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Abstract We propose an efficient multilayer segmentation
method based on implicit curve evolution and on variational
approach. The proposed formulation uses the minimal parti-
tion problem as formulated by D. Mumford and J. Shah, and
can be seen as a more efficient extension of the segmentation
models previously proposed in Chan and Vese (Scale-Space
Theories in Computer Vision, Lecture Notes in Computer
Science, Vol. 1682, pp. 141-151, 1999, IEEE Trans Image
Process 10(2):266-277, 2001), and Vese and Chan (Int J
Comput Vis 50(3):271-293, 2002). The set of unknown dis-
continuities is represented implicitly by several nested level
lines of the same function, as inspired from prior work on
island dynamics for epitaxial growth (Caflisch et al. in Appl
Math Lett 12(4):13, 1999; Chen et al. in J Comput Phys
167:475,2001). We present the Euler—Lagrange equations of
the proposed minimizations together with theoretical results
of energy decrease, existence of minimizers and approxima-
tions. We also discuss the choice of the curve regularization
and conclude with several experimental results and compar-
isons for piecewise-constant segmentation of gray-level and
color images.

1 Introduction

This work is devoted to the problem of piecewise-constant
segmentation of images using functional minimization,
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Euler-Lagrange equations, and implicit representation of the
discontinuity set. The proposed formulation can also be seen
as a free boundary problem or as a shape optimization prob-
lem. Assuming a degradation model of the form f(x) =
i cixq: (x) + noise, we seek to recover optimal partitions
with constants ¢; and regions €2;. Here €2 is an open, bounded
and connected domain with Lipschitz boundary, and f :
Q — R s a given observed image. As in the minimal par-
tition problem of Mumford and Shah [18], we assume that
f = c; within each €2;, and that the open regions €2;, together
with their boundaries, make-up €2. Thus, this work is in the
spirit of the minimal partition problem [18] and its implicit
formulation as introduced in [5,6,27] (under the assumption
of an upper bound on the number of segments), using the
variational level-set approach [29]. However, the unknown
set of curves I making up the set of discontinuities is repre-
sented here using a nested structure of level lines of the same
implicit function. In the standard front propagation approach
[11,12,19], only the zero level line of the same function ¢ is
used to represent free boundaries. Borrowing the idea from
prior work on island dynamics for epitaxial growth [2,7,14],
the proposed methods thus lead to more efficient multi-phase
implicit representations. We first give the main ingredients
used in our approach.

The minimal partition problem In order to obtain an opti-
mal piecewise-constant approximation of a given image-data
f» Mumford and Shah [18] proposed the following: given a
function f in L>°(£2) (induced by the L>-topology), find a
set of disjoint open regions £2;, such that u = ¢; in each Q;
is a minimizer of [18]

Fur) =3 [ 1f = aldr + o), M
Fs
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where I' = Ud2;, 2 = UQ; UT', u > 0is a scale parameter,
and H"~! is the Hausdorff (n — 1)-dimensional measure in
R”. It has been shown [18] that a minimizer u of (1) has

a finite number of regions €2;. It is easy to verify that the

. . Jo, f0)dx
optimal ¢; are given by ¢; = T (when €2; # ¢), thus

the average of the data f over each ;. In [18], assuming
local parameterization of I', the Euler—Lagrange equation
with respect to such local representation is also given. Thus,
at points of the optimal I" where the curve is the common
boundary between two adjacent regions €2; and €2, we must
have k = | f — c,~|2 —\|f - Cj|2, where k denotes the mean
curvature of the common boundary.

Active contours without edges Curve evolution techniques
using implicit representations [11,12,19,29] have been
applied in [5,6,27] to solve particular cases of the mini-
mal partition problem, where the number of regions €2; or
an upper bound are assumed to be known. For instance, in
[5,6] the binary case of two regions has been considered, by
minimizing

i Fereg) = / () — 1P H(@)dx
Q

+/|f(X)—€2|2H(—¢)dX+M/IVH(¢)I,
Q Q

where ¢, cp are unknown constants, ¢ : 2 — R is an
unknown level set function, H is the one-dimensional Heav-
iside function, and fQ |V H (¢)| denotes the total variation of
the characteristic function H (¢), and represents the perime-
ter of the boundary of {x € Q : ¢(x) > 0}. Minimizing
the above energy as in [5,6], leads to a binary segmentation
u(x) = ctH(p(x)) + coH(—¢(x)) of the data f, and the
model acts as active contours for boundary detection. The
boundary is defined implicitly by {x € Q : ¢(x) = 0}.
This segmentation method by curve evolution has been gen-
eralized in [27] to the case of more than two regions and to
piecewise-smooth images. Using two implicit functions ¢
and ¢», four disjoint regions can be represented; using three
functions, up to eight disjoint regions can be represented, and
so on: if m level set functions are used with their correspond-
ing zero-level lines, these can partition the domain €2 into
up to 2™ disjoint regions, without vacuum or overlap. Also,
triple junctions can be represented as well, with a reduced
number of functions ¢; in [27].

Island dynamics for epitaxial growth In [2,7,14] and subse-
quent papers, a multilayer level set method has been applied
for the modeling of island dynamics for epitaxial growth. A
first layer of islands is represented by the region {x : ¢ (x) >
0}, bounded by {x : ¢(x) = 0}; then a second layer of
islands, growing on the top of the previous one is represented

@ Springer
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Fig. 1 Bottom one-dimensional plot of ¢ (x), and its level-line ¢ (x) =
0 that defines a first layer of islands; fop plot of ¢ (x) at a later time,
with two highlighted nested level lines: ¢(x) = 0 and ¢(x) = 10,
representing two layers of islands, one growing on top of the other

by {x : ¢(x) > 1}, bounded by {x : ¢(x) = 1}, and so on.
We illustrate in Fig. 1 a one-dimensional multilayer implicit
representation of islands that grow on top of each other.

In summary, here we combine the techniques from [5,6,
27] for image partition, with the multilayer technique for
modeling epitaxial growth from [2,7,14], to obtain new and
improved curve evolution models for image segmentation.
Related prior work for region based segmentation using
implicit curve evolution is by Cohen et al. [9,10], Paragios-
Deriche [20-22], Samson et al. [24,25], Tsai et al. [26], and
Tai et al. [17], among other work mentioned in [27]. A pre-
liminary and shorter version of this work has appeared in [8].
The proposed piecewise-constant segmentation methods can
be naturally extended to color image segmentation (as shown
in this paper), to piecewise-polynomial or piecewise-smooth
segmentation, to texture segmentation, directions and other
vector-valued data segmentation.

2 Description of the proposed models
2.1 The case of one function

We consider in this subsection the case when the contours
in the image f can be represented by level lines of the same
implicit (Lipschitz continuous) function ¢ : 2 — R. Using
m distinct levels {1 < [ < --- < I}, the function ¢ parti-
tions the domain €2 into m + 1 disjoint open regions, making
up €2, together with their boundaries:

Ry={xeQ: —oc0o < ¢px) <},
Ri={xeQ:lj <¢Xx) <ljn}
Ry={xeQ: I, <¢p(x) <—+oo}.

l<j<m-1

We can thus extend the piecewise-constant level set seg-
mentation models from [5,6,27], to the following model,
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again as an energy minimization algorithm, in a level set
form. The energy to minimize in this case, depending on

€05 Cly -+ Cmy @, Will be

Fp(co,c1, -+, Cmy ) =/|f(x) —colPH(l — ¢ (x))dx
Q
m—1
+Z/ — ¢ (x))dx
j=1g

+/|f(X)—Cm|PH(¢>(X)—lm)dx

|f(x) —cjIPH(@p(x) —1;)H(lj+1

+MZ/|VH(¢—Z)|

Jlgz

where H is the one-dimensional Heaviside function, u > 0
is a weight parameter, and p > 1, thus using a more general
L? data fidelity term instead of the more standard quadratic
L? fidelity term. Explicit minimizers ¢; are obtained for
p = 2 (appropriate for additive Gaussian noise), and for
p = 1 [16] (appropriate for salt-and-pepper noise). The
term fQ IVH (¢ — [;)| represents the length of the bound-
ary between R; and Rjy1, or of the level curve {x € Q :
¢ (x) = [;} of the function ¢.
The segmented image will be given by

u(x) = coH(; — ¢(x))
m—1
+ Z ciH(@(x) —1))H(j41 — ¢(x))
j=1
+emH(P(x) —In).

To minimize the above energy, we approximate and substi-
tute the Heaviside function H by aregularized version H,, as
& — 0, such that H;, — H pointwise and H; € CH(R). We
denote by §, := H/,an approximation to the Dirac delta func-
tion § concentrated at the origin. Examples of such approxi-
mations, that we use in practice, are [5,6]:

1 2 Z 1 e
H.(z) = 3 (1 + ;arctan (E)) , 6.2 = p m
To keep the notations simple, we still write in what fol-
lows H and § (but these are assumed to be now H, and §,,
respectively). The Euler—Lagrange equations associated with
the corresponding minimization

Cms D), 2

inf Fyp(co, c1, ...,

€CO5CLseeesC s @

can be expressed as follows. In a dynamical scheme with
gradient descent, starting with ¢ (0, x) = ¢o(x), solve for

t>0,j=1,...,m—1,

Jo FOOVH (11— (t,x))dx

cot) = fo Hli—¢G)dx
i — . o SOH($(t,x)—1j)H(lj+1—¢(1,x))dx
(fp=2)1e®= Jo H@@.0)—[HU 21—t x)dx
(1) = do WHGEDOlndx
Cm{l) = Jo HOx)—lydx *
or
co(t) = mediang, f(x),
(if p=1) § c;(r) = mediang, f(x),

cm(t) = mediang, f(x),

and for any p > 1,

0
a—‘f =5 — IS — col?
m—1
+ D [=8@ —1pHUjp1 = D)If — ;"
j=1
+ 81 —PH@ —IPIf —cj1P]
—8(¢p — )| f — eml?
V¢
+“Z[5(¢ ”dw(lvmﬂ
d¢p .
a—lasz 0,

where n is the exterior unit normal to the boundary 02. Rear-
ranging the terms, this is equivalent with

845

=|f —colPs(lh — ) (3)
+mzl |f =il [8djr1 —d)H (P — 1))
=1
- :3(¢—l')H(lj+1—¢)] —|f —cml?8(p —ln)
\Y
B IRNES
2—¢ lag = 0.

For a general arbitrary p > 1, the constants ¢ ; do not have
explicit expressions. If (co, ..., ¢y, @) is a minimizer of the
functional, then we must have

_ o1 S —e
/'f(x) P e =™

=0, 0<j<m. (4
For p = 2 we thus obtain that ¢; is the average (mean) of
f over R;. For p = 1, as in Kimmel [16], we obtain that
¢; must satisfy ij sign(f(x) — cj)dx = 0, thus we can
conclude that c; is the median of f over R;.

We show in Fig. 2 examples of partitions of the domain €2,
using m nested level lines of a Lipschitz continuous function
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Phi(x) > LO
L1 > Phi(x)

Phi(x) > L1

Rj Phi(x) > L(j+1)

Phi(x) < LO
R1
Phi(x) < L(j+1)

RO Rm

Phi(x) > Lm
Phi(x) > Lj

Phi(x) < Lj

Phi(x) <LO RO

Phi(x) < L1
Phi(x) > LO

Phi(x) > Lj
L(j+1) > Phi(x)

Phi(x) <Lj

Phi(x) < LO

Fig. 2 Two examples of partitions of the domain €2 into m + 1 disjoint
regions, using m nested level lines {¢ (x) = L;} of the same function ¢

¢. The particular case corresponding to p =2 and m = 2 is
discussed in details in [8].

2.1.1 Theoretical results

Energy decrease We assume in the next energy decrease
result that the differentiation theorem under the integral sign
can be applied and that the functions that appear are suffi-
ciently smooth (possibly by substituting H, § by Hg, é¢, so
that the differentiations and all integrals are well defined).

Theorem 1 If (co(t), c1(t), ..., cm(2), @ (2, -)) satisfies the
system of equations (3)—(4), for a given initial data ¢y and
t > 0, thent — Fplco(t), c1(t),...,cn(t), ¢, ) is
decreasing.

Proof We formally have

d
77 Fp(co@®), c1(D)., ... em (1), (2, )

/Plf—COI” 1|§ |< o)V H () — $)dx
Q

4 / If = col?8(01 — ) (—)dx

m—1
+. /plf—c,-l” llj: ’|< ) H(p — 1))
=l Lo
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« H(l,-+1—¢>dx+/ i Pe (5 —1)) HLj11—)

— 81 — $)H(p — 1)) dx

/p|f—cm|P 1|j: |< OV H (¢ — L)
Q

+/|f_cm|p5(¢_lm)¢tdx
Q

+uy /5/(¢—lj)¢z|v¢|dx
=l o
Vove:
5(p — 1
+ [ 36— 1p gt
Q

Using (4), and noticing by the boundary condition
dd’(’ ) 9o = 0 fort > 0 that

VOV

/8/(¢—l,,~)¢t|V¢|dx+Q/a<¢—l,,~> o

Q
) [ d Ve d
/ @ =11 lv(|V¢|) x’

Q

we obtain

d
77 Fp(co@®), c1(D), ... em (1), (2, )

_ / f = colP8(ly — ¢)(—¢r)dx

+Z/|f—cj 1Py [8(p —LHUj1 — )
J= ]Q
—8(ljs1 —P)H(p —1j)]dx

+/|f—cml”8(¢—lm)¢zdx
/ (w61
_“Z 8(¢ — 1)y div dx
1 IV
=g
—/qbt |f = col?8( — ¢)
Q
+ D —cilP [ — p)H (P — 1))

j=1
— 8@ —1HUj+1 — ¢)] —1f —cml?8(p — 1)

Ve
5(d —1;)d dx.
MZ @ )W(|V¢>|) *

j=1
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Since ¢ satisfies (3), we obviously obtain that

d
77 Fp(co@®, c1(), ... em (D), §(, ) = —/(¢z)2dx <0.
Q

O

Existence of minimizers We show existence of minimizers
of the above functional (we limit ourselves to the case p = 2
for the purpose of illustration). Assume f € L*°(2), that
Q2 is open, bounded, connected and with Lipschitz boundary
0Q2. Let us denote by x; = H(¢ —1;), 1 < j < m, where
now x; have to be characteristic functions of sets E;, with
Eji1 C Ej (this means that if x;41(x) = 1 at some point
x € Q, then x;(x) = 1 also). This will guarantee that in the
new formulation we have

m—1

L= 1)+ D X = %1 () + xm(x) = 1
j=1

for all x € €, i.e., a perfect partition.
Then the problem (2) for p = 2 can be reformulated as

inf  F(x1, x2,---» Xm) (5)

X1s X255 X

where

F(X1s X2s -+ Xm) = /(f —c100)*(1 = xdx ©6)
Q

m—1
#3 [ =it = g

j=1g

m—1
+/(f—cm(xm))zxmdx+MZ/|VXj|,
Q

=g

with

Jo FOA = xdx
Jo (I = x1dx

Jo F)xjA=xjs1)dx
Jo xj(I=xj41)dx

c1(x1) =

ci(xj» Xj+1) = . 1<j=m —1,

Jo f ) xmdx
Jo xmdx

Theorem 2 The minimization problem (5), with F defined in
(6), has a minimizer (X1, ..., Xxm) € BV ()", with x;(x) €
{0, 1} dx-a.e. for 1 < j <m, and xj(x) = xjy1(x) dx-a.e.
in Q.

m(Xm) =

Proof The energy F from (6) satisfies F > 0. Also, it is
easy to find characteristic functions x; = XE;» 1<j<m,
with E; 1 C E;, E; with finite perimeter in €2 or finite total
variation in €2, such that F(x1, x2,..., xm) < 00. These

two conditions on F will guarantee that the infimum is finite
and therefore there is a minimizing sequence x }‘, such that

inf  F(xi,...

k
Xm)
X1seees Xm PAme

L xm) = lim F(xk, x%, ..
k— 00

satisfying xf € BV(RQ), xf(x) € {0, 1} dx-a.ein £, Xf(x) >

X;‘H(x) dx-a.e. in Q.

Taking such a minimizing sequence (x{‘, ey X,],Z) of F,
as k — oo, among characteristic functions of sets of finite
perimeter in €2 (i.e., with boundary of finite length), and since
Q is bounded, we obtain that ||X§||BV(Q) = Jo |vx§| +
||X§||L1(Q) < M < oo for any k > 1. Therefore, based on
the lower semi-continuity of the total variation [13], we can
extract a subsequence, still denoted by ( X{‘, e, X,’f,), such
that each Xik converges to a function x; € BV (2) strongly
in L'(), and such that [, |Vy;| < liminfy_ o [o VX[
Moreover, the functions x;, j = 1, ..., m have to be equal
to O or 1 almost everywhere (due to the strong convergence in
L', thus pointwise convergence dx.-a.e. and that x}‘ e {0, 1}
dx.-a.e.), therefore these must be characteristic functions of
sets of finite perimeter in 2. We also must have in the limit,
Xxj(x) = xj+1(x), dx.-a.e. in Q.

On the other hand, it is easy to verify that

lim ¢ (x}) = c1(x1).
k— 00
: ko k .
Am e GG xjeD) = ¢ (s xj+0s T=j=m—1,
lim CW(X;]7(1) = cm(Xx1)-
k— 00
Then, we deduce that

F(xt, ... xm) < limian(X{‘,...,X,ﬁ),
k—o00

therefore existence of minimizers among characteristic func-
tions xi, ..., xm Of sets of finite perimeter in 2 and with

Xj = Xj+1- O

Convergence to the length term Generalizing a result of
Samson et al. [24,25], we can show that our approximat-

ing functional L (¢) = [ IVH:(9)ldx = [ 8:(¢)|Vpldx
converges to the length |I'| of the zero-level line I' = {x €
Q : ¢(x) = 0}, under the assumption that ¢ : Q@ — R is
Lipschitz. The same result holds for the case of any /-level
curve of ¢, and not only for the 0-level curve.

Theorem 3 Let us define
Ls(¢>=/|VH8<¢>|dx=/85(¢>)|V¢|dx.
Q

Q

Then we have

lim L. (¢) = ds =1I'|,
e—0

{9p=0}
where I' = {¢ = 0}.
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Proof Using Co-area formula [13], we have:

Le(¢) = /

/ 5. (¢ ())ds | dp

By setting h(p) = f¢:p ds, we obtain

1
Le(g) = / 5e(P)h(p)dp = / ;Szj—pzh(p)dp.
R R

By the change of variable 6 = f, we obtain

2
P Le@ =0 | ey e 0%
R
) 1
= lim [ — h(0¢e)do

e—0 7T1—|—92

R
- h(O)/ LD e
- w1462

R

1
= h(O); arctan 6|7

— h(0) = / ds = T,
»=0

which concludes the proof. O

In general, this convergence result is valid for any approx-
imations Hg, §., under the assumptions

lin}) H.(x) = H(x) in R\ {0},

e—>

8: = H., H, € C'(R), [T 81 (x)dx = 1.
2.2 The case of two functions

As in [27], we can extend the multilayer model from the
previous section to the case of more than one-level set func-
tion. This may be needed for instance for images with triple
junctions and with more complex structure. Let ¢1, ¢, be
two-level set functions, with distinct levels {l; < --- < [,}
and {k; < --- < k;}, respectively, and m, n > 1 (to simplify
the notations, we introduce the conventions o = kg = —o0
andl,,+1 = kp41 = 00).Fori =0,...,mandj =0, ...,n,
we let

Rij={xeQ: i <¢1(x) <liqz1, kj <o(x) <kji1},

and let ¢; ; be the unknown constant such that ' ~ ¢; ; in the
region R; ;. The corresponding energy to be minimized for
multilayer image segmentation, with respect to the unknowns

@ Springer

¢ = (¢i,j)o<i<m, 0<j<n>and ® = (¢1, ¢7), can be expressed
as

Fp(e, @) = ZZ/ | £ () = cij|IPH (@1 (x) — 1)
i=0 j:OQ
x H(lit1 — ¢1(0)) H(¢o(x) — kj)
x H(kji1 — ¢a(x))dx

+u Z/ IVH (¢1 — 1)ldx

i=lg

+ Z/ IVH (¢ —kj)ldx | |

i=lg
which is equivalent with

m—1n—1

Fple,®) = > Z/ |f () = ei jIPH@1(x) = 1)

i=1 j=14
X H(liy1 — ¢1(x))H (¢p2(x) — kj)
X H(kjy1 — ¢2(x))dx

m—1

+ 3 [ 1) =l H@i e 1)
i=1 Q
X Hllis1 — o100V H(ky — go(0))dx

m—1

+ 3 [ 1) = cunl Hi ) = 1)
i=1 %
X Hllis1 — 100) H(a(x) — ky)dx

n—1
+Z/|f<x> — coj|P H(¢a(x) — kj)

j=1g
X H(kji1 — ¢2(x))H(ly — ¢1(x))dx

n—1
+Z/|f(X)—Cm,j|pH(¢2(X)—kj)

j=1g

X H(kjy1 — ¢2(0) H (1 (x) — L)dx

+/ | f(x) —cool”H(li — ¢1(x))
Q

x H (k1 — ¢2(x))dx
+/ | f(x) = conl? H(l1 — ¢1(x))
Q

X H(p2(x) — kn)dx
+/ |f(x) = cmol” H(1(x) — L)
Q

x H (ki — ¢2(x))dx
+/ |f(x) = cmnl” H(p1(x) = L)
Q

x H(¢o(x) — ky)dx
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+u [Z/IVH(qﬁl —1;)ldx

i=lg

+ Z/ IVH (¢ —kj)ldx:| :

j=1g

The segmented image will be given by

m—1n—1
= Z ZciajH(fbl —IH(iy1 — ¢1)
i=1 j=1
X H(gy —kj)H(kj+1— ¢2)
m—1

+ D cioH @ — ) HUiv1 — g H ki — ¢2)
i=1
m—1

+ D cinH (gt — D H(ip1 — d1)H (o — ky)
i=1
n—1

+ZCO,jH(¢2 —kjp)H(kjp1 — ¢2)H(ly — ¢1)
j=1
n—1

+ D jH($2 — k) H(Kjr1 — $2) H (1 — L)
j=1

+cooH (I — ¢1)H (k1 — ¢2)

+conH( — 1) H (g2 — ky)

+emoH (@1 — Im) H (ki — ¢2)

+Cm,nH(¢l — ) H (P2 — ky).

The associated Euler—Lagrange equations are, in a time-
dependent gradient descent approach, with given initial guess
$1(0,x) = d1,0(x), $2(0,x) = ¢20(x): if p =2, for 1 <
i<m-—1,1<j<n—1,the constants ¢; ; are explicitely
given by averages (means) of f over each R; ;,

cij (1)
_ Jo FH(p1 —)Hix1 — ) H(d2 — kj)H (kjr1 — ¢2)dx
Jo H(@1 — 1) HUiz1 — ¢p1)H (2 — kj)H(kjp1 — dp2)dx
Jo FH@1 — 1) H(ix1 — ¢1)H (ki — ¢)dx

GO0 = G — InH i — o0 H K1 — g
cin(t) = Jo FH(P1 —1)Hliv1 — 1) H (2 — kn)dx,
' Jo H(@1r — 1)) Hix1 — ) H (¢ — kp)dx
o, (1) = Jo FH(¢p2 —kj)H (kjr1 — ¢2)H () — ¢1)dx’
’ Jo H(po —kj)H(kjy1 — dp2)H (1 — p1)dx
e (1) = Jo FH(p2 —kj)H(kjy1 — ¢2)H (P — lm)dx,
' Jo H(p2 —kj)H (kjr1 — ¢p2)H(p1 — Ly)dx
coot) = Jo FH( —¢1)H (ki — ¢2)dx’
’ Jo H1 — ¢1)H (ki — ¢2)dx
. _Jo FHU — ¢1)H (¢2 — ky)dx
0.n(t) =

Jo HUy — ¢1) H (¢ — ky)dx

Jo fH(P1 — ) H (ky — ¢2)dx

Jo H(d1 — L) H (ki — ¢o)dx
Jo FH(@1 — Ln)H(¢2 — ky)dx

Jo H(b1 — ln)H(d2 — kyp)dx

Cm,0(1) =

Cm,n(t) =

For p = 1, the constants ¢; ; are again the medians of f
over the regions R; ;, respectively:

¢i,j = mediang, ; f(x),

forO0<i<m,0<j<n.

For any p > 1, the unknown functions ¢ and ¢, are solu-
tions of the following system of partial differential equations,
obtained using gradient descent with time parameterization:
given ¢10(x) = ¢1(0,x), ¢20(x) = ¢2(0,x), fort > 0
solve for ¢

% = gglf —cijl?
x [=8(1 — I HUix1 — 91 H (2 — kj)H (kj+1 — ¢2)
+ 8Uig1 — pOH (@1 — L) H($2 — kj) H (kjy1 — ¢2)]
+E |f —ciol? [8(o1 — I HUix1 — ¢ H (ki — ¢2)
+ :s=(lli+1 — ¢ H(p1 — ) H (ki — )]
m_1

+ Z |f = cinl? [=8(d1 — DH(lis1 — $1) H (2 — kn)

+ ;z(lli+l — ¢ H (@1 — 1) H (2 — k)]

+HZ_3 |f —co, I8y — ¢ H (P2 — kj)H (kjs1 — $2)
.

=D 1f = cm 1781 — ln)H (¢o — kj) H (kj 41 — ¢2)

=1
+1f = co0l?8U1 — ¢ H (ki — ¢2)
+1f —conl?8y — 1) H (2 — kn)
—|f = cmol?8(d1 — L) H (k1 — ¢2)
—|f = cmnl?8(p1 — L) H(¢2 — kn)

m - ) v¢1
+u; [5(451 — I;)div (|V¢1I)] ,

091
— | = 0,
on laq

and for ¢,

m—1n—1

a
% => D el

i—1 j=1
x [=8(¢2 —kj)H(kjt1 — ¢p2)H(p1 — i) H(lis1 — $1)
+ 8(kjr1 — ¢2)H(do — kj)H (1 — [i) Hlig1 — ¢1)]
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ROn Phi2(x)>Kn

Rmn

Rin
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Phil(x)<L(i+

Phil(x)<L1
Phi2(x)>K1
Phi2(x)<K2

Phil(x)<L1

Fig. 3 Partitioning of the domain 2 into disjoint regions using level
lines {/y, ..., [} and {ky, ..., k,} of two functions ¢ and ¢, respec-
tively

n—1

+Z|f—CO,j|p [—8(p2—k;)H (kjr1—¢2) H(l1 — 1)
=1

+ 8(kjy1 — ¢2)H(po — kj)H(l1 — ¢1)]

n—1

+Z|f_cm,j|p [—8(p2—kj)H (kj1—p2) H (1~ 1)
j=1

+ 8(kjs1 — ¢2)H (o — kj)H (1 — )]

m—1

+ D 1f = ciolP8tk — ¢ H (@1 — 1) H (i1 — ¢1)
i=1
m—1

= D Nf = cinl"8(¢a — kn) H (1 — L) H (lig1 — 1)

i=1
+1f —co0l’8(ky — ) H (1 — ¢1)
—|f —conl’8(p2 — kn)H(ly — ¢1)
+1f = cmol?8(ky — ¢2) H(p1 — L)
—|f = cmnl’8(p2 — ky) H($1 — L)

; (Y9
(¢ —kj)d ,
MJ;[ on =t ()|

loy)
— lae =0.
on

We show in Fig. 3 a generic example of partition of the
domain €2, using level lines corresponding to two continuous
functions ¢1, ¢;. The details of the model in the case p = 2,
m = n =2 are given in [8].

The corresponding theoretical results for this case can be
obtained in the same way as in the previous section. Note

@ Springer

that, as in the multi-phase models from [27,28], when two-
level set functions are used to represent the contours, as in
this subsection, it is possible that two-level lines of different
functions ¢; and ¢ may partially overlap, and therefore by
the above formulation the length of the common contour will
be counted more than once and will have a different weight.
This is different from the Mumford and Shah energy [18].
This is not a problem in practice, as seen in the numerical
approximations. Moreover, this can be simply avoided, as
explained in [28].

3 Experimental results and comparisons

We show in this section experimental results applied to syn-
thetic and real images, in the case of quadratic data fidelity
terms (p = 2). In each figure, we show the evolution over
time of the segmented image u of averages (left column), and
the evolving set of curves superposed over the initial image
f (right column). We also give the main parameters used in
the calculations and the CPU times, together with the evo-
lution of the energy versus iterations. We have used here a
finite differences semi-implicit numerical discretization, and
the details are given in the Appendix.

In Figs. 4 and 5, we illustrate how the multilayer model
works on simple synthetic images without noise, using one-
level set function ¢ and m = 3 levels. These results also
illustrate the change of topology.

In Figs. 6 and 7, we illustrate how the multilayer model
works on real noisy images of poor resolution, represent-
ing blood cells. Here, the model with m = 2 level lines of
the same function ¢ has been applied, producing very sat-
isfactory results. Note in both figures how the second-level
appears during iterations, and also the automatic detection of
interior contours.

We note that in all these cases, in the piecewise-constant
segmentation models from [24,25,27], it would have been
needed more than one function ¢ for the segmentation, there-
fore more computational storage would be required. In prac-
tice, we do not impose that ¢ is Lipschitz continuous. The
parameter levels /1, /2, ... are here kept constant and fixed
for almost all our different experimental calculations. These
can also be specified by the user. We have not implemented
an automatic procedure of selection of these parameter lev-
els. Sometimes, these could be estimated if a statistical prior
exists about the contours or level lines of the data. We note
that the algorithm is not sensitive with respect to the change
of these parameter levels /;. As in the model from [27], only
an upper bound of the phases is needed. For instance we can
segment an image into two regions, using the model with
one-level set function and two levels (therefore with three
regions in theory, but only two regions will appear in prac-
tice). Note that in all cases, the energy reaches a minimum
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Fig. 4 Segmentation of a synthetic image of several objects with a
nested structure, using one-level set function ¢ and three levels. Para-

meters: [| = 0, lp = 25,13 = 35, At = 0.1, & = 0.0000511 x 2552,
200 iterations, CPU time 4.015s
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Fig. 5 Segmentation of a synthetic image of several objects with a
nested structure, using one-level set function ¢ and three levels. Para-

meters: [} = 0, [, = 25,13 = 35, At = 0.1, u = 0.0101 x 2552, 100
iterations, CPU time 1.586 s
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» '\\ Fig. 7 Segmentation of a real blood cells image, using one-level set
e ] function ¢ and two levels. Parameters: [} = 0, [ = 25, At = 0.5,
n = 0.01, v = 0.005 (different length term weights), 500 iterations,
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Fig. 6 Segmentation of a real blood cells image, using one-level set .
function ¢ and two levels. Parameters: [ = 0.y = 20, At = 0.5, (local or global) very fast, only after a small number of iter-

u = 0.01, v = 0.004 (different length term weights), 500 iterations, ations. The main varying parameter in this set of results is
CPU time 68.78 s the coefficient of the length term, which has a scaling role.
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Note that in Fig. 4, during the evolution, two distinct level
lines of the same function ¢ can become very close in posi-
tion, almost like for a triple junction, but without overlap.

The calculations have been performed on an IBM laptop
computer, in C++, with single processor of 1,600 MHz speed.

We show next numerical results on images with junctions,
using our proposed new model with two functions ¢1, ¢, and
each with two levels {0, [} (with details of the model in this
case given in [8]).

We present in Fig. 8 a numerical result of segmentation
and partition of a noisy synthetic image, composed of five
regions of distinct intensities. All regions and corresponding
intensities are correctly detected and represented. The model
uses nine phases in theory, but at steady state only five appear.
We also present in Fig. 9 a comparison with the multi-phase
model introduced in [27] (using three level set functions).
Note that the new multilayer model reaches faster the steady
state, only after 40 iterations. By the previous model [27],
the energy has not yet reached a steady state after 300 itera-
tions. The CPU time comparison shows that the new model
produces faster results. There is no difference in the quality
of the segmentation (the RMSE’s are practically the same)
between the two models.

In Fig. 10 we present numerical results obtained for seg-
mentation and partition of another real blood cells image,
using two level set functions ¢1, ¢, each with two levels
{0,1}.

3.1 Color image segmentation

For color RGB images f = (f1, f2, f3), using for example
two-level set functions ¢1, ¢o, each with two levels {{; =
k1 = 0, l» = k» = I}, the energy is modified in the following
straightforward way (see also [4]), for p > 1:

inf Fp(cl» c27 cqu))
c1.¢2,¢3,P

3
1
=32 / [1£: () = ci001” H (=1 () H (=2 (x))
i=1 Q

+1£i(x) = ci.10l? H(p1(x)) H( — ¢1(x)) H(—¢2(x))
+1fi(x) = ci2ol? H($1(x) — ) H(—=¢2(x))

+1fi(x) = ci,o1|” H(=¢1(x)) H(p2(x)) H(I — ¢2(x))
+1fi(x) —cin|PH(@1(x)H(I — ¢1(x))

X H(p2(x))H (I — ¢2(x))

+1fi(x) = cin|PH(p1(x) — DH(p2(x)) H( — ¢a(x))
+1fi(x) = ci.o2l” H(=1(x)) H (¢2(x) — 1)

+1fi(x) = ci,12|P H(p1(x)) H( — ¢1(x)) H(pa(x) — 1)

A0 — o PHG () — DH(a(x) — D] dx
tu /|VH<¢1)|+/|VH(¢1 Y
Q Q

+/|VH<¢2>|+/|VH<¢2—Z>| ,
Q Q

where

C = (Ci,()()a €i, 105 €i,205 €i,01, Ci 115 Ci,21, Ci,02, Ci,12, Ci,22)

is the unknown vector of averages for the channel i, and
® = (¢1, ¢2) is a vector-valued unknown function of two
components. The associated Euler—Lagrange equations can
be written in a similar way, embedding the minimization in
a dynamical scheme, and starting with ¢1(0, x) = ¢ o(x),
$2(0, x) = ¢2.0(x). We have that for p = 2, the unknown
constants ¢; x; are given by the averages of the data f; on
their corresponding regions R; 4, | <i <3,0 <k,l <2,
as follows:

Jo fiH(=¢1)H (—¢2)dx

cioo(t) = fg oD H(—ddx
Jo fiH@DHI — ¢1)H(—¢2)dx
cio(t) = ,
Jo H@DHI — ¢1)H(—¢2)dx
ety = Jofi @ — DH(—¢dx
w2000 = Ty — DH(—go)dx
oty = Ja iHCEVH@)HA = $2)dx
"o Jo H(=¢p)H(p2)H(l — ¢o)dx
cin(t) = Jo fiH@DH(p2)H (I — ¢1)H (I — ¢2)dx
wit Jo H @D H (@) H( — g0 H( — ¢o)dx
Jo fiH(@$1 —DH($2)H( — ¢o)dx
ci21(t) = ’
Jo H(¢1 —DH(¢p2)H(l — ¢o)dx
oty = J2 SIHCOVH @ — Ddx
WO = () H (s — Ddx
Jo fiH@)HI — ¢1)H (o — Ddx
ci2(t) = ’
Jo H@DHI — 1) H (o — Ddx
ity = Ja Fil @1 ~DH@ — hax

Jo H@1 —DH(¢2 — Ddx

while for p = 1 these are the medians of f; over the same
corresponding regions R; ;.
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Fig. 8 Segmentation of a noisy synthetic image with triple junctions,
using two functions ¢, ¢, and two levels. Parameters: /1 = 0, [ = 25,
0.023 x 2552, 200 iterations, CPU time 13.985 s,

At = 04, n =
RMSE = 52.3226
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two functions ¢, ¢, and two levels. Parameters: [y = 0, [, = 25,
At = 0.4, u = 0.05 x 2552, 100 iterations, CPU time 10.814 s

For any p > 1, the unknown functions ¢; and ¢, are
solutions of the following equations:

100, x) = ¢1,0(x), ¢2(0,x) = ¢20(x),

) I <
% = 8:(¢1) {§Z[|f —ci,00/” H(=¢2)

i=1

—1f —ci1wl’ H(l — ¢1)H(—¢2)

+1f —ciolPH(¢2)H( — ¢2)

—If —cinlPHI — 1) H(p2)H( — ¢2)
+1f —cio2lH(g2 — 1)

| ) - . Vo1
— If =€l HA = ) H($2 — D] + pdiv (IV¢1|) }

3

1
+38:(p1 = 1) [§ >[I = cinol? H@)H(—¢2)

i=1

—1f = ci2l’ H(=¢2)

+If —cnlPH@)H @) HI — ¢2)
—|f —ci2lPH(g2)H(I — ¢2)

+1f —cin2lP H(¢)H (2 — 1)

| B . Vi
— |f —cinl|PH(gs — D] + pdiv (|V¢1I) ] ,

2 _ 5.4 [1 1 — vl (=0
at 3 = '

—|f —ciol"H(=p)H(I — ¢2)

+1f —ciwl’H@)HI — ¢1)

—|f —cnlPH@DHI — 1) H( — $2)
+1f —cipol? H(pr — 1)

| - B . Vi
— If — el Hg — DH( — ¢2)] + “d‘v(|V¢z|)]

3

1
+8:(p2 =D 13 2 If —ciolPH(=¢1) H(¢2)
3

i=1

—|f —cio2l"H(=¢1)

+If —cinlPH@)H( — ¢1)H(¢2)
—1f —cinl"H(¢)HI — ¢1)

+1f —cialPH(¢1 — DH(¢2)

. B (V2
= |f —cinlPH(p l)]+ud1V(|V¢2|) ]
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In Fig. 11 we show a numerical result, taken from [8], of a
noisy synthetic color image consisting of 9 regions of distinct
intensities. This can be seen as an extension of the work [4].

4 The choice of curve regularization

In the previous sections, the regularization on the level lines
{¢(x) = [;} was imposed by penalizing the length of con-
tours, in the spirit of the Mumford and Shah functional [18]
(in fact, this corresponds to the counting measure in one
dimension, the length measure in two dimensions, and the
surface area measure in three dimensions). Thus, for the case
of one function ¢ with m levels, the geometric regularization
was of the form:

e Length regularization:

R(¢) = Z/ IVH (¢ — 1i)|dx,

i=1g

that gives the following term in the Euler-Lagrange

equation:
0¢ = (fidelity terms) + ié(d) [;)div Ve
ar — < TIvel)

We discuss and propose here other regularizations, that
act on all level lines {¢ (x) = [;}, as follows:
e Total variation regularization as in image restoration [23]

R@) = / Vldx,

Q

that gives the following term in the Euler-Lagrange
equation:

0 \Y%
a—f = (fidelity terms) + u div (|V_z|) ,

or smoothing only in the tangent direction of each level
line.

e Mean curvature regularization [19], directly in the PDE
form,

o v (Y2
= (fidelity terms) + | Ve |div (|V¢|) .
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Fig. 11 Segmentation of noisy synthetic color image with junctions,
using two functions ¢1, ¢2 and two levels. Parameters: /; = 0, [ = 25,
At = 0.01, u = 0.335 x 2552, 160 iterations, CPU time 10.975 s. Note
that the image contains nine different regions, all correctly detected and
segmented in an efficient approach
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e H! regularization

R($) = u/ IVo|dx,

Q

that gives the following term in the Euler-Lagrange

equation:
¢ .
i (fidelity terms) + 2 Ag,

in other words pure isotropic smoothing at every point x.

e Sup-norm of the gradient regularization or W™ reg-
ularization (also called AMLE, “absolutely minimizing
Lipschitz extensions”):

R(®) = nllIVolllLe .

that gives the following term in the Euler—Lagrange
equation:

a
B_(f = (fidelity terms) + uAxo@,

where Agop = D%&(%, %) is the normalized infin-
ity Laplacian. We refer to [1,3,15] for the derivation of
this differential equation and applications (note that the
functional is no longer of integral form, so the Euler—
Lagrange equation cannot be directly computed). This
smoothing of ¢, only in the normal direction of level lines
of ¢, is the strongest one among those mentioned above.

We illustrate in Figs. 12, 13, 14, 15, and 16 the effect of
using these regularizations for the function ¢, in the model
with one-level set function and m = 3 levels, all applied to
the segmentation of a synthetic noisy image with concentric
geometric objects (we do not show the evolution over itera-
tions, we only show the steady states). In all cases, we show
the final levels /1, /2, I3 of ¢ over the original image f, the
piecewise-constant segmented image u of averages, a con-
tour plot of ¢ (every ten levels), and the surface graph of the
function ¢. We see that in the case of length regularization
or TV regularization, the level set function, as expected, is
not continuous and its level lines tend to overlap; while with
the smoother regularizations H' or W', the function ¢ as
expected remains continuous, and the contour plot shows,
especially in the case of the W!*° regularization, that the
level lines are more equally spread, as for a signed-distance
function. However, there is no need of re-initialization to the
distance function. Higher-order regularizations could have
been used, coming from a bending energy term.

" ‘f |:r'\‘.b.. \%\'\
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Fig. 12 Results using length regularization
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Fig. 15 Results using H' regularization

Fig. 16 Results using sup-norm of the gradient regularization
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Appendix

Description of the numerical algorithm We give here the
details of our numerical algorithm in two dimensions, in the
case of one function ¢ with two levels {/{ = 0,/, = > 0}
and p = 2. Let h be the space step, At be the time step, and
& = h. Let (x;, y;) be the discrete points, for 1 <i, j < M,
and f;; ~ f(xi,yj), ¢irfj ~ ¢(nAt, x;,y;), withn > 0.
Recall the usual finite differences formulas

AL i j = dit1,j — bij,

A @i = ¢ij — i1,
y

AL @ij = dijr1 — Bijs

A i =i j—dij-1.

Set n = 0, and start with q)? j given (defining the initial
set of curves). Then, for each n > 0 until steady state:

1) compute averages ¢ ~ ci1(nAt), ¢5 ~ c2(n/At), and
o3 ~ c3(nit).
2) compute ¢!

i derived from the finite differences
scheme:

+1 +1
‘z’z"l,j B tnj = 5.(8" ) 3 A ¢:"1+1,j _4’,"1,;
At LT 2\ T Ve |

n _ ¢n+1
+ AY i,j+1 i,j
-\ v

+1fij =il = Ifij — SPHU ~ ¢,-”,,v)}

or,  — ot

n _ ¢n+1
+ A iJj+1 i
-\ v

— 1 fij = AP+ 1f) — chzHEwﬁﬂ} ,
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n—en )2 nen )2
where [V} | = (’“*Jh "J) +( L "J) .Let

1
Ci= 2 2’
R, TR,
() (et
1
C = > =
N, TR i W,
T (e
1
€= 2 2’
PP TR,
\/( ;l J + J 7 J
1
Cy =

2 2’
noo g o —pt
i+1,j—1 i,j—1 i, i,j—1

\/( T ) +( T )

Letm) = 25 (8e(@] ) +8:(8]' ;—1), C = 14+m1(C1+
C> 4 C3 4 C4). The main update equation for ¢p becomes

‘f’?jl = % [¢7,,/ +mi(Cigiy ; + C29fy
+C3¢; ;11 + Cad}ljy)
+ A () ) (—(fij — (L= He(g)', — 1)
+ (i = DD+ D), — D(—(fij —D?
+ (i = D HG])).

and repeat, until steady state is reached.
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