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tion. In particular, this model can be applied to the widely
studied problem of dendritic crystal growth.A simple level set method for solving Stefan problems is pre-

sented. This method can be applied to problems involving dendritic The process of crystal growth begins when one places a
solidification. Our method consists of an implicit finite difference small seed of solid material into a surrounding bath of
scheme for solving the heat equation and a level set approach undercooled liquid. Heat is released at the solid/liquid
for capturing the front between solid and liquid phases of a pure

interface into the liquid region. Undercooling drives thesubstance. Our method is accurate with respect to some exact solu-
growth of the solid and triggers the instability mechanism,tions of the Stefan problem. Results indicate that this method can

handle topology changes and complicated interfacial shapes and thereby causing the solid phase of the material to grow
that it can numerically simulate many of the physical features of into the liquid phase in a fingerlike or dendritic fashion.
dendritic solidification. Q 1997 Academic Press The resulting interfacial shapes can be complex and thus,

difficult to simulate numerically. However, accurate nu-
merical algorithms are needed because they may be used1. INTRODUCTION
to further our understanding of the role certain mecha-
nisms play in governing crystal growth. Currently, the ef-In this paper, a numerical method is presented for solv-
fect parameters such as anisotropy and surface tensioning Stefan problems and for simulating the behavior that
have upon the shape of the crystal is of great interest toarises from the unstable solidification of pure substances.
those involved in dendritic growth theory because theseThis method accurately computes the boundary between
parameters are believed to determine the unique dendriticthe solid and liquid phases of a material as it undergoes
shape of the crystal. Hence these schemes could be of greatthe process of solidification, as well as the temperature of
value to scientists involved in such disciplines as chemistry,the material as it evolves over time.
geology, physics and especially materials science, whereStefan problems typically involve the evolution of
controlling solidification is a fundamental goal (see [29]).smooth boundaries or interfaces between different phases

Before describing some of the numerical approachesof a pure substance. For example, a Stefan model can be
for modeling dendritic solidification, we briefly review theused to model the melting of ice in water. Problems such
physics of the problem. As described in [12], planar solidi-as these, as well as problems involving the stable solidifica-
fication fronts are morphologically unstable. This instabil-tion of a substance, are known as classical Stefan problems.
ity was first analyzed by Mullins and Sekerka [16]. In [6],In one dimension, Stefan problems have been studied in
Ivantsov found steady state solutions to the free boundarydepth, and there are many excellent numerical algorithms
problem when the temperature at the interface is equal tofor solving them. (See, for example, [2, 22].) However, the
a constant, i.e. when capillary and interfacial kinetic effectsdrawback for many of these methods is the difficulty one
are disregarded. As outlined in [12], for any undercoolingencounters when trying to extend these methods to
,1, there exists a whole family of solutions for a paroboloi-higher dimensions.
dal interface. From Ivantsov’s solutions, we get a relation-Oftentimes, the goal of studying and developing algo-
ship between the given undercooling and the Peclet num-rithms for solving Stefan problems is to adapt and apply
ber, which is proportional to the product of the velocity,these methods to the problem of modeling unstable or
V, and the radius, R, of the dendritic tip.dendritic solidification. The supercooled Stefan problem,

Ivantsov’s relation, VR 5 const, only provides a relationcoupled with an anisotropic curvature and velocity depen-
between V and R for a given undercooling. Consequently,dent boundary condition, is a model for unstable solidifica-
much analytical work has been done in an attempt to un-
derstand how a unique dendritic operating state is selected* Research supported by ARPA/ONR-N00014-92-J-1890, NSF

DMS94-04942, and ARO DAAH04-95-1-0155. for a fixed undercooling. Two major theories have
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SOLVING STEFAN PROBLEMS 9

emerged: marginal stability theory and microscopic solv- dendritic solidification, such as discontinuous material
properties. However, special care had to be taken (as isability theory. As described in [13], the marginal stability

theory of Langer and Muller-Krumbhaar hypothesizes that common for front-tracking methods) when topological
changes such as merging occurred at the front. Anotherthe dendritic tip radius is the marginally stable wavelength

from the Mullins–Sekerka analysis. From this, the theory front-tracking method was introduced by Roosen and Tay-
lor [21]. They assumed that the shape of the crystal was apredicts a unique operating state based upon a selection

parameter. polygon and thus were able to avoid directly computing
curvature at the front. Unlike traditional front-trackingMore recently, microscopic solvability theory has been

developed based upon solutions to the Nash–Glicksman methods, their method was able to detect and deal with
topological changes. However, their method did sufferintegral equation. This theory states that there is no steady-

state solution when the interfacial temperature is depen- from a grid induced anisotropic effect. In [1], Almgren
also used a method that explicitly tracks the interface,dent upon isotropic surface tension. A stable stationary

solution does exist, however, when surface tension is con- along with a new variational algorithm for computing den-
dritic solidification. His formulation was based on relatingsidered anisotropic. This theory leads to a solvability condi-

tion which in turn predicts a unique value for the tip radius. the Gibbs–Thomson relation to a local equilibrium condi-
tion in which an energy functional, dependent upon bulkAt present, it is unclear which theory is more accurate in

predicting the unique dendritic operating state. We refer and surface energies, is minimized. With this method. Alm-
gren performed many quantitative experiments comparingthe interested reader to [12, 19] for a more thorough review

of the underlying physics of modeling dendritic solidifi- the numerical results with what is predicted from dendritic
growth theory. When comparing the radii and velocitiescation.

What is clear from dendrite growth theory is that surface of dendritic tips, his results were close to the Ivantsov solu-
tions.tension and anisotropy play an important role in determin-

ing the evolution of solidification fronts. Thus, any useful Phase-field methods have become increasingly popular
over the past few years. These methods are based on phase-numerical method for modeling unstable solidification

must be able to simulate anisotropic surface tension as field models, which differ from the classical model of a
sharp interface. In a phase-field model, the boundary iswell as other relevant physical parameters. Furthermore,

it is advantageous for a numerical method to be able to ‘‘spread out’’ and a phase-field variable f is introduced
such that away from the boundary, f 5 0 or 1, and atsimulate the intricate interfacial geometry that arises from

crystal growth. Lastly, with the advent of supercomputers, points on the interface, f [ (0, 1). The equations of motion
are recast in terms of f and the location of the front isthere is considerable motivation to develop feasible numer-

ical algorithms which translate easily to three dimensions. stored implicitly in f. By using a phase-field approach,
interfacial geometric quantities such as curvature and theDifferent numerical approaches for simulating crystal

growth are often based on different formulations of the outward normal vector do not have to be computed since
they are already included in the model. Phase-field meth-problem. For example, boundary integral methods are

based upon numerically solving an integral equation on ods present an advantage over front-tracking methods be-
cause complex interfacial shapes pose no problem sincethe moving boundary, i.e. the front. One drawback to

boundary integral methods is that the necessary parametri- the front is not being explicitly tracked.
There have been many papers published about phase-zation of the boundary makes it hard to extend such meth-

ods to higher dimensions. In one dimension, however, field models and related phase-field methods (see [3, 4,
8–10, 20, 28]). Recently, in [28], Wang and Sekerka usedboundary integral methods work well and in [2] Brattkus

and Meiron have obtained accurate results. Another ap- a thermodynamically consistent phase-field model to con-
struct numerical algorithms, which they used to study theproach has been to use finite element methods [17, 23].

Although these adaptive algorithms tend to be rather com- morphologies of dendritic tips. Similarly in [9], Karma and
Rappel presented a phase-field method which yielded nu-plicated and computationally expensive, the three-dimen-

sional simulations in [23] are impressive and prove that merical results in close agreement with steady-state solu-
tions. Their method is based on an analysis which expandsfinite element methods are competitive with other numeri-

cal approaches. the range of applicability of the phase-field method to
include smaller kinetic effects and smaller ratios of capil-Employing front-tracking methods has always been a

common way of solving moving boundary problems. In lary length to interface thickness. Based on this analysis,
they have been able to apply a phase-field method to simu-[7], Juric and Tryggvason presented a numerical method

which incorporated ideas from the immersed boundary late three-dimensional dendritic growth ([8]).
There is an inherent disadvantage to using phase-fieldmethod for transferring information from the moving

boundary to the fixed temperature grid. Their method was methods. Roughly speaking, the evolution equation for f
takes the form of a reaction–diffusion equation, i.e., ft 5successful in modeling many of the physical features of
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« Df 2 (1/«)F(f), where « is a parameter that depends the algorithm and in Section 4, we discuss the details of
its numerical implementation. Some of the results of usingupon the interface thickness. In [15], Merriman, Bence,

and Osher proved that to numerically resolve such an this method are shown in Section 5 and in Section 6 we
draw conclusions.equation, the mesh size Dx is restricted by the relation

(Dx/«) ! 1. So although in theory, solutions to phase-
field model equations converge to the solutions of sharp 2. EQUATIONS OF MOTION
interface model equations as « R 0, numerically speaking,
phase-field methods are held back by their inability to As detailed in [14], the Stefan problem consists of finding
resolve the interface properly. For example, many features the temperature and the boundary between different
of the three-dimensional dendritic simulations in [10] phases of a pure material. These two variables evolve by
(which were based on a phase-field model) have since been the diffusion of heat from external and internal heat
shown to be mesh dependent. sources. We are mainly concerned with the two-phase one-

Solidification problems are essentially problems involv- front Stefan problem for which there exist classical and
ing moving boundaries and as such, they are well suited generalized solutions.
for numerical simulation by the level set method. Level set As mentioned before, the modified Stefan problem with
methods are ideal for moving boundary problems because supercooled liquids, is an unstable problem that can be
instead of tracking the boundary or front using a Lagran- used to model the spontaneous pattern formation that
gian approach; one can instead capture the front on a fixed arises in dendritic solidification. As described in [11], ‘‘this
grid (Eulerian approach). In [18], the level set method instability occurs because diffusion kinetics favors config-
was first introduced. Since then, it has been applied to urations in which the growing solid has as large a surface
numerous problems (e.g., see [5, 15, 24, 27]). The main area as possible.’’ Even with smooth initial interfacial
idea behind the level set method is that the front is always shapes, the evolving front will cease to be smooth and can
represented by the zero level set of a smooth, continuous become quite complicated. Work done by Mullins and
function. Hence, the front can be graphed simply by plot- Sekerka on the stability analysis of this problem proved
ting a specific contour level. One of the main advantages that a small perturbation to a flat interface will grow unsta-
the level set method affords over front-tracking methods bly in the case of supercooled temperatures.
and boundary integral methods is that the front is never We consider the two-phase Stefan problem. In the case
explicitly tracked and, hence, complicated interfacial of modeling dendritic solidification, we include effects of
shapes can be represented easily, including interfacial to- undercooling, crystalline anisotropy, surface tension, and
pology changes arising from the merging of two crystalline molecular kinetics. We consider a square domain or box,
fronts. Also, the level set method can be easily extended D, of a pure material where at every timestep and at every
to higher dimensions. gridpoint the material is either in liquid or solid phase. Let

In [24], the authors first presented a somewhat compli- T(x, t) represent the temperature of the material. The
cated and computationally expensive level set method for region where the material is solid is denoted as V, and the
solving problems involving crystal growth and dendritic region where the material is liquid as Vc. The interface
solidification. Their method combined a level set approach between the solid and liquid phases, i.e., the boundary of V,
with a boundary integral formulation of the problem. Our will be denoted by G. Let V represent the normal velocity at
method differs from [24] in that we take a simpler ap- the front G.
proach. We avoid using a boundary integral method to The governing equations for our formulation of the
compute the normal velocity at the interface. Also, follow- problem are
ing the results and work done in [27], we reinitialize the
level set function to be signed distance function at every

cs
­T
­t

5 = · (ks=T), x [ V, (1)timestep. Our method improves upon the method in [24]
because it retains all the advantages of using a level set
approach without any of the complications and restrictions

cl
­T
­t

5 = · (kl=T), x [ Vc, (2)
that arise from employing a boundary integral method.
Furthermore, since our method is based upon a sharp inter-
face model, it has an advantage over phase-field methods where cs and cl denote the volumetric heat capacities and
in the sense that the grid size is not constrained by an ks and kl are the thermal diffusivities of the material in V
arbitrary parameter representing the thickness of the front. and Vc, respectively. On G, the jump condition

In this paper, we present the details and results from
this new numerical method. In Section 2, we outline the
formulation of the Stefan problem and how we modify it LV 5 2 Fkl

­Tliq

­n
2 ks

­Tsol

­n G (3)
to model unstable solidification. In Section 3, we present
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holds, where L denotes the latent heat of solidification. [24] because it does not keep track of the front’s history
of motion.The jump is taken from liquid to solid, and the vector n

is the outward normal vector at the front. In the liquid
3.1. Level Set Function and Related Equationsregion, ­Tliq/­n denotes the normal derivative of T and

­Tsol/­n the corresponding normal derivative of T in the We construct a level set function f, such that at any
solid region. Equation (3) is commonly referred to as the time t, the front is equal to the zero level set of f, i.e.,
Stefan condition.

For a classical Stefan problem, one sets T(x, t) 5 Tm on G(t) 5 hx [ D : f(x, t) 5 0j. (9)
G, where Tm is a constant equal to the melting temperature
of the material. But for application to problems involving Initially, f is set equal to the signed distance function from
crystal growth and dendritic solidification, one would like the front such that f is positive in Vc (liquid phase) and
to take into account the effects of surface tension, crystal- negative in V (solid phase),
line anisotropy, and molecular kinetics. Thus, the second
boundary condition we consider is the classical Gibbs–
Thomson relation; for x [ G,

f(x, 0) 5 5
1d, x [ Vc,

0, x [ G,

2d, x [ V,T(x, t) 5 2«Ck 2 «VV, (4)

where k denotes the curvature at the front, «C is the surface where d is the distance from the front.
tension coefficient, and «V is the molecular kinetic coeffi- The idea behind the level set method is to move f with
cient. In the isotropic case, both «C and «V are taken to be the correct speed, V, at the front and then to update the
constant. For the anisotropic case, following the notation temperature, T(x, t), with the new position of the front
found in [24], one can take stored implicitly in f. With this approach, we avoid any

difficulties that come from explicitly tracking the front and
«C(n) 5 «C(1 2 A cos(kAu 1 uo)) (5) we increase our ability to deal with complex interfacial

shapes.«V(n) 5 «V(1 2 A cos(kAu 1 uo)), (6)
Given the normal speed, V, at which the front moves, we

want to construct a speed function, F, which is a continuous
where the constants A, kA , uo , «C , and «V depend upon extension of V off G onto all of D. The equation of motion
the material. Here, u is the angle between the x-axis and governing f is then given by
n, while uo controls the angle of the symmetry axis upon
which the crystal grows.

ft 1 Fu=fu 5 0. (10)
In all our experiments, we set the thermal diffusivities

and heat capacities equal to one in both liquid and solid
This equation will move f with the correct speed at theregions. Also, unless otherwise noted, we set L 5 1. Thus,
front so that G will always be equal to the zero level setthe somewhat simplified problem becomes that of finding
of f.

T(x, t) and G(t) such that equations
We also use f to define the outward normal vector n by

n 5 =f/u=fu (11)­T
­t

5 DT, x [ D\G, (7)

and the curvature term k by
V 5 2 F­T

­nG, x [ G(t), (8)

k 5 = · n 5 = ·S =f

u=fuD. (12)
are satisfied, along with Eqs. (4), (5), and (6).

From Eqs. (8) and (11), we can rewrite the expression
3. DESCRIPTION OF ALGORITHM for V as

Our method for solving the Stefan problem uses a level
set approach to effectively capture the front at each new V 5 2[=T ] · n 5 2[=T ] ·S =f

u=fuD, (13)
timestep, and an implicit finite difference scheme to solve
the heat equation everywhere away from the front. This
new method improves upon an earlier level set approach where the jump in [=T ] is taken from liquid to solid re-
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gions. Since F is equal to V along the interface, we can in f. One way to avoid these numerical difficulties is to
reinitialize f to be an exact distance function from thecombine Eqs. (10) and (13) to get the following equation,

which of course is only valid on the zero level set of f: evolving front G at each timestep.
The process we use to reinitialize f is due to work and

results found in [27]. In that paper, an algorithm was pre-ft 5 [=T ] · =f, x [ G. (14)
sented for reinitializing the level set function f to be an
exact signed distance function from the front. The basicNext, we need to extend the velocity function V in a reason-
idea behind this method is that given a function f0 that isable way to a small two-dimensional region which in-
not a distance function, one can evolve it into a functioncludes G.
f that is an exact signed distance function from the zero
level set of f0 . This is accomplished by iterating the3.2. Extension of Normal Velocity off the Interface
equation

In our algorithm, we compute approximations to [=T ]
at every gridpoint. The problem that arises in computing

ft 5 S(f0)(1 2 u=fu) (19)
[=T ] is that this quantity is O(1) only at points close to
or on the front. Let F be defined as an extension of V off

to steady state, where f(x, 0) 5 f0(x) and S again denotesof G; such an extension should not be discontinuous near
the sign function. As in [27], we smooth the sign functionthe interface. By constructing F to be a continuous exten-
S by the equationsion of V, we then avoid unnecessary numerical difficulties

when we solve Eqs. (10) and (14).
The approximation to [=T ] is based upon approxima- S«(f0) 5

f0

Ïf2
0 1 «2

(20)
tions to the derivatives of T in four coordinate directions
(the standard x, y Cartesian coordinates and the 458-
rotated coordinates z and h). We use these four coordinate to avoid any numerical difficulties.
directions to cut down on grid orientation effects, as will By using this approach, we avoid having to explicitly
be explained in more detail in Section 5. find the contour f0 5 0 and then resetting values of f0 at

Each approximation to the jump in a derivative of T gridpoints neighboring the front. From Eq. (19), it is clear
can be continuously extended away from the front by the that the original position of the front will not change, but
advection equations at points away from G, f will be evolved into a distance

function.
u1

t 1 S(ffx)u1
x 5 0 (15)

3.4. Updating the Temperature
u2

t 1 S(ffy)u2
y 5 0 (16)

After moving f by the correct velocity at the front and
u3

t 1 S(ffh)u3
h 5 0 (17) then reinitializing f to be an exact signed distance function

from G, we update the temperature T of the material.u4
t 1 S(ffz)u4

z 5 0, (18)
Updating T essentially boils down to solving the heat equa-
tion over the whole domain D, with special care taken at

where u1 5 [­T/­x], u2 5 [­T/­y], u3 5 [­T/­h] and u4 5 points near the interface between the two phases.
[­T/­z] on G. S is equal to the sign function. Equations At points away from the front, we solve the heat equa-
(15) through (18) have the effect of continuously extending tion using a standard five-point stencil. When we are at
u1, u2, u3, u4 away from the front by advecting these fields points near the front, we use one-sided differencing and
in the proper upwind direction. Note that these equations values of f to incorporate the front’s position into the
will not degrade the value of V on the front because f is stencil. We thereby effectively capture the front using the
zero on G, hence, so are S(ffx), S(ffy), S(ffh), and level set function f.
S(ffz). For points near G, we employ an interpolation scheme

to approximate the spatial double derivatives of T. Since
3.3. Reinitialization of f

after reinitialization, f is an exact distance function, we
can use f to detect when we are close to or on the frontFrom Eqs. (11), (12), and (13), we see that computation

of the normal vector, normal velocity, and curvature at G. Moreover, we can use f to interpolate the distances
between a point on the front, xf [ G, and gridpoints neigh-the front are all dependent upon the level set function f.

However, by Eq. (10), the level set function will cease to boring it in either the vertical or horizontal direction. (Note
we are only considering those points on the front whichbe an exact distance function even after one timestep. In

order to keep the approximations to n, V, and k accurate, intersect some gridline x 5 p Dx and/or y 5 q Dy.) If a
gridpoint intersects the front, we set the value of T at thatwe want to avoid having steep or flat gradients develop
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gridpoint equal to the value given by the Gibbs–Thomson Step 5. Away from G, solve for T by discretizing the
heat equation using an implicit centered finite differencerelation, Eq. (4).

For example, suppose xf intersects some horizontal grid- scheme. For gridpoints less than or equal to a stepsize
away from the front, use f to interpolate polynomialsline, y 5 J Dy, for J equal to an integer. Then, using divided

differences tables, one can interpolate two polynomials, approximating T. These polynomials are constructed so
that their values on the front satisfy the Gibbs–ThomsonPL and PR, which are constructed from xf and gridpoints

to the left and right of the front, respectively. PL and PR relation, Eq. (4). Differentiate these polynomials to obtain
values of DT which can then be used to update T at thosecan then be differentiated twice to obtain the coefficients

used to approximate Txx at the two gridpoints bordering gridpoints neighboring G.
xf in the horizontal direction. Step 6. Repeat Steps 2 through 5 to get the next updated

One advantage to this method is that higher order accu- values of f and T.
racy can be achieved simply by using a higher order in-
terpolant to T for points near the front. Higher order

4. DISCRETIZATIONinterpolants are constructed by adding more gridpoints to
the divided differences tables. In the special case where
two fronts are merging and there are not enough gridpoints In all of our computations, we take the domain D to be
in between to achieve standard second-order accuracy, we a square box. Both Dx and Dy are equal to a uniform mesh
use a first-order interpolating polynomial. In general, this size h. For a given square side of length SQL, we set h 5
interpolation scheme makes the extension of this method SQL/M, where (M 1 1)2 is the total number of gridpoints
to higher dimensions straightforward and easy. on the grid. The timestep taken in the main loop of the

algorithm is Dt, i.e., the timestep taken when we discretize3.4.1. Curvature. In two dimensions, the Gibbs–
Eqs. (7) and (10). We take the following definitionsThomson relation (Eq. (4)) governs the value of T on the
throughout the rest of the section:front. Hence, the curvature, k, at the front needs to be

computed. From Eq. (12), k in nonconservative form can
be rewritten as xi, j 5 ((i 2 1)h, ( j 2 1)h)

fi, j 5 f(xi, j)
k 5

(f2
yfxx 2 2fxfyfxy 1 f2

xfyy)
(f2

x 1 f2
y)3/2 . (21)

Ti, j 5 T(xi, j)

We compute the value of k at gridpoints neighboring the i, j 5 1, ..., M 1 1.
front, then we interpolate its value on the front whenever
it is needed. Equation (21) is numerically solved using

In this section, for convenience we assume that the squarecentered finite difference approximations to the partial
domain D is of the form [0, SQL] 3 [0, SQL], but inderivatives of f.
our experimental results (presented in Section 5), we
often take D to be of the form [2SQL/2, SQL/2] 33.5. Outline of the Method
[2SQL/2, SQL/2].

The steps of our algorithm can now be outlined as
follows:

4.1. Computation of Normal Velocity Components
Step 1. Initialize T(x, t) and f(x, t) so that f is the signed

We first compute approximations to the jump in =Tnormal distance from the interface between the two phases
across the interface. Breaking this down even further, weof the material.
compute jumps in the derivatives of T in the aforemen-

Step 2. Compute the velocity field F(x, t), which is a
tioned four coordinate directions. (See Fig. 1.) Thus, we

continuous extension of the normal velocity V at the front
compute approximations to [­T/­x], [­T/­y], [­T/­h] and

onto the whole domain D. F is computed from approxima-
[­T/­z].

tions to [­T/­n].
Using the same notation as in Section 3.2, we compute

Step 3. Update f by the equation, ft 1 Fu=fu 5 0, for four fields: u1
i, j , u2

i, j , u3
i, j , and u4

i, j , which are defined on all
one timestep. The front’s new position is now equal to the of D. At gridpoints on or near G, u1

i, j , u2
i, j , u3

i, j , and u4
i, j

zero level set of f. Denote this updated f as f0 . (Note approximate the jumps in ­T/­x, ­T/­y, ­T/­h, and ­T/­z
that f0 is not a distance function.) (respectively) across the interface. Away from G, u1–u4 are

generally close to zero.Step 4. Reinitialize f to be an exact signed distance
function by solving the equation, ft 5 S(f0)(1 2 u=fu) to The discretizations we use to compute u1

i, j , u2
i, j , u3

i, j , and
u4

i, j aresteady state. Here f(x, 0) 5 f0(x).
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FIG. 2. Profile of u1: The front is between xi and xi11 . When extending
u1, characteristics for u1 should point in opposite directions.

We discretize Eqs. (15)–(18) with a first-order upwind
scheme. The choice of the timestep Dtextend is completely

FIG. 1. Four coordinate directions used to compute the normal arbitrary and not necessarily related to the main timestep
velocity.

Dt. The only constraint we need to impose on the timestep
Dtextend is that it satisfy the CFL condition: Dtextend/h # 1.
Thus we discretize Eq. (15) by the scheme

u1
i, j 5 2Si, j(fx)((Ti12, j 2 Ti11, j) 2 (Ti21, j 2 Ti22, j))/h

if Si, j(ffx) . 0, then u1(new)
i, j 5 u1(old)

i, j 2 cfl*(u1(old)
i, j 2u2

i, j 5 2Si, j(fy)((Ti, j12 2 Ti, j11) 2 (Ti, j21 2 Ti, j22))/h
u1(old)

i21, j )
u3

i, j 5 2Si, j(fh)((Ti12, j12 2 Ti11, j11) if Si, j(ffx) , 0, then u1(new)
i, j 5 u1(old)

i, j 1 cfl*(u1(old)
i11, j 2

u1(old)
i, j )2 (Ti21, j21 2 Ti22, j22))/(Ï2h)

with cfl set to 0.5. Equations (16)–(18) are discretizedu4
i, j 5 2Si, j(fz)((Ti12, j22 2 Ti11, j21)

similarly.
2 (Ti21, j11 2 Ti22, j12))/(Ï2h).

4.3. Discretization in TimeThe sign functions of the different derivatives of f in the
above discrete equations are necessary in order to ensure When we solve for Eqs. (10) and (19), we need to com-
that the jumps are consistently computed from solid to pute approximations to the spatial derivatives of f. For
liquid phases. increased accuracy we use second-order ENO approxima-

tions. To avoid any instabilities arising from the temporal
4.2. Discretization of the Velocity Extension

As mentioned in Section 3.2, sharp jumps may develop
in the computation of u1

i, j , u2
i, j , u3

i, j , and u4
i, j . These disconti-

nuities may affect the accuracy of the calculation of the
velocity field F and the updating of f from Eq. (10). Ac-
cordingly, we would like to extend u1

i, j , u2
i, j , u3

i, j , and u4
i, j

from G to all of D.
We continuously extend V off the front by solving an

appropriate advection equation for each component. For
gridpoints on opposite sides of G, we want the characteris-
tics for the advection equation to point in opposite direc-
tions, as shown in Fig. 2. Equations (15)–(18) were derived
based on the fact that S(ffx), S(ffy), S(ffh), and
S(ffz) will properly control the direction in which we
want the characteristics for each advection equation to FIG. 3. Values of k and V at points on the front (A and B) are

interpolated from neighboring gridpoints.point.
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TABLE I

Exact Solution: Moving Flat Interface: Convergence with
Refining Both Grid Size and Timestep

Gridpts Stepsize Timestep iT 2 T niL1
Conv. rate

80 0.025 1.00 3 1024 5.3657 3 1027

160 0.0125 2.50 3 1025 1.3455 3 1027 1.9956
320 0.00625 6.25 3 1026 3.3664 3 1028 1.9988

Note. N 5 100, 400, 1600 timesteps; final time 5 0.01, V 5 1.

discretization of Eqs. (10) and (19), we follow work done
in [25] and use a simple TVD–Ruge–Kutta type time dis-
cretization. We use a semidiscrete, method of lines ap-
proach to solving the PDEs and we use a third-order
Runge–Kutta scheme in time.

Thus we consider the equation

ft 5 L(f), (22)

FIG. 4. Mullins–Sekerka instability: small perturbation to a flat inter-
where L is the spatial operator of either Eq. (10) or (19). face will induce unstable dendritic growth.
The time discretization of Eq. (22) is

f(1) 5 f(0) 1 Dt L̂(f(0))
Fi, j 5 u1

i, j S fx

u=fuDi, j
1 u2

i, j S fy

u=fuDi, jf(2) 5 Dff(0) 1 Aff(1) 1 Af Dt L̂(f(1))

f(3) 5 Adf(0) 1 Sdf(2) 1 Sd Dt L̂(f(2)),
Fi, j 5 u3

i, j S fh

u=fuDi, j
1 u4

i, j S fz

u=fuDi, j
.

where L̂ is the discrete approximation to L and should
not be confused with the constant latent heat of solidifica-

So we use an average of the two expressions for Fi, j totion. Note that the timestep used in the above equations
obtaindepends upon the particular partial differential equation

we are solving. When we update f by Eq. (10), we use the
main timestep Dt. When we reinitialize f by Eq. (19), we Fi, j 5

1
2 Su1

i, j S fx

u=fuDi, j
1 u2

i, j S fy

u=fuDi, j
(23)

use a different timestep denoted by Dtreinit .

4.4. Discretization of Updating of the Level Set Function
1 u3

i, j S fh

u=fuDi, j
1 u4

i, j S fz

u=fuDi, j
D.

To discretize Eq. (10), we need to compute Fi, j , which
in turn is computed from uk

i, j , k 5 1 ? ? ? 4. The following
Hence, Fi, ju=fu 5 As(u1

i, j(fx)i, j 1 u2
i, j(fy)i, j 1 u3

i, j(fh)i, j 1discrete equations are equally valid:
u4

i, j(fz)i, j).
The spatial first derivatives of f in the above relation

are approximated by a second-order ENO scheme. FromTABLE II
Eq. (10), we end up solving for the right-hand side of

Exact Solution: Moving Flat Interface: Convergence Results the equation
from Refining Grid Size with Fixed Timestep

ft 5 2As(u1
i, j(fx)i, j 1 u2

i, j(fy)i, j 1 u3
i, j(fh)i, j 1 u4

i, j(fz)i, j).Gridpts Stepsize iT 2 T niL1
Conv. rate

80 0.025 1.3281 3 1023 Here f is updated using a third-order Runge–Kutta
160 0.0125 2.6265 3 1024 2.3382 scheme in time and a second-order ENO scheme in space.
320 0.00625 3.6651 3 1025 2.8412

For «V ? 0, we compute Fi, j explicitly since values of Fi, j640 0.003125 3.7552 3 1026 3.2887
will be used later on to approximate the normal velocity

Note. N 5 400 timesteps, V 5 1, dt 5 0.00001. at points on the front. The discrete approximation to u=fu
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TABLE III As shown in [27], one way of discretizing Eq. (24) is by
Godunov’s methodExact Solution: Growing Frank Spheres: Convergence Results

from Refining Both Grid and Timestep
fN11

i, j 5 fN
i, j 2 DtS«(f0

i, j)G(fN
i, j), (25)

Gridsize Stepsize iT 2 T niL1
Timesteps Conv. rate

where80 3 80 0.2 4.3709 3 1022 3000
160 3 160 0.1 1.4331 3 1022 12000 1.608
320 3 320 0.05 3.7938 3 1023 48000 1.917 a ; D2

x fi, j 5 (fi, j 2 fi21, j)/h

b ; D1
x fi, j 5 (fi11, j 2 fi, j)/hNote. Final time 5 1.12.

c ; D2
y fi, j 5 (fi, j 2 fi, j21)/h

d ; D1
y fi, j 5 (fi, j11 2 fi, j)/his computed using central difference approximations to fx ,

fy , fh , and fz . Hence,
S«(f)i, j 5

fi, j

Ïf2
i, j 1 «2

u=fui, j 5 5Ï(fx)2
i, j 1 (fy)2

i, j or

Ï(fh)2
i, j 1 (fz)2

i, j,
and

G(f)i, j

depending upon where the approximation to u=fu is being
used. Finally, Fi, j can be computed using Eq. (23) and the
above discrete approximations to u=fu. 5 5

Ïmax((a1)2, (b2)2) 1 max((c1)2, (d2)2) 2 1, if f0
i, j . 0,

Ïmax((a2)2, (b1)2) 1 max((c2)2, (d1)2) 2 1, if f0
i, j , 0,

0, otherwise.4.5. Discretization of the Reinitialization of f

In two dimensions, Eq. (19) can be rewritten as Equation (25) is a first-order, consistent, monotone
scheme for solving Eq. (24). To achieve higher order accu-
racy in space, we replace the first-order backward andft 5 S(f0)(1 2 Ïf2

x 1 f2
y). (24)

FIG. 5. For increasing grid sizes, the radii of the computed solution converges to that of the exact solution in the case of growing Frank spheres.
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FIG. 6. The computed solution (solid line) converges to the exact solution (dotted line) for the case of an oscillating interface. Grid sizes used
are: 40 3 40 (top left), 80 3 80 (top right), 160 3 160 (bottom left), and 320 3 320 (bottom right).

forward difference approximations to fx and fy by second- We iterate our scheme for Eq. (24) by a fixed number
order ENO approximations. As detailed in Section 4.3, we of iterations. Typically only three or four iterations are
use a method of lines approach to discretize Eq. (24) and necessary in order for f to be sufficiently evolved close
our timestepping scheme is a third-order Runge–Kutta enough to a distance function.
scheme. Thus, our way of discretizing Eq. (24) is TVD

4.6. Discretization of Temperature Update
(total variation-diminishing).

In our computation of S« , we take « 5 2h for smoothing As mentioned in Section 3.4, T is updated by solving
the heat equation for T in all of D. We use an implicitpurposes, which are needed when fi, j is close to zero. Since

the timestep, Dtreinit , taken is again not related to the main scheme to solve the heat equation in order to avoid any
harsh timestep constraints.timestep Dt, we take Dtreinit 5 h/5.
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With the coefficients of the interpolated polynomials
computed beforehand, we can differentiate each polyno-
mial twice to obtain approximations to the double deriva-
tives with respect to x. Thus at xi, j , Txx P PL

xx and at xi11, j ,
Txx P PR

xx . Note that since we are using an implicit scheme,
PL and PR are always constructed in the abstract sense
from values of T n11

i, j .
Taking into account both the gridpoints away from and

near G, the general form of the discrete equation we solve is

Ci, jT n11
i, j 5 T n

i, j 1 fi, j(T n11
i11, j , T n11

i21, j , T n11
i, j11 , T n11

i, j21 , ...). (29)

We have found that a simple way of solving this nonlinear
discrete equation is by the Gauss–Seidel method. Our stop-
ping criterion is

OM11

i, j51
(T N11

i, j 2 T N
i, j) , tol, where tol 5 1.0 3 10212 .

4.7. Discretization of Curvature
FIG. 7. Cusp formation.

From the Gibbs–Thomson relation, Eq. (4), we see that
T(xf ) is dependent upon k(xf ). Thus, when we construct
the interpolating polynomials as outlined in Section 4.6,Away from G, T is updated by the standard 5-point
approximations to k(xf ) are needed.stencil scheme:

The expression we use for curvature, k, is given by Eq.
(21). In this formula for k, fx , fy , fxx , and fyy are allT n11

i, j 2 T n
i, j

Dt
5

T n11
i11, j 2 2T n11

i, j 1 T n11
i21, j

h2

(26)
discretized by central differencing. The mixed derivative
term fxy is discretized by

1
T n11

i, j11 2 2T n11
i, j 1 T n11

i, j21

h2 .
(fxy)i, j 5

fi11, j11 2 fi11, j21 2 fi21, j11 1 fi21, j21

4h2 . (30)

With fn11
i, j , we check at every gridpoint to see whether

We do not calculate the curvature at every gridpointor not a certain gridpoint borders the front in either the
since it is only necessary to compute k at gridpoints border-horizontal or vertical direction. For those points which do
ing the front. If «C ? 0, then the value of k on G is interpo-neighbor G, we compute the distance (horizontal and/or
lated from the value of k at neighboring gridpoints. Simi-vertical) from those gridpoints to points on the front. Since
larly, for «V ? 0, the discrete velocity field Fi, j is used tofn11

i, j is equal to a distance function from the front, these
approximate V(xf ) for use in the interpolating polynomials.distances are quite easy to compute.

In Fig. 3, the front intersects the grid at two places,For example, suppose xf [ G and xf 5 (xf , ( j 2 1)h) for
denoted by A and B. Let us denote the curvature andsome integer j. Let us consider the two gridpoints xi, j and
normal velocity at these two points by kA , kB , VA , and VB .xi11, j which border xf , i.e. where xi # xf # xi11 . The distances
We approximate kA and kB from values of f at neighboring
gridpoints, and VA and VB are approximated from values

xi11 2 xf 5 S fi11, j

fi11, j 2 fi, j
D h 5 r1h (27) of F at neighboring gridpoints. From Eq. (4), T(A) 5

2«CkA 2 «VVA and T(B) 5 2«CkB 2 «VVB . At the grid-
point (xi , yj11), the value of T(A) is used in the approxima-

xf 2 xi 5 2 S fi, j

fi11, j 2 fi, j
D h 5 r2h (28) tion of Tyy . At (xi21 , yj ), T(B) is used in the approximation

to Txx . Finally, at (xi , yj), Txx is approximated using T(B)
and Tyy is approximated using T(A).are used when we construct interpolating polynomials PL

and PR. (Note r1 1 r2 5 1.) PL and PR are both functions
4.8. Discretization of Anisotropic Terms

of x only. We construct PL from the values of h, r2 , T(xf ),
Ti, j , Ti21, j , Ti22, j , etc. and PR from the values of h, r1 , T(xf ), In the supercooled liquid case, anisotropy affects the

shape of the growing crystal, causing it to grow along pre-Ti11, j , Ti12, j , Ti13, j , etc.
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FIG. 8. Convergence study: growth histories for 4 grid resolutions. The grid sizes used are: 100 3 100 (top left), 200 3 200 (top right), 300 3

300 (bottom left), and 400 3 400 (bottom right).

ferred axial directions. Many examples of anisotropic Thus we compute u by taking the inverse cosine of
fx/u=fu at gridpoints neighboring the front. Then we inter-growth occur in nature; hence, it is important for an algo-

rithm to be able to accurately model anisotropic growth. polate the value of the angle that a given point on the
front makes with the x-axis. The discretization of fx/u=fuIn Eqs. (5) and (6), we see that the surface tension and

molecular kinetic terms in the Gibbs–Thomson relation is computed from central difference approximations to fx

and fy .can be anisotropic. That is, rather than being constant, we
can set «C and «V to be dependent upon the normal vector n.

5. NUMERICAL RESULTSWhen we discretize Eqs. (5) and (6), we need to approxi-
mate the angle u that the normal vector n makes with the

In this section, we present the results found when wex-axis. For x1 5 (1, 0),
applied our algorithm to solving Stefan problems and to
modeling unstable crystal growth. For exact solutions tox1 · n 5 ux1u unu cos(u) 5 cos(u). (31)
the Stefan problem, we applied our method to see how

But Eq. (11) implies that accurate it was and how fast it converged to given exact
solutions. Then, we adjusted parameters in our algorithm

x1 · n 5 fx/u=fu. (32) to mimic the conditions corresponding to dendritic solidi-
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In two dimensions, G is just a line moving with constant
speed V.

Applying our method to the solution above and measur-
ing the error between the exact and computed solutions,
we have determined that the method is second order in
space for the one-dimensional case. We measure the
error in the L1 norm. Our results are shown in Tables I
and II.

5.1.2. Mullins–Sekerka Instability. By the Mullins–
Sekerka analysis, it has been shown (see [16] for details)
that for the classical Stefan problem (T 5 Tm on G),
a perturbation to a flat interface will grow arbitrarily
large for positive V. By perturbing the interface so
that

x 5 Vt 1 «elt sin(ky) (35)

one can obtain an expression for the perturbed tempera-
ture field that is O(«) and of the form:

FIG. 9. Multiple enclosed fronts: T 5 0 on G; hence there is a numeri-
T(x, y, t) 5 To(x, y, t)

(36)
cal regularization effect from the level set method. The computation
above was performed with Dx 5 0.1, Dt 5 0.01, Ty 5 20.5 and time
levels shown are in increments of 3.

1 «elt sin(ky) H f1(k, V), x . Vt,

f2(k, V), x , Vt

(see [1, 26] for more details). For small times, our methodfication. More specifically, we tested our algorithm to see
whether or not it was able to accurately simulate the effects
of surface tension, kinetic effects, and anisotropy on a
growing crystal.

5.1. Exact Solutions

We tested our algorithm for solving Stefan problems on
some exact solutions. Our exact solutions include a moving
flat interface, a growing spherical interface and an oscillat-
ing circular front. Moreover, we tested the algorithm to
see if it could simulate Mullins–Sekerka instability and
also to see whether it could correctly evolve a front into
a cusp.

5.1.1. Moving Planar Interface. For a steadily advanc-
ing planar surface, V(t) 5 hx [ D : x , Vtj, where the
normal velocity V is constant, an exact solution to the
Stefan problem is given by

T(x, t) 5 H21 1 e2V(x2Vt) , x . Vt,

0, x # Vt.
(33)

FIG. 10. Multiple enclosed fronts: four seeds growing with «C 5 0.001The interface in Eq. (33) is parameterized by
and «V 5 0.001. The computation above was performed with Dx 5 0.01,
Dt 5 0.0005, Ty 5 21.0 and time levels shown are in increments
of 0.025.G(t) 5 hx 5 VT, y 5 sj, s [ R. (34)
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FIG. 11. Merging fronts: case of two solid spheres in supercooled liquid. Time levels shown from top left to bottom right: t 5 0.0, 0.01, 0.02,
0.03, 0.04, 0.05, 0.08, 0.1, 0.11.

converges near the interface to the solution given by the final time of 1. Level curves are shown at times 0, 0.1, ? ? ? ,
0.9, 1 with T set to 0 on the interface.perturbed temperature field.

Figure 4 is a plot generated from the Mullins–Sekerka
initial data above (Eqs. (35), (36)). Various positions of 5.1.3. Growing Frank Spheres. For the problem in two

dimensions, there is an exact solution for the classical Ste-the front in time are shown, illustrating the fact that small
perturbations to a flat interface will grow arbitrarily large. fan problem called the growing Frank spheres solution,

with formulas found in [1]. Here the solid region is a cylin-The figure was generated with no surface tension or kinetic
effects and with insulated boundary conditions. The plot der of radius R 5 St1/2 and the temperature field T(r, t) is

given bywas generated on a 50 3 50 grid with Dt 5 0.001, up to a
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FIG. 12. Merging fronts: case of four seeds with fixed boundary conditions. Time levels shown from top left to bottom right: t 5 0.0, 0.004,
0.008, 0.012, 0.016, 0.02, 0.024, 0.028, 0.032.

F(s) 5 E1(Afs2). (38)

T(r, t) 5 T(s) 5 5Ty S1 2
F(s)
F(S)D, s . S,

0, s , S,

(37)

Some numerical results using the Frank spheres solu-
tions are shown in Table III. For our comparison with the
Frank spheres solutions, we took Ty 5 20.5, the spatialwhere r 5 Ïx2 1 y2, s 5 r/t1/2, and Ty is a given undercool-

ing. The function F(s) is a similarity solution of the heat domain to be 16 3 16, and homogeneous Neumann (insu-
lated) boundary conditions. In Fig. 5, we plot the radiusequation:
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FIG. 14. Effect of anisotropic surface tension; the initial seed is an
irregular pentagon. On G, T 5 2«C(n)k and «2

C 5 0.001, «V 5 0.

error between the exact and computed solutions for the
Frank spheres data for increasingly finer grids in space.

5.1.4. Oscillating Spherical Fronts. Another exact solu-
tion to the Stefan problem was constructed in a paper by
Nochetto, Verdi, and Paolini [17]. In their paper, they
constructed an exact solution to the Stefan problem that
consists of an interface that is an oscillating sphere. Figure
6 is a plot of the exact (dotted) and computed (solid)
interface curves for various times and grid sizes. We plot
the exact versus the computed solutions for Dt 5 0.002,
and for 40 3 40, 80 3 80, 160 3 160, and 320 3 320 grid
sizes. The time intervals shown are at 0.05, 0.1, 0.2, 0.3,
0.4, and 0.5.

5.1.5. Cusp Formation. Also, in [17], it was shown that
certain prescribed initial data for the Stefan problem
should lead to the formation of a cusp. For the adaptive
finite element method presented in [17], this initial data is
a good test to see how the numerical mushy zone around

TABLE IV

Convergence of Anisotropic Tip Speeds

Gridsize «C 5 0.0005 «C 5 0.001 «C 5 0.002

75 3 75 37.17 38.94 35.62
FIG. 13. Effect of varying isotropic surface tension; the initial seed 100 3 100 37.17 42.48 38.05

is an irregular pentagon. For all 3 plots, «V 5 0. For the top plot, 125 3 125 50.44 49.56 43.36
T 5 0 on G. For the middle and bottom plots, T 5 2«Ck on G with 150 3 150 53.10 51.33 44.25
«C 5 0.0005 (middle) and «C 5 0.001 (bottom).
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TABLE V
y(s) 5 (R 1 P cos(8fs)) sin(2fs),

Convergence of Anisotropic Tip Radii

where R 5 0.1 and P 5 0.02.
Gridsize «C 5 0.0005 «C 5 0.001 «C 5 0.002

We take the spatial domain to be [22, 2] 3 [22, 2], and
the grid sizes to be 100 3 100, 200 3 200, 300 3 300, and75 3 75 3.197 3 1022 3.685 3 1022 3.147 3 1022

100 3 100 1.497 3 1022 2.771 3 1022 2.080 3 1022 400 3 400. For each plot in Fig. 8, we set Dt 5 0.0005,
125 3 125 2.103 3 1022 1.886 3 1022 1.503 3 1022

«C 5 0.002, «V 5 0.002, and Ty 5 20.5. Time levels shown
150 3 150 1.605 3 1022 1.446 3 1022 1.302 3 1022

are in increments of 0.04 up to a final time of 0.8. The
convergence of these plots under grid refinement compares
favorably with the results generated by the front-tracking

the cusp is resolved. In our method, cusps can be resolved method in [7].
easily by the level set function. Using the initial data in

5.2.2. Multiple Fronts and Topology Changes. Our levelsection 7.3 of [17], we did indeed find that the interface
set method easily handles complicated interfacial geome-between the two phases eventually evolved into a cusp, as
tries. Figures 9 and 10 demonstrate that the method canshown in Fig. 7. This figure was generated on a 100 3 100
numerically simulate cases when there are multiple frozengrid with h 5 0.05, Dt 5 0.002. The time levels shown are
seeds surrounded by undercooled liquid. Figure 9 is a plot0.02, 0.22, 0.42, 0.62, 0.82.
of the evolution of two initially square shaped seeds as
they grow towards one another. As mentioned above, since5.2. Experimental Results with Unstable Solidification
T is set equal to 0 on G, Fig. 9 does not really represent

We now come to some of the results obtained by simulat- the actual solution to the model equations; rather it sup-
ing the growth of a solid into an undercooled liquid. In all ports the fact that the level set method introduces a numeri-
of these experiments, we initially set T 5 Ty , 0 every- cal regularization for ill-posed problems. Figure 9 was gen-
where in D except for a small region or area, where we erated on a 300 3 300 grid with fixed outer boundary
set T 5 0. This is to simulate the conditions of supercooling, conditions, the undercooled temperature Ty set to 20.5
where a small frozen seed of material is placed in a sur- and the domain D 5 [215, 15]. Along with Dx 5 0.1, we
rounding region of undercooled liquid. Unless otherwise took Dt 5 0.01 and ran the computation up to a final time
stated, the boundary conditions taken in these experiments of 24. The time levels shown in Fig. 9 are in increments
are insulated, i.e., homogeneous Neumann boundary con- of 3. In Fig. 10, we have four identically shaped seeds
ditions. growing in close proximity to one another. In contrast to

In most of our computations, we incorporated the Fig. 9, we simulate the effects of isotropic surface tension
Gibbs–Thomson relation by setting the temperature equal and kinetic effects by taking «C 5 0.001 and «V 5 0.001.
to some combination of curvature and interfacial velocity At the boundary, we fix T 5 Ty 5 21. Figure 10 was
at each timestep. However, in a few cases (Figs. 9 and 13), generated on a 200 3 200 grid, with Dt 5 0.0005, D 5
we set T 5 0 on the front for all time. Physically, of course, [21, 1] 3 [21, 1], and L 5 1. The time levels shown are
the case when T 5 0 on G should be impossible to resolve t 5 0, 0.025, 0.05, 0.075, ..., 0.175. No anisotropy was added
numerically because the problem itself is an ill-posed one. via the Gibbs–Thomson relation in either Fig. 9 or Fig.
The fact that we obtain pictures that do not ‘‘blow up’’ 10. But in Fig. 9, it is clear there is some grid-induced
illustrates an interesting feature of level set methods. Level anisotropy. In part, we attribute this to the coarse spatial
set methods have both a topological and a curvature regu- stepsize taken (Dx 5 0.1) because in Fig. 10, when a finer
larization built in to them. Thus when you apply a level set mesh size is used (Dx 5 0.01), there are no observable
method, unstable interfaces are regularized automatically. artificial anisotropic effects.
This regularization effect on ill-posed problems is discussed Another topological change the level set method handles
in more depth in [5], where the level set method is applied easily is the merging of fronts. Unlike most front tracking
to the Cauchy–Riemann equations. methods (e.g., [7]), no special conditions need to be im-

posed on our method when the boundaries between two5.2.1. Refining the Grid. For small values of «C and «V ,
solid regions grow arbitrarily close. Figures 11 and 12 arewe tested our method to see if given an initial interfacial
two cases of fronts merging. In Fig. 11, we see the evolutionshape, the evolution of the interface over time remained
of two circular seeds as they grow into one another. Thisthe same for different grid resolutions. As illustrated in
figure was plotted on a 200 3 200 grid, with D 5 [22.5,Fig. 8, for increasing grid sizes, the plots of the zero level
2.5] 3 [22.5, 2.5], «C 5 0.001, «V 5 0.001, Ty 5 21, L 5sets of f do appear to converge to a similar shape over
0.075, and Dt 5 0.0001. With the temperature at the bound-time. The initial interfacial shape is given explicitly by
ary walls fixed, we see the seeds growing toward the walls,
as well as toward one another. Eventually, two small re-x(s) 5 (R 1 P cos(8fs)) cos(2fs)
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FIG. 15. Convergence of anisotropic tip speeds with «2
C 5 0.001. Grids are: 75 3 75 (top left), 100 3 100 (top right), 125 3 125 (bottom left),

150 3 150 (bottom right); final time 5 0.05.

gions of entrapped liquid form. The nine pictures shown 5.2.3. Varying the Surface Tension Coefficient «C . The
three plots in Fig. 13 were all generated by the same initialin Fig. 11 are the evolution of the crystal at times t 5 0.0,

0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.11. Similarly, in Fig. conditions and with «V 5 0. What was varied among these
plots was the amount of imposed isotropic surface tension.12 the evolution of four six-lobed crystalline shapes is

shown as they first merge into the box walls and then into The top plot in Fig. 13 shows the evolution of the frozen
seed when T 5 0 on G. Again, as was the case in Fig. 9,one another. In Fig. 12, the times shown are t 5 0.0, 0.004,

0.008, 0.012, 0.016, 0.02, 0.024, 0.028, and 0.032. Each plot this plot is evidence that the level set method introduces
numerical regularization for the ill-posed problem, as wellin Fig. 12 was generated on a 100 3 100 grid, with D 5

[20.5, 0.5] 3 [20.5, 0.5], «C 5 0.001, «V 5 0.001, Ty 5 21, as a discernable artificial anisotropic effect. Interestingly
enough, this artificial grid induced anisotropy decreasesand L 5 0.5. We keep T fixed at Ty on the boundary walls.
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FIG. 16. Effect of varying the latent heat of solidification: L 5 1.0 (top left), 0.75 (top right), 0.5 (bottom left), and 0.25 (bottom right).

when we increase the value of the isotropic surface tension effect and causing the front to evolve by an isotropic pro-
cess that eventually leads to tip splitting. All three plotscoefficient. This can be seen in the bottom and middle

plots of Fig. 13, where T 5 2«ck on G, with «C 5 0.0005 in Fig. 13 were generated on a 300 3 300 grid with h 5
0.01, Dt 5 0.0005, and N 5 800 timesteps. The time levelsin the middle plot and «C 5 0.001 in the bottom plot.

Hence, in the lower two plots, it is more apparent how shown are in increments of 0.02. We set Ty 5 20.5 and
ran up to a final time of 0.4.perturbations in the initial interfacial shape (i.e., the five

corners of the irregular pentagon) influence the evolution
of the front to its final shape. We conclude that the imposed 5.2.4. Results with Anisotropy. Crystalline anisotropy

will cause a material to grow along preferred lines or axes.isotropic surface tension has a stabilizing effect on the
unstable problem, decreasing the grid induced anisotropy In Fig. 14, we add anisotropy to the curvature term follow-
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ing the expression used in [1]. We take the anisotropic
curvature term to be of the form

«C(n) 5 «2
C(Kd sin4(Asm(u 2 uo))). (39)

Here m is the mode number which we set equal to 4 and
uo is the phase angle which we set equal to f/4. For
«2

C . 0, we expect the crystal to grow along the four diago-
nal axes rather than retain its initial perturbed shape. In
Fig. 14, we see that the imposed fourfold anisotropy causes
the dendrite to favor growth along the diagonal directions.
From the top corner of the pentagonal seed, tip splitting
occurs early on. But, eventually, the split tip begins growing
towards the diagonal corners. Figure 14 was generated by
the same initial data and conditions used for Fig. 13 (see
Section 5.2.3 for details).

5.2.5. Convergence of Anisotropic Tip Speeds. In [6],
Ivantsov showed that for a paraboloid shaped dendrite,
there is a relationship given by VR 5 constant, between the
dendritic tip speed and radius. Ever since then, researchers
have been trying to determine the velocity of crystals using
Ivantsov’s relation coupled with predictions from either
marginal stability analysis or microscopic solvability the-
ory. From the latter, there is the postulation that the unique
dendritic operating state depends upon values of aniso-
tropic surface tension. Many numerical methods [9, 21,
28] for dendritic solidification have been used to perform
quantitative tests comparing the measured speeds and radii
of dendritic tips with predictions from dendritic growth
theory. From a numerical standpoint, it is logical to require
that as the grid size is refined, the measures of the tip
speed and radius should converge; otherwise, it may be
hard to justify using such a numerical method to perform
quantitative analyses.

With our method, we did not perform any quantitative
comparisons with dendritic growth theory. Rather, we just
checked to see whether or not the tip speeds and radii
converged as we refined the grid. In Table IV, we display
the measured tip speeds for four grid sizes and three values
of «2

C : 0.0005, 0.001, and 0.002. In Table V, we show the
corresponding values of the radii of the anisotropic tips.
In Fig. 15, we present the plots generated by the same
initial data used in Tables IV and V when the magnitude
of the surface tension coefficient is equal to 0.001 and as
the grid sizes vary from 75 3 75 to 150 3 150. Each plot
in Fig. 15 was generated with «V 5 0 and Ty 5 20.5. Time
increments are shown in multiples of 0.01 up to a final
time of 0.05. The domain taken in each plot is [20.5, 0.5].
Anisotropy is included by setting «C equal to the expression
in Eq. (39). We set u0 5 f/4 so that the tips will grow along
the diagonal axes. We measured the tip speeds by taking

FIG. 17. Grid orientation effects with isotropic surface tension. With the average of the growth of each of the four tips. We
«C 5 0.001, grid orientation effects are minimal. From top to bottom,

measured the tip radii by calculating the curvature at thethe initial data is rotated 458, 358, and 08.
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16 is a study of the effect of changing the latent heat of
solidification. As Sethian and Strain point out in [24], set-
ting L 5 0 reduces the motion of the crystal to pure geome-
try. Decreasing the latent heat of solidification has a
smoothing effect on the crystalline shape. By the results
of linear instability analysis, increasing L translates into
increasing the range of unstable wavelengths. In Fig. 16,
we see that the computational results of increasing L agree
with our theoretical expectations. The four plots in Fig. 16
were run on a 100 3 100 grid up to a final time of 0.05.
We took Dt 5 0.0005 and plotted the contour levels at time
increments of 0.005. Here the undercooled temperature Ty

was set to 20.5, «C 5 0.001, and «V 5 0.001. The domain
D 5 [20.5, 0.5] 3 [20.5, 0.5] and h 5 0.01. We only con-
sidered the isotropic case. The latent heats of solidification
in the four plots are taken to be 1.0, 0.75, 0.5, and 0.25.

5.2.7. Grid Orientation Effects. As detailed in Section
3.2, we compute the normal velocity components in four
different coordinate directions in order to reduce grid ori-
entation effects. Previously, we had only computed the
normal velocity components in the Cartesian coordinate
directions. What we found was that the same initial data
rotated at different angles did not evolve into the same
final shape rotated at the original angles. In searching for
ways to reduce these grid effects, we found that by includ-
ing the normal velocity components from the diagonalized
Cartesian coordinate system, we were able to decrease grid
effects considerably.

In Fig. 17, we took the same initial shape and rotated
it by 458 and 358. Our computations were done on a
200 3 200 grid, with h 5 0.01, Dt 5 0.0005, Ty 5 20.5,
and N 5 400 timesteps. The final time was 0.2 and in each
of the three plots shown in Fig. 17, the time levels shown
are in multiples of 0.025. We took «C 5 0.001 and «V 5 0,
and we only considered the isotropic case. As can be seen
in this figure, the final interfacial shapes correspond well
to the rotated angles of the initial data. Our results compare
favorably with those of [7].

We considered that another test of grid orientation ef-
fects was to vary the angle of anisotropy. Figure 18 shows
the effect of varying the phase angle uo on a crystal growing

FIG. 18. Grid orientation effects with anisotropy: the anisotropy is with fourfold anisotropic surface tension and anisotropic
fourfold with phase angle uo equal to 08 (top) and f/4 (bottom). kinetic effects. The initial seed is a synmmetric shape with

eight smooth bumps. In Eqs. (5) and (6), the coefficient
kA controls the number of folds in the anisotropy. Here

tip and taking its reciprocal. From Tables IV and V and
we set kA 5 4 and take uo 5 0 in the top plot and uo 5

Fig. 15, it is clear that, as the grid is refined, the measured
f/4 in the bottom plot.

tip speeds and radii converge. We observe that as «2
C in-

The number of anisotropic folds and the direction of
creases, we see a much better convergence of the tip speeds,

the preferred growth axes determines the crystalline shape.
which is to be expected since linear stability analysis proves

When uo 5 0o, dendritic growth is favored along the hori-
that surface tension will have a stabilizing effect on the

zontal and vertical axes. In the top plot of Fig. 18, we see
unstable problem.

that the horizontal and vertical tips sharpen, while the
diagonal tips flatten out. When uo 5 f/4, the exact opposite5.2.6. Varying the Latent Heat of Solidification. Figure
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