
Image and Vision Computing 28 (2010) 668–676
Contents lists available at ScienceDirect

Image and Vision Computing

journal homepage: www.elsevier .com/locate / imavis
Active contours with selective local or global segmentation: A new formulation
and level set method

Kaihua Zhang a, Lei Zhang a,*, Huihui Song b, Wengang Zhou b

a Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong, China
b Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China

a r t i c l e i n f o
Article history:
Received 26 June 2008
Received in revised form 18 October 2009
Accepted 21 October 2009

Keywords:
Active contours
Geodesic active contours
Chan–Vese model
Image segmentation
Level set method
0262-8856/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.imavis.2009.10.009

* Corresponding author. Tel.: +852 27667355.
E-mail addresses: zhkhua@mail.ustc.edu.cn (K. Zha

du.hk (L. Zhang), freebird@mail.ustc.edu.cn (H. Song)
Zhou).
a b s t r a c t

A novel region-based active contour model (ACM) is proposed in this paper. It is implemented with a spe-
cial processing named Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) method,
which first selectively penalizes the level set function to be binary, and then uses a Gaussian smoothing
kernel to regularize it. The advantages of our method are as follows. First, a new region-based signed
pressure force (SPF) function is proposed, which can efficiently stop the contours at weak or blurred
edges. Second, the exterior and interior boundaries can be automatically detected with the initial contour
being anywhere in the image. Third, the proposed ACM with SBGFRLS has the property of selective local
or global segmentation. It can segment not only the desired object but also the other objects. Fourth, the
level set function can be easily initialized with a binary function, which is more efficient to construct than
the widely used signed distance function (SDF). The computational cost for traditional re-initialization
can also be reduced. Finally, the proposed algorithm can be efficiently implemented by the simple finite
difference scheme. Experiments on synthetic and real images demonstrate the advantages of the pro-
posed method over geodesic active contours (GAC) and Chan–Vese (C–V) active contours in terms of both
efficiency and accuracy.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction crete gradients are bounded and then the ESF in Eq. (1) will never be
Image segmentation is a fundamental problem in image pro-
cessing and computer vision. Extensive study has been made and
many techniques have been proposed [1,2], among which the
ACM [1,3–6] is one of the most successful methods. The basic idea
of ACM is to evolve a curve under some constraints to extract the
desired object. According to the nature of constraints, the existing
ACMs can be categorized into two types: edge-based models
[1,3,4,6,10,12,18,20] and region-based models [5,7,8,11,14–17].

One of the most popular edge-based models is the GAC model
[3,4], which utilizes image gradient to construct an edge stopping
function (ESF) to stop the contour evolution on the object bound-
aries. Usually, a positive, decreasing and regular ESF g(|rI|) is used
such that limt?1g(t) = 0. For instance,

gðjrIjÞ ¼ 1

1þ jrGr � Ij2
; ð1Þ

where Gr � I denotes convolving image I with a Gaussian kernel
whose standard deviation is r. However, for digital images the dis-
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zero on edges. Some edge-based ACMs introduce a balloon force
term to shrink or expand the contour, yet it is difficult to design
the balloon force. If the balloon force is large, the contour will pass
through the weak edge of the object. On the other hand, if the bal-
loon force is not large enough, the contour may not pass through
the narrow part of the object. In addition, the edge-based models
are prone to local minimum, failing to detect the exterior and inte-
rior boundaries when the initial contour is far from the desired ob-
ject boundary.

Region-based ACMs have many advantages over edge-based
ones. First, region-based models utilize the statistical information
inside and outside the contour to control the evolution, which
are less sensitive to noise and have better performance for images
with weak edges or without edges. Second, they are significantly
less sensitive to the location of initial contour and then can effi-
ciently detect the exterior and interior boundaries simultaneously.
One of the most popular region-based models is the C–V model [5],
which is based on Mumford–Shah segmentation techniques [8]
and has been successfully applied to binary phase segmentation.

As pointed in [5], the C–V model can automatically detect all of
the contours, no matter where the initial contour starts in the im-
age. So we can say that the C–V model has the global segmentation
property to segment all objects in an image. Comparatively, the
GAC model can only extract the object when the initial contour
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surrounds its boundary, and it cannot detect the interior contour
without setting the initial one inside the object. Thus we can say
that the GAC model possesses local segmentation property which
can only segment the desired object with a proper initial contour.

In this paper, we propose a new region-based ACM, which
shares the advantages of the C–V and GAC models. We utilize the
statistical information inside and outside the contour to construct
a region-based signed pressure force (SPF) function [9], which is
able to control the direction of evolution, to substitute the ESF.
The proposed SPF function has opposite signs around the object
boundary, so the contour can shrink when it is outside the object
or expand when inside the object.

We propose a novel level set method, i.e. SBGFRLS, to imple-
ment our model. It improves the traditional level set methods by
avoiding the calculation of SDF and re-initialization [13]. We use
a selective step, which first penalizes level set function to be bin-
ary, and then uses a Gaussian filter to regularize it. The Gaussian
filter can make the level set function smooth and the evolution
more stable. It is worth noting that the SBGFRLS method is general
and robust, and it can be applied to classical ACMs, such as GAC
model [3,4], C–V model [5], PS model [14,15], and LBF model
[11,24]. Furthermore, computational complexity analysis shows
that the SBGFRLS method is more efficient than the traditional le-
vel set methods. In addition, the proposed model implemented
with SBGFRLS has a property of selective local or global segmenta-
tion, which can not only extract the desired objects, but also accu-
rately extract all the objects with interior and exterior boundaries.

This paper is organized as follows: In Section 2, we review the
classic GAC and C–V models. Section 3 describes the formulation of
our method and how to construct the region-based SPF function.
The numerical method of the proposed model is also summarized
in this section. Furthermore, we give detailed explanations about
applying our model to segment multi-objects with different intensi-
ties. The advantages of our model over the GAC and C–V models are
also discussed. Section 4 validates our method by extensive experi-
ments on synthetic and real images. Section 5 concludes the paper.
2. The GAC and C–V models

2.1. The GAC model

Let X be a bounded open subset of R2 and I: [0, a] � [0, b] ? R+

be a given image. Let C(q): [0, 1] ? R2 be a parameterized planar
curve in X. The GAC model is formulated by minimizing the fol-
lowing energy functional:

EGACðCÞ ¼
Z 1

0
gðjrIðCðqÞÞjÞjC 0ðqÞjdq; ð2Þ

where g is the ESF as in Eq. (1).
Using calculation of variation [19], we could get the Euler–La-

grange equation of Eq. (2) as follows:

Ct ¼ gðjrIjÞj~N � rg � ~N
� �

~N; ð3Þ

where j is the curvature of the contour and ~N is the inward normal
to the curve. Usually a constant velocity term a is added to increase
the propagation speed. Then Eq. (3) can be rewritten as

Ct ¼ gðjrIjÞðjþ aÞ~N � rg � ~N
� �

~N: ð4Þ

The corresponding level set formulation is as follows:

@/
@t
¼ gjr/j div

r/
jr/j

� �
þ a

� �
þrg � r/; ð5Þ
where a is the balloon force, which controls the contour shrinking
or expanding.

2.2. The C–V model

Chan and Vese [5] proposed an ACM which can be seen as a spe-
cial case of the Munford–Shah problem [8]. For a given image I in
domain X, the C–V model is formulated by minimizing the follow-
ing energy functional:

ECV ¼ k1

Z
insideðCÞ

jIðxÞ � c1j2dxþ k2

Z
outsideðCÞ

jIðxÞ � c2j2dx; x 2 X;

ð6Þ

where c1 and c2 are two constants which are the average intensities
inside and outside the contour, respectively. With the level set
method, we assume

C ¼ x 2 X : /ðxÞ ¼ 0f g;
inside ðCÞ ¼ x 2 X : /ðxÞ > 0f g;
outside ðCÞ ¼ x 2 X : /ðxÞ < 0f g:

8><
>:
By minimizing Eq. (6), we solve c1 and c2 as follows:

c1ð/Þ ¼
R

X IðxÞ � Hð/ÞdxR
X Hð/Þdx

; ð7Þ

c2ð/Þ ¼
R

X IðxÞ � ð1� Hð/ÞÞdxR
Xð1� Hð/ÞÞdx

: ð8Þ

By incorporating the length and area energy terms into Eq. (6) and
minimizing them, we obtain the corresponding variational level set
formulation as follows:

@/
@t
¼ dð/Þ lr r/

jr/j

� �
� m� k1ðI � c1Þ2 þ k2ðI � c2Þ2

� �
; ð9Þ

where l P 0; m P 0; k1 > 0; k2 > 0 are fixed parameters, l con-
trols the smoothness of zero level set, m increases the propagation
speed, and k1 and k2 control the image data driven force inside
and outside the contour, respectively. r is the gradient operator.
H(/) is the Heaviside function and d(/) is the Dirac function. Gener-
ally, the regularized versions are selected as follows:

HeðzÞ ¼ 1
2 1þ 2

p arctan z
e

� 	� 	
;

deðzÞ ¼ 1
p � e

e2þz2 ; z 2 R

(
: ð10Þ

As shown in Fig. 1, if e is too small, the values of de(z) tend to be
near zero to make its effective range small, so the energy functional
has a tendency to fall into a local minimum. The object may fail to
be extracted if the initial contour starts far from it. In Section 4, we
will give some examples to show this drawback. However, if e is
large, although de(z) tends to obtain a global minimum, the finial
contour location may not be accurate [24].

3. The proposed model

3.1. The design of SPF function

The SPF function defined in [9] has values in the range [�1, 1]. It
modulates the signs of the pressure forces inside and outside the
region of interest so that the contour shrinks when outside the ob-
ject, or expands when inside the object. Based on the analysis in
Section 2, we construct the SPF function as follows:

spf ðIðxÞÞ ¼
IðxÞ � c1þc2

2

max jIðxÞ � c1þc2
2 j

� 	 ; x 2 X; ð11Þ

where c1 and c2 are defined in Eqs. (7) and (8), respectively.
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Fig. 1. The Heaviside function and Dirac function w.r.t different epsilon values.
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The significance of Eq. (11) can be explained as follows. Refer to
Fig. 2, we assume that the intensities inside and outside the object
are homogeneous. It is intuitive that MinðIðxÞÞ 6 c1; c2 6

MaxðIðxÞÞ, and the equal signs cannot be obtained simultaneously
wherever the contour is. Hence, there is

MinðIðxÞÞ < c1 þ c2

2
< MaxðIðxÞÞ; x 2 X: ð12Þ

Obviously, the signs of the SPF function in Eq. (11) are identical to
what Fig. 2 shows, so Eq. (11) can serve as an SPF function. Substi-
tuting the SPF function in Eq. (11) for the ESF in Eq. (5), the level set
formulation of the proposed model is as follows:

@/
@t
¼ spf IðxÞð Þ � div

r/
jr/j

� �
þ a

� �
jr/j þ rspf ðIðxÞÞ � r/; x 2 X

ð13Þ
3.2. Implementation

In the traditional level set methods, the level set function is ini-
tialized to be an SDF to its interface in order to prevent it from
being too steep or flat near its interface, and re-initialization is re-
quired in the evolution. Unfortunately, many existing re-initializa-
tion methods have an undesirable side effect of moving the zero
level set away from its interface. Furthermore, it is difficult to
decide when and how to apply the re-initialization. In addition,
re-initialization is a very expensive operation. To solve these prob-
lems, we propose a novel level set method, which utilizes a Gauss-
( )Max I

( )Min I+
−

Fig. 2. The signs of the SPF function inside and outside the object are opposite.
ian filter to regularize the selective binary level set function after
each iteration. The procedure of penalizing level set function to
be binary is optional according to the desired property of evolu-
tion. If we want local segmentation property, the procedure is nec-
essary; otherwise, it is unnecessary.

In our method, the level set function can be initialized to con-
stants, which have different signs inside and outside the contour.
This is very simple to implement in practice. In the traditional level
set methods, the curvature-based term div(r//|r/|)|r/| is usu-
ally used to regularize the level set function /. Since / is an SDF
that satisfies |r/| = 1 [13], the regularized term can be rewritten
as D/, which is the Laplacian of the level set function /. As pointed
out in [21] and based on the theory of scale-space [22], the evolu-
tion of a function with its Laplacian is equivalent to a Gaussian ker-
nel filtering the initial condition of the function. Thus we can use a
Gaussian filtering process to further regularize the level set func-
tion. The standard deviation of the Gaussian filter can control the
regularization strength, just as the parameter l in Eq. (9) does.
Since we utilize a Gaussian filter to smooth the level set function
to keep the interface regular, the regular term div(r//|r/|)|r/|
is unnecessary. In addition, the term rspf � r/ in Eq. (13) can also
be removed, because our model utilizes the statistical information
of regions, which has a larger capture range and capacity of anti-
edge leakage. Finally, the level set formulation of the proposed
model can be written as follows:

@/
@t
¼ spf ðIðxÞÞ � ajr/j; x 2 X: ð14Þ

The main procedures of the proposed algorithm are summa-
rized as follows:

1. Initialize the level set function / as

/ðx; t ¼ 0Þ ¼
�q x 2 X0 � @X0;

0 x 2 @X0;

q x 2 X�X0;

8><
>: ð15Þ

where q > 0 is a constant, X0 is a subset in the image domain X and
oX0 is the boundary of X0.
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2. Compute c1(/) and c2(/) using Eqs. (7) and (8), respectively.
3. Evolve the level set function according to Eq. (14).
4. Let / = 1 if / > 0; otherwise, / = �1.

This step has the local segmentation property. If we want to selec-
tively segment the desired objects, this step is necessary; other-
wise, it is unnecessary.

5. Regularize the level set function with a Gaussian filter, i.e. / = /
� Gr.

6. Check whether the evolution of the level set function has con-
verged. If not, return to step 2.

Step 4 serves as a selective segmentation procedure, because it
makes the deviation |r/| that is far from the interface of level set
function / close to zero, and only the /(x) near the interface will
evolve. Thus the evolution has local segmentation property. We
can start the contour near the object of interest to obtain the de-
sired segmentation. On the other hand, step 4 should be removed
if we want to detect all the objects.

In step 5, the standard deviation r of the Gaussian filter Gr is a
critical parameter, which should be chosen properly. If r is too
small, the proposed method will be sensitive to noise, and the evo-
lution will be unstable. On the other hand, if r is too large, edge
leakage may occur, and the detected boundary may be inaccurate.
In our experiments, we truncate the Gaussian kernel as a K � K
mask for efficiency, which K is typically less than 6. r ranges from
0.8 to 1.5.
3.3. Discussion for segmenting multi-objects with different intensities

Since our model utilizes the global image intensities inside and
outside the contour, it has the similar drawbacks to the C–V model,
such as the inefficiency in handling images with severe intensity
inhomogeneity. However, if the intensities of objects in the images
are homogeneous in their own domains while being different from
each other, our model can still handle some of these cases well.

As shown in Fig. 3, we assume that there are N objects in the im-
age, and then the image domain is partitioned into X1, . . . , XN and
Xb, whose intensities are m1, . . . , mN and mb, respectively. The ob-
ject areas are denoted as S1, . . . , SN. The contour is set around the
objects. The background areas inside and outside the contour are
Sbi and Sbo, respectively. As Fig. 3 shows, we only consider the case
that the background intensity is the highest. The discussion is also
suitable for the case when the background intensity is the lowest.
However, similar to the C–V model [15,24], our model cannot han-
dle the case when the background intensity is neither the highest
nor the lowest. For the convenience of discussion, we assume
m1 6 m2 6 . . . mN 6 mb.

Parameters c1 and c2 serve as the average intensities which can
be written as
bΩ

1Ω

1S
NS

1m NΩ
Nm

biS
boS bm

Fig. 3. Demonstration of segmentation for multi-objects with different intensities.
m1, . . . , mN are object intensities, respectively, and S1, . . . , SN are object areas. Sbi and
Sbo are background areas inside and outside objects. mb is background intensity.
X1, . . . , XN are object domains, and Xb is background domain.
c1 ¼
PN
k¼1

mkSk þmbSbi

� � PN
k¼1

Sk þ Sbi

� �
;



c2 ¼ mb;

8<
: ð16Þ

So the SPF function is as follows:

spf ðIðxÞÞ¼ IðxÞ�
PN

k¼1mkSkþmbSbi

� �. PN
k¼1SkþSbi

� �
þmb

2
; x2X:

ð17Þ

Eq. (17) can be rewritten as

spf ðIðxÞÞ ¼
ðIðxÞ �mbÞSbi þ

PN
k¼1 IðxÞ � mbþmk

2

� 	
SkPN

k¼1Sk þ Sbi

; x 2 X; ð18Þ

Thus

spf ðIðxÞÞ ¼
XN

k¼1

mb �mk

2

� �
Sk

. XN

k¼1

Sk þ Sbi

 !
> 0; for x 2 Xb

When x e XN, there is

spf ðIðxÞÞ ¼
ðmN �mbÞSbi þ

PN
k¼1ðmN � mbþmk

2 ÞSkPN
k¼1Sk þ Sbi

: ð19Þ

If mN 6 ðmb þm1Þ=2; then spf (I(x)) < 0 for all x e X1 , . . ., XN, and our
model can handle these images well; otherwise, our model may fail.
It is worth noting that the C–V model may also fail in this case be-
cause its energy functional can be easily trapped into local minima
[5].

3.4. Advantages of our model over the GAC and C–V models

In contrast to the GAC model, our model utilizes the image sta-
tistical information to stop the curve evolution on the desired
boundaries, so it is robust to noise. Furthermore, our model can
well handle images with weak edges or without edges. In addition,
our model can extract the interior boundaries of the objects by set-
ting the initial contour anywhere.

Compared with the C–V model, our model can extract objects
whose boundaries are distinctive while interior intensities are
not homogeneous (see Fig. 7 in Section 4 for example). Moreover,
Fig. 4. The segmentation results on a synthetic image by the proposed method and
the GAC model. The first row shows the initial contours of our method (left) and the
GAC model (right), respectively, and the second row shows the corresponding
segmentation results. The parameter a = 20.



Fig. 5. Comparisons of the global segmentation property between the C–V model and the proposed method. The first row shows the initial contours, the second row shows
the segmentation results of C–V model, and the third row shows the segmentation results of the proposed method. The parameter a = 20.
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our model can selectively extract the desired object by setting the
initial contour intersecting or surrounding the desired boundaries,
while the C–V model will extract all the objects. Furthermore, the
evolution direction in our model can be controlled to obtain satis-
fying segmentation results, while the C–V model may get disor-
dered results (see Fig. 8 in Section 4 for example). In addition,
our model can extract all the objects with the initial contour being
set anywhere, while the C–V model may be trapped into the local
minima and then result in unsatisfied segmentation (see Fig. 5 in
Section 4 for example). Finally, our model has less computational
complexity than the GAC and C–V models.
Fig. 6. Segmentation results of the galaxy images. The first row shows the initial
contours and the second row show the segmentation results. The parameter a = 20.
4. Experimental results

Our algorithm is implemented in Matlab 7.0 on a 2.8-GHz Intel
Pentium IV PC. In each experiment, we choose q = 1, e = 1.5, r = 1,
K = 5, and time step Dt = 1. The values of a were set according to
the images. The Matlab source code of the proposed algorithm
can be downloaded at http://www.comp.polyu.edu.hk/~cslzhang/
code/IVC.zip.

Fig. 4 shows the segmentation results of a synthetic image with
objects having weak edges and interior holes. The GAC model with
the traditional level set method is used in the comparison. The size
of the test image is 250 � 250 pixels. The left column in the first
row of Fig. 4 shows the initial contour of our model, which is not
around or inside the objects, while all of the objects are surrounded
by the initial contour of the GAC model (see the right column in the
first row of Fig. 4). The second row shows the corresponding seg-
mentation results of our method and the GAC model, respectively.
For our method, the evolution of the level set function converges in
30 iterations and takes only 0.25 min, while for the traditional GAC
model, the evolution converges in 7000 iterations and takes for
45 min. Our method accurately detects the exterior and interior
boundaries of the objects, as well as the weak edge object, whereas
the traditional GAC model fails to detect the interior boundary of
the object and the weak edge object.
Fig. 5 demonstrates the global segmentation property of our
method. The initial contour is far from the objects, as shown in
the first row of Fig. 5. The second row shows the segmentation re-
sults of the C–V model, which fails to extract all the objects,
whereas our method could accurately extract all the objects, as
shown in the third row of Fig. 5.

Fig. 6 shows the segmentation results of two galaxy images by
the proposed method. The first row shows the initial contours
which are around the objects. The second row shows the segmen-
tation results. We see that the contours of the galaxies are accu-
rately detected.

Fig. 7 demonstrates the selective segmentation property of the
proposed method. The size of the test image is 60 � 80 pixels.

http://www.comp.polyu.edu.hk/~cslzhang/code/IVC.zip
http://www.comp.polyu.edu.hk/~cslzhang/code/IVC.zip


Fig. 7. Selective segmentation results for a real microscope cell image. The left
column shows the initial contours, and the right column shows the corresponding
segmentation results. The parameter a = 20.

K. Zhang et al. / Image and Vision Computing 28 (2010) 668–676 673
The evolution of the level set function converges in 20 iterations
within 0.1 min. As we can see from the experiment, by setting
the initial contours close to the desired object (left column in
Fig. 7), the desired segmentation results can be obtained (the right
column in Fig. 7).
Fig. 8. First row shows the initial contours. The segmentation results by the C–V model
third row. We choose a = 5 for the left three columns, and a = 10 for the most right colu
Fig. 8 demonstrates the proposed method in medical image seg-
mentation. The left two columns of Fig. 8 show two magnetic res-
onance images of the left ventricle of a human heart, and the right
two columns show two noisy ultrasound images of the same organ.
The third row shows the corresponding segmentation results of the
proposed method, which are obviously more accurate than the cor-
responding segmentation results of the C–V model that are shown
in the second row.

Fig. 9 compares the proposed method and the GAC model by
applying them to an MR image of corpus callosum. The size of
the test image is 116 � 62 pixels. Fig. 9a shows the initial contour.
For the proposed method (see Fig. 9b), the evolution of the level set
function converges in 150 iterations and takes only 0.2 min, while
for the traditional GAC model with a small balloon force a = 0.6, the
evolution converges in 7000 iterations and takes 35 min, and the
contour could not pass through the narrow and long part of the ob-
ject (see Fig. 9c). With a larger balloon force a = 0.8, the contour
could pass over the relatively weaker part of the object (see
Fig. 9d), and the evolution converges in 6000 iterations and takes
30 min.

Fig. 10 shows our method in processing some more general
datasets of MR image of corpus callosum. The first and third rows
show the initial contours, which are far away from the thin parts of
the objects. The second and fourth rows show the segmentation re-
sults. We only need to tune the parameter a to get the desired re-
sults. As we can see from Fig. 10, although some corpus callosums
are very narrow in regions, and some have a very large gap be-
tween the corpus callosum and fornix, our method can still achieve
satisfying segmentation results by setting a proper value of a.

We use Fig. 11 to illustrate our conclusion in Section 3.3. The
number of objects is N = 3.In Fig. 11c, m1 = 50, m2 = 100,
m3 = 120, mb = 200, m3 < (mb + m1)/2, and the segmentation result
are shown in the second row, and the segmentation results by our model are in the
mn.



Fig. 9. (a) Initial contour. (b) Segmentation result of our model, a = 5. (c)
Segmentation result of the GAC model by setting a = 0.6. (d) Segmentation result
of the GAC model by setting a = 0.8.

Fig. 11. Results for segmenting multi-objects with three different intensities. (a)
Initial contour. (b) Segmentation result by setting a = 10. The background intensity
is 200, and the intensities of objects from left to right are 180, 100, and 50,
respectively. (c) Segmentation result by setting a = 10. The background intensity is
200, and the intensities of objects from left to right are 120, 100, and 50,
respectively. The C–V model has similar segmentation results.
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is satisfactory. In Fig. 11b, m1 = 50, m2 = 100, m3 = 180, mb = 200,
m3 > (mb + m1)/2, one object failed to extract. The C–V model has
similar segmentation results on this example.

The last experiment tests the effect of parameter a on the seg-
mentation results. After the segmentation converges, we compute
the pixels deviated from the areas inside and outside the true
boundary, which is called the Area Error Measure (AEM) [23]. We
tested our method on an object with a long, narrow protrusion
as shown in Fig. 12. The image was added with Gaussian noise with
standard deviation 0.05. As shown in Fig. 12a, if we choose a small
value of r, the regularized capacity of Gaussian smoothing in our
Fig. 10. The images in the first and third rows show the initial contours. The second an
most left image in the second row and the most right image in the fourth row, and a =
method will be weak, and hence the value of AEM will be large
and the segmentation results will be very noisy (refer to the second
columns in Fig. 12b and c). With the increasing of r, the value of
AEM decreases, and the segmentation results get satisfying. The
segmentation results when AEM reaches the minimum are shown
in the third columns of Fig. 12b and c. However, if the value of a is
not large enough while the value of r is too large, the surface of le-
vel set function will be over-smoothed and then the contour will
not be able to flow into the narrow region of the object (see the
most left image in Fig. 12b), and the value of AEM will increase
(see the curves in Fig. 12a). This problem can be solved by choosing
a larger a because a larger a will increase the shrinking or expand-
ing capacity of curve evolution to make the contour be able to flow
into narrow regions. Refer to the blue curve in Fig. 12a, when we
set a = 10, we can get small AEM values in a large range of r,
and the corresponding segmentation result is shown in the most
right column of Fig. 12c.
d fourth rows show the corresponding segmentation results. We set a = 6.3 for the
5 for other images.
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Fig. 12. (a) The Area Error Measure curves w.r.t the standard deviation r of the Gaussian filter. (b) The initial contour (left) and the experimental results (right) by setting
r = 0.2, 1 and 2.5 with a = 5. (c) The initial contour (left) and the experimental results (right) by setting r = 0.2, 1 and 2.5 with a = 10.
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5. Conclusion

In this paper, we proposed a novel region-based ACM for image
segmentation which is implemented with a new level set method
named SBGFRLS method. The SBGFRLS method reduces the expen-
sive re-initialization of the traditional level set method to make it
more efficient. The proposed model implementing with the
SBGFRLS method combines the merits of the traditional GAC and
C–V models, which possesses the property of local or global seg-
mentation. Extensive experiments on synthetic and real images
demonstrated the advantages of the proposed method over the
classical ACMs with the traditional level set methods, such as the
GAC and C–V models. Our proposed SBGFRLS method is general
and robust which can be applied to implementing the algorithms
of some classical ACMs, such as GAC model [3,4], C–V model [5],
PS model [14,15], LBF model [11,24], and so on.
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