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Abstract

Segmenting an image into similar parts is important for low level
image understanding. Many formulations of the segmentation task
have been suggested over the years. While axiomatic functionals, such
as the Mumford-Shah functional, are hard to implement and analyze,
graph-based alternatives often impose artificial measures on the prob-
lem. The latter are usually simple to optimize and implement at the
expense of giving up some desired properties.

Here, we tackle the most basic image quantization, or piecewise con-
stant segmentation problem, while regularizing the boundaries between
the regions according to a weighted Euclidean arc-length. The problem
is shown to be related to the original Mumford-Shah functional, and
formalized as a level set evolution equation. Yet, unlike most existing
methods, the evolution is executed using a single non-negative level
set function, through the Voronoi Implicit Interface Method [21] for
a multi-phase interface evolution. The proposed framework has been
tested on a number of synthetic and real images, with different num-
ber of regions, and compared to a state-of-the-art algorithm for image
segmentation.

1 Introduction

Image segmentation is important for object detection and classification,
scene understanding, action classification, and other visual information anal-
ysis tasks. In this paper we consider active contour approaches, which
have been proven to be extremely successful for that goal. They can be
roughly divided into edge-based methods [11, 5, 12, 6], region-based tech-
niques [14, 8, 10, 13, 9, 3], and combined approaches [27, 16, 19], to mention
just a few.
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Generally, the active contour evolution is performed using the level set
framework [15], which helps overcome inherited implementation difficulties
associated with spline-based approaches. The level set framework, when
utilized per se, is geared towards two-region image segmentation. To allevi-
ate this limitation, various methods were developed; all of them, however,
require managing multiple level set functions. Some associate a level set
function with each image region, and evolve these functions in a coupled
manner [26, 25, 20]. Others perform hierarchical segmentation, by itera-
tively splitting previously obtained regions using the conventional level set
framework [23, 4]. These methods too require coupled level set evolution, so
that the resulting regions do not develop gaps or overlaps. It is also possible
to use a smaller number of level set functions, say n, and segment an image
into 2n regions [24].

A different approach to image segmentation consists of formulating it
as a discrete labeling problem, and solving it using graph-cuts or convex
relaxation algorithms [18, 17, 7]. These methods were developed for a cer-
tain type of problems [7], but currently are not suited for different energy
measures, for instance, the elastica term in [11] (integral of the squared cur-
vature of the evolving contour). In addition, they usually require knowing
the number of regions a priori.

In contrast to the methods described above, the approach suggested
in this paper allows segmenting images with unknown number of possibly
overlapping objects, according to some desired energy measure. For this
purpose we utilize a novel level set framework for multi-phase, or multi-
region interface evolution, named the Voronoi Implicit Interface Method
(VIIM), which was introduced by Saye and Sethian in [21]. According to
it, the evolution is performed using a single non-negative level set function,
while implicitly dealing with region merging and splitting.

Our main contributions can be summarized as follows: first, we review
the axiomatic formulation of the multi-region image segmentation problem
as an energy functional minimization. Specifically, we consider the approx-
imately piecewise constant image model. We derive the active contour evo-
lution equation minimizing the above energy functional, formulate it as the
level set evolution problem, and solve it by utilizing the VIIM level set
framework. The proposed method does not require knowing the number
of the regions in the image or their statistics a priori, and produces good
segmentation results for various initial contours. We compare the output of
the proposed method with the two-region piecewise constant model of Chan
and Vese [8] and the convex relaxation method of Chambolle and Pock [7].

The structure of the paper is as follows: in the next section we review the
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Voronoi Implicit Interface Method. In Section 3 we formulate the multiple
regions segmentation problem, and derive its active contour evolution equa-
tion. In Section 4 we extract the corresponding level set evolution equation
in terms of the VIIM framework, and formalize the suggested segmentation
method. In Section 5 we present segmentation results obtained with the
proposed method for different types of images, and compare them to results
obtained using [7]. Section 6 concludes the paper and describes potential
extensions of the proposed framework.

2 Review of the Voronoi Implicit Interface Method

The VIIM was developed in order to solve interface propagation problems
with arbitrary number of phases, or regions, in m-dimensional Euclidean
space. In 2D the interface separating between different phases is a curve,
possibly with multiple junctions. In 3D, the interface consists of two-
dimensional surfaces. Illustrations of 2D and 3D interfaces can be found
in [21].

The interface propagation is performed using a single non-negative level
set function φ(x),x ∈ Rm, given by the unsigned distance from the interface
Γ, and defined on a fixed regular Eulerian background mesh. The propaga-
tion is governed by the following PDE

φt = Fext |∇φ| , (1)

where Fext is the extension of the interface propagation speed F to the
whole m-dimensional region. The examples in [21] include curvature and
mean curvature flows, as well as physical simulations of the dynamics of dry
foams.

The central idea of the VIIM is as follows: assume we are given a zero
level set of a function φ, and a velocity F defined along it. We can extend
this velocity to the neighboring level sets in a smooth manner, to obtain
the extension velocity Fext and apply Eq. (1). Then, two evolving ε-level
sets will always encapsulate the evolving zero level set they are adjacent to.
Moreover, the ε-level sets of φ are simple curves, without multiple-junction
points, and their evolution is well defined. Thus, the evolved ε-level sets of
the level set function can be used to reconstruct the evolving interface, which
is assumed to lie at an equal distance from the two ε-level sets adjacent to
it. It is calculated using the Voronoi regions of the ε-level sets.

In order to evolve the interface as described above, Saye and Sethian
suggested the following three step-algorithm (in R2).
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1. First, advance the level set function φ by solving Eq. (1), with an
appropriate time step.

2. Find the ε-level sets of the new function. Reconstruct the interface
Γ to be the intersections of the Voronoi regions of the ε-level sets,
calculated in the regions {(x, y) : φ(x, y) < ε}. Use the reconstructed
interface Γ to update the unsigned distance function φ.

3. Update the propagation speed function F , and return to 1.

The VIIM is formulated in terms of a general interface velocity F , and
thus it is applicable for various interface evolution problems utilizing the
level set approach. Below, we show how it can be employed for multiple
regions image segmentation, where the active contour acts as an interface,
and the regions it defines are the phases in the VIIM notation.

3 Multiple regions image segmentation

A general energy functional describing an active contour model may be
written as

E(C) = Eimage(C) + µEcontour(C). (2)

The data term Eimage(C) measures the quality of the segmentation provided
by the contour C. It may originate from various image models, such as the
piecewise-smooth or piecewise-constant models of [14, 8], statistical models
of [10, 13], etc. The regularization term Econtour(C) may depend on the
contour properties alone [11, 14], or incorporate image information as well
[5, 6].

In this paper we consider a special case of the regularized piecewise-
constant model for multi-region image segmentation, which is closely related
to the piecewise-smooth model of [14]. We start with a review of the two-
region model based on [8, 6]. We then extend it for multiple regions, and
derive the corresponding active contour evolution equations.

3.1 Piecewise constant model with GAC regularization

We use the formulation according to which the energy is given by

E(C, c1, c2) =

∫∫
ΩC

(I(x, y)− c1)2 dxdy +

∫∫
Ω\ΩC

(I(x, y)− c2)2 dxdy

+µ

∮
C
g(C(s))ds, (3)

4

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

01
2-

06
 -

 2
01

2



where I(x, y) denotes the image, defined on a 2D domain Ω, C is the interface
contour, and ΩC and Ω\ΩC are the regions inside and outside the contour C,
respectively. When optimized for, c1 and c2 are the mean grayscale values
of the image I in ΩC and Ω\ΩC . The last term of E(C, c1, c2) is an interface
regularization term, measuring a weighted contour length. The function g is
an edge indicator function [6], e.g. g(x, y) = 1

1+|∇Î| , where Î is a smoothed

version of I, or g(x, y) suggested in [19] for color images. The parameter µ
controls the weight of the regularization term in the total energy.

The active contour evolution rule is given by the first variation of the
functional with respect to the evolving curve C,

Ct = −δE
δC

= −
(

(I − c1)2 − (I − c2)2
)
n + µ (κg − 〈∇g,n〉)n, (4)

where n is the normal to the curve C. The level set formulation of (4) is

φt = −
(

(I − c1)2 − (I − c2)2
)
|∇φ|+ µdiv

(
g(x, y)

∇φ
|∇φ|

)
|∇φ|. (5)

The values c1 and c2 minimizing the energy E(C, c1, c2) are given by

c1 =

∫∫
ΩC

I(x, y)2dxdy∫∫
ΩC

dxdy
, c2 =

∫∫
Ω\ΩC

I(x, y)2dxdy∫∫
Ω\ΩC

dxdy
. (6)

3.2 Back to Mumford-Shah: Multiple regions segmentation
model

Following the energy formulation for two regions, given in Eq. (3), we extend
it to multiple regions segmentation as follows

EMR(C, {ci}) =
∑
i

∫∫
Ωi

(I(x, y)− ci)2 dxdy + µ

∮
C
g(C(s))ds. (7)

The contour C now separates multiple regions, denoted by Ωi, and may
have multiple-junction points. Note that this is a modified version of the
Mumford-Shah energy functional [14], in the sense that the regularization
term is given by the Geodesic Active Contours.

In order to simplify the notations, we denote the different terms of the
total energy (7) as follows

Ei
CV (C) =

∫∫
Ωi

(I(x, y)− ci)2 dxdy,

EGAC =

∮
C
g(C(s))ds. (8)
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Thus, the energy can be written as

EMR(C, {ci}) =
∑
i

Ei
CV (C) + µEGAC . (9)

Its first variation with respect to C is

δEMR

δC
=
∑
i

δEi
CV

δC
+ µ

δEGAC

δC
. (10)

In order to find expressions for the first variations of the energy terms
Ei

CV (C), we will use the following Lemma [27].

Lemma 1. The first variation of a functional

EW (C) =

∫∫
ΩC

f(x, y)dxdy (11)

is given by
δEW (C)

δC
= −f(x, y)n. (12)

We thereby obtain

δEi
CV (C(x, y))

δC
= − (I(x, y)− ci)2 n, (x, y) ∈ Ci, (13)

where Ci denotes the part of the contour C that bounds the region Ωi. We
also denote by Cij the contour segment shared by two regions Ωi and Ωj .

The second term of the total energy EMR, EGAC , is the familiar geodesic
active contour energy term; its first variation is given in Eq. (4). Thus, the
first variation of the multi-phase energy functional EMR with respect to the
evolving contour C is given by

δEMR(C(x, y))

δC
= −

∑
i,j

(
(I(x, y)− ci)2 − (I(x, y)− cj)2)

)
n

+µ (κg − 〈∇g,n〉)n, (x, y) ∈ Cij . (14)

Note that this result coincides with the result obtained by Mumford and
Shah for a piecewise smooth segmentation model instead of a piecewise
constant one using a different analysis and assuming g = 1 (see Sec. 2 of
[14]).

Finally, the values {ci} minimizing the energy functional EMR(C, {ci})
are given by

ci =

∫∫
Ωi
I(x, y)2dxdy∫∫

Ωi
dxdy

. (15)
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4 Multiple-region segmentation using the VIIM

In this section we describe how to perform evolution of a boundary contour
according to Eq. (14), using the VIIM framework. The contour, or interface
velocity F (C), is well defined, except for the junction points, and is given
by

F (C(x, y)) = −
(

(I − ci)2 − (I − cj)2
)

+ µdiv

(
g(x, y)

∇φ
|∇φ|

)
, (16)

for (x, y) laying along the contour segment Cij . In order to use the VIIM
formulation, we need to define the extension velocity Fext for the ε-level sets
evolution. We observe that a straight forward definition Fext(x, y) = F (x, y),
(x, y) ∈ Ωi using (16) will produce a velocity profile with discontinuities at
the boundaries of the Voronoi regions of different contour segments. This is
also related to the fact that the interface velocity F is not well defined at
the junction points.

Instead, following the original philosophy of the VIIM, we would like to
evolve the level set function in each region based on the information coming
from this region alone. Therefore, we suggest using an extension velocity
defined such that in a certain region it is based only on the local information
of that region, as follows

Fext(x, y) = − (I(x, y)− ci)2 + µdiv

(
g(x, y)

∇φ
|∇φ|

)
, (x, y) ∈ Ωi. (17)

Proposition 1. Assume that the level set function is given by an unsigned
distance function from the evolving contour. For ε � 1, the extension ve-
locity Fext(x, y) defined in Eq. (17) will move every regular point (x, y) on
the contour in the direction of the velocity F (C(x, y)) defined by the Euler-
Lagrange equation (16).

According to the proposition above, the contour evolution under the
velocity Fext (17), will be along the same direction as it would have been
under the original velocity F (C(x, y)). Proof of Prop. 1 is given in Ap-
pendix A. Experimentally we found that the suggested extension velocity
produces valid segmentation results, that, in case of the two-region problem,
are similar to the results of the original formulation in Eq. (5).

The proposed approach can be summarized as follows. Assume we are
given an initial contour C and the corresponding unsigned distance level set
function φ(x, y).
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1. Extend the interface velocity for each region using Eq. (17). Advance
the level set function by solving the evolution equation (1).

2. Find the ε-level sets of the evolved level set function and reconstruct
the interface using the Voronoi regions of the ε-level sets, as suggested
by [21]. Calculate the new unsigned distance level set function φ.

3. Stop the evolution if a stopping criterion is met; otherwise, return to
Step 1.

Implementation considerations: We used the forward Eulerian scheme
to solve the evolution equation (1), and the fast marching method [22] to
calculate the distance function φ and the Voronoi regions, at every iteration.
To speed up the solution one can use operator splitting schemes for solving
Eq. (1), with the narrow band approach of [1]. In order to prevent over-
segmentation, we united separate regions with similar mean intensity values,
as a part of Step 2 of the algorithm. In our implementation we used a
threshold, denoted hereafter by T , set to 10% of the maximal image intensity
value. For color images, we used the maximal absolute intensity difference
among the three color channels.

We normalized the images to have intensity values in the range of [0, 1].
The algorithms parameters were set to the following values: [0.02, 0.1] for
the weight µ (Eq. (7)); [25, 50] for the time step dt; ε = 0.1 for the VIIM
method. Mean absolute intensity difference threshold T for region merging
was chosen as stated above. In order to approximate the level set function
derivatives next to its zero-level set (where φ is not differentiable) we used
forward- or backward-differences calculated using values of φ in each region
separately. Note, that the width of the ε-level sets influences the size of the
smallest features that the algorithm is able to segment. To capture small
features one may up-sample the image before the segmentation, similar to
the technique used in [2].

5 Experimental results

In this section we present segmentation results obtained with the proposed
method for different types of images, and with different parameter choices.

Comparison to two-region model: In the first experiment we compared
the proposed method with the two-region Chan-Vese formulation (3), both
applied to an image consisting of two regions. The segmentation results
are shown in Fig. 1, together with the initial contour. As expected, both
algorithms produce similar results.
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(a) (b) (c)

Figure 1: Comparison of the proposed method with the original two-region
Chan-Vese. (a) Image with the initial contour, shown in red. (b) Segmen-
tation obtained with two-region Chan-Vese formulation. (c) Segmentation
obtained with the proposed method. The obtained contours defining object
boundaries are shown in red.

Synthetic images with multiple regions: In our next experiment, we
tested the algorithm on two synthetic images with several overlapping re-
gions, boundaries of which meet at a number of triple-junctions. The first
example, shown in Fig. 2, top, is of a grayscale image with added Gaussian
noise with standard deviation equal to 5% of the image intensity range. The
second example, shown in Fig. 2, bottom, is of a colored image, with added
Gaussian noise with standard deviation equal to 10% of the image intensity
range. In both examples, using the proposed method we were able to seg-
ment the images, despite the added noise. The parameters used for both
images were: µ = 0.02, dt = 50, T = 10% of the intensity range.

Comparison to a convex relaxation method for image segmentation: The
proposed method was compared with the convex relaxation method of Cham-
bolle and Pock [7]; segmentation results produced by both methods are pre-
sented in Fig. 3. To evaluate the latter method, we used a code published
by the authors of [7], with the following parameters: isotropic TV, simple
relaxation and mean values produced by k-means clustering, K = 8 (num-
ber of labels) and λ = 5.0 (the L1-term weight, see [7]). From examining
the images in Fig. 3, (d) and (e), we see that both methods produce simi-
lar results. Regions obtained with [7] have smoother boundaries, as it uses
the contour length regularizer, while the proposed method, using geodesic
active contours, tends to produce curved boundaries following high image
gradients.

Additional segmentation results: Fig. 4 presents segmentation results ob-
tained with the proposed method with different values of the threshold T .
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(a) (b) (c) (d)

Figure 2: Segmentation of noisy synthetic grayscale and color images with
overlapping objects. (a) The original images. (b) Images with added noise
and initial contour. (c) Segmentation results obtained with the proposed
method. (d) Regions colored according to their mean intensity values.

Specifically, increasing T results in more regions being deemed similar and
merged during the evolution process, thus producing less detailed segmenta-
tion. The results shown in Fig. 4 were compared to segmentation obtained
with [7] applied to the same data. It was used with isotropic TV, simple
relaxation, mean values obtained using k-means clustering, and varying val-
ues of K and λ, in order to obtain similar number of regions as with the
proposed method. The results are shown in Fig. 5. We observe that in this
case the convex relaxation approach produced inferior results, probably due
to high non-homogeneity of the input image. Changing the parameters of
the algorithm [7] did not produce significantly better results.

Example from the Berkeley Segmentation Dataset: The final test we
performed was using an image from the Berkeley Segmentation Dataset1.
Fig. 6 presents the segmentation results obtained with our method, with
the convex relaxation of [7], and the ground-truth segmentation from the
dataset. Both methods produce similar segmentation results, though the
proposed algorithm fails to detect small image features, such as thin lines
and tiny structures. This can be overcome by up-sampling the image prior
to the segmentation. The algorithm of [7] on the other hand produces over-

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a)

(b)

(d)

(c)

(e)

Figure 3: Comparison of the proposed method with convex relaxation ap-
proach of [7]. (a) The original image. (b) Initial contour used by our method.
(c) Region boundaries detected by our method. (d) Regions detected by our
method, colored according to their mean intensity values. (e) Segmentation
result of [7].

segmentation, dividing the sky in the image into two parts. Using smaller
K, equal to 6 for instance, does not resolve this problem.

6 Conclusions and future work

We addressed the problem of multi-region image segmentation, implement-
ing a modified Mumford-Shah model where the geodesic active contour is
used for boundary regularization. For implementation we used the Voronoi
Implicit Interface Method which is a multi-phase level set formulation where
the boundary contour is an ε-set rather than the traditional intersection
set. This new formulation allowed us to deal with multiple segments si-
multaneously, while employing geometric constraints for the smoothness of
boundaries between the image segments, all within the same framework. Ex-
tending the numerical support about the boundaries allowed us to overcome
implementation difficulties of traditional geometric-variational segmentation
methods. In this paper we limited our discussion to piecewise constant in-
tensity profiles, a limitation that we plan to overcome in future research.
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(a) (b) (c) (d)

Figure 4: Segmentation results obtained with the proposed method using
different values of the absolute intensity difference T . (a) The original image.
(b) T = 20%. (c) T = 15%. (d) T = 10%.

(a) (a) (b) (c)

Figure 5: Segmentation results obtained with the convex optimization
method of [7], with different algorithm parameters. (a) The original im-
age. (b) K = 8, λ = 5.0. (c) K = 12, λ = 6.0. (d) K = 16, λ = 8.0.
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A Proof of Proposition 1

Assume that (x, y) ∈ C is a point on the contour segment Cij between the
regions Ωi and Ωj . The interface velocity F (C(x, y)) at (x, y) is given by
Eq. (16). Let us compare the evolution of (x, y) under the above velocity
F , and the evolution that will be produced by the VIIM with the extension
velocity given in Eq. (17). First, we note that the second term of Eq. (17),

µdiv

(
g(x, y)

∇φ
|∇φ|

)
, (18)

is a smooth extension of the corresponding term of the interface velocity F .
Therefore, according to [21], the ε-level sets will enclose the zero-level set

12

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

01
2-

06
 -

 2
01

2



(a) (b) (c)

(d) (e) (f)

Figure 6: Segmentation of an image from the Berkeley Segmentation
Dataset. (a) The original image. (b) Regions found by our method, col-
ored according to their mean intensity values. (c) Segmentation obtained
using [7], with K = 8, λ = 5.0. (d) Initial contour used by our method. (e)
Region boundaries obtained by our method. (f) Groundtruth segmentation
from the Berkeley Segmentation Dataset.

in the process of evolution, ensuring that the reconstructed interface will
indeed evolve in the correct direction.

Now, let us examine the evolution of a point (x, y) ∈ Cij under the first
term of the extension velocity. For ε� 1, the contour C and its two ε-level
sets can be assumed to be locally parallel, and thus their normal directions
are collinear. Therefore, we may restrict our analysis to one dimension, in
the direction of the contour normal n, such that the contour, or the zero
level set of φ, is positioned at the origin in this new coordinate system. The
illustration of the above is shown in Fig. 7.

Let us assume, w.l.o.g., that (I−ci)2 < (I−cj)2. Therefore, the velocity
F = −

(
(I − ci)2 − (I − cj)2

)
is positive, and the point (x, y) ∈ C is dis-

placed in the positive direction n. According to Eq. (17), the displacements
of the two ε-level sets are Fi = −(I − ci)2n and Fj = −(I − cj)2n. Accord-
ing to the VIIM, the reconstructed contour will lie half-way between the two
new ε-level sets, that is, the contour will move by 1

2 (Fi + Fj)) > 0 in the
positive direction n, similar to the original contour evolution. A graphical
interpretation of the proof is shown in Fig. 7.

Therefore, for ε� 1, the VIIM with the extension velocity Fext defined
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(a) (b)

Figure 7: Schematic description of contour evolution under the first term
of the extension velocity defined in Eq. (17). (a) The contour is expected
to evolve with the velocity F , while its two ε-level set evolve with their
corresponding extension velocities. The evolution rates are shown with black
arrows. (b) The contour evolution, shown with red arrow, obtained using
the VIIM method. Its direction coincides with the original direction of F .

in Eq. (17) indeed evolves the zero-level set of the level set function in the
same direction as the original interface velocity F defined in Eq. (16). �
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