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Abstract Traditionally, different image processing tasks are
mainly considered on their own. The main aim of this paper
is a combination of registration, i.e., the spatial alignment of
images and segmentation, i.e., the recognition of edges and
object contours in images. A proper registration depends on
a good initial segmentation and vice versa. In this paper, it
is proposed to link these problems together by formulating a
coupled variational problem. We will focus on an edge-based
approach instead of considering image intensities and pro-
pose a variational formulation based on the Mumford–Shah
free discontinuity problem. This paper is particularly devo-
ted to a comparison of a sharp interface approach with the
phase field analogue.

1 Introduction

Especially on the background of medical applications denoi-
sing, segmentation and registration are well established as
fundamental problems in image processing. An enormous
amount of state-of-the-art imaging methods enables precise
studies of the immense variability of human anatomy. We
refer to the reviews by Miller et al. [55], the overview article
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of Grenander and Miller [43] and [46,57] for numerical
aspects. Frequently, different images show corresponding
structures at usually nonlinearly transformed positions
[50,56,67]. As the image modality differs there is also no
correlation of image intensities at corresponding positions.
But an at least partial correspondence of edge sets is fea-
sible. Hence, edge segmentation might help in the registra-
tion. On the other hand, integrated knowledge from different
image modalities will lead to better segmentation. This cir-
cular dependence of registration and edge segmentation is
well-known. One might think for example of a pair magnetic
resonance (MR) and computed tomography (CT) images, or
simply a color image instead of a gray scale image. An alter-
native, global morphological matching approach has been
presented by Viola and Wells [71], Wells et al. [73] and Col-
lignon et al. [53] based on a information theoretic approach
for the registration of multi-modal images. Their information
theoretic method is based on a maximization of the so called
mutual information of images of different modality. In [38]
a variational approach not relying on statistics is proposed
for morphological matching. Both approaches do not make
explicit use of segmentation results.

Here, we focus on the registration of edges. The set of
detectable edges in the different images or color channels
is often disrupted and irregular. Furthermore, they are most
often given by binary indicators, hence information about
weak edges is destroyed and often neglected. Let us first
assume that we enrich the image space by overlaying seve-
ral images, which have been registered perfectly in a pre-
processing step. Features which are very weak and hardly
visible in one of the images might be clear and salient in the
other image. A feature detection model may now exploit the
complementary information of both images

On the other hand, if a reliable segmentation of important
objects in two images is available, the process of registra-
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102 M. Droske et al.

tion can be aided significantly. Mapping the object contours
in the reference onto the contours in the template image,
significantly simplifies the search space. The deformation is
already determined on these boundaries modulo tangential
distortion.

Due to this dependency it appears natural to combine both
problems into one model. From a more general point of view,
this would correspond to a simultaneous detection of image
features, that ought to be coupled by a deformation. The
subtlety of this approach is that edge contours as well as
the deformation are unknowns. The whole process can be
described as follows:

Given a pair of images, a reference and a template
image, we aim to find a deformation and, simultaneou-
sly, a set of edges in the reference image, such that
the transformed edge set matches the edges in the tem-
plate image. Furthermore, the deformation itself and
the edge sets should be regular.

In this formulation, the deformation is initially only
determined on the set itself. Eventually we aim at a smooth
extension of this deformation to the rest of the image domain
in order to obtain a mapping of the images also away from
the feature sets. We are going to ensure smoothness of the
deformation and smoothness of the deformed edge set
incorporating an elastic variational model for the
deformation.

To motivate our approach let us first briefly review the
variational approach presented by Mumford and Shah [59]
and thereby describe in more mathematical detail what is
meant by feature extraction and regularity of the edge set.

Mumford and Shah proposed to consider the following
functional

EMS[u, Γ ] =
∫

Ω

(u − u0)
2dx

+ µ

2

∫

Ω\Γ
‖∇u‖2 dx + νH d−1(Γ ). (1)

The mathematical treatment of this energy is subtle. It has
to be minimized over the set of admissible curves Γ and
admissible u simultaneously. However, it is not possible to
obtain lower-semicontinuity of the Hausdorff measure within
a reasonable topology of subsets of Ω .

The existence theory is established by De Giorgi et al. [32]
who proposed to consider the minimization of the energy
depending on u only, and the set of admissible functions
is chosen as SBV(Ω), the space of functions of bounded
variation u for which the measure Du can be written as
Du = ∇uλ + (u+ − u−)nH d−1|S(u), i. e., the Cantor
part of the support of the singular part of the measure known
from BV functions is empty [3]. Here, u+ and u− denote

the approximate lim sup resp. lim inf of u. The edge set Γ
is now represented by Su the complement set of Lebesgue
points of u, i. e., the measure theoretic discontinuity set of
u. Using the compactness of SBV(Ω) (cf. Ambrosio et al.
[3], [39]) and corresponding lower-semicontinuity results,
one proves under mild assumptions that there exists a solu-
tion u ∈ SBV (Ω) with Hd−1(Su) < ∞. Especially due
to the complexity of discretizing the singularity set, various
approximations Eε of the Mumford–Shah functional have
been introduced for which Γ -convergence results are known
(cf. e.g. [4,5,8,63]). We also refer to [1,13,26,28,42,68] for
related topics and further extensions based on the Mumford–
Shah functional.

Now, given different images with non aligned edges we
can formulate a Mumford Shah type approach for both images
with the constraint that the edge set in one images is given as
the deformed edge set of the other image, where the deforma-
tion is controlled by an additional non linear elastic energy.
To ensure that this deformation is one-to-one we consider a
polyconvex elastic functional (cf. the work of Ball [6] and
the overview given in [23,29]):

Ereg[φ] =
∫

Ω

Ŵ (Dφ,Cof Dφ, det Dφ) dx, (2)

where Ŵ is convex and Ŵ → ∞ for det Dφ → 0,+∞.
This overall concept has been worked out in [36] for a

level set formulation and in the thesis of one of the authors
[35], where in addition to the level set formulation the phase
field approach is already presented. In [37] the phase field
model for edge registration is combined with the morpholo-
gical matching approach—first presented in [38]—to achieve
a matching of the regular as well as singular image morpho-
logies. In this paper, our focus is on the comparison of the
level set and the phase field approach for the simultaneous
segmentation and matching of edge sets.

Let us point out, that the free discontinuity based approach
proposed here is only a template study which fits into the
general formulation of the joint feature extraction and regis-
tration problem. Different classes of images may require dif-
ferent models to drive the contour Γ towards the significant
features of the images, e.g., a geodesic active contour model
as proposed by Caselles et al. [18]. Yezzi et al. [51] have
shown results for the coupling of the geodesic contour model
and registration (see also the related work on subjective sur-
faces by Mikula et al. [54]) which would lead to a coupled
energy of the form

Eac[Γ,φ] =
∫

Γ

gR da + ν

∫

Ω

gRdx

+
∫

Γ φ

gT da + ν

∫
Ω

gT dx, (3)
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Mumford–Shah based registration 103

where gR and gT correspond to some suitable edge detectors
in the images u R and uT . A common choice is, for example,
gu(x) = (1 + s|∇u(x)|2)−1, s > 0 (see [47] for a Newton-
Type algorithm of the geodesic contour model). A related
algorithm is described by Unal et al. [69], taking into account
a joint energy for contour curves in different images. Féron
and Mohammad-Djafari [41] proposed a Bayesian approach
for the joint segmentation and fusion of images via a coupling
of suitable hidden Markov Models for multi modal images.
Vemuri et al. [70] have used a level set technique to exploit
a reference segmentation in an atlas. We refer to [31] for
further ideas.

2 A coupled Mumford–Shah model

By minimizing the Mumford–Shah functional we will obtain
an approximation of the discontinuity sets of a noisy ini-
tial image u0. Now, we consider a template image uT and a
reference image u R at the same time. Furthermore, we ask
for a deformation φ, which ensures that the discontinuity set
S[u R,0] will be mapped onto the discontinuity set of uT , i. e.,
φ(S[u R,0]) = S[uT,0]. This can be achieved considered the
following functional [36]:

ẼMS[Γ,φ, u R, uT ] = 1

2

∫

Ω

(u R − u R,0)
2 dx

+ µ

2

∫

Ω\Γ
‖∇u R‖2 dx + νH d−1(Γ )

+ 1

2

∫

Ω

(uT − uT,0)
2 dx

+ µ

2

∫

Ω\Γ φ
‖∇uT ‖2 dx+νH d−1(Γ φ).

HereΩ ⊂ R
d is the domain of definition of the images with

d = 2, 3, uT,0, u R,0 ∈ L∞(Ω) are the given initial template
and reference images, Γ ⊂ Ω is (an approximation of) the
edge set of the given image u R,0 and Γ φ = φ(Γ ) is the
transformed edge-set Γ under the transformation φ.

The first line in the integral represents the usual Mumford–
Shah segmentation model for the reference image u R,0, while
the second line adapts the same model for the template image
uT,0, but with an edge set given as the image of the edge
set in the reference image under the deformation φ. Clearly,
if uT and u R are minimizers of the original Mumford–Shah
functional and φ is chosen such thatΓ φ = S(uT ) this energy
is minimal. We see, that the deformation is obviously not
uniquely determined by this condition, not even on the edge
set itself, since reparametrization along the edge set does not
change the energy. Furthermore, the energy does not consider
the behavior ofφ away from the edge set. As proposed above,

we add the nonlinear elastic energy αEreg[φ] (2), which is
supposed to control the regularity of the deformation φ and
suitably extends deformations onto Ω\Γ . In order to avoid
technical difficulties we avoid the length-measurement ofΓ φ

and solely measure the length ofΓ . Thus, length ofΓ φ is only
implicitly controlled by the length of Γ and the regularity of
φ. Finally, we end up with the following variational model

E[Γ, φ, u R, uT ] = EMS[Γ, φ, u R, uT ] + αEreg[φ], (4)

where

EMS[Γ,φ, u R, uT ] = 1

2

∫

Ω

(u R − u R,0)
2 dx

+ µ

2

∫

Ω\Γ
‖∇u R‖2 dx + νH d−1(Γ )

+ 1

2

∫

Ω

(uT − uT,0)
2 dx

+ µ

2

∫

Ω\Γ φ
‖∇uT ‖2 dx . (5)

3 A level set approach

In this section, we will review a level set model for the cou-
pled free discontinuity problem (4). Thereby, we restrict our-
selves to edge sets which are the union of finitely many
Jordan-curves. In this case, the feature set can be viewed
as the boundary of detected segments, which are mapped
to similar segment boundaries in the second image. For a
large class of images, this is a very suitable and convenient
approach, since images can often be decomposed into a finite
set of independent objects. However this is not always the
case. Crack tips might occur not only due to weak edge infor-
mation but due to the fact that the image contains disrupted
discontinuity sets (cf. the phase field approximation below).

In a shape optimization framework [14,15], we start with
an initial shape describing the edge set and evolve it based on
a suitable energy descent. The edge set may be elegantly des-
cribed and propagated by the level set approach of Osher and
Sethian [61,62]. In [48] a level set based Newton-type regu-
larized optimization algorithm has been derived for the mini-
mization the original Mumford–Shah functional, which is the
algorithmical basis for our method. For related approaches
we refer to [20–22,48]. In particular, we consider Γ to be
given as the zero level set of the level set function vΓ : Ω →
R, i.e.,

Γ = {x : vΓ (x) = 0} .
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104 M. Droske et al.

3.1 The reduced functional

The functional (4) depends on the variables u R , uT , φ andΓ .
In the process of minimization we may devise different stra-
tegies for the different variables. Fortunately the functional
is quadratic in the variables u R and uT . Hence, we may mini-
mize the energy for fixed Γ and φ over image spaces of u R

and uT . Let us now denote by u R[Γ ] and uT [Γ,φ] the cor-
responding minimizers. They are obtained solving the Euler
Lagrange equations with respect to u R and uT :

−µ�u R + u R = u R,0 in Ω\Γ
∂nΓ u R = 0 on Γ,

−µ�uT + uT = uT,0 in Ω\Γ φ,
∂n

Γ φ
uT = 0 on Γ φ .

(6)

It is obvious that the minimizer with respect to u R depends
only onΓ , whereas the minimizer with respect to uT depends
also on φ via the domain of integration Ω\Γ φ . Now we can
define the reduced functional

Ê[Γ,φ] = E[Γ,φ, u R[Γ ], uT [Γ,φ]]. (7)

To treat the optimization problem w.r.t. Γ which is given by
the level set function vΓ we make use of nowadays classical
shape sensitivity calculus. For details we refer to the books
of Sokołowski and Zolésio [66] or Delfour and Zolésio [33].
Furthermore, the Appendix of [48] gives a nice overview. For
an energy E[Γ ] = ∫

Γ
θ da depending on a domain boundary

Γ we get

〈∂Γ E[Γ ]; ζ 〉 =
∫

Γ

(∂nΓ θ + θh) ζ · nΓ da (8)

where Γ is supposed to be a C 1-hypersurface, h is the
mean curvature of Γ and ζ is a scalar perturbation of Γ
in normal direction. Furthermore, for an energy E[Ω] =∫
Ω
θ(Ω, x) dx depending on a domain Ω the shape deriva-

tive is given by

〈∂Γ E[Ω]; ζ 〉 =
∫

Ω

θ ′(Ω; ζ ) dx +
∫

Γ

θ ζ da, (9)

where θ ′(Ω) is the shape derivative of the integrand θ with
respect to a normal variation ζ of the domain boundary Γ
extended to the whole domain. For details we refer to [36].
With these tools available, we are now able to derive the first
variation of the reduced function Ê (7) with respect to the
shape variable Γ and with respect to the deformation φ. Via
a integral transform, we first decouple Γ and φ and obtain

Ê(Γ,φ) = 1

2

∫

Ω

(u R(Γ )− u R,0)
2 dx

+ µ

2

∫

Ω\Γ
‖∇u R(Γ )‖2 dx

+ 1

2

∫

Ω

(
(uT (Γ,φ)− uT,0)

2 ◦ φ
)

|det Dφ| dx

+ µ

2

∫

Ω\Γ

(
‖∇uT (Γ,φ)‖2 ◦ φ

)
|det Dφ| dx

+ νH d−1(Γ )+ αEreg[φ].
Now we can apply (8) as well as (9), where we have to inte-
grate along the boundaries from both sides of the contour,
which leads to corresponding jump terms. We obtain
〈
∂Γ Ê[Γ,φ]; ζ

〉
= 1

2

∫

Γ

(
�(u R(Γ )− u R,0)

2�

+µ�‖∇u R(Γ )‖2�
)
ζ da

+ 1

2

∫

Γ

(�
(uT (Γ,φ)− uT,0)

2
�

+µ
�
‖∇uT (Γ,φ)‖2

�)
◦ φ |det Dφ|ζ da

+ ν
∫

Γ

h ζ da. (10)

Recall that u R[Γ ] and uT [Γ,φ] are defined as the solutions
of the corresponding elliptic boundary value problems (6). As
described in [48], the terms involving the shape derivatives
θ ′ disappear since they are derivatives of the energy w.r.t. u R

and uT in direction of u′
R resp. u′

T and hence zero due to
local optimality.

For the Gateaux derivative of Ê with respect to the defor-
mation φ in a direction ψ we obtain
〈
∂φ Ê[φ];ψ

〉
= 1

2

∫

Γ φ

(
�|uT (Γ,φ)− uT,0|2�

+µ�|∇uT (Γ,φ)|2�
)
(ψ ◦ φ−1 · nΓ φ ) da

+ 〈
∂φEreg[φ];ψ 〉

, (11)

where the transformed normal nΓ φ is given by

nΓ φ = Cof DφnΓ
‖Cof DφnΓ ‖ .

3.2 Regularized gradient descent

The first variations contain jump terms of uT − uT,0 resp.
u R − u R,0, for in general noisy initial data u R,0 and uT,0.
Hence the regularity of the descent direction with respect to
the L2 metric is expected to be low. Thus, we will incorporate
a regularized gradient descent (cf. [24,25]) with respect to
both variables of the reduced functional Ê .

As a metric on the space of deformation φ we consider

gσφ (ψ, ξ) =
∫

Ω

ψ · ξ + σ 2

2
∇ψ : ∇ξ ,
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Mumford–Shah based registration 105

where A : B = tr(AT B). Let us remark that the inverse of the
corresponding metric tensor is related to a Gaussian filtering
of the deformation with filter width σ . Thus, the regularized
descent directionψ[Γ,φ] is given as a solution of the elliptic
problem

gσφ (ψ[Γ,φ], ξ) = −
〈
∂φ Ê[Γ,φ]; ξ

〉
(12)

for all variations ψ of φ.
Next, we discuss the regularization of the shape gradient

with respect to the geometric variable Γ . We aim at finding
a metric on normal variations of Γ , such that this resulting
regularization is balanced with the regularized descent in the
deformation. Hence, we ask for a suitable metric gσΓ and
defined a normal variation ζ [Γ,φ] on Γ as the regularized
descent direction with respect to Γ by

gΓ (ζ [Γ,φ], θ) = −
〈
∂Γ Ê[Γ,φ]; θ

〉
. (13)

An H1,2 regular descent direction d[Γ,φ] as we obtain it
above, induces a motion of the transformed edge set Γ φ with
a speed in normal direction which is given by d ◦ φ−1nΓ φ ∈
H

1
2 (Γ φ) for sufficiently regular Γ φ . This motivates us to

choose the shape gradient with respect to a suitable H
1
2 -

metric on Γ . By this choice we expect a reasonable balance
between the regularization of update directions for the func-
tional variable φ and the geometric variable Γ . In order to

define an inner product on H
1
2 (Γ ) let us consider the boun-

dary value problem

− σ 2

2
�ζ + ζ = 0 in Ω,

∂nΓ ζ = η on Γ, (14)

for a some functional η ∈ H− 1
2 (Γ ) given onΓ . Let us denote

by N : H− 1
2 (Γ ) → H

1
2 (Γ ) the linear operator representing

the Neumann-to-Dirichlet map which maps η in (14) to the
Dirichlet trace ζ |Γ of the solution to (14). It is well known
(cf.[52]) that N is an isomorphism. Finally, we define

gσΓ (ζ, θ) :=
〈
N−1ζ ; θ

〉
H− 1

2 (Γ )×H
1
2 (Γ )

.

Thus, to evaluate the regularized shape gradient, we have to
solve (14) with η = ∂Γ Ê and to evaluate the trace of the
solution on Γ .

3.3 A level set shape gradient descent method

In what follows let us describe how the optimization, that
takes place over a shape and the deformation simultaneously,
can be performed algorithmically. The topology of the solu-
tion Γ of the optimization problem is not known a priori. On
the other hand, the gradient descent method depends on an
initial guess. Level set methods provide a convenient frame-
work for the representation and numerical evolution of sharp

interfaces, especially when topological changes come into
play. A detailed description of the Finite Element algorithm
can be found in [36]. Here, we only briefly describe the key
components in each step of the gradient descent:

• For given discrete deformation φ and level set function v
the Finite Element solution for u R and uT in (6) on both
sides of the interface is computed independently using
Composite Finite Elements (cf. [45,64,72]). Thus, we
avoid an explicit remeshing of the domains separated by
the current level set of v representing the edge set Γ .
Furthermore, it allows for an efficient multigrid solution
of these elliptic problems, which leads to a significant
speed-up of the algorithm. The transformation vector field
φ is discretized using standard Finite Elements.

• Once Finite Element approximations of u R and uT are
known, the shape gradient and the gradient with respect
to the deformation can be computed as Finite Element
approximation on the domain Ω described by (13) and
(12). Again two linear elliptic problems have to be solved
to evaluate these regularized gradients.

• The gradient descent step in the deformation variable φ
is performed in a straightforward way.

• To evolve the level set function with a speed on the contour
given by the discrete ζ [Γ,φ] on the discrete level set Γ ,
we consider an extension ζ̃ onto a small neighborhood
of the contour. Here, we have followed the widely used
approach based on the solution of the transport equation

∇ ζ̃ · ∇dΓ = 0 on Ω and ζ̃ = ζ [Γ,φ] on Γ,

where dΓ represents the signed distance function with
respect to Γ (cf. [60,65]). To compute the discrete solu-
tion we used local numerical scheme proposed by Bor-
nemann and Rasch [9].

• For the actual evolution of the level set function v via

∂tv + ζ̃‖∇v‖ = 0 on Ω (15)

we have applied a third-order accurate ENO-scheme (cf.
[60]).

3.4 Numerical experiments

In Fig. 1 we have applied the algorithm to a pair of brain
images. The top row shows a proton density weighted MR
scan and a T1-weighted magnetic resonance image of the
same patient. The initial misfit (bottom left) consists mainly
of a shift and a small rotation. The algorithm finds the brain
structure in both images well after about 250 steps. As desi-
red, the resulting deformation represents mainly rigid
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0  50  100  150  200  250  300

Fig. 1 Matching with the sharp interface Mumford–Shah model. Top
row reference image u R [proton density weighted MR-image (PD) of
a human brain] an uT (T1-weighted MR-image). Middle row deforma-
tion plot and the matching result uT ◦φ. Bottom row initial misfit shown

as an striped overlaid reference and template compared to the final mat-
ching result. The parameters were chosen as µ = 200, ν = 250 and
α = 5, 000. The iteration converged after 250 iterations

transformation between the images, enhanced by some minor
local deformations (see Fig. 2 for the evolution of the inter-
faces Γ and φ(Γ )).

Figure 3 demonstrates the competing effect of the regula-
rization and the energy contributions which pull the contour
towards the edges. We can exploit this in order to map an
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Mumford–Shah based registration 107

Fig. 2 Evolution of Γ in u R
in the left column and the
evolution of φ(Γ ) in uT in the
right column for iteration
numbers 0, 50, 150 and 250 for
the images and the problem
setup as in Fig. 1

123



108 M. Droske et al.

Fig. 3 Towards model-based reconstruction. The image at the top left
shows an artificial reference model of a tooth. On the bottom left a
nonlinearly deformed version of the reference with a large destroyed
region is shown. Both images also show the initial contour Γ . The

sequence shows the evolution of Γ and Γ φ for the iteration numbers
0, 20, 80, 320, where the parameters were chosen as µ = 50, α = 200
and ν = 5, 000

original reference shape (top row) to a given object, where
the shape is partially corrupted (bottom row). Apart from
the destroyed region the shapes differ also by a non-rigid
deformation plus a translation. This can be observed well in
the second column. At this stage, the regularization domi-
nates and prohibits the contour in the bottom row to evolve
towards the “visible” edge and prefers to adopt the contour
from the reference image. This yields a reconstruction of the
destroyed shape, which is optimal with respect to the regu-
larization energy.

4 Phase-field approximation

Now, let us present an alternative to the previously described
sharp interface model. In [5] Ambrosio and Tortorelli propo-
sed a phase field approximation of the Mumford–Shah func-
tional (1). Before we revise the approximation, we rewrite
the Mumford–Shah energy to

F[u] =
∫

Ω\Γ
‖∇u‖2 dx + µ

2

∫

Ω

(u − u0)
2 dx

+ νH d−1(Su)

defined on the space of piecewise C 1 functions

PC1(Ω) = {
u ∈ L∞(Ω)

} {
u ∈ C 1(Ω\Su)

and H d−1(Su ∩Ω\Su) = 0
}
. (16)

Su denotes the complement of the set of Lebesgue points of u.
Since PC1 is not compact with respect to a suitable topology,

the common approach (see [2,5,12,30,58] for further details)
is to relax F to

F(u) = inf
{

lim inf
s→∞ F(us) : us → u ∈ L2(Ω),

us ∈ PC1(Ω)
}
.

The Ambrosio–Tortorelli approximation results from a mini-
mization of the functional

Eε[u, v] =
∫

Ω

{
(u − u0)

2 + µ

2
(v2 + kε)‖∇u‖2

}
dx

+ ν
∫

Ω

{
ε‖∇v‖2 + (1 − v)2

4ε

}
dx

for fixed ε and kε > 0. Here, v is a phase field variable which
is supposed to be approximately 1 apart from the interface
and approximate 0 on the edge set with a transition region of
width 2 ε. They have shown the Γ -convergence with respect
to the strong L2 topology of Eε to the functional defined by
E[u, v] = F[u], iff v ≡ 1, and E[u, v] = +∞ otherwise.

Now, we suggest for the joint segmentation and registra-
tion problem an analogous coupled phase-field formulation
by again introducing an auxiliary phase field variable v, des-
cribing the singularity set ST of the image uT , but at the same
time v ◦ φ should energetically describe the edge set SR in
the image u R . A corresponding energy formulation is then
given by the minimization of

EεAT[u R, uT , v,φ]
:= 1

2

∫

Ω

{
(u R − u R,0)

2 + (uT − uT,0)
2
}

dx
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+ µ

2

∫

Ω

{
(v2 ◦ φ + kε)‖∇u R‖2+(v2 + kε)‖∇uT ‖2

}
dx

+ ν

2

∫

Ω

{
ε‖∇v‖2 + 1

4ε
(v − 1)2

}
dx (17)

with kε = o(ε). Here, the phase field function v corresponds
to the contourΓ φ and the contourΓ is described by v◦φ. The
first integral measures the deviation of u R and uT to the data
in the L2-sense. The second integral now forces the signature
v2 to be small where uT has steep gradients and, correspon-
dingly, v2◦φ to be small where u R has steep gradients. On the
other hand, this determines φ to align the signature function
in the reference domain to line up with the edges of u R , and
finally, for fixed signature and deformation, the smoothness
of the images u R and uT is controlled, i. e., steep gradients
of uT are penalized where v 
≈ 0 and analogously for u R .

Again, the deformationφ will mainly be determined along
the discontinuity sets. Indeed, as outlined above, away from
the contours the phase field v will approximately be identical
to 1, and hence variations of φ will not change the energy in
these regions. Hence, we again consider a nonlinear hyper-
elastic regularization given by the additional energy function
Ereg[φ] (2) and finally define

Eε[u R, uT , v,φ] := EεAT[u R, uT , v,φ] + αEreg[φ]
and ask for minimizers.

In contrast to the original approach of [4], where approxi-
mating elliptic but non-quadratic functionals have been used,
the approximation of (17) gives rise to practicable numerical
methodologies. We refer for instance to [7,63]. In order to
discretize EεAT, we follow the approach of Bourdin. In [10] he
has proven the Γ -convergence of the discretized functionals
against the functional E . See also [11,19,34,40] for further
details.

4.1 First variation of the energy

Let us first calculate the variations with respect to the
variables u R , uT and v in directions ϑ , ξ , and ζ , respecti-
vely:
〈
∂u R EεAT[u R, uT , v,φ];ϑ 〉

=
∫

Ω

(u R − u R,0) · ϑ dx

+µ
∫

Ω

(v2 ◦ φ + kε)∇u R · ∇ϑ dx

〈
∂uT EεAT[u R, uT , v,φ]; ξ 〉

=
∫

Ω

(uT − uT,0) · ξ dx + µ

∫

Ω

(v2 + kε)∇uT · ∇ξ dx

〈
∂vEεAT[u R, uT , v,φ]; ζ 〉

= µ

∫

Ω

‖∇uT ‖2v · ζ dx + µ

∫

Ω

‖∇u R‖2(v ◦ φ) · (ζ ◦ φ)

+ ν
∫

Ω

ε∇v · ∇ζ dx + ν

∫

Ω

1

4ε
(v − 1)ζ dx . (18)

We rewrite (18) via the transformation formula:
〈
∂vEεAT[u R, uT , v,φ]; ζ 〉

= µ

∫

Ω

‖∇uT ‖2v · ζ dx

+µ
∫

Ω

‖∇u R‖2 ◦ φ−1v · ζ det Dφ−1 dx

+ ν
∫

Ω

ε∇v · ∇ζ dx + ν

∫

Ω

1

4ε
(v − 1)ζ dx . (19)

Hence, for fixed v and φ the reconstructed images u R and uT

can be computed by solving the following elliptic problems

u R − µdiv
(
(v2 ◦ φ + kε)∇u R

)
= Ihu R,0,ε in Ω,

∂νu R = 0 on ∂Ω (20)

uT − µdiv
(
(v2 + kε)∇uT

)
= IhuT,0,ε in Ω,

∂νuT = 0 on ∂Ω (21)

where Ih denotes the interpolation operator. Since v ≥ 0 the
corresponding bilinear-forms are coercive. Furthermore, we
are able to find for each uT , u R and φ the optimal phase field
v as the solution of the Euler–Lagrange equation with respect
to the variation in the variable v, i.e.,

µ‖∇uT ‖2v + µ‖∇u R‖2 ◦ φ−1v det Dφ−1

+ ν

4ε
(v − 1)− νε�v = 0 in Ω. (22)

and ∂νv = 0 on ∂Ω . Finally, the variation of the energy with
respect to the deformation in a direction ψ is given by
〈
∂φEεAT[u R, uT , v,φ];ψ 〉

= µ

∫

Ω

‖∇u R‖2v ◦ φ (∇v ◦ φ · ψ) dx

= µ

∫

Ω

‖∇u R‖2 ◦ φ−1v (∇v · ψ ◦ φ−1) det Dφ−1 dx .

(23)

Analogously to the approach chosen in the above sharp
interface model, the energy functional can be reduced to
depending only onφ, where u R[φ], uT [φ] and v[φ] are deter-
mined as the unique solutions to the quadratic minimization
problem for fixed φ:

Êε[φ] = Eε[u R[φ], uT [φ], v[φ],φ]. (24)
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4.2 Multiscale gradient descent

Different to the sharp interface approach above the phase
field approximation comes along with a natural scale para-
meter. As mentioned above the width of the diffusive inter-
face turns out to be 2ε. On the same scale the images uT

and u R are diffused close to edges of the initial images uT,0

and u R,0. Hence, the smoothness of energy variations will
also depend on the scale parameter ε. On coarser scales we
expect smoother descend directions and larger displacement
can be rendered via the gradient descent. But, for decreasing
ε one observed successively irregular variations. Indeed, the
smoothness of ∂φEεAT is controlled by the smoothness of
φ−1, u R and v and the smoothness of v is steered directly by
ε on account of the penalty term ε‖∇v‖2. Furthermore, for a
small ε, v is close to 0 where ‖∇u R‖2 ◦ φ−1 or ‖∇uT ‖2 are
large and v is forced to be close to 1 in the rest of the domain
on account of the amplified single well potential.

In summary, larger values of ε yield coarse and smooth
approximations of the images, the phase field and the defor-
mation. Hence, one starts with coarse approximations, to find
a stationary point in the simplified energy landscape, itera-
tively reduces the approximation parameter ε by taking the
solution of the previous scale as the new initial guess on the
next finer scale.

Then on finer scales for small values of ε, the discrete des-
cent direction tend to get irregular. Hence, it is again feasible
to consider a regularized gradient descent and we consider
the same regularized metric on variations of the deformation
as in the sharp interface case.

On each scale the resulting Finite Element algorithm
consists of a discrete gradient descent. Each gradient des-
cent step can be decomposed as follows. For givenφ compute
Composite Finite Element approximations for uT , u R and v
as discrete solutions of (20), (21), and (22), respectively, and
iterate these three solution steps until convergence. Then one
proceeds by evaluating the descent direction w.r.t. the defor-
mation and finally performs an update of the deformation φ
based on a line-search strategy.

Let us remark that on the finest scale ε has to be of the
order of the grid size, since otherwise the transition zone of
the phase field function cannot be resolved anymore by a
Finite Element function.

4.3 Numerical experiments

In Fig. 4, we test the phase field algorithm with the same
data as in the case of the sharp interface model. We observe
very similar results. In fact, the phase field model seems to
perform a better alignment in the interior of the skull. The
phase field function captures edge details in the entire image,
while the sharp interface framework focuses on the evolution
of the predefined contour. This leads to a positive effect on

the final alignment and to a slightly improved deformation.
This can be seen very clearly in Fig. 5. It shows the phase
field function at the initial stage and the final stage. Since, the
coupled discontinuity problems aims at keeping the length
of the interface short, the deformation will eventually try to
map the edges in u R onto the edges of uT .

5 The main differences between the two approaches

The aim of this comparison of the level set and the phase
field model is to illustrate and discuss the drawbacks and
benefits of both approaches in this particular application of
joint segmentation and registration. It naturally depends on
the computational considerations, the conceptual framework
and the specific application, which alternative will be the
method of choice. In the following, we will point out some
fundamental differences.

5.1 Methodological differences

Both, the level set approach and the phase field approach are
famous for their topological flexibility. The process of split-
ting a curve into several curves is a smooth process in both
frameworks and does not cause any conceptual problems.

The representations of the discontinuity set are fundamen-
tally different in type. The level set method elegantly allows
to represent, trace and evolve a given sharp interface. This
fits well to the framework of the calculus of shape deriva-
tives in which the current interface is given precisely. To be
more precise, the level set method is just one way of evolving
a sharp interface, in comparison to parametrizing the inter-
face. We consider parametric versions as not competitive due
to tremendous difficulties that arise at topology changes. For
the sake of completeness, let us mention that one can also
describe sharp interfaces by a phase field function by using
suitable obstacle potentials. From the conceptional viewpoint
of shape variation, those would then fall in the same category,
since the motion would result from the shape variation of the
shape functional. The Ambrosio–Tortorelli-approximation is
however a diffuse representation. Instead of precisely repre-
senting the position of the interface, the phase-field function
v only indicates the position of edges in a blurry way. This
phase-field function has to be defined on the entire domainΩ
and results directly from the solution of a simple elliptic PDE.
The actual discontinuity set is then only given as minimizer
Ω → {0, 1} of the Γ -limit of sequence of approximation
functionals for ε → 0. In actual computations however the
phase field function has to be computed for ε of the order
of the grid size. We conclude, that if the actual interface is
of interest as the result of the algorithm, a sharp interface
model, represented, e.g., by a level set function is favorable.
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Fig. 4 Matching and results of the same problem set-up as in Fig. 1. Top row initial images u R (PD) and uT (T1). Middle row deformation plot
and matching results uT ◦ φ. Bottom row comparison of initial misfit and final matching result against the reference image

The classical level set framework is restricted to closed
curves, and thus it does not allow to represent crack tips by
a single level set function. Although this could be achieved
by combining several level set functions with boolean ope-
rations, the phase field approach appears to be more flexible

and practicable for the applications discussed here. The same
is true for generating holes. The phase field representation is
global by definition and respects the features of the images in
the entire domain, with requiring any initialization. For sharp
interface models, let us mention the concept of topological
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Fig. 5 Comparison of the phase-field function v after the first iteration (left) and after the final iteration (right)

derivatives [16]. By considering the limit for the change of
the energy functional for arbitrary small holes, one can yield
a descent of the functional with respect to topology. This is
of great importance for example in structural mechanics. The
sharp interface approach optimizes with respect to a given ini-
tial shape, while the phase field approach will try to align all
dominant edges in the images simultaneously. In some cases
however, when there are no counterparts of strong edges in
the other image, the simultaneous matching of all features
may be a counterproductive aim. The restriction to certain
features only may be beneficial here.

The dependence on the initial condition in the case of
the sharp interface model, does not necessarily mean to be a
burden. Due to the non-convex structure of the joint discon-
tinuity problem, the initial shape and position of the contour
allows to give the user some kind of control over the matching
process.

5.2 Computational considerations

Let us now compare the algorithmical effort related to both
of the approaches. The phase field method can be set up
in a straightforward way by solving elliptic and parabolic
problems with coefficients which vary in space. Such pro-
blems are standard and can be solved with all PDE toolboxes.
Due to the fact that the interface is represented by a smooth
phase field function, the solution of the Helmholtz problems
in the domains, which are divided by the free discontinuity
is straightforward and does not require any additional effort
to take care about free boundaries.

The sharp interface approach is more complicated to
implement. The computation of the velocity requires to eva-
luate geometric entities and jumps of the traces of the func-
tions u R and uT along the interface. In order to compute these
functions, an algorithmical tool like Composite Finite Ele-

ments, a Shortley-Weller discretization or Websplines [49]
has to be incorporated. In order to improve efficiency multi-
grid methods [44] have been applied. All this effort is honored
by yielding the true derivative and thus the correct dyna-
mics of the gradient flow. However, for the task of image
registration, we are mainly interested in the minimization of
the functional and not the evolution of the contour.

6 Conclusion

We have compared a level set based and a phase field model
for simultaneous segmentation and registration of images by
incorporating a Mumford–Shah type energy on the reference
image as well as the template image, where the contour is
transformed into the template image by a regularized defor-
mation. The work is motivated by the fact, that, given an
exact registration of two images of different modality, edge-
extraction and segmentation can be enhanced considerably
by combining complementary feature information from both
modalities. On the other hand the process of registering a pair
of images may rely on segmentations and feature-extractions
of both images, which is often a very tedious process, espe-
cially if in some areas the feature information is very weak.
Due to the coupling of the edge sets by the smooth deforma-
tion, the edge is driven to its correct shape.

Due to the regularization of the gradient flow, the mini-
mization process has turned out to be stable and requires
only a small number of iterations until convergence. On the
other hand, the regularization and necessity of determining
the solutions of the Helmholtz equations in the regions Ω1

and Ω2 requires the solution of elliptic PDEs.
The phase field method offers an interesting, convenient

and efficient alternative to the level set approach if the main
aim is registration and not segmentation. In contrast to the
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level set function, the phase field parameter captures edge
information in the entire domain. From an algorithmical point
of view, the phase field method is certainly much easier to
handle and only requires the solution of standard elliptical
problems.

Both methodologies are very flexible and allow a wide
range of extensions for model-based matching (introducing
a priori knowledge into the functional as e.g. in [26,28]),
optical flow estimation with discontinuities (see also [27])
and other areas.
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