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ABSTRACT

This paper presents a novel local region-based level set model for im-
age segmentation. In each local region, we define a locally weighted
least squares energy to fit a linear classification function. The local
energy is then integrated over the entire image domain to form an en-
ergy functional in terms of level set function. The energy minimiza-
tion is achieved by level set evolution and estimation of parameters
of the locally linear function in an iterative process. By introducing
the locally linear functions to separate background and foreground
in local regions, our model not only ensures the accuracy of the seg-
mentation results, but also be very robust to initialization. Experi-
ments are reported to demonstrate the effectiveness and efficiency of
our model.

Index Terms— linear classification, active contour model, level
set methods

1. INTRODUCTION

In the past few years, a number of works on geometric active con-
tours , which are implemented via level set methods, have been pro-
posed to address several problems in computer vision, such as image
segmentation, visual tracking and image denoising. Geometric ac-
tive contours, which were introduced by Malladi et al. [1], are build
on curve evolution theory and level set methods. The basic idea is
to represent a contour as the zero level set of a higher dimensional
level set function, and formulate the motion of the contour as the
evolution of the level set function.

Existing active contour models can be broadly categorized into
two classes: the edge-based methods [2][3] and the region-based
methods [4][5]. Edge-based methods utilize image gradients to
guide the evolution of the level set function. For example, the
popular GAC model [3] constructs an edge stopping function to
attract the active contour to the object boundaries. Unfortunately,
the edge-based methods have several drawbacks, such as sensitive
to image noise and weak edges. To prevent these drawbacks, region-
based methods utilize the region descriptor, such as intensity, to
guide contour evolution. One of the most well-known and widely
used region-based active contour model [4] utilizes Mumford-Shah
segmentation techniques to achieve binary phase segmentation. It
assumes that the image region is statistically homogeneous. Zhang
etal. [5] proposed a new region-based signed pressure force function
to stop the zero level set at weak edges. Compared with the edge-
based methods, the region-based models have two advantages. First,
region-based models are more robust to image noise and have higher
segmentation accuracy for images with weak edges. Second, they
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are less sensitive to the placement of initial curve. However, region-
based models using global statistics may fail to segment the images
with intensity inhomogeneity. In practice, intensity inhomogeneity
occurs in many real-world images.

Recently, local region-based methods [6][7][8] have been devel-
oped to handle intensity inhomogeneity. Li et al. [6] proposed a
local binary fitting (LBF) energy, while Zhang et al. [7] introduced
a local image fitting (LIF) energy. By extracting local image in-
formation, these methods are able to segment images with intensity
inhomogeneities. Motivated by the LBF model [6], Gaussian distri-
bution was applied to describe the local image intensities [8], then
the local Gaussian distribution fitting (LGF) energy is presented to
guide the evolution of the level set function. Although, local region-
based methods have better performance than region-based methods
and edge-based methods in segmentation accuracy, they have some
drawbacks. They are very sensitive to the initial contour and easy to
produce error segmentations.

Actually, a key task of local region-based models is to choose
an appropriate model to separate the background and foreground in
local region. Motivated by previous works [5][6][8], we propose a
new locally linear classification (LLC) based model. First, we intro-
duce an approximation sign function to turn the level set to the class
label. In each local region, the locally linear function is fitted by a
locally weighted squares energy. This energy is then integrated over
the entire image domain to form a energy functional in terms of the
level set function. Finally, this energy functional is minimized via
a level set evolution process. Comparative experiments indicate that
our algorithm has the following two main advantages:

1. Our model is a local region-based model. It assumes that lo-
cal region is linearly separable. Compared with region-based
methods, such as [5], the proposed method can yields higher
accuracy segmentation results, especially when image is in-
homogenous.

2. LBF and LGF can be regarded as local mixture models which
belong to generative model, while our LLC model adopts
linear classification model which belongs to discriminative
model. Generally, discriminative model is more robust to
model misspecification than generative model. Thus, our
method is more robust to initialization than LBF and LGF.

The remainder of this paper is organized as follows. Section 2
describes our model and its level set formulation. Section 3 reports
the experimental results. Conclusions are drawn in Section 4.

2. THE PROPOSED MODEL

In this section, we first introduce the weighted least squares method
for locally linear classification. Then, the locally linear functions
are integrated into the level set framework. Finally, we presents the
implementation details of our model.
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2.1. Weighted least squares for classification

Let Q € R? be the image domain, and I : 2 — R be a given gray
level image. Let £ € {—1,+1} be the class label, T : Q — L be
the class label in the image domain €2. For a given point x € 2, we
define the following locally linear function

Ix(y) = wxl(y) +bx, y€N(x), (1)

where wx and bx are coefficients of the linear function (Fig. 1 (a)),
and N(x) denotes the neighborhood set of point x. Introducing
the locally linear classification fx can effectively separate the back-
ground and background of the local region A/ (x), which ensures
the correctness of dealing images with intensity inhomogeneity and
weak edges. The local error function can be written as

B (s, b) = / Ko(y -0l fx(y) - Ty, @)

where K is a Gaussian kernel with standard deviation o, and T'(y)
denotes the class label of point y, specifically, +1 for foreground
and —1 for background. Minimizing the above function (2) is to
find the weighted least squares solution for classification. In order
to control over-fitting problem, we introduce the regularization term.
Then the objective function to be minimized takes the form

Er (Wi, by) + A1 (wx — w*)? + Aa(by — b°)2, (3)

where A1, A2 are regularization coefficients, and w™,b" are prior
value for wy, bx. Setting the derivative of (3) with respect to wx
and by to zero, we obtain wx, bx by the following equations:

_ Aw* + F(x) — ﬁf(x) (T(x) + A2b")

Wx

D(x) = 75, (%) + A 7 4)
. ; .
bx = m (T(X) — wx.[(x) + )\26 ) y

where D = (IoI)®k,I = IQk, F = (IoT)®@kand T = T®k'.
Here k is a discrete convolution kernel of the Gaussian kernel K.

2.2. Level set formulation

The local error function (2) can be written as an energy functional in
terms of a level set function. Suppose ¢ : 2 — R denotes the level
set function, and ¢ > 0 denotes the foreground “+1”, and ¢ < 0
denotes the background “—1”. In each point y, its class label can
be obtained by T'(y) = sgn(¢(y)), where sgn is the sign function
which is approximated by tanh function (Fig. 1(b))

T = sgn(¢) = tanh(k), &)
where k is a positive constant. The derivative of sgn(¢) with respect
to ¢ is

asgn K
sgn'(¢) = 2019 _ ©

0¢ cosh?(k¢)

Based on the description in Section 2.1, the total error energy
function of the entire image Z in domain {2 can be evaluated as

E(p,w,b) :/Ex(wx,bx)dx
- [ ([ Koty =015 - Ty ) ix. @

'® denotes the convolution operation and o denotes element-by-element
multiplication.
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T(y) = tanh(r¢(y))
+1 +1

Fig. 1. (a) the linear function; (b) the approximation of the sign
function

The derivative of the functional £ with respect to ¢ is written as

o€ ,
W(Y) = sgn (¢(y)) / (Ko(x — y)(T(y) — fx(y))dx, (8)
which can be formulated as discrete convolution form
o€ ,
%:Sgn (¢)((T*f)®k) 9)

To preserve the evolving level set function as an approximate
signed distance function during the evolution, we introduce a level
set regularization term which was proposed in [9].

1
P@) = [ 5 (Vo) - D dy. (10)
The gradient of the functional P with respect to ¢ takes the form
oP [ V¢
— =-A +d1v<7). 11
o~ 20T [val v

Combining the error energy fuctional (7) and the regularization
term (10), we define the entire energy functional as follows:

F(d) = n&(9) +vP(¢), (12)

where p and v are positive constants. This is the energy functional
which will be minimized to drive the evolution of the level set func-
tion.

2.3. Implementation and parameters settings

To minimize the energy functional (12), we adopt gradient descent
method. For a fixed level set ¢, we use the defined sign function (5)
to turn the level set function to class label. Then, the locally linear
classification function is solved by weighted least squares method
(see Section 2.1). Specifically, for each locally linear function, its
parameters wx and by are given by Eqn. (4).

Keeping w and b fixed, and minimizing the energy functional 7
with respect to ¢, we can derive the gradient descent flow:

o OF 9 0P

a0 Moag "o 13
Thus, the minimization of energy functional F can be achieved by
two-stage iterative optimization. First, minimizing the regulariza-
tion energy (3) with respect to locally linear functions, keeping the
level set function fixed. Second, minimizing the entire energy func-
tional F with respect to level set function, keeping the locally linear
functions fixed. This two-stage optimization is repeated until con-
vergence. The detail steps of the proposed method are illustrated in
Algorithm 1.
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Input : input image 7, maximum iteration number /N and
initialization level set function ¢g
Output: level set function ¢ and segmentation results of 7

1 Tnitial the level set function ¢' = ¢

2 fori < 1to N do

3| T=sgn(e");

4 For each point x, solve wx, bx by Eqn. (4);

5 Calculate the gradient descent flow % by Eqn. (13);
6 Evolve the level set function ¢ ™! = ¢* + n%;

7 if o't == ¢’ then

8 ‘ break iteration;
9 end

10 end

Output level set function ¢ = ¢*™ ", obtain the segmentation
according to the resultant level set function ¢.

i+1

—
—

Algorithm 1: Level set evolution with locally linear classifi-
cation for image segmentation

Note that the main computational cost in our method is to com-
pute the parameters w, b in Eqn. (4) and the gradient descent flow
in Eqn. (13). Both of the computations involve the convolution op-
erations. To accelerate the computation, we can use efficient FFT
to compute the convolution operations. The variables D and I in
Eqn. (4) which are unchanged during the iterative process can be
precomputed before the iteration.

The locally linear function defined in Eqn. (1) map the input
gray-scale value to be the class label. From Fig. 1(a), we see that
—% is the zero-crossing point of the linear function. Actually, the
zero-crossing point f% plays an important role in classification.
Suppose w < 0, if I(y) > —2, then the label of point y is —1.
Alternatively, I(y) < —% gives label +1. Let m be the average
intensity of the image /. In this work, we set a prior value for the
zero-crossing point that —% = m. In addition, in our implementa-
tion, we set w* = —0.5, and thus b* is set as b* = —mw”. The
regularization coefficients A1, A2 in Eqn. (3) are selected as A\ =
A2 = 0.001.

The function defined in Eqn. (5) is a smooth approximation of
the sign function. As can be seen from Fig. 1(b), ~ control the
smoothness of the sign function. We choose x = 2 in this work.

The standard deviation o of the Gaussian kernel is set as o0 =
2.0, and we truncate the Gaussian kernel as a K x K filter kernel
(K =40+ 1).

The level set function ¢ can be simply initialized as a binary step
function which takes constant —1 for background and +-1 for fore-
ground. For the weighing constants p and v, we use the following
parameters: ;¢ = 10, = 1. The time step n is set as p = 0.1.

3. EXPERIMENTAL RESULTS

We compare our method with Local Binary Fitting (LBF) method [6]
and Selective Binary and Gaussian Filtering Regularized (SBGFR)
method [5]. These two methods belong to local region-based model
and region-based model, respectively. For fair comparison, all of the
methods use the same initializations.

Fig. 2 and 3 show the results of X-ray images of blood vessels.
As illustrated in these figures, with different initial contours, LBF
may fail to segment the objects correctly. Specifically, as shown in
Fig. 2, although the initial contours of the first row and the second
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row are very similar, the segmentation results of LBF are different
from each other. It demonstrates that LBF is sensitive to initial con-
tours. SBGFR model isn’t sensitive to initial contours as shown in
these figure, but it can’t obtain accuracy segmentation results. By
contrast, the proposed LLC model not only gives the high accu-
racy results but also obtains almost the same segmentation results
with different initial contours. In the second row of Fig. 3, even
though the initial contours didn’t contrain any foreground objects,
our method can still obtain precise segmentation results.

Initializations LBF SBGFR LLC

Fig. 2. Segmentation results of a blood vessel image with different
initial contours.

Initializations LBF

SBGFR LLC

Fig. 3. Segmentation results of a blood vessel image with different
initial contours.

In order to further demonstrate the capability of our method, we
compare our method with LBF model and SBGFR model for brain
MR images with week edges. Fig. 6 shows the segmentation results.
As can be seen from the figure, edges between white matter and gray
matter are much weaker than those between white matter and back-
ground. SBGFR model segments the white matter and gray matter
together as foreground objects, and can’t segment the details of the
white matter (see areas in blue dashed circles). LBF model is sen-
sitive to initial contours, which easily lead to inaccurate segmenta-
tion results (see areas in green dashed circles). Compared with LBF
model and SBGFR model, our LLC method achieves high accuracy
segmentation results with various initial contours.
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Initializations SBGFR

Fig. 4. Segmentation results of a brain image with intensity inhomo-
geneity.

Initializations LBF

SBGFR LLC

Fig. 5. Segmentation results of a brain image with intensity inhomo-
geneity.

We also use our method to segment images with intensity in-
homogeneity. Fig. 4 and 5 are two MR brain images with intensity
inhomogeneity. SBGFR can’t segment the details of the white mat-
ter (see areas in blue dashed circles). The segmentation results of
LBF are better than SBGFR, but there are still some error segmen-
tations (see areas in green dashed circles). Our method successfully
segments the white matter in these two images with various initial
contours. In summary, all of the above experiments demonstrate that
our method is superior in terms of both accuracy and robustness.

4. CONCLUSIONS

In this paper, we propose a locally linear classification based model
with a level set formulation for image segmentation. The main con-
tribution of this work lies in that we introduce the locally linear
classification into level set framework. Comparative experiments
on medical image segmentation show that our method can achieve
accurate segmentation results with various initial contours.

In the future, we will apply our model to segment other types of
images. In addition, the proposed model utilizes locally linear func-
tion to separate the local region. It has promising to adopt nonlinear
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Initializations

Fig. 6. Segmentation results of brain images with weak edges.

function, for example, splines [10], to further improve the perfor-
mance ofour proposed approach.
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