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A LEVEL�SET APPROACH FOR INVERSE PROBLEMS

INVOLVING OBSTACLES

FADIL SANTOSA

Abstract� An approach for solving inverse problems involving obsta�
cles is proposed� The approach uses a level�set method which has been
shown to be e�ective in treating problems of moving boundaries� particu�
larly those that involve topological changes in the geometry� We develop
two computational methods based on this idea� One method results in
a nonlinear time�dependent partial di�erential equation for the level�set
function whose evolution minimizes the residual in the data �t� The
second method is an optimization that generates a sequence of level�
set functions that reduces the residual� The methods are illustrated
in two applications� a deconvolution problem and a di�raction screen
reconstruction problem�

Keywords� Inverse problems� level�set method� Hamilton�Jacobi equations� surface

evolution� optimization� deconvolution� di�raction�

�� Inverse problems involving obstacles

There is a host of inverse problems wherein the desired unknown is a re�
gion in IR� or IR�� The region is possibly multiply connected or consisting of
several subregions� A classical example is the inverse scattering problem for
an obstacle �see Colton and Kress ����� Other examples include a problem in
mine detection �Friedman �	��
 reconstruction of a di�raction screen �Sondhi
����
 Magnanini and Papi �����

A common goal in these problems is to determine the set of an unknown
characteristic function given remotely measured data� Abstractly
 they can
be posed as�

Find D in the equation

A�u� � g� ��a�

where

u�x� �

�
uint for x � D
uext for x �� D

� ��b�
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Here
 g and u represent the data and the model parameters of the problem

respectively� The operator A���
 the forward map
 is a map from model to
the data�

For the mine detection problem
 uint is the conductivity of the mine
while uext is the conductivity of the surrounding medium� In the di�raction
screen reconstruction problem
 uint � � and uext � � are prescribed� In
both problems
 the desired unknown is the domain D�

In the case of inverse scattering by an obstacle
 A is the map to the
far�eld pattern from a scatterer D for a given set of incident waves� For this
particular example
 uext is the sound speed of the �exterior� propagating
medium� Instead of de�ning uint
 we prescribe boundary conditions �sound�
soft or sound�hard� on the wave �eld on �D �see �����

Indeed
 we believe that obstacle problems arise naturally in situations
when the desired unknown is a priori assumed to be a characteristic function�
More generally
 we would know uext while uint may be unknown� However

we believe methods can be devised whereby both the domain D and the
value uint are determined simultaneously from the data �see Remark at the
end of Section 	��

We note that in the case where A��� is governed by a partial di�erential
equation
 there are e�ective methods for computing the action of A� These
include standard methods boundary element methods and �nite element
methods
 and a version of �nite di�erence methods called �the immersed
interface methods� of Leveque and Li ����

Rather than being speci�c about the nature of the mapping A��� and
the spaces for the model and the data
 we choose to talk in generalities
and keep the discussion at the formal level� The purpose of this work is to
demonstrate that level�set method naturally lends itself to obstacle inverse
problems�

�� The level�set approach

The level�set method was developed by Osher and Sethian ���� for prob�
lems involving the motion of curves and surfaces� A particular advantage
of this approach is the ability of the method to track the motion through
topological changes�

Recently
 the level�set approach has been used to develop methods to
solve a segmentation problem arising in computer vision �see Caselles
 Catt�e

Coll and Dibos ���
 Maladi
 Sethian and Vermuri ���
 Kichenassamy
 Kumar

Olver
 Tannenbaum and Yezzi ����� The methods
 sometimes refered to as
�snakes� or �active contour models�
 have been shown to be quite versatile
and powerful�

One attractive attribute of the level�set method is that it gives a natural
way of describing closed curves
 particularly
 those that sequentially change
following a certain rule� Consider a ��dimensional problem� Suppose the
characteristic set of interest is D� The boundary of D is described by a
function ��x�

�D � fx � ��x� � �g�
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In the level�set approach
 we generate a sequence of functions �k�x� such
that

Dk � D�

where �Dk � fx � �k�x� � �g� Note that k may be a continuous parameter

representing time
 if we consider evolution�

In an obstacle reconstruction problem
 we can think of the variable u
as the desired unknown� The function u in ��b�
 can be given a level�set
description as follows� We introduce an unknown function ��x� which is tied
to u in

u�x� �

�
uint for fx � ��x� � �g
uext for fx � ��x� � �g

� ���

Several advantages of this mode of representing the unknown through the
function ��x� becomes apparent�

�� No a priori assumptions about the connectedness �topology� of
D need to be made� That is
 D could be made up of several dis�
connected subregions� Moreover
D could be multiply connected�

�� No a priori assumptions on the nature of D need to be made

e�g�
 one often �nds in the scattering literature the assumption
that the unknown obstacle is star�shaped�

On the other hand
 one immediately sees that in using this description

a linear inverse problem becomes nonlinear� This is due to the nonlinear
dependence of u on ��

Under this description
 the inverse problem stated in ��� becomes�

Find ��x� in

u�x� �

�
uint fx � ��x� � �g
uext fx � ��x� � �g

�

such that

A�u� � g�

We will next describe two approaches for �nding ��x� in such a problem�
The �rst one is based on a time evolution
 leading to a Hamilton�Jacobi
equation� The second is based on optimization� We note that our motivation
for proposing this approach is due to its �exibility in describing obstacles�
We do not expect this formulation to help in making an illposed problem
better behaved�

�� Formal calculation of variations

In order to �nd the dependence of the forward map on small changes on
the obstacle boundary
 we need to calculate the variation of u caused by a
variation in �� To facilitate this calculation
 let x be a point on the curve
�D � fx � ��x� � �g� Suppose ��x� is perturbed by a small variation 	��x��
Let 	x be the resulting variation of the point x� The variation results in the
region D to become a new region denoted by D��

By taking the variation of the equation ��x� � �
 we �nd

	��r� � 	x � �� ���
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φ( x ) = 0

δ x

x

φ( x ) < 0

u = u ext

u = u int

Figure �� The geometry of the variation of the curve fx �
��x� � �g under a variation 	��x��

Observe that the unit outward normal at x is

n�x� �
r��x�

jr��x�j
�

Next consider u � 	u� In the accompanying Figure �
 observe that at x

since the surface is moving out
 	u will make u in the region between x and
x� 	x become uint� Therefore
 at these points 	u � uint � uext�

Consider the inner product of 	u with a test function f�x�� We have

formally


� 	u� f ���

Z
IR�

	u�x� f�x�dx �

Z
D�D�

	u�x� f�x�dx�

The value of 	u�x� is either plus or minus of �uint � uext�� Since 	x is
in�nitesimal
 we can simplify the inner product to

� 	u� f ��

Z
�D

�uint � uext� 	x � n�x� f�x� ds�x��

where ds�x� is the incremental arclength� Roughly speaking
 the expression
�	x �n�x� ds�x�� is the incremental area over which u varies at x� Therefore

integrating it over the entire boundary �D will lead to the inner product of
	u with f �

We can now identify 	u from the last expression� It is actually a measure
on the curve �D� Its strength is the product of �uint � uext� with normal
component of 	x� Therefore
 we have

	u � �uint � uext�
r��x�

jr��x�j
� 	x

����
x��D

� ���

Note that the dot product induces the correct sign for 	u� Consulting Figure
�
 we note that 	u will have the same sign as �uint�uext� at the point labeled
x� On the other hand
 the opposite sign will occur if the normal component
of 	x is in the opposite direction of the normal�

�� An evolution approach

We propose to solve the inverse obstacle problem by deriving an evolution
equation for ��x�� The equation will have the property that as �time� t��
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we arrive at a function ��x� such that the associated u�x� in ��� is a solution
to the inverse problem�

Let t represent time
 then the function � depends on on both x and t�
We use the notation

�D�t� � fx � ��x� t� � �g�

Therefore
 we associate an evolving region with ��x� t��
We will solve the inverse problem in the leastsquares sense
 that is
 we

seek the minimizer of

F �u� ��
�

�
jjA�u�� gjj��� �	�

The minimal requirement for the variation of ��x� t� is that F �u� be a de�
creasing function of t�

To this end
 let us assume that each point x � �D�t� moves perpendicular
to the surface� That is
 the variation 	x satis�es

	x � 
�x� t�
r�

jr�j
� ���

Here
 
�x� t� can be viewed as the velocity of the surface at x� Substituting
this expression in ���
 we obtain

	u � �uint � uext� 
�x� t� jx��D�t	 � ���

The directional derivative of the function F �u� in the direction 	u is given
by

	F �u� �� J�u�T �A�u�� g�� 	u ��

where J�u� is the Jacobian of A�u� at u� Recalling the form of 	u in ��� and
inserting it in the above
 we obtain

	F �u� �
Z
�D�t	

h
J�u�T �A�u�� g�

i
�uint � uext� 
�x� t� ds�x�� ���

Assuming that uint � uext
 we arrive at a natural choice of 
�x� t�� In order
for 	F �u� to be negative
 we choose


�x� t�j�D�t	 � �J�u�T �A�u�� g�
���
�D�t	

� ���

To determine the equation for 	��x� t�
 we use ��� and ���

	� � �r� � 	x � �r� �

�

�x� t�

r�

jr�j

�
� �
�x� t� jr�j�

Any 
�x� t� satisfying ��� will produce a 	� that reduces F �u�� We choose

�x� t� to be


�x� t� � �J�u�T �A�u�� g�� ����

i�e�
 
 is the extension of �J�u�T �A�u�� g�� This leads to

	� �
h
J�u�T �A�u�� g�

i
jr�j�

The initial value problem for ��x� t� is a Hamilton�Jacobi system

��

�t
�
h
J�u�T �A�u�� g�

i
jr�j� ���a�

��x� �� � ���x�� ���b�
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Our claim is that starting from some initial surface ���x�
 the evolution
described by ���� will lead to a solution of the inverse problem� A simple
choice for ���x� in ���b� is such that D�t ��� �� D���
 although this is
not crucial� We note that

�� The evolution is such that F �u� is nonincreasing
 that is
 �
�t
F �u� � ��

�� If a solution u exists
 then at the solution A�u� � g
 so that ����t � �
at the solution�

�� We can view the evolution as a �ow in the steepest descent direction
for the residual F �u��

It should be emphasized here that we have no theoretical foundations that
support our assertion that this is a method for solving the obstacle inverse
problem� However
 we have su�cient computational experience
 which will
be reported in this paper
 to convince us that this method can be used to
compute an approximate solution to the inverse problem�

�� An optimization approach

In the optimization approach
 we generate a sequence of surfaces �k�x�
whose associated function u�x� represent descent directions for the func�
tional F �u�� For this purpose
 it is convenient to use the notation

�Dk � fx � �k�x� � �g�

Suppose we are currently at �k�x�� An update 	��x� is needed to gener�
ate �k
��x�� The process of �nding 	��x� is somewhat of a reverse of the
procedure described in the last section�

We start with a Gauss�Newton approach �see for example Dennis and
Schnable ���� for minimizing the nonlinear leastsquares functional F �u�� The
descent update for this approach is given by 	u� where

J�u�TJ�u�	u� � J�u�T �g � A�u��� ����

Accepting this as an update for u
 we need to �nd the associated update for
�� Note that 	u� here is de�ned over all of IR��

Next
 consider the expression for 	u in ���
 which we rewrite here for
convenience

	u � �uint � uext� 
�x� jx��Dk
�

Implicit in this representation is the assumption that the points on �Dk

move perpendicular to it� Now
 we take the trace of 	u� in the Gauss�
Newton update on �Dk and equate it with the righthand side of the above
equality

	u�jx��Dk
� �uint � uext� 
�x� jx��Dk

�

Rearranging
 we �nd that


�x� jx��Dk
�

	u�jx��Dk

uint � uext
� ����

A way to interpret this is to say that 
�x� satisfying ���� is related to the
Gauss�Newton update of the functional F �u��
Esaim� Cocv� January ����� Vol� �� pp� �	
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A natural choice for 
�x� is to extend the above relation to all points on
IR�


�x� �
	u�

uint � uext
� ����

This choice
 along with ���
 leads to the update for 	��x� given by

	��x� � �
	u�

uint � uext
jr�k�x�j� ��	�

We can now show that this is a descent direction for F �u�� To do so
 we
substitute ���� into the cost function variation formula in ���� We �nd that

	F �u� � �

Z
�Dk

h
J�u�T �A�u�� g�

i h
J�u�TJ�u�

i
�� h

J�u�T �A�u�� g�
i
ds�x��

which is negative if J�u�TJ�u� � �� Therefore
 the variation 	��x� corre�
sponds to a variation in F �u� that is negative�

A Gauss�Newton algorithm for the obstacle problem is

�� Choose ���x�
 set k � ��
�� Compute associated u
 if F �u� � tolerance
 do

i� Compute

J�u�TJ�u�	u� � J�u�T �g � A�u���

ii� Compute

	��x� � �
	u�

uint � uext
jr�k�x�j�

iii� Set k � k � �
 update �k
��x� � �k�x� � 	��x��

We do not have theoretical results that show that this algorithm will
converge to the solution of the inverse obstacle problem� Rather
 the present
discussion is meant to give a computational framework for obtaining an
approximate solution� While no convergence result is known at this time

we do have numerical experience from which we can draw some conclusion�

Remark �� A simple modi�cation of the algorithm can be made to solve
problems where uint is also unknown� Basically
 we want to update u
through �i� uint by an increment 	uint
 and �ii� � by an increment 	��
Observe that ���� can be interpreted as an update for �� given 

 then
	� � �
jr�j� Thus
 a perturbation to u consist of

	u � 	uint����� � 
�uint � uext��

where ��z� � � for z � �
 and ��z� � � for z � �� The Gauss�Newton
update then is to solve for 	uint and 
 in the equation


�g �A�u�� � 	uintJ�u������ � �uint � uext�J�u�
�

We can do this as long as we have more data than unknown� The number
of unknowns can be controlled by a priori assuming that 
 is supported in
a known set�
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Figure �� �a� The Gaussian blurring used� �b� The domain
to be reconstructed� �c� Data for inversion�

�� Example �� Deconvolution

As a �rst problem
 let us consider a simple deconvolution in � dimensions�
The operator for this problem is linear
 and is given by

Au �
Z
G�x� x�� u�x�� dx��

For simplicity
 we consider the unknown function u to be

u�x� �

�
� for x � D
� for x �� D

�

In this example
 G�x� is a Gaussian

G�x� � exp
�
��jxj�

�
�

The operator A is compact
 so we expect its discretization to exhibit illcon�
ditioning� Note that it is also self�adjoint� The Jacobian is equal A� In the
inverse problem
 we are given g and we wish to solve for u�x� in

Au � g�

Implicit in the problem is that u is a characteristic function�
For the function ��x�
 we choose an initial function

���x� � a� b exp
�
�
jxj�

�
�

This gives level curves which are circles� We select this form for ���x�
because in solving the initial value problem ���� numerically
 we will impose
homogeneous Neumann condition on ��x� t�
 and ���x� already satis�es this
condition �approximately��

The speci�cs of the numerical example are as follows�

�� Domain� ���� ��� ���� ���
�� Constant� a � ���
 b � �
 and 
 � ���
�� Convolution� � � ��	���	
 in the computation g�x� is zeroed for
jxj � ����	 �see Figure �a��

We discretize the problem as follows� On the plane
 we label node points
by i and j
 the corresponding coordinates are

xij � ��� � �i� ��h��� � �j � ��h� � i� j � �� � � � � n�
Esaim� Cocv� January ����� Vol� �� pp� �	
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Figure �� �a� Graph of the negative of ���x�� �b� Graph
of the negative of the �nal ��x��

where h � ���n � ��� We keep track of the function ��x� at the node
points� The unknown function u�x� is assumed to be piecewise constant
taking values of either � or � over a pixel of size h� h� We denote the value
of u�x� over the pixel centered at xij by uij � The rule for evaluating u is

uij �

�
� for ��xij� � �
� for ��xij� � �

�

Therefore
 in our implementation
 we resolve the boundary of a region D to
one pixel size�

The operator A can be viewed as a linear tranformation taking an n � n
matrix to an n�nmatrix� The evaluation can be done rapidly using Matlab�s
��� convolution functions�

Evolution� For the numerical solution of ����
 we use the method outlined
in Osher and Sethian ����� The main e�ort is the computation of the term


 � �A�Au � g�

for a given u� The evolution of ��x� t� is through

��

�t
� �
 jr�j�

Crucial to the success is the time�step size in order to guarantee descent at
each time step� We view the time step as a step length in optimization
 and
allow it to be shortened as needed�

Optimization� In implementing the optimization approach we need to solve
���� for 	u�� We do this calculation using a conjugate gradient method�
Since A is self�adjoint
 we actually solve

A	u� � �g �Au��

The gradient of �k�x� is computed using the Osher and Sethian�s discretiza�
tion as in the evolution method� These details incorporated in an algorithm
similar to that outlined in Section 	� Care must be taken in choosing the
steplength � in order to insure proper descent�
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Figure �� The evolution of the zero�level set though the
Hamilton�Jacobi equation� Going from left to right beginning
the top left
 the initial level�set
 the level sets after ��
 ��

��
 ���
 and ��� time steps�
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Figure �� �a� Graph of the residual as a function of num�
ber of time steps for the evolution method� �b� Graph of the
residual as a function of number of iterations for the opti�
mization method�

Results� We choose relatively small demonstration problems
 n � ��� The
discretized function G is displayed in Figure �a� The domain we wish to
reconstruct is shown in Figure �b� Note that the domain is disjoint� Figure
�c is grey�level plot of the data�

We �rst present the result of the evolution method� Figures �a and �b
show the graphs of the initial function ���x� and the �nal function ��x��
Negative � is plotted for clarity� The pictures in Figure � depict the evolution
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of the zero�level set through the Hamilton�Jacobi equation� The solution
obtained is identical to the true domain in Figure �b� The time step is �xed
at �����

The reduction in the residual is proportional to the norm of the function

 � �A�Au � g�� This residual is graphed for the evolution method in
Figure 	a� The horizontal axis is the number of time steps�

We also obtained results using the optimization method� We only display
the residual for as a function of iteration is shown in Figure 	b� The step
length is � � ���� We took �� conjugate gradient iterations in each inner
loop of our optimization�

It is perhaps not too surprising that the true D is reconstructed by both
methods� What is important is that we were able to reconstruct a disjoint set
of subregions� This gives an idea to the �exibility of the level�set approach
for describing regions� We emphasize that in many inverse problems
 we do
not know a priori if the obstacle we wish to reconstruct consists of several
subregions� Moreover
 we need not make any assumptions on the form of
the region �e�g�
 star�shaped
 polygonal
 etc���

The reduction in the residual in both methods can be improved by choos�
ing step sizes carefully
 or implementing a line search� We defer addressing
this issue� Our point is to demonstrate the use of a level�set approach on
such obstacle inverse problems�

�� Example �� Reconstruction of diffraction screen

The problem of di�action screen reconstruction arises in acoustics and
optics� In IR�
 let us set up the coordinates �x� z� where x � IR�� An
opaque screen
 with a cutout described by D is placed on the plane z � �
�see Figure ��� A harmonic plane wave with wavenumber k propagates in
the positive z direction� It hits the screen and the propagating �eld escapes
through the cutout� We are given the values of the �eld at z � � � �� The
problem is to reconstruct the domain D from the data� This problem has
been considered by Sondhi ����
 and more recently by Magnanini and Papi
����

We will consider this problem within the Kirchho� approximation� Let
w�x� z� represent the wave �eld �excess pressure in linear acoustics�� Then
w satis�es

	 w � k�w � �� z � �� with w�x� �� � u�x�� ����

Here
 u�x� is the characteristic function of the set D� Additionally
 radiation
condition is imposed on w� In the inverse problem
 we are given

w�x� �� � g�x��

and we are asked to �nd D�
The problem is reposed in the Fourier domain� Let �w��� z� be the Fourier

transform of w�x� z�

�w��� z� �
Z
IR�

w�x� z� exp��ix � ��dx�
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Figure �� The di�raction screen reconstruction problem�
A plane wave of wavenumber k is incident upon the screen at
z � �� We are given di�raction data at z � � � The problem
is to reconstruct the cutout D in the screen�

By taking the Fourier transform of ����
 we obtain the solution to equation

�w��� z� � exp

�
iz
q
k� � j�j�

�
�u����

Here �u��� is the transform of u�x�� In the inverse problem
 the operator
taking u to the data at z � � is

Au � exp

�
i�
q
k� � j�j�

�
�u���� ����

We view the data as being given in the Fourier domain
 denoted by �g����
The inverse problem is to �nd D
 the support of the characteristic function
u�x� in

Au � �g� ����

The problem
 as can be seen
 is linear� The only usual feature is thatA takes
a real function u�x� to a complex function of �� The operator A is compact
because of the exponential decay of the exponential multiplier �consult ������
The instability has been studied in detail in ����

The adjoint of A is given by

ATv �
�

���

Z
IR�

exp

�
�i�

q
k� � j�j�

�
v��� exp�i� � x�d��

It takes a complex function of � to a real function�
We use a similar discretization as for the convolution problem in Example

�� We restrict our attention to the node points

xij � ��� � �i� ��h��� � �j � ��h� � i� j � �� � � � � n�

where h � �����n� ��� The function ��x� are evaluated at the coordinates
xij � As in the previous example
 we resolve the boundary of D to one pixel
width
 so we assume u�x� to be piecewise constant on the pixel
 taking on
values

uij �

�
� for ��xij� � �
� for ��xij� � �

�
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Figure 	� �a� The cutout to be reconstructed� �b� The
real part of the di�raction data� �c� The imaginary part of
the di�raction data�
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Figure 
� �a� Graph of the residual as a function of number
of time steps �not time� for the evolution method� �b� Graph
of the residual as a function of number of iterations for the
optimization method�

Evolution� For this method
 we need to compute


 � �AT �Au� g��

This is done using the FFT facilities in Matlab ���� Care must be taken
to relate the FFT of a discretized function with the Fourier transform of a
continuous function of x� Moreover
 we must keep track of real and imag�
inary variables� The time�stepping algorithm for ��x� t� is the same as the
one used in Example �� For this problem
 we implemented a variable time
step� The time step is halfed until decrease in the residual achieved or until
a lower bound on the time step is reached� While this does not guarantee
decrease at each step
 it does restrict the size of residual increase when that
occurs�

Optimization� At each iteration
 we must solve the normal equation for a
real 	u�

ATA	u� � AT �g � Au��

This is done using a conjugate gradient algorithm� The remainder of the
Gauss�Newton method is identical to the one in the previous example�
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Figure �� The evolution of the zero�level set though the
optimization procedure� Going from left to right beginning
the top left
 the level�set after �� iterations
 after ��
 ��

��
 	� and 	� iterations� Note that the cutout has been
reconstructed perfectly�

Results� We chose a cutout in the shape of the letter �F� for our test �Figure
�a�� The problem size is n � ��� Data is generated by taking the FFT of u
corresponding to our cutout� We scaled the problem so that the frequency
sampling is at ���� cycles per unit length� This corresponds to the image
plane being a square of dimension ���� The corresponding frequency domain
data �g is calculated with k � � and with the measurement screen at � � ��
To view the data
 we take the inverse FFT of �g� The real and imaginary
parts of g are displayed in Figures �b and �c� They correspond to the real
and imaginary parts of the measured wave �eld� As can be seen
 what is
measured is a very blurred picture of the original cutout� The blurring gets
more severe as the measurement screen is moved away from the cutout
 and
as the wavenumber k is decreased� However
 increasing k has the e�ect of
increasing the reverberations around the original cutout�

The results of the evolution method is shown in Figure �a� In our calcu�
lation
 the initial time step is taken to be ������ A lower bound of ������
is set� The lower bound is used at many of the time steps
 several of them
lead to a small increase in the residual� Eventually
 the original cutout is
reconstructed�

For the optimization method
 we used step length � � ����
 and per�
formed �� conjugate gradient iterations the inner loop� The plot of the
residual versus number of outer iterations is displayed in Figure �b� We also
show the shapes of the zero�level sets of the function ��x� at di�erent points
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in the iteration �Figure ��� Note that the cutout is reconstructed by this
method also�

	� A remark about instability and regularization

As we have previously alluded to
 this mode of representing the unknown
obstacle
 albeit rather natural and convenient
 does not alter the proper�
ties of an inverse problem� More particularly
 an inverse problem that is
illconditioned will remain so even if it is given a level�set description�

A natural regularization
 for severely illposed problems where there is
substantial noise in the data is curve shortening� E�ective numerical meth�
ods for curve shortening �ows or �inward� mean curvature �ows has been
proposed by Osher and Sethian ����� Active contour modeling is based on
such a �ow� A multiplier to the curvature and an advection term are incor�
porated to allow segmentation of concave objects ��
 ��� In this spirit
 we
suggest an evolution of the type

��

�t
� ��
� b�jr�j� � a jr�j

�
r �

r�

jr�j

�
�

The constant � is a regularization penalty term� The function a and b
will need to be determined based on side information about the unknown
characteristic function� For instance
 if we know that the domain D consists
of convex subregions
 the choice a � � and b � � makes sense as these will
force short contours for the solution�

The choice of the functions a and b will be crucial to the success of the
regularization strategy� We plan to devote some e�ort in this direction in the
future� The same idea can be applied to optimization methods by imposing
a total variation penalty to the residual cost function�


� Discussion

We have described a method for obtaining numerical solutions of inverse
problems involving obstacles using a level�set strategy� Representing the
unknown in such problems using a level�set function is quite natural and
very �exible� Two computational schemes have been devised� One is based
on time evolution
 while the other is based on optimization� Both solution
methods are demonstrated in numerical examples�

There are several other issues not addressed in this work�

�� Choice of regularization for severely illposed problems� We mentioned
that an illposed problem will most likely remain so under a level�set
description� Therefore
 regularization is an important issue in problems
involving noise in the data� We advocate using geometric type penalty
terms such as arclength�

�� Unknown jump� In this work
 we assumed that the jump in the un�
known function u�x� across the interface is given� In many problems
arising in application
 the jump itself may be part of the problem�
We believe it is possible to modify the present methods and devise a
scheme whereby both the jump and the unknown domain are recov�
ered� A sketch of the idea is presented in the Remark at the end of
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Section 	� The success of such a strategy will most likely depend on
overdeterminancy of the data�

�� More complicated models� We applied our methods to two relative
simple linear inverse problems� It would be interesting to apply the
same methods to nonlinear problems
 such as the inverse scattering
problem�

�� Algorithms based on problem structure� In this work
 we did not use
the properties of the parameter�to�data maps� We believe special al�
gorithms that exploit certain structure of these maps are possible�

	� Accelerating convergence� We noted that the performance of our meth�
ods could be improved by incorporating a line search strategy� Indeed

we think that tools from optimization methods should be imported to
this problem to enhance performance�

�� ��dimensional problems� The methods described here extends to ��
dimensions� The necessary computational tools has been developed by
Osher and Sethian �����

We hope to address some of the questions raised above in future work�
Finally we mention that the approach adopted here lends itself naturally

to some optimal design problems� An example is determining cutouts in
a planar domain to meet a certain design criterion� It seems also possible
that control problems where the �controls are domains can also be treated
numerically in the same way�
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