one method of exploring the geometric interpretation of geodesic
active contours from the point-of-view of object segmentation as
well as its relation to other geometric curve evolution approaches
to active contours. This model can be expressed as the following
formula:

@C

@t
¼ gðIÞkN

!
�ðrg � N

!
ÞN
!

ð13Þ

where k is the Euclidean curvature and N
!

is the unit inward
normal vector.

The region-based models are more suitable for dealing with
frame partition problems. Chan and Vese [7] have proposed an
active contour model that minimizes the fitting energy function.
In this case, the fitting energy is defined by:

F1ðCÞþF2ðCÞ ¼
1

2

Z
insideðCÞ

9u0ðx,yÞ�c19
2
dxdy

þ
1

2

Z
outsideðCÞ

9u0ðx,yÞ�c29
2
dxdy ð14Þ

where C is the evolving curve, and the constants c1 and c2,
depending on C, are the averages of image intensity u0 inside C

and outside C, respectively.
Recently, Wang et al. [27] presented and discussed the details

of an efficient local Chan–Vese (LCV) model and its numerical
implementation. The overall energy functional in the proposed
LCV model ELCV consists of three parts: global term EG, local term
EL and regularization term ER. Thus the overall energy functional
can be described as:

ELCV
¼ a � EG

þb � EL
þER: ð15Þ
The global term EG is directly derived in the Chan–Vese model
in which it is also called the fitting term. It can be seen that the
global term is defined based on the global properties, i.e.,
the averages of m0 inside C and outside C, which is stated as
equation (14).

The local term is used for local statistical information as the
key to improve the segmentation capability of the [27] model on
images with intensity in-homogeneity.

EL
ðd1,d2,CÞ ¼

Z
insideðCÞ

9gk � u0ðx,yÞ�u0ðx,yÞ�d19
2
dxdy

þ

Z
outsideðCÞ

9gk � u0ðx,yÞ�u0ðx,yÞ�d29
2
dxdy ð16Þ

where gk is an averaging convolution operator with a k� k size
window, and d1 and d2 are the intensity averages of difference
image gk �u0(x,y)�u0(x,y) inside C and outside C, respectively.

Finally, in order to control the smoothness of the zero level set
and further avoid the occurrence of small, isolated regions in the
final segmentation, they add a regularization term or a length
penalty term L(C), which is defined to be related to the length of
the evolving curve C. The length functional can be written as:

LðCÞ ¼

I
C

dp: ð17Þ

In this case, through replacing the curve C by the level set
function fðx,yÞ, LðCÞ can be reformulated as:

Lðf¼ 0Þ ¼

Z
O
rHðfðx,yÞÞ
�� ��dxdy¼

Z
O
dðfðx,yÞÞ rfðx,yÞ

�� ��dxdy, ð18Þ

where H(z) and d(z) is the Heaviside and Dirac delta function,
respectively.

Hence, our approach handles topological changes of deform-
able surfaces using several geometric integral measures. These
measures will be derived by a hybrid method, which combines
surface information, volume information and regularities of 3D
tissues in medical volume images.
3. Hybrid speed function based on integral measure

3.1. Robust alignment term

First, we are aiming to propagate an initial surface S that
approximates as closely as possible an object’s surface given
medical volume images. To this end, we use a geometric func-
tional that is expressed by the inner product between the volume
image gradient and the surface normal. It is reasonable to assume
that in many cases the gradient direction is a good estimator of
the orientation of the evolving surface. The inner product will be a
high value if the surface normal aligns with the gradient direction
of the volume images.

But, in case of images with intensity in-homogeneity, the
gradient term can never fully stop the level set evolution even
for idea edges, which often makes leakage inevitable. Hence, we
explore a new edge indicator vector embedded with a speed term.
One type of ideal selection is to choose an edge indicator vector
such as the Gradient Vector Flow (GVF) field proposed in Xu et al.
[14]. The particular advantages of this field are its insensitivity to
initialization and its ability to move into boundary concavities. To
obtain the GVF field, we first begin to define the edge map f(x)
derived from the image intensity I(x) having the property that it is
larger near the volume images edges. Next, we can define the GVF
field with a vector field VGVF(x) that minimizes the energy
functional [15]:

EðVGVF Þ ¼

Z
R3
ðm9rV92

þ9rf 929V�rf 92
Þdx ð19Þ



Fig. 1. Computation of the Gradient Vector Flow (GVF) in a patient with a tumor. (a) Brain original MR image, (b) GVF computed from the edge map, and (c) details of the

normalized GVF in the brain tumor region.
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where the parameter m is a regularization parameter governing the
tradeoff between the first and second term in the integrand. This
parameter should be set according to the amount of noise present in
the image (for more noise, increase m). The gradient operator r is
applied to each component of VGVF separately. Using the calculus of
variations, we find that the GVF field must satisfy the Euler equation

mr2V�9rf 92
ðV�rf Þ ¼ 0, ð20Þ

where r2 is also applied to each component of the vector field VGVF

separately. Fig. 1 shows the computation results of the gradient
vector flow for MR head images with a tumor region.

Finally, if we replace the image gradient vector field with the
GVF field in the robust alignment measure representing the
absolute value of the inner product between the vector field
and the surface normal, we obtain the following functional:

EAðSÞ ¼

ZZ
S
/VGVF , N

!
Sdsdr: ð21Þ

By the variational principle, the extremals of this functional
EA(S) can be identified by the Euler Lagrange equation. It is given
by the surface evolution equation:

@S

@t
¼ signð/VGVF , N

!
SÞdivðVGVF ÞN

!
: ð22Þ

So, the corresponding surface evolution equation of this level
set formulation is given by:

@f
@t
¼ signð/VGVF ,rfSÞdivðVGVF Þ9rf9: ð23Þ

Hence, we can obtain a new speed function, which is utilized
as a robust alignment term as follows:

F ¼ signð/VGVF ,rfSÞdivðVGVF Þ: ð24Þ

3.2. Active region term

Next, let us consider the active surface model that uses the
region information of the target objects for segmentation. This
model can not only overcome some of the weaknesses in the
boundary-based model such as dependency of local information
and initialization, but can also optimally partition a given image
into some homogenous regions.

First, we assume that a regular surface S splits a volume image
domain O into two disjoint volumes O1 and O2. We also assume
that all partitions are equally probable, that is:

pðI9fO1,O2gÞ ¼ pðI9O1ÞpðI9O2Þ ð25Þ

and the voxels within each volume are independent:

pðI9OiÞ ¼
Y

wAOi

pðIðwÞÞ, i¼ 1,2: ð26Þ
Then the joint probability of intensity values I observed at a
given volume partition O¼{O1,O2} is given by:

pðI9fO1,O2gÞ ¼ pðI9O1ÞpðI9O2Þ ¼
Y

wAO1

p1ðIðwÞÞ
Y

wAO2

p2ðIðwÞÞ: ð27Þ

In this case, the optimal segmentation is found by minimizing
the following energy functional:

EðSðO1,O2ÞÞ ¼ �

Z
O1

ðlogp1ðIðwÞÞÞdwþ

Z
O2

ðlogp2ðIðwÞÞÞdw

� �
: ð28Þ

Using the Heaviside function H and the one-dimensional Dirac
measure d concentrated at zero, defined respectively as:

HðzÞ ¼
1, if zZ0

0, if zo0
and dðzÞ ¼

d

dz
HðzÞ,

(
ð29Þ

we can express the above energy functional in the following level
set form:

EðfÞ ¼ �
Z
O

HðfðwÞÞlogp1ðIðwÞÞdwþ

Z
O
ð1�HðfðwÞÞlogp2ðIðwÞÞdw

� �
:

ð30Þ

Then, the corresponding Euler–Lagrange evolution equation
for f is given by:

@f
@t
¼ dðfðwÞÞðlogp1ðIðwÞÞ�logp2ðIðwÞÞÞ: ð31Þ

After a standard rescaling that involves replacing d(f) with
9rf9, we have the following equation:

ft ¼ 9rfðwÞ9ðlogp1ðIðwÞÞ�logp2ðIðwÞÞÞ: ð32Þ

In this case, we have assumed that the probability distribution
of the intensity value is generally modeled by Gaussian distribu-
tion. Moreover, since the volume of an interest object such as a
tumor (O1) is homogeneous, it is sufficient to model this as
a single Gaussian distribution. However, since the outside of a
tumor such as a normal volume (O2) consists of several tissues, it
needs to be represented by a Gaussian mixture model with the
proper number of components. However, in spite of the complex
structures of the outside volume, we have conveniently used a
single Gaussian distribution to model its probability distribution.
Thus, the respective probability distributions of the pixel values in
each volume Oi are given by:

piðIðwÞÞ ¼jðIðwÞ;mi,s2
i Þ,

jðIðwÞ;mi,s2
i Þ ¼ ð2ps

2
i Þ
�1=2 exp � 1

2si
2ðI�miÞ

2
� �

, i¼ 1,2, ð33Þ

where mi, s2
i , i¼1,2 are respectively the means and

variances of each Gaussian distribution. The parameters
fmi,s2

i g, i¼ 1,2 in the probability distribution of the tumor
region can be estimated by applying the Maximum Likelihood
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method as follows:

m̂i ¼
1

9Oi9

X
wAOi

IðwÞ, ŝi
2
¼

1

9Oi9�1

X
wAOi

ðIðwÞ�m̂iÞ
2, i¼ 1,2: ð34Þ

3.3. Smoothing term

One of the functionals related to a smoothing measure for a
surface is known as the geodesic active surface model. This model
was introduced in Caselles et al. [16] as a geometric alternative to
the snake’s method. The model is derived using a variation
principle from a geometric measure, and it is defined by:

EGðSÞ ¼

Z L1

0

Z L2

0
gðSðr,sÞÞdrds: ð35Þ

If the function g(x,y,z) is given in a form such as g(x,y,z)¼
1/(1þ9rI(x,y,z)92), then it is based on integration of an inverse
Fig. 2. Various initializations for applying the le

Fig. 3. Box-plot of pixel value mea

Fig. 4. Confidence intervals for pixel value
edge indicator function along the surface. It represents a search
for a surface along which the inverse edge indicator results in the
smallest possible values. That is, we are aiming to find the surface
S that minimizes this functional. The geodesic active surface
usually serves as a good regularization term in a noisy image.
The Euler–Lagrange equation known as the gradient descent
process is given by the following evolution equation:

@EGðSÞ

@S
¼ ðgðSÞk�/rg, N

!
SÞN
!
: ð36Þ

In this case, k is the mean curvature of the surface. Then, the
corresponding Euler–Lagrange evolution equation for the level set
function f is given by:

@f
@t
¼ gðIÞdiv

rf
9rf9

 !
� rgðIÞ,

rf
9rf9

* + !
9rf9: ð37Þ
vel set method to the reference slices.

ns for various initializations.

means for various iteration numbers.
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3.4. Hybrid speed function for level set method

In general, active surface models have been developed as
paradigms for boundary and region-based methods [17–20]. In
this case, we have considered a novel segmentation method using
level set evolution by introducing a new speed term. This is defined
as the weighted sum of three kinds of measures, terms called
Fig. 5. Various types of synthetic images: (a) original image, (

Table 1

PCP, PCN, and ACC measures for segmentation using a,b, and g for texture image.
robust alignment, active region, and smoothing, which are derived
from the respective geometric functionals. This is given as follows:

F ¼ aðsignð/VGVF ,rfSÞdivðVGVF ÞÞþbðlogp1ðIðwÞÞ

�logp2ðIðwÞÞÞþg gðIÞdiv
rf
9rf9

 !
� rg,

rf
9rf9

* + !
: ð38Þ
b) texture image, (c) blurring image, and (d) noisy image.
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So, the corresponding level set formulation of our surface
evolution is given by:

fðtÞ ¼fðt�1Þ
þDtUFU9rfðt�1Þ9: ð39Þ

Finally, in order to ensure that the solution of the partial
differential equation is both consistent and stable, it should be
guaranteed that the small approximation error does not get
amplified as the solution is stepped forward in time. That is, the
stability of the solution can be preserved by using the Courant–
Friedrichs–Lewy (CFL) condition [21], which asserts that numer-
ical curves or surfaces should move at most in one grid cell at
each time step. This results in the CFL time step restriction
given by:

Dtr
1

maxðF; 9rf9Þ
: ð40Þ
Table 2

PCP, PCN, and ACC measures for segmentation using a, b, and g for blurring image.
4. Analysis

4.1. Level set initialization

First, in order to show that the proposed method does not
depend on the initial values, we have implemented image
segmentation using various initial values for up to 300 iterations
of the level set function. Fig. 2 shows examples of initial contours
obtained from the reference slices.

In Fig. 3, we show box-and-whisker plots of the pixel value
means in the segmented region obtained using various iteration
numbers for each initialization. This is a demonstration of the
robustness of our algorithm to initialization, after applying a suitable
number of iterations. Based on this plot, we note that the mean
values stabilize and almost converge towards the target value.

Next, Fig. 4 shows the confidence intervals for the pixel value
means in the brain MR image obtained using iteration numbers
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1–300. It can be seen that as the iteration number increases, the
mean values stabilize and also the length of the confidence
interval rapidly decreases.

4.2. Study of the properties of three parameter values

In this analysis, we describe the properties of three parameters
in the hybrid speed function that should be set by the user. These
parameters are the following terms: robust alignment (a), active
region (b), and smoothing (g), and they need to be weighted
properly in order to guide the evolving surface under different
image conditions. Therefore, to assess the segmentation perfor-
mance obtained by adjusting the parameter values of a, b, and g,
we apply our level set procedure to the synthetic original, texture,
blurring, and noisy images shown, respectively, in Fig. 5.

In this case, we have used the measure proposed by Fukunaga
[22] and Kornel et. al [23], in order to numerically evaluate the
segmentation results obtained using various values of the three
Table 3

PCP, PCN, and ACC measures for segmentation using a, b, and g for noisy image.
parameters. This measure is defined using False Positive (FP),
False Negative (FN), True Positive (TP), and True Negative (TN).
Classifying object data as a background is considered a FP and
classifying background data as an object is considered a FN. TP
and TN are the cases where an object is classified as an object and
a background is classified as a background, respectively. The
accuracy of the segmentation result can be estimated using the
following three equations.

First, Chou and Fasman [24,25] used the percentage of cor-
rectly predicted (PCP) objects

PCP¼ 100
TP

TPþFN
: ð41Þ

It is the same as the sensitivity expressed as a percentage. But,
this number alone provides no information whatever about false
positives.

Second, we have considered another measure of false posi-
tives. It can be defined by the percentage of correctly predicted
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non-object (PCN)

PCN¼ 100
TN

TNþFP
: ð42Þ

Third, the overall accuracy (ACC) of the segmentation result
can be estimated using the following equation;

ACC ¼
TPþTN

TPþTNþFPþFN
: ð43Þ

Tables 1–3 show the comparison of segmentation performance
for possible values of the three parameters a,b, and g in the three
synthetic images, i.e., texture, blurred, and noisy image. Table 1
presents the case that the robust alignment term is tuned to play
the dominant role in the segmentation of the texture image. On
Fig. 7. Example slices of origin

Table 4
Quantitative comparison of four segmentation methods.

Volume Volume (mm3) Overlap (JM

MS HB MA MV EB HB

Head 1 2560 2438 2394 2399 3700 93.95

Head 2 3977 3848 3862 3871 3495 94.17

Head 3 4494 3430 3166 3563 661 72.52

Head 4 28074 26462 25277 23992 3685 89.76

Lung 9710 9016 9099 6160 74 92.34

Fig. 6. Results of segmentation using a, b and g parameter values of the proposed spee

g¼0.5.

Fig. 8. Quantitative comparison of the results of the HB, MA and MV schemes using t

(c) Hausdorff distance (HD).
the other hand, the active region term makes little contribution to
exact segmentation. In other words, the alignment term in the
speed function has a greater influence than the other terms on
segmentation of the texture image.

Table 2 shows that the active region term makes the dominant
contribution to the blurred image, but neither the robust
alignment term nor the smoothing term contribute to good
segmentation.

For noisy images, Table 3 shows that the smoothing term is the
important factor while the robust alignment term and the active
region term both make little contribution to good segmentation.

Fig. 6 shows the optimal segmentation results obtained using
the proposed parameters in the texture, blurring and noisy
images, respectively.
al brain MR tumor images.

%) Hausdorff (mm)

MA MV EB HB MA MV EB

92.54 92.73 38.32 1.2654 1.3361 1.3361 4.3591

94.47 94.72 42.44 1.6956 1.6250 1.6250 3.8010

67.67 73.30 9.41 3.1527 3.4463 3.4616 6.5389

86.55 84.04 7.78 2.6910 2.7693 2.6693 4.1183

93.36 63.44 0.76 2.4094 2.4238 2.8049 5.0563

d function: (a) a¼0.5, b¼0.2, g¼0.3, (b) a¼0.1, b¼0.6, g¼0.3, (c) a¼0.2, b¼0.3,

wo metrics. (a) Volume with manual segmentation, (b) volume overlap (JM), and
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5. Experimental results

We compare the performance of our hybrid speed function
with traditional speeds, such as mean speed (Chan & Vese [7]),
mean-variance speed (Rousson & Deriche [26]), and edge based
speed (Caselles et al. [16]), and validate the segmentation results.
Five datasets of various patients acquired from the UNC CASILab
[28] are used to evaluate the segmentation performance for each
method. These include four brain MR volume datasets with a
Fig. 10. A comparison of segmentation results for medical volume images. (a) Initia

(e) hybrid speed.

Fig. 11. Tumor segmentation results of the proposed segmentation scheme. (a) Initi

(d) final segmentation result.

Fig. 9. A comparison of the convergence rate
tumor and one lung CT volume dataset. Each MR and CT volume
images has an in-plane resolution of 256�256�120 and
512�512�330 a voxel size of 1�1�1 mm, respectively. In this
case, we focused on MR images of a brain tumor where the ROI is
indicated by an arrow, as shown in Fig. 7.

The results of 3D segmentation in terms of the mean speed,
mean-variance speed, edge-based speed and our hybrid speed for
MR volume images with tumor are compared with manual
segmentation. Here, the manual segmentation has been provided
l surface, (b) mean speed, (c) mean-variance speed, (d) edge-based speed, and

al surface, (b) intermediate-closer to initial, (c) intermediate-closer to final, and

of our method with MA, MV methods.
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with the data sets obtained from the authors’ team performing
the segmentation. In this paper, two validation metrics are used.
One is Jaccard’s Measure (JM) or the volume overlap metric. This
is the normalized voxel intersection count for the pair of seg-
mentations OM and OT, where OM and OT denote the set of tumor
voxels in manual segmentation and the corresponding segmenta-
tion resulting from each speed function, respectively. This is
defined by:

JM¼
#ðOM \OT Þ

#ðOM [OT Þ
: ð44Þ
Fig. 12. Cross-sections of extracted tumor surfaces in a
The other is the Hausdorff Distance (HD) which defines the
maximum surface distance. This measure is extremely sensitive
to outliers and may not reflect the overall degree of matching.

Hausdorf f ¼maxðD1ðA,BÞ,D1ðB,AÞÞ ð45Þ

where A and B are the reference and result surface of the
algorithm respectively, and D1ðA,BÞ ¼maxxAAðminxABð:x�y:ÞÞ:

The quantitative validation of the four segmentation methods
with the Hybrid Speed (HB), Mean Speed (MA), Mean-Variance
Speed (MV), and Edge-based Speed (EB) are presented in Table 4.
ddition to the 3D view of corresponding surfaces.



Fig. 13. A comparison of segmentation results for medical volume images.

Fig. 14. Example slices of brain MR images for CerebroSpinal Fluid (CSF).
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First, in the first column of Table 4, we note that the volume
size of our segmentation method with respect to manual seg-
mentation is 91.09% overall. On the other hand, the values for the
other three methods are 88.96% (MA), 83.85% (MV), and 52.20%
(EB), respectively. Hence, the volume size of our segmentation
method approximates that of manual segmentation better than
the other methods.

Second, in the second column of Table 4, JM in the HB scheme
varies from 72.52% to 94.17%, in the MA scheme it varies from
67.67% to 94.47%, and in the MV scheme it varies from 63.44% to
94.72%. However, the EB scheme obtained lower values than the
other three schemes (it varies from 0.76% to 42.44%). The JM
values show that the amount of volume overlap of our method for
various medical datasets is higher than the other methods, thus
demonstrating that our method is more robust and reliable with
respect to the size and complexity of tumors or normal tissue.
Thus, the HB scheme generally performs better than the other
schemes.

Third, in the third column of Table 4, the HB scheme varies
from 1.2654 mm to 3.1527 mm, in the MA scheme it varies from
1.3361 mm to 3.4463 mm, and in the MV scheme it varies from
1.3361 mm to 3.4616 mm. However, the EB scheme obtained
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higher values than other three schemes (it varies from 3.8010 mm
to 6.5389 mm). In this case a low HD value is indeed an indicator
of good matching between two surfaces, and a high HD value does
not imply poor matching. Because two surfaces that are fairly
Fig. 15. CSF segmentation results of the proposed segmentation scheme. (a) Initial surf

segmentation result.

Fig. 16. Visualization of segmentation results for various views. (a) CSF regio
matched may still have a large HD value due to some outliers in
the matching distances between them. However, the results for
the HD metric indicate that our segmentation method is very
reliable.
ace, (b) intermediate-closer to initial, (c) intermediate-closer to final, and (d) final

n in brain MR image and (b) tumor region in abnormal brain MR image.
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Fig. 8 shows the graphical diagram for the quantitative
comparison of the HB, MA, MV, and EB schemes. As seen in
Fig. 8(b), the JM score is generally higher than the other ones. The
proposed HB scheme gives the highest JM values except for Head
2, where MV performs the best. Furthermore, the HD scheme
works better for simple and convex/concave tumors than for
complex ones. This can also be verified in Fig. 8(c). However, the
HB scheme performs better than the other two schemes except
for Head 3, which is the complex tumor. This is the reason for the
third regularization term.

The speed or convergence rate of the three algorithms (HB, MA,
MV) can be compared using the number of iterations needed for
exact segmentation. Utilizing a speed comparison is a valid
approach, since the time taken to complete iteration in the three
algorithms is nearly the same. In Fig. 9, the mean and standard
deviation of the intensity values in the segmented tissue are
displayed according to the iteration numbers for the three algo-
rithms. Based on these results, we note that the convergence rate
of our method is faster and more stable than the other methods.

Next, the 3D segmentation result obtained using the proposed
approach for the volume datasets is compared with the segmen-
tation results obtained using the other methods. Fig. 10(a)–(e)
shows the initial surface and the segmented volume surfaces
given by the Mean Speed (MA), Mean-Variance Speed (MV), Edge-
based Speed (EB), and the Hybrid Speed (HB), respectively. The
experimental results showed that the proposed segmentation
method was more accurate than the other methods.

We also applied the proposed segmentation method to the
brain MR volume dataset with tumor. In each case, the first row
shows one slice and the second row shows the 3D volume. The
initial surface was located by a small cube inside the object, as
shown in Fig. 11(a) and from Fig. 11(b) and (c), we can observe
that the initial surface splits and evolves towards the boundaries
of the tumor. Also, our method segments the brain MR image
accurately for the tumor boundaries, as shown in Fig. 11(d).

Fig. 12 shows the cross-sections of extracted tumor surfaces
using the hybrid speed function with some of their image slices in
addition to the 3D view of the corresponding surfaces for the five
datasets used in the above experiment.

Fig. 13 shows the comparison of segmentation results for five
medical volume images with four different methods. Based on
Fig. 13, the Mean Speed (MA) and Mean-Variance Speed (MV)
methods can achieve acceptable results with manual segmenta-
tion. However, the Edge-based Speed (EB) method cannot be
expanded any more towards the object. But, our proposed method,
which is the Hybrid Speed (HB) method, obtains more similar
results to manual segmentation than the MA and MV methods.

Next, we have also applied our segmentation method to the
normal tissue of brain MR images where the ROI is indicated by
an arrow in Fig. 14. Each MR volume image has an in-plane
resolution of 166�131�200 and a voxel size of 1�1�1 mm.

Fig. 15 shows the final segmentation results of CSF obtained by
applying the proposed approach to the brain MR volume dataset.
In each case, the first row shows one slice image and the second
row shows the 3D volume images. The initial level set is a
hexahedron surface for which the initial rectangle is placed
around the ROI in the reference slice in Fig. 15(a), and the
intermediate results are shown in Fig. 15(b) and (c), respectively.
The hybrid method accurately segments the anatomical region of
the brain MR image, as shown in Fig. 15(d).

To visualize the segmentation results of the brain MR images,
we conducted an experiment on the 3D volume dataset.
Fig. 16(a) and (b) show the 3D rendering results of the segmented
CSF region in the brain MR images and the tumor region in the
abnormal brain MR images obtained using the proposed level set
method with respect to its rotated view.
6. Conclusions

We have presented a detection method for anatomic structures
in volume medical images using the level set method with a new
hybrid speed function. The level set procedure can segment the
volume images much more accurately, and it has less sensitively to
noise. It works by exploiting three speed terms, which are robust
alignment, active region, and smoothing. We analyzed the char-
acteristics of these terms using the original, texture, blurring, and
noisy images. The experimental results show that our method
clearly outperforms the approaches it was compared against, but it
still varies from the ground truth volume images.
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