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Abstract A marker-controlled and regularized watershed
segmentation is proposed for cell segmentation. Only a few
previous studies address the task of regularizing the obtained
watershed lines from the traditional marker-controlled wa-
tershed segmentation. In the present formulation, the topo-
graphical distance function is applied in a level set formu-
lation to perform the segmentation, and the regularization is
easily accomplished by regularizing the level set functions.
Based on the well-known Four-Color theorem, a mathemat-
ical model is developed for the proposed ideas. With this
model, it is possible to segment any 2D image with arbi-
trary number of phases with as few as one or two level set
functions. The algorithm has been tested on real 2D fluores-
cence microscopy images displaying rat cancer cells, and the
algorithm has also been compared to a standard watershed
segmentation as it is implemented in MATLAB. For a fixed
set of markers and a set of challenging images, the compar-
ison of these two methods shows that the present level set

The authors wish to thank Steffen Gurke and Nickolay Bukhoresthliev
for providing the majority of pictures in this work. Erlend Hodneland
was supported by the Norwegian Cancer Society, project number
A05103/004.

E. Hodneland - H.-H. Gerdes
Department of Biomedicine, University of Bergen,
Jonas Lies vei 91, 5009 Bergen, Norway

X.-C. Tai (X)

Division of Mathematical Sciences, School of Physical and
Mathematical Sciences, Nanyang Technological University,
Singapore 637616, Singapore

e-mail: xctai @ntu.edu.sg

X.-C. Tai

Department of Mathematics, University of Bergen,
Johannes Brunsgate 12, 5007 Bergen, Norway
e-mail: tai@mi.uib.no

formulation performs better than a standard watershed seg-
mentation.
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1 Introduction

Segmentation is a major challenge in image analysis, refer-
ring to the task of detecting boundaries of objects of inter-
est in an image. Several approaches have been proposed.
Two important classes of segmentation approaches are the
so-called energy-driven segmentation (Caselles et al. 1993;
Nielsen et al. 2006; Christiansen et al. 2006; Lie et al.
2005, 2006a; Vese and Chan 2002; Cremers et al. 2002;
Kass et al. 1988) and watershed-based (Najman and Schmitt
1994; Meyer 1994; Vincent and Dougherty 1994; Vincent
and Soille 1991). Energy-driven segmentation normally uses
an energy functional consisting of two parts, i.e. a data
term and a regularizer. The data term assures a solution
which is sufficiently close to the desired boundaries and
the regularizer controls the smoothness of the obtained con-
tours. A smoothing is often required due to noise and arti-
facts in real images. Watershed segmentation (Najman and
Schmitt 1994; Meyer 1994; Vincent and Dougherty 1994;
Vincent and Soille 1991) is a region growing technique
belonging to the class of morphological operations. Tra-
ditionally, the watershed techniques have been conducted
without a smoothing term, but recent progress has resulted
in energy-based watershed segmentations that contain reg-
ularizers. In the following the energy-driven and the wa-
tershed based segmentation approaches are described more
carefully.
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The energy-driven segmentation methods are mainly di-
vided into two classes, contour-based (snakes) and region-
based. The contour based methods rely on strong edges
or ridges as a stopping term in a curve evolution which
is balanced between a data term and a smoothness term.
The snake approach has been studied in Kass et al. (1988),
Caselles et al. (1993). Cremers et al. (2002) included statis-
tical shape knowledge to the Mumford-Shah functional and
Xu and Prince (1998) introduced the gradient vector flow
(GVF) incorporating a global and external force which im-
proved the capture range of their parametrical snake. One
of the most well-known region-based methods is the Mum-
ford and Shah (1989) model. In Vese and Chan (2002), Chan
and Vese (2001), the Osher-Sethian level set idea (Osher and
Sethian 1988) was combined with the Mumford-Shah model
to solve the region-based segmentation. Recently, some vari-
ants of the Osher-Sethian level set idea was proposed by Tai
et al. (Lie et al. 2005, 2006a, 2006b). A good survey of vari-
ational segmentation methods can be found in Chan et al.
(20006).

The watershed segmentation has proven to be a powerful
and fast technique for both contour detection and region-
based segmentation. In principal, watershed segmentation
depends on ridges to perform a proper segmentation. For
region-based segmentation it is possible to convert the edges
of the objects into ridges by calculating an edge map of
the image. The watershed transform algorithms can be di-
vided into two groups (Roerdink and Meijster 1999), ei-
ther based on the recursive flooding algorithm of Vincent
and Soille (1991), Rambabu and Chakrabarti (2007), Chien
et al. (2003), Felkel et al. (2002), Najman and Schmitt
(1994) or by different distance functions by Meyer (1994),
Nguyen et al. (2003), Grau et al. (2004), Osma-Ruiz et al.
(2007). The former can be understood as a landscape which
is flooded recursively and the watershed lines appear where
the water from two different basins meet. The latter is com-
puted from variants of the topographical distance, which
can be implemented as a priority queue. Among these,
different watershed methods use slightly different distance
measures, but they all share the property that the water-
shed lines appear as the points of equidistance between two
adjacent minima. A common problem for the watershed
transform is over-segmentation. However, watershed imple-
mented by region growing based on a set of markers can
avoid severe over-segmentation (Vincent and Soille 1991,
Vincent and Dougherty 1994; Felkel et al. 2002). For the
present work we use the topographical distance function as
the method of choice, and we also create markers to reduce
over-segmentation.

The success of a watershed segmentation depends on
whether the desired boundaries are ridges. Unfortunately,
the standard watershed framework has a very limited flex-
ibility on optimization parameters, for example, there ex-

ists no possibility to smooth the boundaries. However, re-
cent progress allows a regularization of the watershed lines
(Nguyen et al. 2003) with an energy-based watershed algo-
rithm (watersnakes). In contrast to the standard watershed
and the watersnakes, our work is based on partial differen-
tial equations. This easily allows a regularization of the wa-
tershed lines. Moreover, the method is flexible with regard
to additional optimization parameters, for instance the size
of the watershed regions (Sect. 4.10) or the Euler number to
avoid internal holes (not shown).

It seems that level set methods have never been used
for watershed segmentation. In this work, we shall com-
bine the traditional level set methods (Vese and Chan 2002)
and the new variants (Lie et al. 2005, 2006a, 2006b) with
watershed segmentation ideas. In Sect. 2, the foundation
of our methods including the creation of the markers, the
needed distance function and the Four-Color theorem are
introduced. In Sect. 3, several level set methods are com-
bined with the watershed segmentation idea using the topo-
graphical distance function. Combined with the Four-Color
theorem, only one or two level set functions are needed to
segment arbitrary numbers of regions (Vese and Chan 2002;
Nath et al. 2006). Implementation and numerical details are
supplied in Sect. 4. Experiments with real data are given
to demonstrate the performance of the proposed algorithms
compared to the traditional watershed methods. It is shown
that the methods can identify arbitrary number of regions
just with one level set function.

2 Introductory Steps
2.1 Active Contours and Cell Segmentation

A segmentation of the whole cell, the cell cytoplasm or any
subcellular compartment can be obtained if a suitable flu-
orescent marker is available. A nucleus segmentation is an
example of a segmentation of a subcellular compartment.
Cytoplasmic (Bengtsson et al. 2004; Lindblad 2002; Adiga
et al. 2006) or nucleus segmentation (Adiga and Chaud-
huri 1999; Adiga 2003; Ortizde De Solorzano et al. 2001;
Malpica et al. 1997; Wihlby et al. 2004) was frequently
reported in the past compared to whole cell segmentation
which was poorly addressed (Ortizde De Solorzano et al.
2001; Baggett et al. 2005; Dow et al. 1996). It has the ad-
vantage compared to cytoplasmic segmentation that adja-
cent cells can be detected without merging them. Active con-
tour models were used to detect neuronal axons (Fok et al.
1996), for nucleus segmentation (Bamford and Lovell 1998;
Gebhard et al. 2001; Dufour et al. 2005) and whole cell
segmentation (Ortizde De Solorzano et al. 2001). In the
active contour model, each seed point (or marker region)
gives rise to a closed contour (snake) evolving until conver-
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gence. Then, the boundary of the cell should be captured.
This process is repeated for all markers. However, bound-
ary information between separate snakes from the different
markers is mostly not connected to each other and there-
fore the resulting segmentation can result in regions of ei-
ther vacuum or overlap. To deal with this problem, different
conflict measures or restrictions of movement for the snakes
to avoid overlap have to be implemented (Fok et al. 1996;
Bamford and Lovell 1998). Our level set watershed, which
shall be introduced in Sect. 3, is implicitly defined in such
way that vacuum or overlap will never occur. This prop-
erty is important in cell segmentation since cells are in-
dividual compartments, and the final segmentation should
define every pixel either as part of one and only one cell,
or as part of the background. Furthermore, a parametri-
cal snake requires often one snake per object, or for the
implicit snake, the number of level set functions is pro-
portional to the number of objects as o logn when n is
the number of objects or phases. Thus, the complexity in-
creases swiftly for images containing a high number of
cells. Due to the Four-Color theorem, c.f. Sect. 2.4, we are
able to keep the number of level set functions at a very
low level, independent of the number of objects to be seg-
mented.

2.2 Creating Markers

Marker-controlled watershed segmentation is a robust and
flexible method for segmentation of objects with closed con-
tours where the boundaries are expressed as ridges. The
marker image used for watershed segmentation is a binary
image consisting of either single marker points or larger
marker regions where each connected marker is placed in-
side an object of interest. Thus, each initial marker has a
one-to-one relationship to the specific watershed region sur-
rounded by the watershed lines. The final watershed seg-
mentation is strictly depending on the markers, which is the
case in the proposed watershed by level set, the watersnakes
and the standard watershed. This dependency is a conse-
quence of the one-to-one relationship as well as the size
and position of the markers. Region-markers generally cre-
ate results of higher quality than point-markers since their
boundaries are closer to the desired boundaries and there-
fore there is a smaller probability of the flooding converg-
ing too early. The markers can be manually or automatically
constructed, but high-throughput experiments often require
automatically generated markers to save human time and re-
sources. After segmentation, the boundaries of the water-
shed regions (watersheds) are arranged on the ridges, thus
separating each object from its neighbors.

For the current project, the markers were automatically
generated. The algorithm is sketched in the following and
some detailed explanations are given afterward.
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% ur: ridge enhanced raw image u
1. ur = ridge_enhancement(u)
% ua: after adaptive thresholding
2. ua = adaptive_thresholding(ur)
% ub: binary image after removal of small objects
3. ub = remove_small_objects(ua)
4.fori=1to(step=1) 10
a) se = get_structural_element(radius = 1)
b) closed = close(ub,se)
¢) filled = fill(closed)
d) label = label_filled_regions(filled)
% check for intersection of the filled areas to
% previously filled areas
e) for j = 1 to (step = 1) number_objects(label)
if empty(intersection(object(j),markers))
% this region has not been detected before and
% is added to marker image
markers(object(j)) = 1
% remove the smallest markers that normally
% represent an over—segmentation
5. markers = remove_small_objects(markers)

First, a Hessian ridge enhancement (Gautama et al. 2004)
is applied to enhance the ridges of the raw image u (#1 in
flowscheme). The ridges are of special interest since the
cell boundaries appear as ridges. The ridge enhancement
is based on the eigenvalue decomposition of a Gaussian
smoothed Hessian matrix

Uxy Uxy Uxg
H=Gss| uyx uyy uy;

Uzx Uzy Ugg

where the parameters o and § are the standard deviation
and the height of the filter in the Gaussian. The eigenvec-
tor corresponding to the largest eigenvalue A points along
the ridge, and the other points perpendicular to the ridge.
A ridge is characterized by A; < 0 and A, &~ 0 (Gautama
et al. 2004), and is thus highlighted using a transfer function
defined as H(A, Ap) = —A1 — A%, taking the highest values
on the ridges. An example is given in Fig. 1 where the image
(A) was used for Hessian ridge enhancement (B) (o0 =2 and
8 =5). Clearly, the ridges are enhanced compared to other
structures.

Adaptive thresholding (Chang et al. 2000; Gonzalez and
Woods 1992) is used to automatically create binary marker
regions from the ridge enhanced image (#2 in flowscheme).
The adaptive thresholding has a much higher resistance
against noise and inhomogeneous illumination than global
thresholding for labeling of high intensity objects, in our
case the ridges. The adaptive thresholding image u, is com-
puted as

1 ifu,(x,y) > pmax(u,) + As(ur, x, y),

ua(-xv )’) = O else
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A. Raw image before processing

v

B. Ridge enhancement

v

C. Adaptive thresholding

v

D. Removal small objects

@ E. Close gaps iteratively
+ r(se) <r,_(se) *

F. Filling and extraction

Fig. 1 Automated construction of markers. The image (A) is used for
ridge enhancement (B) to improve the signal intensity of the ridges. An
adaptive thresholding is applied to detect the ridges and convert them
into binary structures (C). The smallest objects are removed due their
size (D) and a morphological closing is performed to close gaps in the
binary structure (E). The closing is repeated iteratively with increasing
radius r of the circular structural element (se), r; (se) < rj+(se). A bi-
nary filling is computed after the closing at each iterative step (F) and
all binary objects of the size within a user-defined interval are selected
and used as marker regions. However, the objects are only selected if
they have no intersection to previously selected objects. This enables
larger marker regions with their boundaries closer to the true bound-
aries of the desired objects

where w is a user-defined scalar threshold with typical val-
ues of [0.01 — 0.2] and § is the filter dimension of the aver-
age filter As. As(u,, x, y) is the average values of u, in a §-
neighborhood of (x, y). The image in Fig. 1(C) is an exam-
ple of the adaptive thresholding with § =20 and p = 0.06.
All small objects in u, are removed since they are consid-
ered to be insignificant due to their size (D in Fig. 1, #3
in the flowscheme). To be able to close minor gaps in the
binary structures outlining the approximate boundaries, an

iterative morphological closing is conducted (E in Fig. 1, #4
in the flowscheme). For each iterative closing step, a larger
structural element is applied to facilitate the closing of in-
crementally larger gaps. Directly after every closing step,
each filled region is labeled uniquely (#4d in flowscheme)
and morphological filling is used to detect all holes in uy
that were not accessed from the image boundary (#4e in
the flowscheme). All regions with a size within an inter-
val and with no intersection to earlier filled regions are as-
signed to the marker image as a marker (F in Fig. 1, #4e
in the flowscheme). The closing is repeated iteratively with
increasing radius r of the circular structural element (se),
ri(se) < riy1(se). This process is performed iteratively a
predefined number of steps in order to obtain markers with
boundaries as close as possible to the desired cell bound-
aries. Finally, removal of the smallest markers is necessary,
using a threshold proportional to an estimated cell size (#5 in
the flowscheme) which is a global setting normally remain-
ing unchanged within the same cell line. Thus, within such
experiments, the method is parameter free. High-throughput
experiments normally allow a global setting of the estimated
cell size, and the marker generation is therefore of great sig-
nificance in such experiments including a large number of
images. The automated marker generation has thoroughly
been applied to large amount of data and an overall high
marker quality was obtained (statistics not shown).

Note that a marker-controlled watershed segmentation is
often preferred instead of a direct watershed segmentation
which easily produces a serious over-segmentation due to
the large number of natural minima in images. Every marker
will have a one-to-one relationship to a watershed region
and the major segmentation pattern is therefore already de-
cided when the marker image is given. Thus, the standard
marker-controlled watershed, the watersnakes and the wa-
tershed level set are all strictly depending on the markers,
and the algorithms are limited to detecting the desired ridge
in a closed contour around each marker.

2.3 Topographical Distance Function

We shall use the topographical distance function (Meyer
1994; Nguyen et al. 2003; Roerdink and Meijster 1999),
closely related to the framework of minima paths (Arbeléz
and Cohen 2004), for our watershed segmentation. In addi-
tion, level set methods will be incorporated into this segmen-
tation framework. The topographical distance function be-
tween two points x and y is defined as (Nguyen et al. 2003;
Roerdink and Meijster 1999):

L(x, y)=y inf y]/ [Vu(y (s)lds. (1)
€e[x— y

In addition, we define L;(x) = infyep; L(X,y). Therefore
dy; € M; such that L;(x) = L(x,y}). Furthermore, let K be
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the number of markers and let o; = u(y;"). Using L;(x), the
definition of the catchment basin CB(M;) is given as below:

CB(M;)={xeQ|Vj#i,1<j<K:
o; + L;(x) <Olj+Lj(X)}. 2)

The parameter «; works as a scaling of each minima to en-
able a comparison of the topographical distance functions
between different minima. The watershed lines W (u) are
defined as the set of all points not belonging to any catch-
ment basin. As L;(x) is continuous, W (u) is equivalent to
the points where o; + L;(X) =« + L;j(x), i #j, i, =
{1,...,K}.

In the discrete case, the topographical distance function
along the path m = (po, ..., p;) can be defined as (Roerdink
and Meijster 1999)

-1
L(po, p)=_min > d(p,q)cost(pi, pi+1), 3)
nelp—>q] P

which is the minimum value of all possible paths from pg
to p;. The cost for walking from pixel p to pixel g is related
to the lower slope which is defined as the maximum slope
linking p to any of its neighbors of lower altitude, LS(p) =
maxgeN(p)Up %. N (p) is the set of neighbors around
p and d(p, g) is the distance between p and ¢. The cost for

walking from any pixel p to a neighbour pixel g is given as

LS(p) if u(p) > u(q),
LS(q) ifuq) >u(p), 4
LLS(p) +LS(g)) ifu(p) =u(q).

cost(p,q) =

In 1D the topographical distance function is straightfor-
ward to compute since there is only one possible path be-
tween any two points x and y. For the present study, we have
used the iterative forest transform (IFT) (Felkel et al. 2002;
Roerdink and Meijster 1999) to compute the topographical
distance function between a marker and any other point in
the image.

2.4 Four-Color Theorem

We shall use the Four-Color theorem in our watershed seg-
mentation combined with level set methods. The Four-Color
theorem was proven first by Appel and Haken in 1976 (Ap-
pel and Haken 1977), and it has been validated again by dif-
ferent approaches in recent years (Robertson et al. 1996).
Consider a set of regions (or countries) and select an ar-
bitrary point inside each region (a capital). Join the points
of every pair of neighboring regions with a line. Then, one
arrives at the definition of a planar graph. The Four-Color
theorem, c.f. Appel and Haken (1977), states that it is pos-
sible to label any 2D planar graph with as few as four col-
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ors such that no neighbors have the same color. Therefore,
we could associate each watershed region with a color and
use no more than four colors to mark the watershed regions.
By doing so, adjacent objects can be labeled among four
colors and they are thus uniquely distinguishable since any
two neighboring watershed regions will be labeled with dif-
ferent colors. Using the Four-Color theorem it is therefore
possible to segment an arbitrary number of objects with as
few as four phases. Vese and Chan (2002) noted that the
Four-Color theorem can be used in image segmentation in
the piecewise smooth case to distinguish between any num-
ber of objects with as few as four phases. The Four-Color
theorem was previously used for region based segmentation
of stained cell nuclei using the Chan-Vese model (Nath et al.
2006). They reduce the number of level set functions signif-
icantly by grouping the objects into four colors. However,
their approach is a region-based segmentation technique and
not contour-based like the watershed level set.

2.5 Euclidean Influence Zones

The Four-Color coding must be applied to a planar graph
with no vacuum between the regions. Therefore, it can not
be applied directly to the markers which are objects with
gaps in between. To overcome this problem, an approxi-
mation of the final object partition based on the markers is
computed. Ideally, this partition should capture information
about the final boundaries of the objects, reflecting the as-
sumed neighborship between the regions. To obtain the ap-
proximation of the final boundaries, the Euclidean distance
transform around each marker is computed. Larger marker
regions provide a better approximation of the boundaries
since the outer periphery of the markers is closer to the true
object boundaries. Every pixel in the image is assigned to
one influence zone of a marker such that each point from
this zone has the smaller distance to this marker than to any
other marker.

Mathematically, consider K markers and label all mark-
ers {M,'}lK: |- The Euclidean distance function dist(x, M;) is
calculated around each marker M;. The Euclidean influence
zone image fjz is a function defined as:

Jz(x) = {i | dist(x, M;) < dist(x, M),
vVi=1,...,K}. 4)

Thus, f;z =i if x has the shortest distance to marker M;.
So, fiz is a piecewise constant function taking values from
1 to K and the region where fjz(x) =i is called the Euclid-
ean influence zone of marker M;. Figure 2 is an example
of the Euclidean influence zones fjz. The image (a) was
used to create markers automatically (b, see Sect. 2.2). The
Euclidean influence zones (c) were obtained using (5). Thus,
a piecewise constant image fjz is constructed where each
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(c) (d)

Fig. 2 Euclidean influence zones and the Four-Color theorem. The
image in (a) was used to automatically create markers (b) using the
method described in Sect. 2.2. The Euclidean influence zones fjz were
computed around the markers, shown in (¢) where each region is la-
beled by a unique integer value. The Four-Color theorem was applied
to (c), resulting in (d) where no neighboring regions have the same
color (black: 1, dark grey: 2, light grey: 3, white: 4)

region is uniquely labeled by an integer from {1, 2, ..., K}.
These zones are suitable for a color coding using the Four-
Color theorem. Figure 2d shows one possible Four-Color
coding of (c), where no region has a neighbor with the same
integer value.

3 Level Set Methods for Watershed Segmentation

After applying the Four-Color theorem to the Euclidean in-
fluence zones fjz =i, we get an approximation to the final
boundaries for the segmentation. For the images in this pa-
per, the painting of the regions was done by an automated
code where various combinations were tried and faulty ones
eliminated to achieve a true partition according to the Four-
Color theorem. Thus, a final coloring f.(x) € {1,2, 3,4}
was obtained where adjacent influence zones and their corre-
sponding markers are always assigned different colors, see
an example of this in Fig. 2d. Empty colors will not influ-
ence the performance of the algorithm.

Once each marker has been painted with one of the four
colors, the markers can be grouped into four groups, i.e.,
we define the group of markers C; = U/;.(Mj):i M; and
the boundaries of these, dC;, i =1, 2,3, 4. The method of
(Felkel et al. 2002) is then used to compute up to four topo-
graphical distance functions from each of the marker groups
Ci,ie., Li(x) =infyec; L(X,y), i =1,2,3,4. Itis true that

there exists a y; € dC; such that L;(x) = L(x,y]). Corre-
spondingly, we also take o; = u(y}). As was proven in (Tai
et al. 2007), a partition {€2; };‘: | minimizes the functional

4
E(szl,...,m):Z/Q {oi + Li(x0)}dx ©)
i=1 i

if and if it is a watershed segmentation around the group
markers defined by the four colors. The proof is essentially
the same as given in Nguyen et al. (2003).

In the following, we propose to use level set methods
to solve the above watershed segmentation problem. We
shall use three different variants of the level set idea to ac-
complish the watershed segmentation based on the function
L;,i =1,2,3,4. These are the Chan-Vese level set (Chan
and Vese 2001), the Binary level set (Nielsen et al. 2006)
and a variant of the Piecewise constant level set (PCLS)
(Lie et al. 2005, 2006b). In Tai et al. (2007) a short ver-
sion of the watershed level set was described. In the current
work, a new approach for the piecewise constant level set is
presented. Moreover, further details for implementation are
given and substantially more numerical examples are shown.
Also, the watershed level set has been compared to the wa-
tersnakes.

3.1 Watersheds and the Chan-Vese Model

First, we propose to use the level set idea (Osher and Sethian
1988) as in Chan and Vese (2001, 2002) for the segmen-
tation. Let ¢1(x), ¢2(X) : R? — R be two continuous level
set functions defined on the domain 2. Normally, ¢1, ¢»
are required to be distance functions to some curves, but
this is not needed for our method here. These functions will
partition the domain into four (possibly disconnected) sub-
regions. The characteristic functions for these sub-regions
are v;,i = {1, 2,3, 4} given as

Vi(d1, ¢2) = H(d1) H(¢2),

V2(¢1,¢2) = (1 — H(¢1))H(¢2),
V3(91, ¢2) = H(P1)(1 — H(¢2)),
Va1, ¢2) = (1 — H(g1))(1 — H(¢)).

The sub-regions are Q; = {x| ¥;(x) = 1},i = 1,2,3,4.
This partition of the domain has no vacuum and no over-
laps. In the above, H(-) denotes the Heaviside function,
ie. Hx)=11if x >0, H(x) =0 if x < 0. For the nu-
merical experiments, a regularized Heaviside was used, i.e.,
H:(x)= %(1 + % arctan(f)) where € > 0 is small, see Chan
and Vese (2001). The relation H'(x) = §(x) was used for
differentiation of v;, and a smooth §.(x) was used in the
numerical experiments by calculating the derivative of the
smooth Heaviside.
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Assume that the sub-regions 2;,i = 1,2, 3, 4 are related
to ¢;, i = 1,2 as above, then we see that

4
Z/ {a; + L (x)}dx
i=1 VS
4
= /Q Z{O‘i + LX)} (¢1, p2)dx. %
i=1

Based on this observation, we can try to solve the following
minimization problem:

4
min fQ g{aiui(x)}widx. ®)

If {¢; }iz=1 is a minimizer of the above problem, then the cor-
responding sub-regions {Qi}?zl is a watershed segmenta-
tion. In order to regularize the boundaries of the watershed
regions, we shall add a regularization term into the mini-
mization functional. Instead of solving (8), we try to mini-
mize

min F (¢, ,
min (@1, ¢2)

4 4
F=/ Z{ai‘l‘Li(X)}l/fidX—i-)L/ Y oIVildx.  (9)
Qi1 L

The first term is the data term providing the watershed seg-
mentation and the second term is the regularization to ensure
a sufficiently smooth boundary for the watershed segmen-
tation. The regularization is performed on {wl} _; which
is different from Chan and Vese (2001) where the regular-
. The difference be-
tween these two approaches is discussed in more details in
Sect. 4.7. As described in Tai and Chan (2004), a minimiza-

tion of (9) with regard to ¢ and ¢» produces the following

ization is performed directly on {qﬁi}iz:1

Euler-Lagrange equations

4
i ( ey ao [ Vi .
Zaas (“’“’(X) a (|wf|))_0’
()

Vil

In order to get the above results, we need to use the chain-
rule as in Tai and Chan (2004, p. 29) and Chan and Tai
(2004, p. 45). The terms 3"” and ay;, are calculated as

(10)
oY
L%

MAI

(Ol,' + L;(x) — AV

i=1
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% = 51 H(@2), % — H(@é)5(6),

%12 = —8(¢1) H (¢2). % = (1— H(@1)5(@).
%13 =3(¢n)(1 = H($2)), %; = —H($1)3(¢2). (1)
%ﬁf =—8(¢1)(1 — H(¢n)),

% = —(1 — H(¢1))3(¢2).

In numerical simulations, § and H are replaced by their
smoothed counter parts . and H, respectively. As usual,
we can use the gradient descent method to solve these equa-
tions. With some initial conditions for {¢i},~2:1’ the gradient
flow equations are:

a¢>1 . am( (w,- ))
= i Li(X) — AV - ,
"L gy (L Vil
. (12)
i (32)

i=1

The following explicit scheme will be used in our numer-
ical experiments. Note that faster methods can be used to
solve these equations. For example, the AOS scheme pro-
posed in Lu et al. (1992, 1991) and re-discoverted in Weick-
ert et al. (1998) can be used for the equations (12) similarly
as in Li and Tai (2007b). The dual algorithm of Chambolle
(2004) can also be used to get fast algorithms. In addition,
the graph-cut techniques (Darbon and Sigelle 2006) could
also be a powerful tool for these equations. For simplicity,
we have only tested on the following explicit scheme so far:

n+l1 n
u =— Z 29" <(xi + L;(x)
4 vy
—A V- L ,
> ()
(13)
¢”“ o < 0Yl
2= ; 29" <0li+Li(X)
4 vy
— A V- L ,
> ()
where V' = v (¢}, ¢5). This iteration is not the fastest al-

gorithm. However, it often converges in less than 200 itera-
tions for our experiments.

3.2 Watersheds and the Binary Level Set

The second level set method we propose to use is the so-
called Binary level set (Lie et al. 2005, 2006a; Song and
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Chan 2002). This method has been used for image segmen-
tation and inverse problems in Nielsen et al. (2007), Tai
and Yao (2006). For this method, we need to find two func-
tions ¢ (x), ¢ (x) : R? — R satisfying ¢;(x)> =1, i =1, 2.
These functions can also partition 2 into four sub-regions
with the characteristic functions given by

1
Vitl424j = Z(l +(=1) |zi|>

x <1+(_1)j|2—2|>’ i,j=0,1.

The sub-regions associated with the characteristic functions
Y¥i, i =1,2,3,4 have no overlaps and vacuum. This method
is closely related to the Chan-Vese model using two level set
functions creating four sub-regions. However, the signum
function is used instead of the Heaviside function. In the
numerical experiments, ¢/|¢| are replaced by ¢/+/|¢|? + €
with a small € > 0.

Similar to (9), we solve the following minimization prob-
lem:

min F(1.62). (14)
4
= [ Sotai+ Liopax
@io
4 2
b [ Svulax oy [(@F =17k as)
o1 i=17%

Once the minimizer is obtained, the corresponding charac-
teristic functions will give us the watershed sub-regions.
In the above, the constant o > 0 is a penalization con-
stant to enforce qbiz =1 and A is the regularization para-
meter which influences the smoothness of the watershed
lines. Due to the special constructions of the characteris-
tic functions ¥;, we can choose any o > 0 in the above
minimization functional. We need to use a large o if the
characteristic functions ; are replaced by Viy1424j =
(1 + (=D'¢)(1 + (—1)/¢2). The Euler-Lagrange equa-
tions for minimization of problem (15) with respect to ¢

and ¢, are:
Vi

- i+ Li

5o ; (‘H - <|Wa|>>
+dopi(p — 1) =0, (16)
4

oF AV Vi

92 = 2 06 (“’+L(X) o <|Wf,|)>
+40¢2(¢5 — 1) =0. (17)

Again, we use the following explicit scheme to solve the
corresponding gradient flow equations:

oIt =gt

T

= Z a¢" (ai+Li(x)—kV

+4o @] ((¢1)* — 1),

oIt =gt

T

-3

+4odh (P57 —1).

(oz, + L;(x) —

()

This algorithm is not sensitive to the values of o and €. We
have always used o = 1. Some discussions about the value
of € will be given later. The algorithm often converges in less
than 200 iterations. It is also expected that some other dis-
crete minimization method will accelerate the convergence
(Darbon and Sigelle 2006).

3.3 Watersheds and the Piecewise Constant Level Set
(PCLS)

The third level set method we propose to use is a new
method. It is a variant of the “Piecewise Constant Level Set
(PCLS)” method (Lie et al. 2005, 2006b). Piecewise con-
stant level sets have been used for image segmentation in
Tai and Yao (2006), Tai et al. (2007), for inverse problems
(Tai and Li 2007; Li and Tai 2007a) and for optimal shape
design problems (Wei and Wang 2007; Li and Tai 2007b).
For this method, only one level set function ¢ : R?2 - R is
needed, satisfying
k(@) =@ —-D@—-2)(¢—-3)(¢—-4=0 ingQ, (19)
which ensures that ¢ takes piecewise constant values ¢ =
{1,2,3,4}. In Tai and Li (2007), Li and Tai (2007a, 2007b),
Tai and Yao (2006), Lie et al. (2005 2006b), Christiansen
et al. (2006), penalization or Augmented Lagrangian meth-
ods were used to deal with the constraint (19). In Jung et al.
(2006), it was shown that penalization methods can be con-
nected with Modica-Mortola phase transition model to get
even a rigorous convergence analysis.

In this work, we shall use the PCLS method more like
a multi-layer level set method of Chung and Vese (2005).
Associated with ¢, we define the characteristic functions for
the sub-regions by
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Fig. 3 The characteristic functions v; (a) for € = 0.005, i = {1, 2, 3,4} and the corresponding derivatives (b). Note how the derivatives are

overlapping with their neighbors

é—i+0.5
V@ —i+05)2+e

vi(p) = <

(20)

¢—i—0.5 )
J@—i—05)2+e¢

The first term is an approximation of a step function around
i — 0.5 and the second term approximates a step function
around i + 0.5. Figure 3 illustrates the characteristic func-
tions v; for i = {1, 2, 3,4} (a) and their derivatives (b). As
noted, the characteristic functions are constructed to ensure
that there are overlaps between the support of the deriva-
tives. In order to use this method for the watershed segmen-

tation, we need to solve the following minimization prob-
lem:

4
min [ (e + Lio)vi @)dx
¢ Qi

4
+ /Q D IV (@)ldx +y /Q K(¢)2dx. @1
i=1

As in Tai and Li (2007), Li and Tai (2007a, 2007b), Tai
and Yao (2006), Lie et al. (2005, 2006b), Christiansen et al.
(2006), augmented Lagrangian can be used to solve the
above minimization problem. Here, we have just used the
penalization method for the constraint x (¢) = 0. Due to the
special construction for the characteristic functions ¥; used
in (20), it is not necessary to use large values for the penal-
ization constant y.
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For minimization problem (21), the Euler-Lagrange
equation is, c.f. Tai and Chan (2004)

Loy Vi
i +Li(x) — AV -
2% (“ Fhit <|w,-|>>

+ 2)//<§—¢ 0, (22)
where the term 01/, /0¢ is given as
a1 €
¢ :5<«¢—i+05ﬂ+eﬁ
- . §>. 23)
((p—i—05)2+¢€)2

The following explicit gradient flow problem must be solved
to steady state:

4

¢n+1 ¢)n 3 z . - Vl/fln
=L (“’ FL =AY (wm))
0K
+2yk yT (24)
where /" = v/ (¢") and k" =k (¢").

3.4 Differences between the Level Set Methods

We have proposed three different level set methods with dif-
ferent advantages and weak points, producing slightly dif-
ferent results which are complementary to each other. All
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three methods produce good results. The Binary level set
has several similarities to the Chan-Vese model in the way it
produces a fixed number of 2" phases where #n is the number
of level set functions. The Piecewise constant level set dif-
fers from the Chan-Vese and the Binary level set in several
aspects. It only requires a single level set function. Further-
more, it is possible to define the desired number of phases
without being limited to a fixed number which is the case
for the Chan-Vese model and the Binary level set.

From our numerical experiences, it seems that the Binary
level set method is fast and stable for some examples, while
the piecewise constant level set method is faster and stable
for some other examples. Generally, when the structure of
the object is complicated and the number of objects is large,
the piecewise constant level set method seems to be advan-
tageous. With three different methods at our disposal, it is an
advantage that we can use them to confirm that the obtained
results are correct.

4 Numerical Experiments
4.1 Numerical Implementation

All three models have in common the biased topographi-
cal distance function, «; + L;(x). The values of the topo-
graphical distance function inside the markers were approx-
imated by the image values, and «; was approximated as
a; ~ min f(dC;), where dC; is the boundary of marker
group of color i. The second term L;(x) was computed as
described in Sect. 2.3, one topographical distance function
for each group of markers that are inside the same color i.
The functions L; (x) only need to be computed once for the
whole computation. The regularization term V - (%) was
computed using forward differences (D) for the gradient,
backward differences (D) for the divergence and central
differences in the denominator (D),

Vi

v —5

VY]
DEWT )

JDe W)+ Dy ) + €

. Df (Wl )
T\ YD+ Dy + e

; (25)

where € is a small parameter to avoid singularities in regions
where the gradient is zero. For the Chan-Vese model and the
Binary level set, ¢; and ¢, were initialized as zero every-
where which enabled a fast convergence to the correct so-

lution. For the PCLS, it was necessary to initialize the level
set function ¢ in a special way, i.e.

_ _ 27 fIZ(X) 527
por=0= 13, Fir) =3, (20)

where fjz is the image for the Euclidean influence zones
(Sect. 2.5). This initialization increased the computational
speed and allowed the level set function to shift freely be-
tween the phases.

The watershed lines (watersheds) appear at convergence
as the interface between the regions of different colors. To
obtain the watersheds, the characteristic functions 1; were
computed with high accuracy after convergence. For the
Chan-Vese model, the exact Heaviside was used in these
calculations. For the Binary level set and the PCLS a very
small € = 10719 was used. Then, the characteristic functions
Y; for all three models were converted into binary functions
¥ by thresholding,

b |1 w0 =05,
Vi (X)_{o, Vi (x) <0.5. @7

The outer boundary of the four binary functions 1//1.}’ (x) were
used as the final watersheds of the image f, WS(f) =
UL 0.

In all experiments values of A =[0.01, 0.1] were chosen
for the regularization parameter, depending on the amount
of endocytoced particles in the image. A higher amount of
noise requires larger 1. The largest possible time-step sup-
porting a stable solution was Ar =0.1. A smaller time-step
does not change the minimizer in the Chan-Vese model or
the Binary level set, but a large number of iterations is re-
quired to reach a steady state. For the PCLS, it is critical to
use suitable associated settings of At, y and €. Empirically,
values of At =0.05, ¢ =0.1 and y = 0.05 were appropriate
as a global setting to converge toward a global minimizer.
The same setting for € also applied to the Binary level set.
The number of iterations at convergence was between 200
and 400. All numerical code was written in MATLAB®, and
the selected images used as examples were processed using
one of the three proposed methods in Sects. 3.1-3.3. Addi-
tionally a standard marker-controlled watershed segmenta-
tion by immersion as implemented in MATLAB® (Vincent
and Soille 1991) was calculated for comparison of perfor-
mance between the two methods. Equal and automatically
generated markers were applied to the compared methods in
each example.

4.2 Synthetic Data
The level set watershed method was applied to a synthetic

image with multiplicative Gaussian noise and a linear gradi-
ent to test the robustness of the method. The original image
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Fig. 4 Segmentation of a
synthetic, noisy image.
Gaussian multiplicative noise
and a linear gradient was added
to the original image in (a) and
the obtained noisy image (b)
was segmented using the
standard watershed (¢) and the
PCLS level set watershed (d).
Note that the level set watershed
has a higher capacity to deal
with the noise and the linear
gradient than the standard
watershed

(c)

free from noise is shown in Fig. 4(a), and the same image
after addition of Gaussian multiplicative noise and a linear
gradient is displayed in (b). The obtained noisy image has
a SNR = 3.4. The standard watershed segmentation and the
PCLS level set watershed segmentation are shown in (c) and
(d), respectively. Apparently, the level set watershed has a
better ability to deal with the noise.

4.3 Real Data

This section contains experiments involving real cell images
taken by fluorescence microscopy showing rat pheochro-
mocytoma PC12 cells (Hodneland et al. 2006). The im-
ages are optical planes extracted from 3D stacks. The cells
are stained with Wheat Germ Agglutinine (WGA)-Alexa
Fluor® which is a lectin that binds glycosylated proteins,
thus highlighting the cell membrane. WGA-Alexa Fluor®
creates a strong signal from the cell membrane but appears
shortly after administration inside the cells due to consti-
tutive endocytosis of the plasma membrane. This causes
a significant decrease in the desired signal from the cell
membrane and creates correspondingly an increase in un-
desired signal inside the cell. Figure 5 shows an example of
a PC12 cell shortly (a) after administration of WGA-Alexa
Fluor® and the same cell one hour later (b). Clearly, the
signal from the cell border decreases and simultaneously a
brighter signal from internalized vesicles emerges. Endo-
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(b)

Fig. 5 Endocytosis of WGA. Shortly after administration of
WGA-Alexa Fluor® there is a sharp and clear signal from the cell
border (a). One hour later vesicular structures containing WGA-Alexa
Fluor® have been endocytosed, creating a strong signal from inside
the cell and at the same time depleting the signal strength from the de-
sired cell border. These processes of endocytosis are responsible for
demanding tasks of segmentation

cytosis is the underlying reason for a vast majority of all
mis-segmentations in our images, in contrast to the Gaussian
noise which represents a minor problem. In this work, we
shall use these real images to test the ability of our proposed
algorithms.

4.4 Convergence in Time, t — oo

This example contains one cell in addition to background,
and it demonstrates the influence of endocytosis on the seg-
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Fig. 6 Watershed segmentation
of one cell and a background
region. The image in (a) was
used to create the marker image
(b) which was used for a
standard watershed
segmentation (c) and a level set
watershed segmentation using
the Piecewise constant level set
(PCLS). The level set function ¢
is shown at different times in (d)
t=0,(e)t =5, ()t =20and
(g) t = 100, showing that the
level set function approaches
piecewise constant values. In
this case,

¢ — {1 (dark) , 2 (bright)}. The
obtained watershed lines from
the PCLS are displayed in (h),
apparently smoother than the
watershed lines obtained for the
standard watershed (c¢). The
panel (i) shows the energy
functional (21) of the PCLS
versus the iterations. The
parameter settings for the level
set watershed are A = 0.05,
At=0.1,y=0.1,e =0.1

(a) Image

(d) Initially, ¢(x,t = 0)

2 everywhere.

(2) é(x,t=100)

mentation. The image in Fig. 6a was used for segmenta-
tion. The method described Sect. 2.2 was used to obtain
the marker image (b). The white regions are the markers.
Based on the marker image (b), the segmentation using the
standard watershed (c) has oscillating boundaries, particu-
larly where the endocytosed particles in the original image
are close to the boundary. A segmentation was also per-
formed using the PCLS method. The evolution of the level
set function is shown for t =0 (d), t = 10 (e), t = 50 (f)
and r = 100 (g). Note that the level set function approaches
two piecewise constant regions ¢ — {1 (dark), 2 (bright)}
at convergence. The interface labels the watershed lines (h).
The watershed lines in the level set watershed approach are
smoother than in (c). Evidently, this method is more resis-
tant to the influence of endocytosed high intensity particles
than the standard watershed. The panel in (i) shows the con-
vergence of the energy functional versus the number of iter-
ations (time t).

(b) Marker image

(e) ¢(x,t =5)

(c) Watershed lines from
standard watershed

(f) $(x,t = 10)

Energy functional

=
' Iterations
(h) The watershed lines (i) The energy functional

from level set water- as a function of itera-
shed, 100 iterations tions

4.5 The Regularization Parameter A

The image in Fig. 7 represents a challenging task of segmen-
tation where the signal from the cell membrane partly dis-
appears or becomes blurry. It shows two attached cells with
an inhomogeneously distributed membrane marker, which is
the reason for the inhomogeneous signal. The automatically
generated marker image in (b) was used for segmentation
by the standard watershed (c) and the Piecewise constant
level set watershed (PCLS) (d—f). The regularization para-
meter A in the level set watershed was given different val-
ues (d) A =0, (e) A =0.01 and (f) A = 0.1, to demonstrate
how A affects the smoothness of the final watershed lines.
Apparently, higher values of A produce smoother watershed
lines, which is to be expected. For a suitably chosen value
of A in (f), the level set watershed segmentation produces
smoother boundaries than the standard watershed (c). Gen-
erally, a smooth solution is closer to the true boundaries of
the cells than an oscillating solution.
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(d)

Fig. 7 Watershed segmentation of two cells and a background region.
The image in (a) was used to automatically obtain the markers in (b)
using the method of Sect. 2.2. The marker was used for a standard wa-
tershed segmentation (c) and a level set watershed segmentation (d—f).
The PCLS watershed segmentation was performed with increasing
values of the regularization parameter A in (d) 1 =0, (e) A =0.01 and

(f) » = 0.1 to demonstrate the effect of A. Note how increasing values
of A create smoother watershed lines. It is also clear that the level set
watershed in (f) creates smoother watershed lines than the standard
watershed in (c). This example was created using parameter settings of
At=0.1,y =0.1,e =0.1,t =300

(a

(d

Fig. 8 Watershed segmentation of four cells and a background region.
The high-quality image in (a) with only weak noise was used to create
the marker image (b). The marker image was used as input for a stan-
dard watershed segmentation (c) and for level set watershed segmenta-
tion (d—f) using the Chan-Vese model (d), the Binary level set (e) and

4.6 Comparing the Three Level Set Models

The three level set approaches and the standard watershed
segmentation produce similar results applied to images with
weak noise. This is shown in Fig. 8, where the high-quality
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b

)
e)

) (
) (

(c)

(f)

the PCLS (f). Apparently, applied to images of high quality containing
weak noise signals, all four models behave very similar. The examples
were run with parameter settings of (d) Ar =0.05, > =0.1, r = 200,
(e) At =0.1, 1 =0.05, 0 =0.1, r =200 and (f) At =0.1, L =0.1,
y =0.02, ¢ =0.5,7 =300

image in (a) was used to automatically create the marker
image (b). Based on the marker image, a standard watershed
segmentation was performed (c) and also the three level set
approaches, the Chan-Vese model (d), the Binary level set
(e) and the PCLS (f). Evidently, all four models produce

very similar segmentation results.



Int J Comput Vis (2009) 82: 264-283

271

4.7 Regularization Applied to the Level Set Function(s) or
the Characteristic Functions

The regularization term enables a smoothing of the water-
shed lines. This is normally useful for segmentation of real
images. However, a smoothing of the watershed lines could
also smooth junctions between cells, which is not always
appropriate.

In (9), we have used

4
Ri(¢1,¢2) = fg D IVildx, (28)
i=1

as the regularization functional. At convergence, |, o IVildx
is the length of the boundary of region €2;. In the original
paper (Vese and Chan 2002; Chan and Vese 2001), the reg-
ularization functional was different, i.e.

2
Ry ($1, ) = fQ > IVéildx, (29)
i=1

From our numerical experiments, we have observed some
interesting phenomena with these two different regulariza-
tions. When we increase the regularization parameter A, we
would expect that the watershed lines are getting smoother.
This is observed in the experiments, especially see Fig. 9
which is segmented in Fig. 10 for different values of A and
using two different regularization functionals R; and R».
However, the junctions behave differently. For R,, the cor-
ner of the junction in the upper part of the watershed line is
getting sharper when the values of A is getting bigger. While
for Ry, the junction is getting smoother when the values of
A is getting bigger. For the PCLS, we can also replace R| by

Ry () = /Q IVoldx. (30)

These two functionals produce different results. In Li and
Tai (2007b), it was observed that R; can treat triple-

Fig. 9 The image used in Fig. 10 to demonstrate the difference be-
tween regularization functionals R; and R,

junctions in a proper manner. It is known that R, given in
(29) and (30) are not able to get symmetric triple junctions.
Historically, regularization functional Ry was first proposed
in Chan and Vese (2001), while R; was first proposed in Lie
et al. (2005, 2006a, 2006b).

Oscillating watershed lines are not preferred for segmen-
tation. However, sharp corner may be preferred in some sit-
uation. These experiments show that R; should be used for
these applications.

4.8 Challenging Situations in Real Images

This example shows three PC12 cells with partly inhomo-
geneously labeled cell membrane. Therefore, it represents
a challenging segmentation, approaching the limits of both
the standard watershed and the level set watershed segmen-
tation. The image in Fig. 11a was used to create markers
automatically (b). The marker image was then applied as
input for the standard watershed (c) and also the Binary wa-
tershed level set (d—f). The level set functions ¢; and ¢, are
displayed in (d) and (e), respectively. The sign of the level
set functions is responsible for creating the four phases. The
boundaries of the four phases are drawn in (f), showing the
final segmentation. Clearly, the watershed level set (f) pro-
duces a better segmentation than the standard watershed (c),
although none of them is perfect.

4.9 Multiple Objects and the Four-Color Theorem

High-throughput experiments include images of both low
and high quality, and any segmentation method should there-
fore be validated for images of different level of quality. The
image in Fig. 12(a) shows one optical plane from an im-
age stack. It represents a severe challenge for segmentation
since the boundaries are partly blurred, broken and there ex-
ists a significant amount of endocytosed particles. This im-
age also demonstrates the use of the Four-Color coding since
this example requires the use of all four colors. The image
in Fig. 12(a) was used to automatically construct the marker
image Fig. 12(b) which was used as input for the standard
watershed segmentation. The obtained watershed lines are
shown in Fig. 12(c).

To compute the level set watershed segmentation, the
Euclidean influence zones fjz (Sect. 2.5) were constructed
based on the marker image in Fig. 12(b). The Euclidean in-
fluence zones were computed with the purpose of group-
ing the markers in at most four groups according to the
Four-Color theorem. The result of this grouping is shown
in Fig. 13(a), where all markers are assigned an integer from
1 — 4. The markers possessing the same integer value be-
long to the same group. Note that all markers within each
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Fig. 10 The difference between
regularization functionals R
and R, demonstrated on the
image in Fig. 9. From left to
right, the regularization
parameter A was multiplied

by 10. Pictures (a—c) were
created using the Chan-Vese
method (see Sect. 3.1) with the
regularization functional

Ry (1, ¢2), and (d-f) were
created using regularization
functional R;(¢1, ¢2). Pictures
(g—i) were computed using the
Binary level set (see Sect. 3.2)
with the regularization
functional R(¢1, ¢2) and (j-1)
were created using
regularization functional
R1(¢1, ¢2). The right column
(largest 1) clearly shows the
difference between the
regularization functionals.
R>(¢1, ¢2) creates sharper
corners with the junctions than
the regularization functional
R1(¢1, ¢2). In the test,

At =0.005 for all examples
(a-1)

(a) A= 0.01, Ry

(g) A = 0.07, Ro

(b) A = 0.1, Ro

(j) A = 0.005, R,

group are non-adjacent, which is the crucial point. The topo-
graphical distance function was calculated around the set of
all markers inside each color, and the level set watershed
was computed using the Binary level set. The obtained level
set functions ¢; and ¢, are shown in Fig. 13(b) and (c),
respectively. The two level set functions approach binary
values of O (black) and 1 (white). The watershed lines from
the level set watershed are shown in Fig. 13(d). Note how
the level set watershed (Fig. 13(d)) produces smoother wa-
tershed lines than the standard watershed (Fig. 12(c)). The
level set watershed also captures more of the cells than the
standard watershed, selected cells are indicated with aster-
isks.
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(k) A= 0.05, Ry () A= 0.5, Ry

4.10 Comparison of Watershed Level Set and Watersnakes

Both the watershed level set and the watersnakes (Nguyen
et al. 2003) are algorithms which are able to smooth the wa-
tershed lines and they have the topographical distance func-
tion in common for their data term. It is therefore to be ex-
pected that they produce segmentation results of comparable
quality. The image in Fig. 14(a) was used for segmentation
by the markers in Fig. 14(b) where one marker is placed in-
side the cell and another outside the cell indicated as a frame
along the image border. For this image, the standard water-
shed (Fig. 14(c)), the watersnakes (Fig. 14(d)) and the wa-



Int J Comput Vis (2009) 82: 264-283

279

Fig. 11 The image in (a) was
applied to create markers (b) for
a standard watershed
segmentation (c) and also a
watershed level set
segmentation (d—f). The four
combinations of the sign of the
level set functions ¢ (d) and ¢,
(e) settle the boundaries (f) of
the characteristic functions ;.
Note that the level set watershed
(f) obtains a better segmentation
result than the standard
watershed (c¢). These examples
were executed with parameter
settings of At =0.1,¢ =200
and A =0.1

Fig. 12 An optical plane from
an image stack (a) and the
automatically generated binary
marker image (b) which was
used for a standard watershed
segmentation (c)
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(c)

Fig. 13 Segmentation of a high number of cells and demonstration of
the Four-Color coding. To compute the level set watershed, the Euclid-
ean influence zones fjz were calculated around the marker regions in
Fig. 12(b), where each region in fjz represents a specific marker re-
gion. The Four-Color theorem was applied to fjz, grouping the cor-
responding markers into four groups {1, 2, 3,4}, shown in (a) where
the background has the value zero and all markers belonging to the
same group have the same integer value. The Binary level set func-

tershed level set (Fig. 14(e)) produce segmentation results
of comparable quality. Also for other images comparable
segmentation quality was observed between the watersnakes
and the watershed level set.

The watersnakes is energy-based and the watershed level
set is a variational method and they are thus clearly dis-
tinguishable. Due to their different formulation and at the
same time comparable performance they can therefore be
regarded as complementary algorithms. However, the water-
shed level set is expected to be faster than the watersnakes in
situations involving a large number of objects since the wa-
tershed level set requires the computation of maximum four
topographical distance functions regardless of the number
of objects. For a small number of objects the watersnakes
are probably faster than the watershed level set since the
latter is an iterative method. Within the variational frame-
work the watershed level set can be easily augmented with

@ Springer

(d)

tions ¢ and ¢ — {0, 1} at convergence are displayed in (b) and (c).
The watershed lines from the level set watershed are shown in (d),
producing a smoother result than the standard watershed in Fig. 12(c).
The asterisks indicate selected cells where the level set watershed cap-
tures more of the true cell than the standard watershed. The level
set watershed in this example was executed with parameter settings
At =0.1,t =200, = 0.2,0 = 0.01, and the regularization was ap-
plied to the characteristic functions v;

additional features by adding new terms into the cost func-
tional. This is probably also possible for the watersnakes,
but it has not been demonstrated so far. For example, one
could penalize watershed regions with holes, watershed re-
gions deviating from pre-defined shapes or those of con-
vex shape. To demonstrate the flexibility of the watershed
level set, we have here added a term controlling the size of
the watershed regions by penalizing regions below a certain
threshold. Such a term can be useful to expunge superflu-
ous watershed regions in over-segmentation. We choose the
Binary level set approach and therefore consider the energy
functional in (15). Note that the area of every characteris-
tic function v; equals y; = fQ Y¥;dx. Minimizing the func-
tional

Gp1.¢)=F@1.0)+1Y_ f(i) (31)
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Fig. 14 Comparing standard
watershed, watersnakes and
watershed level set. The image
in (a) was used for
segmentation. In (b—f), two
correctly placed markers (b)
produce comparable
segmentation results for
standard watershed (c),
watersnakes (d) and watershed
level set (d). However, in (f) an
additional marker has been
added to the cell, a situation
naturally occurring in automated
marker construction. In this
case, the standard watershed (g)
and the watersnakes (h) create
an over-segmentation but the
watershed level set based on
(33) is able to combine the
segmentation with a merging
which correctly expunges either
one of the superfluous
watershed regions

(b) Marker image.

(f) Marker image. g

will therefore penalize watershed regions with area less than
A where f is a decreasing function from 1 to O,

f(yi) = ! (1 - L) and
J Wi 2 /(y; —A)?2+e¢€ (32)

FroN €
f o= 2(()71'—14)24-6)3/2.

n is a weighting parameter in (31). The Euler-Lagrange
equations obtained for this minimization is

4
awi Vl/fi l
i+ Li(xX)—AV: i
25, (“ Tt <|wi|)+”f v ))
+4o1(¢7 —1)=0
4
3L/fi Vwi ’
it Li(x)—AV - i
2 3, (“ Tl <|wf,~|>+”f v )>
+dopa(p; —1)=0

(33)

where € controls the smoothness of f and can be set globally
for a given set of images. The effect of (31) is demonstrated
in Fig. 14 where the image in (a) was used for segmentation
in conjunction with the marker image (f) which contains two

(c) Standard
watershed. set

) Standard
watershed. set

(a) Raw image.

(d) Watersnakes {e) Watershed level

(i) Watershed level

(h) Watersnakes

markers for the given cell. The standard watershed (g) and
the watersnakes (h) create an expected over-segmentation.
However, the watershed level set is capable of expunging
one of the superfluous watershed regions and thus simulta-
neously performing a segmentation and a merging.

5 Conclusion

In this work we have combined the level set method
(Osher and Sethian 1988; Vese and Chan 2002; Chan
and Vese 2001; Lie et al. 2005, 2006a, 2006b) and the
marker-controlled watershed segmentation (Najman and
Schmitt 1994; Meyer 1994; Vincent and Dougherty 1994;
Vincent and Soille 1991) to develop a method for segmenta-
tion of real cells and other structures of similar nature. A set
of markers, also called initialization regions, were automat-
ically created by adaptive thresholding and iterative filling
(Sect. 2.2). Such automated methods are of high value in
high-throughput experiments and other experimental setups
producing large amount of data. Based on the markers, the
watershed distance transform was computed from the topo-
graphical distance function (Meyer 1994). We then used the
Four-Color theorem to group the markers into a maximum

@ Springer
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of four groups, thus reducing the complexity of the problem.
Inspired by Nguyen et al. (2003), we propose to compute the
watershed lines around each group of markers using three
different level set approaches, Sects. 3.1-3.3. These level
set methods were tested for real and synthetic images of dif-
ferent complexity, and containing a large number of cells.
The experimental results show that all three level set meth-
ods are able to perform a good segmentation of the given
images with comparable performance to the standard water-
shed and the watersnakes.
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