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1. Introduction

The Mumford–Shah functional is probably one of the best known models
in image segmentation. It has been proposed by D. Mumford and J. Shah
in their seminal paper [41] and is related to previous discrete models intro-
duced by D. Geman and S. Geman ([35]) and A. Blake and A. Zisserman
([15]). In the Mumford–Shah image reconstruction model we are given an
open set Ω in the plane (typically a rectangle) and a function g : Ω → [0, 1]
representing the grey levels of a picture. Then, one wants to determine a
pair (K, u), where K ⊂ Ω is a compact set representing the contours re-
constructed from the discontinuities of g and u ∈ C1(Ω \ K) is a smooth
approximation of g outside K. The pair (K, u) is obtained by minimizing
the functional

MS(K, u) =
∫

Ω\K
|∇u|2 dx + α

∫
Ω\K

|u − g|2 dx + βH1(K ∩ Ω) , (1.1)

where α, β are positive constants and H1 denotes the 1-dimensional Haus-

dorff measure. While the term
∫

Ω\K
|u − g|2 dx forces u to be close to the

datum g, the integral
∫

Ω\K
|∇u|2 dx penalizes strong variations of u, thus

ensuring that u is a smooth approximation of g. The interesting feature of
the functional (1.1) is that, due to the presence of the term H1(K ∩ Ω),
whenever g has sharp discontinuities (as it is likely to happen on the edges
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of the objects in the picture) it is more convenient to insert a contour in-
stead of having a big gradient of u. Finally, α and β are, respectively, scale
and contrast parameters.

The Mumford–Shah functional (1.1) has an obvious generalization in
higher dimension

MS(K, u) =
∫

Ω\K
|∇u|2 dx + α

∫
Ω\K

|u − g|2 dx + βHN−1(K ∩ Ω) ,

where Ω is a bounded open set in R
N , g ∈ L∞(Ω), α, β > 0, K is a compact

subset of Ω, u ∈ C1(Ω \ K) and HN−1 stands for the (N − 1)-dimensional
Hausdorff measure in R

N . We call an optimal pair any minimizer (K, u) of
MS. Notice that, given an optimal pair (K, u), any other pair (K ′, u) which
is obtained by adding to or removing from K a set of zero HN−1 measure
is also optimal. For this reason it is useful to introduce the concept of
essential optimal pair. We say that an optimal pair (K, u) is essential if
HN−1(K ∩ B�(x)) > 0 for any x ∈ K, � > 0. It is not hard to show that,
given any optimal pair (K, u), there exists always an essential optimal pair
(K ′, u′) such that HN−1(K�K ′) = 0 and u′ = u in Ω \ (K ∩ K ′).

Another variational model used in image segmentation is the Blake–
Zisserman functional

BZ(K1, K2, u) =
∫

Ω\(K1∪K2)

[|∇u|2+α|u − g|2] dx

+ βHN−1(K1 ∩ Ω) + γHN−1((K2 \ K1) ∩ Ω) ,

where K1 (the jump set) and K2 (the crease set) are compact subsets of
Ω, the smooth approximation u of g is in C(Ω \ K1) ∩ C2(Ω \ (K1 ∪ K2)),
g ∈ L∞(Ω) and α, β, γ are positive constants. The Blake–Zisserman func-
tional allows a more precise segmentation than the Mumford–Shah func-
tional in the sense that also the curvature of the edges of the original pic-
ture is approximated. On the other hand, minimizers may not always exist,
depending on the values of the parameters β, γ and on the summability
assumptions on g (see [21], [22] for existence results and [23] for a counterex-
ample to existence). Here, we shall not discuss the Blake–Zisserman model,
but the reader may refer to [24] and [25] for some recent results concerning
the regularity of minimizers and to [9] for numerical approximation.

The minimization of the Mumford–Shah and the Blake–Zisserman
functional are two examples of a large class of variational problems called
by De Giorgi “free discontinuity problems”. This terminology refers to the
fact that the corresponding functionals are characterized by a competition



Vol. 71 (2003) The Mumford–Shah Problem 97

between volume energies, concentrated on N -dimensional sets, and surface
energies, concentrated on (N −1)-dimensional sets, whose supports are not
fixed a priori. Indeed, as in the case of the two functionals above, the sets
where the lower dimensional energies concentrate are the most relevant
unknown of the problem.

2. Existence of minimizers for the Mumford–Shah
problem

2.1. Preliminary remarks

This section contains an account of the proof of the existence of minimizers
for the Mumford–Shah problem

Min
{MS(K, u) : K ⊂ Ω compact, u ∈ C1(Ω \ K)

}
, (2.1)

given by De Giorgi, Carriero and Leaci in [33]. We start by observing that
minimizing MS among all pairs (K, u), with K ⊂ Ω compact and u ∈
C1(Ω \ K) is equivalent to minimizing in the class

C =
{
(K, u) : K ⊂ Ω compact, u ∈ W 1,2(Ω \ K)

}
. (2.2)

In fact, if (K, u) ∈ C is a minimizer of MS in the class C, adding to u a
function of the type εϕ, with ϕ ∈ C1

0 (Ω \ K), and letting ε go to zero, we
get immediately that u is a weak solution of the equation∫

Ω\K
[〈∇u,∇ϕ〉 − α(u − g)ϕ] dx = 0 for any ϕ ∈ C1

0 (Ω \ K)

and thus, by standard elliptic regularity results, u ∈ L∞
loc(Ω \ K), hence

u ∈ W 2,p
loc (Ω \K) for any p < ∞. Therefore u ∈ C1,α(Ω \K) for any α < 1.

Let us now take a minimizing sequence (Kh, uh) of MS in the class
C and let us try to prove the existence of a minimizer by a typical direct
argument. Notice that for any u ∈ W 1,2(Ω \ K), setting

Tu(x) =



‖g‖∞ if u(x) > ‖g‖∞,

u(x) if − ‖g‖∞ ≤ u(x) ≤ ‖g‖∞,

−‖g‖∞ if u(x) < −‖g‖∞ ,

(2.3)

then MS(K, Tu) ≤ MS(K, u). Therefore, without loss of generality, we
may assume that ‖uh‖∞ ≤ ‖g‖∞ for any h. On the other hand, since Kh is
a sequence of equibounded compact sets, then, up to a subsequence, we may
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assume that Kh converges in the Hausdorff metric to a compact K ⊂ Ω,
i.e. that

(i) for any x ∈ K there exists a sequence xh ∈ Kh such that xh → x,
(ii) if xh ∈ Kh for any h, then any limit point x of xh belongs to K.

Moreover, it is easy to prove that the sequence uh converges weakly
in W 1,2

loc (Ω \ K) to a function u ∈ W 1,2(Ω \ K). At this point, since the
two integrals in the definition of MS are lower semicontinuous, it would
be nice to conclude that (K, u) is a minimizer for MS. However, a serious
difficulty occurs due to the fact that in general the map K 
→ HN−1(K) is
not lower semicontinuous with respect to the Hausdorff convergence unless
some additional assumptions on the sets Kh are made. To overcome the
failure of the direct methods, De Giorgi has proposed a weaker formulation
of the Mumford–Shah problem for which the existence of minimizers, based
on a lower semicontinuity result of Ambrosio, can be obtained by direct
methods. A regularization argument (proved in [33]) then shows that the
minimizer of this new functional provides also a minimizer for the original
Mumford–Shah problem. But before going in further details, we recall a
few facts on functions of bounded variations (shortly BV functions) and
rectifiable sets which we shall use in the sequel. A complete exposition on
the subject can be found in Chapters 2, 3 and 4 of the book [13] to which
we shall constantly refer in the sequel (see also [34]).

2.2. Background

Given an open set Ω in R
N , we denote by BV (Ω) the space of functions

of bounded variation in Ω, i.e. the space of those functions u ∈ L1(Ω) such
that the distributional gradient Du = (D1, . . . , DNu) is a vector valued
Radon measure in Ω, with finite total variation |Du|(Ω). If u ∈ BV (Ω), we
say that u is approximately continuous at x ∈ Ω if there exists ũ(x) ∈ R

such that

lim
�→0

1
�N

∫
B�(x)

|u(y) − ũ(x)| dy = 0 ,

where B�(x) denotes the open ball with center x and radius �. We denote by
Cu the set of all points of approximate continuity of u and by Su = Ω\Cu the
set of approximate discontinuity of u. Su is a Borel set and HN−1-a.e. x ∈ Su

is an approximate jump point, i.e. there exist a direction νu(x) ∈ SN−1 and
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two real numbers u+(x), u−(x) such that u−(x) < u+(x) and

lim
�→0

1
�N

∫
B+

� (x,νu(x))
|u(y) − u+(x)| dy = 0 ,

lim
�→0

1
�N

∫
B−

� (x,νu(x))
|u(y) − u−(x)| dy = 0 ,

(2.4)

where B+
� (x, νu(x)) = {y ∈ B�(x) : 〈νu(x), y−x〉 > 0} and B−

� (x, νu(x)) is
defined in the obvious way. We denote by Ju the jump set of u, i.e. the set
of points where (2.4) holds. Since HN−1(Su \Ju) = 0, in the sequel we shall
essentially identify to two sets and refer also to Su as the jump set. For
LN -a.e. x ∈ Cu (LN stands for the Lebesgue outher measure in R

N ) there
exists the approximate gradient of u at x, which is a vector ∇u(x) ∈ R

N

such that

lim
�→0

1
�N+1

∫
B�(x)

|u(y) − ũ(x) − 〈∇u, y − x〉| dy = 0 .

The approximate gradient ∇u turns out to be equal to the derivative of
the distributional gradient Du with respect to the Lebesgue measure LN .
Therefore, denoting by Dau the absolutely continuous part of Du with
respect to LN , we have

Dau = ∇uLN .

The singular part Dsu of Du can be also split in two mutually singular
measures

Dju = Dsu Su, Dcu = Dsu (Ω \ Su) ,

where the symbol denotes the restriction of a Radon measure to a fixed
set. The measure Dju is called the jump part of the derivative Du, while
Dcu is called the Cantor part. The jump part can be represented as Dju =
(u+ − u−)νuHN−1 Su, i.e. for any Borel set B in Ω

Dju(B) =
∫

Su∩B
(u+(x) − u−(x))νu(x) dHN−1 .

On the other hand, the Cantor part does not see the (N − 1)-dimensional
subsets of Ω. More precisely, if B ⊂ Ω is a Borel set, σ-finite with respect
to HN−1, then Dcu(B) = 0. Thus, the distributional gradient of u is de-
composed as Du = ∇uLN + Dcu + (u+ − u−)νuHN−1 Su and, since the
three measures in which Du is split are mutually singular, we have

|Du|(Ω) =
∫

Ω
|∇u| dx + |Dcu|(Ω) +

∫
Ω
|u+ − u−| dHN−1 .
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Simple examples show that even in one dimension only some of the three
part in which Du can be divided explicitely appear. In particular, if Dju =
Dcu ≡ 0, then u ∈ W 1,1(Ω).

The space BV (Ω) is a Banach space with respect to the norm ‖u‖BV (Ω)

= ‖u‖L1(Ω) + |Du|(Ω). Norm convergence, however, is too strong for most
applications and indeed we shall mostly use the weak* convergence. To this
aim we recall that a sequence uh in BV (Ω) is said to converge weakly* to
a function u ∈ BV (Ω) if uh → u in L1(Ω) and the gradients Duh converge
to Du weakly* in the sense of measures, i.e.

lim
h→∞

∫
Ω

ϕ dDiuh =
∫

Ω
ϕ dDiuh for any i = 1, . . . , N and any ϕ ∈ C0(Ω) .

In order to provide the right functional setting for the weak formulation
of the Mumford–Shah as well as for other free discontinuity problems, De
Giorgi and Ambrosio introduced in [31] the space of special functions of
bounded variation SBV (Ω). A function u ∈ BV (Ω) is said to be in SBV (Ω)
if the Cantor part of Du is zero. Thus, for a special BV function u, we have
that Du = ∇uLN + (u+ − u−)νuHN−1 Su. It can be easily checked that
SBV (Ω) is a closed subspace of the Banach space BV (Ω). However, since
any BV function u can be approximated in the weak* convergence by a
sequence of smooth function, SBV is not closed under weak* convergence.
The following result, first proved by Ambrosio in [5] (see also [6] and [2] for
a different proof), is the main tool to prove the compactness and the lower
semicontinuity along minimizing sequences of free discontinuity problems
like the Mumford–Shah problem.

Theorem 2.1. Let Ω be a bounded open set in R
N and uh a sequence in

SBV (Ω) ∩ L∞(Ω) such that, for some p > 1,

sup
h∈N

[∫
Ω
|∇uh|p dx + ‖uh‖L∞(Ω) + HN−1(Suh

)
]

< ∞ .

Then, there exists a subsequence uhk
converging weakly* in BV (Ω) to a

function u ∈ SBV (Ω). Moreover, ∇uhk
→ ∇u weakly in Lp(Ω) and HN−1

(Su) ≤ lim inf
k→∞

HN−1(Suhk
).

We conclude this quick review of the basic material needed for the
sequel, by recalling that a set S is said countably (N −1)-rectifiable if there
exists a sequence Ch of compact subsets of (N − 1)-dimensional manifolds
Mh of class C1 such that S = ∪hCh ∪ N0, where N0 is a set of zero HN−1-
measure. A suitable notion of approximate tangent plane can be given so
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that an approximate tangent plane πx exists at HN−1-a.e. point x of a
rectifiable set. However, the precise definition of πx is not needed in the
sequel. Here we limit ourselves to recall that, for HN−1-a.e. point x in each
of the compact sets Ch in which S can be decomposed, the approximate
tangent plane πx coincides with the classical tangent plane at x to the
underlying manifold Mh containing Ch. Moreover, for any x ∈ S such that
πx exists, we have

lim
�→0

1
�N+1

∫
S∩B�(x)

dist2(y, πx) dHN−1(y) = 0 . (2.5)

Notice also that if u ∈ BV (Ω), the jump set Su is countably (N − 1)-
rectifiable and for HN−1-a.e. point x ∈ Su the direction νu(x) along which
u jumps is orthogonal to the approximate tangent plane to Su at x.

The following lemma is a special case of a classical result concerning
k-dimensional densities of Radon measures.

Lemma 2.2. Let µ be a Radon measure in R
N , t > 0 and B ⊂ R

N a Borel
set such that

lim sup
�→0

µ(B�(x))
�N−1

≥ t for any x ∈ B .

Then µ(B) ≥ tωN−1HN−1(B), where ωN−1 is the LN−1 measure of the unit
ball in R

N−1.

The following result is a simple consequence of the previous lemma.

Corollary 2.3. Let f be a locally summable function from R
N . Set

Λ =

{
x ∈ R

N : lim sup
�→0

1
�N−1

∫
B�(x)

|f(y)| dy > 0

}
.

Then, HN−1(Λ) = 0.

Proof. Let us define, for any Borel set E ⊂ R
N , µ(E) =

∫
E
|f(y)|dy. Then,

we can set Λ = ∪jΛj , where, for any j ∈ N,

Λj =
{

x ∈ Bj(0) : lim sup
�→0

µ(B�(x))
�N−1

>
1
j

}
.

Since µ(Λj) < ∞ for any j, from Lemma 2.2 we get that also HN−1(Λj) <
∞, hence LN (Λj) = 0 and thus µ(Λj) = 0. Therefore, Lemma 2.2 again
implies that HN−1(Λj) = 0, hence HN−1(Λ) = 0. �
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2.3. Existence of minimizers

Let us come back to the Mumford–Shah functional. In order to prove the
existence of minimizers of problem (2.1), De Giorgi suggested to minimize
the following relaxed Mumford–Shah functional

MS(u) =
∫

Ω
|∇u|2 dx + α

∫
Ω
|u − g|2 dx + βHN−1(Su) (2.6)

in the class of SBV (Ω) functions.
His idea was to deal with a simpler object, just depending on the

function u, and then to recover the set of contours K by taking the set of
discontinuity Su. The key point in this approach is that the right functional
space where to set the problem is SBV (Ω) and not the entire space BV (Ω),
which would be too large. Indeed, given any function g ∈ L2(Ω), one can
construct a sequence uh in BV (Ω), converging to g in L2, such that for any
h the derivative of each uh is made up only by the Cantor part. Therefore
the infimum of MS(u) on BV (Ω) is trivially zero. On the other hand,
since we are mostly interested in finding a set of contours K, it is natural
to retain only those BV functions whose discontinuity set may provide in
some way the set K. Moreover, the compactness and lower semicontinuity
Theorem 2.1 of Ambrosio immediately gives the existence of minimizers for
the relaxed functional MS(u).

Proposition 2.4. Let Ω be a bounded open set of R
n, g a function from

L∞(Ω), α, β > 0. Then, the problem

Min {MS(u) : u ∈ SBV (Ω)} , (2.7)

where MS is the functional defined in (2.6), has always a solution.

Proof. Let uh ∈ SBV (Ω) be a minimizing sequence for MS. For any h
we set vh = Tuh, where T denotes the truncation operator defined in
(2.3). Then, it is easy to check that vh ∈ SBV (Ω), ∇vh = ∇uhχ{|uh|≤‖g‖∞}
and that Svh

⊂ Suh
for any h. Moreover MS(vh) ≤ MS(uh), and thus

vh is a minimizing sequence satisfying the assumptions of Theorem 2.1.
Therefore, with no loss of generality, we may assume that vh converge
weakly* in BV to a function u ∈ SBV (Ω) and that the conclusions of
Theorem 2.1 hold. In particular, since vh → u in L1(Ω) and is bounded
in L∞, vh converges to u also in L2(Ω) and, since ∇vh converges to ∇u

weakly in L2(Ω), then
∫

Ω
|∇u|2dx ≤ lim inf

h→∞

∫
Ω
|∇vh|2dx. Therefore we get

that MS(u) ≤ lim infh→∞ MS(vh), hence u is a minimizer. �
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The next step is now to prove that the two minimum problems, (2.7)
and (2.1), are equivalent and that any minimizer of MS(u) provides an
optimal pair (Su, u) for the original problem (2.1). This is by no means
obvious, once we keep in mind that the discontinuity set Su of a SBV
function can be in general very wild and that in particular Su can be even
dense in Ω. However, a relationship between the two minimum problems
can be easily deduced from the following general result concerning SBV
functions.

Proposition 2.5. Let Ω be a bounded open in R
N and let K ⊂ R

N be a
closed set such that HN−1(K ∩ Ω) < ∞. If u : Ω → R is a function from
W 1,1(Ω\K)∩L∞(Ω\K), then u belongs to SBV (Ω) and HN−1(Su\K) = 0.

As an immediate consequence of Proposition 2.5 we have

min
u∈SBV (Ω)

MS(u) ≤ inf
(K,u)∈C

MS(K, u) , (2.8)

where C is defined in (2.2).
To prove the opposite inequality, namely that for any minimizer u of

MS the pair (Su, u) is an optimal pair for MS, we have to show that certain
pathological behaviours of BV functions cannot occur when dealing with
minimizers of MS. In other words, we must prove some sort of regularity
for the discontinuity set of a minimizer of problem (2.7). This approach,
which has been introduced in the paper [33], leads to a proof of existence
through regularity, a strategy used in many classical variational problems
in order to prove existence. The regularity property needed in our case,
known in the literature as Ahlfors regularity, is contained in the following
statement.

Theorem 2.6. There exist three constants ϑ, γ, �0, depending only on N, α, β
and ‖g‖∞, such that, if u ∈ SBV (Ω) is a minimizer for MS, x ∈ Su,
B�(x) ⊂ Ω and � < �0, then

ϑ�N−1 ≤ HN−1(Su ∩ B�(x)) ≤ γ�N−1 . (2.9)

The meaning of the estimate (2.9) is clear. When u is a minimizer, each
time we fix a point in Su, the amount of jump set around this point is never
too much nor too little and so Su is not too diffuse nor too sparse in Ω. Let
us now show how the existence of solutions for the original Mumford–Shah
problem can be easily derived from this estimate and then we give a hint
of how the proof of (2.9) goes.



104 N. Fusco Vol. 71 (2003)

Existence of minimizers for the Mumford–Shah problem. Actually, only the
inequality on the left in (2.9) is needed. First, notice that, by continuity,
(2.9) holds also for any x ∈ Su ∩ Ω. Then, let us define, for any Borel set
E ⊂ R

N , µ(E) = HN−1(E ∩ Su) and set B = (Su \ Su) ∩ Ω. We have

lim sup
�→0

µ(B�(x))
�N−1

≥ ϑ for every x ∈ B .

Therefore, Lemma 2.2 implies that

µ
(
(Su \ Su) ∩ Ω

) ≥ ωN−1ϑHN−1
(
(Su \ Su) ∩ Ω

)

and thus we get HN−1
(
(Su \ Su) ∩ Ω

)
= 0. From this equality, we have

immediately that (Su, u) is an optimal pair. Infact, since |Dsu|(Ω \ Su) =
0, we have that u ∈ W 1,1(Ω \ Su), hence u ∈ W 1,2(Ω \ Su). Moreover,
MS(u) = MS(Su, u), hence the result follows from (2.8). �

Notice that, since the estimate from below in (2.9) holds for any x ∈
Su ∩ Ω, the optimal pair (Su, u) obtained with the above proof is also
essential.

Let us now give a sketch of the proof of the estimate (2.9). The in-
equality on the right follows by a simple comparison argument. In fact,
let u be a minimizer for MS. Then, ‖u‖∞ ≤ ‖g‖∞, otherwise we would
immediately get that MS(Tu) < MS(u), where T is defined in (2.3).

Let us fix a ball B�(x) and let us compare the functional MS at the
two functions u and w = u(1 − χB�(x)). Since MS(u) ≤ MS(w), we get

∫
Ω
|∇u|2dy + α

∫
Ω
|u − g|2dy + βHN−1(Su)

≤
∫

Ω\B�(x)
|∇u|2dy + α

∫
B�(x)

|g|2dy + α

∫
Ω\B�(x)

|u − g|2dy

+ βHN−1 (Su ∩ (Ω \ B�(x))) + NωNβ�N−1

and thus∫
B�(x)

|∇u|2dy + α

∫
B�(x)

|u − g|2dy + βHN−1(Su ∩ B�(x))

≤ α

∫
B�(x)

|g|2dy + NωNβ�N−1

≤ α‖g‖2
∞�N + NωNβ�N−1 .
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Therefore, from the last inequality, we have that if � < 1

HN−1(Su ∩ B�(x)) ≤ αωN

β
‖g‖2

∞�N + NωN�N−1 ≤ γ�N−1 ,

hence the right hand side inequality in (2.9) is proved.
The proof of the estimate from below in (2.9) is much more delicate and

we cannot reproduce it here. We limit ourselves to recall that this estimate
is based on the following decay lemma, stated in a slightly different form
in [33].

Lemma 2.7 (Decay). There exists a constant C1, depending only on N, α, β
and ‖g‖∞, such that, for any minimizer u of MS and any τ ∈ (0, 1), there
exist ε, η > 0 with the property that, if B�(x) ⊂ Ω, with � < η, and

HN−1(Su ∩ B�(x)) < ε�N−1 ,

then∫
Bτ�(x)

|∇u|2 dy + HN−1(Su ∩ Bτ�(x))

≤ C1τ
N

[∫
B�(x)

|∇u|2 dy + HN−1(Su ∩ B�(x))

]
.

The above lemma is proved by a typical blow-up argument, showing
that if in the ball B�(x) the amount of jump of u, HN−1(Su ∩ B�(x)), is
very small compared to �N−1 then u is very close to a harmonic function,

hence
∫

Br(x)
|∇u|2dy decays like rN for a smaller radius r. In this case, one

can prove that also HN−1(Su ∩ Br(x)) decays like rN .
Iterating the above estimate in smaller and smaller balls, it is not

difficult to prove that if the amount of Su inside the ball B�(x) is below a
certain critical value ε0�

N−1, then actually Su ∩ B�/2(x) = ∅ and from this
fact the proof of the estimate from below in (2.9) immediately follows.

Another interesting consequence of the lower bound in (2.9) is the fact
that if K is a compact set contained in Su ∩ Ω, then

HN−1(K) = lim
ε→0

LN (Iε(K))
2ε

, (2.10)

where Iε(K) = {x ∈ R
N : dist(x, K) < ε}. The limit on the right hand side

of (2.10), whenever exists, is known as the (N − 1)-dimensional Minkowski
content of the set K. It is not hard to see that for any countably (N − 1)-
rectifiable set S, its Minkowski content is always greater than or equal to
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HN−1(S) and the fact that here we have the equality can be viewed as a
sort of (mild) regularity of the jump set Su.

Different proofs of the existence of minimizers for the Mumford–Shah
problem are available in the literature. For instance, Morel and Solimini
proved (see [40]) the existence result in dimension 2 by a direct method
argument. They use the fact that if Kh is a sequence of equibounded com-
pact sets converging in the Hausdorff metric to K and if the number of
connected components of each Kh is also equibounded, then, by Golab’s
theorem, H1(K) ≤ lim inf

h→∞
H1(Kh). Their argument goes as follows. First,

for any n ∈ N they prove the existence of a minimizing pair (Kn, un) for
the Mumford–Shah functional under the constraint that the number of con-
nected components of K is less than or equal to n. Then, they show that
any such minimizer (Kn, un) satisfies an estimate of the type (2.9). Thus,
by means of this extra information, they are able to show that, up to a
subsequence, (Kn, un) converges to a pair (K, u) in the sense that Kn → K
in the Hausdorff metric and H1(K) ≤ lim inf

n→∞ H1(Kn), un converges to u

weakly in W 1,2
loc (Ω \ K). From these two facts they immediately get that

(K, u) is a minimizing pair.
Another 2-dimensional proof of the existence of minimizers has been

given by Dal Maso, Morel and Solimini in [28]. They show that the lower
semicontinuity of the map K 
→ H1(K) holds along sequences satisfying a
suitable uniform concentration property. However, the proof of the existence
of such minimizing sequences is rather complicate.

The same idea of choosing good minimizing sequences along which
the lower semicontinuity of the HN−1 measure holds also inspires a recent
proof of Maddalena and Solimini (see [37]), which works in any dimension.
Finally, let us mention that by no means the minimizers of the Mumford–
Shah functional are unique. Simple examples show that uniqueness fails
even in one dimension.

3. Regularity of global and local minimizers

Once we have proved the existence of minimizers u for the functional
MS, i.e. that the pair (Su, u) is an essential optimal pair for the origi-
nal Mumford–Shah functional MS, the next step is to investigate which
regularity we may expect for u and for the jump set Su. At this regard,
Mumford and Shah stated in [41] a precise conjecture, which they were able
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to prove only in very special situations and which is strongly supported by
numerical evidence.

Conjecture (Mumford–Shah). Let (K, u) be an optimal essential pair for
MS. Then K ∩Ω is locally the union of finitely many C1,1 arcs. Moreover,
the set K ∩Ω may have only two kinds of singularities: either a “crack tip”
or a “triple junction”.

Here, by a crack tip, we mean a point x ∈ K ∩ Ω such that x is the
endpoint of a C1,1 arc, while x ∈ K ∩ Ω is a triple junction if three C1,1

arcs meet at x forming equal angles of 2π/3. The simplest example of a set
K with a triple junction singularity is given by a “propeller”, i.e. the union
of three half lines meeting at one point and forming equal angles.

The Mumford–Shah conjecture is far from being solved. However par-
tial results in this direction have been obtained by Ambrosio and Pallara in
[7], Ambrosio, Fusco and Pallara in [11], [12], by Bonnet in [16], [17], [18],
by David in [26], David and Semmes in [27] and by Ambrosio, Fusco and
Hutchinson in [10].

Before describing these results let us make some preliminary remarks.

Let u be a function from SBV (Ω) and let B�(x0) be a ball contained
in Ω. If we set

u�(y) = �−1/2u(x0 + �y) ,

then u� ∈ SBV (Ω�), where Ω� = �−1(Ω−x0). Moreover, for any σ ∈ (0, 1),

HN−1(Su� ∩ Bσ) = �1−NHN−1 (Su ∩ Bσ�(x0)) ,

∫
Bσ

|∇u�|2dy = �1−N

∫
Bσ�(x0)

|∇u|2dx .

Thus, both the Dirichlet integral and the area term in the functional MS
rescale by the same factor �N−1. On the other hand, since when u is a

minimizer we have ‖u‖∞ ≤ ‖g‖∞, the extra term
∫

B�(x0)
|u − g|2dx decays

like �N and therefore, from the point of view of regularity, is negligible with
respect to the Dirichlet integral and the area term. For this reason, we shall
drop this term in the sequel and, after multiplying u by a suitable constant,
we shall also assume that β = 1. Thus, we will refer our discussion to the
(simpler) functional

F (u, A) =
∫

A
|∇u|2 dx + HN−1(Su ∩ A) ,
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where A is an open subset of Ω and u is a function from SBVloc(Ω). How-
ever we warn the reader that all the regularity results that we are going to
present for the functional F can be extended, with some technical compli-
cations, also to the Mumford–Shah functional MS.

We recall the notion of local minimizer of the functional F .
Let Ω ⊂ R

n be an open set; we say that a function u ∈ SBVloc(Ω) is
a local minimizer in Ω if F (u, A) < ∞ for any open set A ⊂⊂ Ω and

F (u, A) ≤ F (v, A) (3.1)

for all v ∈ SBVloc(Ω), such that {u �= v} ⊂⊂ A. When u satisfies (3.1) for
any open subset A ⊂ R

N we say that u is a global minimizer.
With this definition in mind, the Mumford–Shah conjecture can be

rephrased in terms of local minimizers of the functional F , but passing
from MS to F does not really simplify the problem of regularity.

The following theorem gives some special examples of local minimizers.
The minimality of the functions considered in the theorem can be proved by
using the theory of calibrations for the Mumford–Shah functional recently
developed by Alberti, Bouchitté and Dal Maso (see [1]).

Theorem 3.1. Let Ω be an open subset of R
N and u : Ω → R.

(i) If u is a harmonic function such that(
sup
Ω

u − inf
Ω

u

)
‖∇u‖L∞(Ω) ≤ 1 , (3.2)

then u is a local minimizer in Ω.
(ii) Let Ω = U × I, where U is an open subset of R

N−1 and I ⊂ R is an
open interval, and let u = a in Ω∩{xN > 0}, u = b in Ω∩{xN < 0}.
If L1(I) < (b − a)2, then u is a local minimizer in Ω.

(iii) Let u be a function jumping along a propeller T and taking constant
values a, b, c in the three connected components of R

2\T . Then, u is
a minimizer in any ball BR(x) such that R ≤ 1

2 min{|a−b|2, |b−c|2,
|c − a|2}.

Proof of (i). We shall give here a proof of (i) due to Chambolle and which
does not make use of calibrations.

Let us assume without loss of generality that inf
Ω

u = 0 and that sup
Ω

u =

M . Then, fix an open set A ⊂⊂ Ω and consider the following minimum
problem

Min
{
F (v, A) : v ∈ SBVloc(Ω), v = u in Ω \ A

}
.
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With the same argument used to prove Proposition 2.4 one can easily get
that there exists a minimizer v for the above problem and that 0 ≤ v ≤ M .
Setting vε = v + ε(u − v), for ε �= 0, and noticing that Svε ∩ A = Sv ∩ A,
from the minimality of v we have that F (v, A) ≤ F (vε, A) and thus∫

A
|∇v|2 dx ≤

∫
A
|∇v + ε(∇u −∇v)|2 dx .

From this inequality we easily get that∫
A
〈∇v,∇u −∇v〉 dx = 0 . (3.3)

To prove the assertion, since A is arbitrary, it is enough to show that
F (u, A) ≤ F (v, A), i.e.∫

A
|∇u|2 dx ≤

∫
A
|∇v|2 dx + HN−1(Sv ∩ A) . (3.4)

Using (3.3), it is clear that (3.4) is equivalent to∫
A
〈∇u,∇u −∇v〉 dx ≤ HN−1(Sv ∩ A) . (3.5)

To prove this inequality we observe that Dv = ∇vLN + (v+ − v−)νvHN−1

Sv and u is harmonic; therefore, using the Gauss–Green formulas, which
still hold in BV , we get∫

A
〈∇u,∇u −∇v〉 dx

=
N∑

i=1

∫
A

∂u

∂xi
dDi(u − v) −

∫
Sv∩A

(v+ − v−)〈∇u, νv〉 dHN−1

= −
∫

A
∆u(u − v) dx −

∫
Sv∩A

(v+ − v−)〈∇u, νv〉 dHN−1

≤ HN−1(Sv ∩ A)M‖∇u‖L∞(A) .

From this inequality and from the assumption (3.2), (3.5) immediately fol-
lows. �

Concerning global minimizers of F , we have the following

Conjecture (De Giorgi). The only nonconstant global minimizer in R
2 of

F is the function u, given in polar coordinates by

u(�, ϑ) =

√
2�

π
sin(ϑ/2) � ≥ 0, −π < ϑ < π . (3.6)
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It is clear that in the above conjecture uniqueness must be understood
up to rigid motions, sign change and addition of constants. Recently, Bonnet
and David in [19], gave a rather long proof of the fact that the function u
in (3.6) is a local minimizer. Uniqueness is still an open problem.

A very interesting approach to the problem of characterizing global
minimizers was taken by Bonnet, who introduced in two dimensions a
slightly different minimality condition. Let us recall his definition.

We say that a pair (K, u), where K ⊂ R
2 is a closed subset and

u ∈ W 1,2
loc (R2 \ K), is a global Bonnet minimizer if

∫
B2R(x0)\K

|∇u|2 dx + H1(K ∩ B2R(x0)) ≤
∫

B2R(x0)\C
|∇v|2 dx + H1(C ∩ B2R(x0))

whenever (C, v) is another pair with C closed in R
2, v ∈ W 1,2

loc (R2 \ C),
such that K \BR(x0) = C \BR(x0), u = v outside BR(x0) and for any two
points in R

2 \ (K ∪ BR(x0)) lying in two different components of R
2 \ K

they lie also in two different components of R
2 \ C.

Notice that the notion of global minimizer given by Bonnet is weaker
than the one that we have introduced before. However, he was able to clas-
sify all such global minimizers (K, u) satisfying the additional assumption
that K is connected.

Theorem 3.2. Let (K, u) be a global minimizer such that K is connected.
Then K can be either the empty set, or a line, or a propeller or a half-
line. In the first three cases u is constant in the connected components of
R

2\K, while in the last case u coincides, up to a constant, with the function
defined in (3.6), where the polar coordinates system is centered at the tip of
the half-line K.

Let us now state the regularity results proved in [7], [11] and [12].
Notice that, in the two dimensional case essentially the same result has
been proved by David with a completely different proof (see [26]). While
David’s proof uses mostly ideas from harmonic and complex analysis, the
proof of the regularity in [7], [11] (which works in any dimension) is very
much inspired to the proof of the regularity for minimal surfaces and area-
minimizing varifolds.
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Theorem 3.3. Let Ω be an open set in R
N and let u ∈ SBVloc(Ω) be a local

minimizer of F in Ω (or a minimizer of MS in Ω). Then, there exists a set
Σ ⊂ Su ∩Ω, relatively closed in Ω, with HN−1(Σ) = 0, such that Su ∩Ω\Σ
is a hypersurface of class C1,α for any α < 1 (of class C1,1, if N = 2).

Clearly, the gap between this result and the Mumford–Shah conjecture
is still big. Infact, in two dimensions, Theorem 3.3 gives no information
about the singularities of the set Su, and says only that the 1-dimensional
Haudorff measure of Σ is zero. Actually, David’s regularity result in this
respect is slightly better, since he is able to prove that the Hausdorff di-
mension of Σ is strictly less than one. Yet, we are still far from proving
that Σ is a zero dimensional set, with a locally finite number of points. On
the other hand the fact that Su ∩Ω is C1,1 outside Σ is in agreement with
what has been conjectured by Mumford and Shah.

The same remark applies in higher dimension. In this case, another
conjecture set by De Giorgi in [30] says that the singular set Σ should have
locally finite HN−2 measure. Again, there is a gap of one dimension between
this conjecture and what is stated in the regularity theorem above.

As we have noticed before, the proof of Theorem 3.3 has many analo-
gies with De Giorgi’s regularity proof of minimal surfaces (see, for instance,
[29]) and with Allard’s regularity proof of area-minimizing varifolds (see
[3]). Indeed, the situation considered in the above theorem is even closer
to the one considered in Brakke’s book ([20]), where varifolds whose mean
curvature is only in L1 are studied.

Let us now give a sketchy description of how the proof (which is rather
long) goes.

Just to have a first look at the problem we may derive the Euler–
Lagrange equation. To this aim, let us fix a vector field η ∈ C1

0 (Ω; RN )
and ε �= 0 sufficiently small, so that the map Φ(y) = y + εη(y) is a diffeo-
morphism from Ω into itself. By comparing the functional F at the local
minimum u and at the function uε, where uε(x) = u(Φ−1(x)), after some
more or less standard calculations we get∫

Ω\Su

[|∇u|2divη − 2〈∇u,∇u · ∇η〉] dx +
∫

Su

divSuη dHN−1 = 0 , (3.7)

where divSuη is the tangential divergence of η on Su, which can be defined as
in the case of smooth manifolds, since Su is a countably (N − 1)-rectifiable
set and thus for HN−1-a.e. x ∈ Su there exists the approximate tangent
plane. Roughly speaking, equation (3.7) says that for a local minimizer u
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the Dirichlet integral controls the mean curvature of the jump set Su. In
particular, from (3.7) we get that u is harmonic in Ω \ Su, namely that




∆u in Ω \ Su

∂u

∂ν
= 0 on Su ∩ Ω

(3.8)

and that, if A ⊂⊂ Ω is an open set such that Su∩A is the graph of a smooth
function φ, i.e. that up to a rotation Su ∩ A = {x = (z, φ(z)) : z ∈ D},
with D open and φ smooth, then

div
( ∇φ√

1 + |∇φ|2
)

=
[|∇u|2]± in D , (3.9)

where
[|∇u|2]± denotes the jump of |∇u|2 across Su ∩ A (notice that if

Su∩A is C1,α for some α > 0, then by (3.8) ∇u has a continuous extension
on both sides of Su ∩ A).

Equations (3.8) and (3.9) can be used only when we know already
that Su ∩ A is C1,α and in this case they easily imply further regularity
both on u and Su ∩A. In fact, by a bootstrap argument one can prove (see
[12]) that u has a C∞ extension on each side of Su ∩ A and Su ∩ A is a
C∞ hypersurface. It is interesting to recall that De Giorgi conjectured that
whenever Su ∩A is of class C1,α then it is also analytic. This conjecture is
still open, although a significant step in this direction has been obtained in
a recent paper ([36]) by Leoni and Morini.

Thus, the crucial point for regularity is to prove the (partial) C1,α

regularity of Su ∩ Ω. To explain how this result is obtained in [7] and [11]
we must introduce the two relevant quantities for the problem, the rescaled
Dirichlet integral

D(x, �) =
1

�N−1

∫
B�(x)

|∇u|2 dy

and the rescaled flatness of Su in the ball B�(x)

A(x, �) = min
π∈P

1
�N+1

∫
Su∩B�(x)

dist2(y, π) dHN−1(y) ,

where P is the set of all (N − 1)-dimensional hyperplanes π in R
N . In

fact, the C1,α regularity of the jump set of a local minimizer of F can be
described in terms of the decay of the two above quantities.
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Theorem 3.4. Let u be a local minimizer of the functional F in the open
set A, and let c0 > 0, s ∈ [0, 1/2]. If

D(x, �) + A(x, �) ≤ c0�
s

for any ball B�(x) ⊂ A and any x ∈ Su∩A, then Su∩A is a C1,s/2 embedded
hypersurface.

At this point, a typical decay estimate asserts that if the sum D(x, �)+
A(x, �) is sufficiently small in a certain ball B�(x), with x ∈ Su ∩ Ω, then
in smaller balls of radius r it decays like r1/2.

Theorem 3.5. There exist two positive numbers R0, ε0 depending only on
N , such that if u is a local minimizer of F in Ω, x ∈ Su ∩ Ω, B�(x) ⊂ Ω,
� < R0 and

S(x, �) = D(x, �) + A(x, �) < ε0 ,

then, for all r ∈ (0, �),

S(x, r) ≤ Cr1/2 [1 + S(x, �)] ,

where the constant C depends only on N .

The above theorem readily leads to the proof of the regularity theorem.

Proof of Theorem 3.3. Let us set

R =
{
x ∈ Su ∩ Ω : S(x, �) < ε0 for some � < min{Ro, dist(x, ∂Ω)}} .

The set R is relatively open in Su ∩ Ω and, by Theorems 3.4 and 3.5,
Su ∩ R is a C1,1/4 embedded surface. Let A ⊂ Ω be an open set such
that Su ∩ A ⊂ Su ∩ R. Then, from equation (3.8), we get that ∇u has a
C0,1/4 extension on both sides of Su ∩ A. At this point we use equation
(3.9). In fact, since Su ∩ A, locally, is the graph of a C1,1/4 function φ,
satisfying (3.9) with a continuous right hand side, more or less standard
elliptic regularity result will imply that φ is C1,α for any α < 1 (or that φ
is C1,1, if N = 2). Therefore, to conclude the proof we need only to show
that the set Σ = Su ∩ Ω \ R is HN−1 negligible. To this aim let us observe
that if x ∈ Σ, then at least one of the two following relations holds

lim sup
�→0+

1
�N−1

∫
B�(x)

|∇u|2 dy ≥ ε0 , (3.10)

or

lim sup
�→0+

1
�N+1

min
π∈P

∫
Su∩B�(x)

dist2(y, π) dHN−1(y) ≥ ε0 . (3.11)
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By Corollary 2.3, the set of points where (3.10) holds has zero HN−1 mea-
sure. Moreover, also the set of points where (3.11) holds is HN−1 negligible.
In fact if x ∈ Su ∩ Ω and if the approximate tangent plane at x, πx exists,
then by (2.5) we have

lim sup
�→0+

1
�N+1

min
π∈P

∫
Su∩B�(x)

dist2(y, π)dHN−1
y

≤ lim
�→0+

1
�N+1

∫
Su∩B�(x)

dist2(y, πx)dHN−1
y = 0 .

Therefore, the set of points where (3.11) holds is contained in the set of
points where the tangent plane does not exists, which has zero HN−1 mea-
sure, since Su is rectifiable. �

Notice that the above proof shows that in fact

Σ =
{

x ∈ Su ∩ Ω : lim sup
�→0+

D(x, �) > 0 or lim sup
�→0+

A(x, �) > 0
}

.

It is interesting to compare this characterization of the singular set Σ of
Su ∩Ω with the Mumford–Shah conjecture in two dimensions. In fact, at a
crack tip point x we have

lim
�→0+

A(x, �) = 0, but lim sup
�→0+

D(x, �) > 0 , (3.12)

and at a triple junction point x we have the opposite situation, namely

lim
�→0+

D(x, �) = 0, but lim sup
�→0+

A(x, �) > 0 . (3.13)

Therefore, it would be nice, as a first step in the direction of proving the
Mumford–Shah conjecture, to show that, at least when N = 2, only the
situations considered in (3.12) and (3.13) may occur and that there are no
singular points in Su ∩ Ω where both D(x, �) and A(x, �) do not vanish as
� goes to zero.

A small step in the direction of understanding the singular points of
Su∩Ω is taken in the paper [10] where it is proved (in any dimension) that,
setting

Σ′ =
{

x ∈ Σ : lim
�→0+

D(x, �) = 0
}

,

then the Hausdorff dimension of Σ′ is less than or equal to N − 2. In the
same paper it is also shown that if x ∈ Σ′, then there exists a sequence
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�h → 0 such that

HN−1 Su − x

�h
→ HN−1 C weakly* in the sense of measures,

where C is an Almgren area minimizing cone (see [10, Section 4] and [4]). A
characterization of these cones proved in [42], implies that in two dimensions
C is a propeller.

4. Final remarks

Many papers have been recently devoted to the numerical approximation
of the Mumford–Shah functional. Here, we just describe an approach which
is probably the most successful from the point of view of applications. To
this aim, let us recall the notion of Γ-convergence, introduced by De Giorgi
and Franzoni in [32].

Let (X, d) be a metric space and let Fh, F : X → [0, +∞] be functions.
We say that Fh Γ-converge to F if the following two conditions are satisfied:

(i) for any sequence xh in X converging to x, then lim inf
h→∞

Fh(xh) ≥
F (x);

(ii) for any x ∈ X there exists a sequence xh converging to x such that
lim sup

h→∞
Fh(xh) ≤ F (x).

Notice that the Γ-limit F of Fh is uniquely determined by (i) and (ii). The
importance of this notion relies on the fact that it implies the convergence
of minimizers of the approximating functionals to minimizers of the limiting
functional. More precisely, if Fh Γ-converges to F in X and if there exists
a compact set K ⊂ X such that

min
x∈K

Fh(x) = min
x∈X

Fh(x) , (4.1)

then min
x∈X

Fh(x) converges to min
x∈X

F (x). Moreover, if xh is a sequence of

minimizers of Fh, up to a subsequence, xh converges to a minimizer x of F .
Going back to the Mumford–Shah functional MS, it is clear that deal-

ing numerically with the term HN−1(Su) in (2.6) can be rather complicate.
Thus, one would like to approximate the functional MS with a sequence of
(simpler) functionals, not involving surface energies.

A similar problem is solved by a theorem due to Modica and Mortola
(see [39] and [38]) concerning the approximation of the perimeter P (E; Ω)
of a set E in a given open set Ω. To explain their result, let us denote
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by W a “double well” potential, i.e. a real function with two absolute
minima, convex at ±∞; a simple example of such a function is given by
W (t) = t2(1 − t)2. Let us fix ε > 0 and set

MMε(v) =
∫

Ω

(
ε|∇v|2 +

W (v)
ε

)
dx v ∈ W 1,2(Ω) .

Then, in [39] it is proved that the functionals MMε Γ-converge with re-
spect to the L2(Ω) convergence to a functional F , where F (v) is equal to
P (E; Ω)/3 if v = χE and is equal to +∞ otherwise.

In the same spirit of the above result, De Giorgi suggested to introduce
the functional

ATε(v, u) =
∫

Ω
v2

[|∇u|2 + α(u − g)2
]
dx +

β

2

∫
Ω

(
ε|∇v|2 +

W (v)
ε

)
dx ,

where v ∈ W 1,2(Ω), 0 ≤ v ≤ 1, uv ∈ W 1,2(Ω), and ATε(v, u) = +∞
otherwise. Then, Ambrosio and Tortorelli proved in [8] that ATε converges
in L2(Ω) × L2(Ω) to the functional

F (v, u) =
∫

Ω

[|∇u|2 + α(u − g)2
]
dx + βHN−1(Su), if u ∈ SBV (Ω), v ≡ 1 ,

and F (v, u) = +∞ otherwise.
To understand why this remarkable approximation result holds one

should observe that if (vε, uε) is a sequence of minimizers of ATε, then vε

must be very close to 1 when ε goes to zero, since W (t) is positive except for
t = 1, where W (t) = 1. On the other hand, near a point where ∇uε is very
big vε must be close to zero. Thus the functions vε must be close to 1 for a
large portion of Ω and must rapidly decrease to zero near the discontinuity
points of u, where u is the limit of uε. Therefore, while the functions uε

approximate a minimizer u of the functional MS, the level sets {vε = 0}
approximate its jump set Su. It is also clear that it is much easier to deal
numerically with the functionals ATε than with the original Mumford–Shah
functional MS and this is the reason why most numerical approximations
of MS actually reduce to approximating ATε for small values of ε. Indeed,
these numerical procedures can be justified rigorously by using a result of
Bellettini and Coscia ([14]) who proved that the functional MS can be also
approximated by a sequence of discretized functionals ATε,h(ε), where the
mesh size h(ε) goes to zero faster than ε.
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