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SUMMARY

We summarize and compare four different misfit functions for
full waveform inversion (FWI): the conventional least-squares
norm, the integral wavefields misfit functional, the Normal-
ized Integration Method (NIM) and the quadratic Wasserstein
metric. The integral wavefields misfit functional and NIM are
equivalent to the norm for Soblev space, which has intrinsic
connections with the quadratic Wasserstein metric. We extract
two important features of optimal transport. The first one is
integration of data, which reduces high frequencies and glob-
ally compares observed and synthetic seismic waveforms. The
other is rescaling of the data to be nonnegative. Numerical
results illustrate that FWI with quadratic Wasserstein metric
can effectively overcome the cycle skipping problem. A math-
ematical study on the convexity of the four misfit functions
demonstrates the importance of data nonnegativity and inte-
gration in dealing with local minima in inversion.

INTRODUCTION

Full waveform inversion (FWI) is a data-driven method to ob-
tain high resolution subsurface properties by minimizing the
difference between observed and synthetic seismic waveforms
(Virieux et al., 2017). In the past three decades, the least-
squares norm (L2) has been widely used as a misfit function
(Tarantola and Valette, 1982; Lailly, 1983), which is known
to suffer from cycle skipping issues with local minimum trap-
ping and sensitivity to noise (Virieux and Operto, 2009). Other
misfit functions proposed in literature, include the L1 norm
(Brossier et al., 2010), the Huber norm (Ha et al., 2009), fil-
ter based misifit functions (Warner and Guasch, 2014; Zhu and
Fomel, 2016), seismic envelop inversion (Luo and Wu, 2015)
and some others.

A recently introduced class of misfit functions are optimal-
transport related (Engquist and Froese, 2014; Métivier et al.,
2016; Engquist et al., 2016; Métivier et al., 2016; Yang et al.,
2016). As useful tools from the theory of optimal transport, the
quadratic Wasserstein metric (W2) computes the optimal cost
of rearranging one distribution into another with a quadratic
cost function, while 1-Wasserstein metric (W1) using absolute
value cost function.

In this paper, we will also discuss about Normalized Intergra-
tion Method (NIM) which computes the least-squares differ-
ence between two normalized data sets (Liu et al., 2012; Chau-
ris et al., 2012; Donno et al., 2013). If we consider the data are
properly rescaled, the misfit of NIM is the norm of Sobolev
space H−1 in mathematics. The connection between W2 and
H−1 is not obvious from the optimal transport definition, but
is clear from the 1D closed solution formula. We shall also
see that this is valid in higher dimensions even if there is no
explicit solution formula.

The goal of this paper is to analyze important features of opti-
mal transport and to compare with methods introduced earlier.
We focus on two features in particular. One is integration of
data and the other is the need to rescale the data to be non-
negative. Integration provides a global comparison between
observed and synthetic data and also shifts the focus to lower
frequencies. Nonnegativity further reduces the risk of cycle
skipping.

THEORY

Full waveform inversion is a PDE-constrained optimization
problem, minimizing the data misfit d( f ,g) by updating the
model m, i.e. :

m� = argmin
m

d( f (xr, t;m),g(xr, t)), (1)

where g is observed data, f is simulated data, xr are receiver
locations, and m is the model parameter. We get the modeled
data f (x, t;m) by solving a wave equation with a finite differ-
ence method (FDM) in both the space and time domain (Alford
et al., 1974).

Generalized least squares functional is a weighted sum of the
squared errors and hence a generalized version of the standard
least squares misfit function. The formulation is

J1(m) =
�

r

�
|W ( f (xr, t;m))−W (g(xr, t))|2 dt, (2)

where W is an operator. In the conventioinal L2 misfit, W = I,
the identity operator.

The integral wavefields misfit functional (Huang et al., 2014) is
a generalized least squares functional applied on full-waveform
inversion (FWI) with weighting operator W (u) =

� t
0 u(x,τ)dτ .

The objective function is defined as

J2(m) =
�

r

� ����
� t

0
f (xr,τ;m)dτ −

� t

0
g(xr,τ)dτ

����
2

dt, (3)

If we define the integral wavefields U(x, t) =
� t

0 u(x,τ)dτ, then
misfit function (3) is the ordinary least squares misfit between
the observed and predicted integral wavefields

� t
0 g(xr,τ)dτ

and
� t

0 f (xr,τ;m)dτ . The integral wavefields still satisfy the
original acoustic wave equation with a different source term:
δ (�x−�xs)

� t
0 s(τ)dτ = δ (�x−�xs)H(t)∗s(t), where s is the origi-

nal source term and H(t) is the Heaviside step function (Huang
et al., 2014).

Normalized Integration Method (NIM) is another generalized
least squares functional, similar to the integral wavefields mis-
fit functional. However, compared with integral wavefields
misfit functional which directly integrates the observed and
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(c) Comparison among NIM, W2, W1 in 1D

Figure 1: The shaded areas represent the mismatch each mis-
fit function considers. (a) L2:

�
( f − g)2dt. (b) Integral

wavefields method:
�
(
�

f −
�

g)2dt. After data normaliza-
tion, (c) NIM measures

�
(F − G)2dt, while W2 considers�

(F−1 −G−1)2dt and W1 considers
�
|F−1 −G−1|dt.

synthetic data in time, NIM first preconditions the data and
then takes the integration. The objective function is:

J3(m) =
1
2

�

r

�
|Q( f (xr, t;m))−Q(g(xr, t))|p dt, (4)

where Q is transformation of the wavefield u, defined as:

Q(u)(xr, t) =

� t
0 P(u)(xr,τ)dτ

� T
0 P(u)(xr,τ)dτ

. (5)

The operator P is included to make the data nonnegative. Three
common choices are P1(u) = |u|, P2(u) = u2 and P3 = E(u),
which correspond to the absolute value, the square and the en-
velop of the signal (Liu et al., 2012).

Despite the fact that both methods are measuring the L2 misfit,
there are three different features in NIM compared with con-
ventional FWI. Data sets are normalized to be nonnegative,
mass balanced and integrated in time. The first two are exactly
the prerequisite of optimal transport based misfit functions, i.e.
the Wasserstein metrics.

Optimal transport
Optimal transport refers to the problem of seeking the mini-
mum cost required to transport mass of one distribution into
another given a cost function, e.g. |x− y|p. The mathematical
definition of the distance between the distributions f : X →R+

and g : Y → R+ can then be formulated as

W p
p ( f ,g) = inf

Tf ,g∈M

�

X

��x−Tf ,g(x)
��p f (x)dx (6)

where M is the set of all maps Tf ,g that rearrange the distribu-
tion f into g (Villani, 2003).

The optimal transport formulation requires non-negative dis-
tributions and equal total masses,

�
f (x)dx =

�
g(x)dx, which

are not natural for seismic signals. Therefore a proper data
normalization is required before inversion. Datasets f and g
can be rescaled to be nonnegative with values in range [0,1],
and to have equal mass. This step is exactly the same as the
one in Equation (5) in NIM.

We can compare the data trace by trace and use the Wasserstein
metric (Wp) in 1D to measure the misfit. The overall misfit is
then

J4(m) =

R�

r=1

W p
p ( f (xr, t;m),g(xr, t)), (7)

where R is the total number of traces. In this paper, we mainly
discuss the quadratic Wasserstein metric (W2) when p= 2 in (6)
and (7).

PROPERTIES

Next we discuss the similarities and difference among the mis-
fit functions mentioned above. We will regard f and g as the
synthetic and observed data from one single trace as an 1D
problem.

Relations among misfit functions
Conventional full-waveform inversion measures the L2 norm
difference

�
| f (t)− g(t)|2dt, indicated by the shaded part in

Figure 1a. The integral wavefields misfit functional first inte-
grates f and g in time, and then measures their L2 misfit (3).
The integral wavefields can be viewed as wavefields produced
by a low-passed seismic wavelet. The created lower frequency
components (in Figure 1b) can properly explain the improve-
ment in inversion (Huang et al., 2014).

With a proper normalization method, it is possible to scale the
data to have nonnegativity and mass balance. This step is es-
sential for both NIM and W2. Since processing data trace-by-
trace is an 1D problem, we are able to solve the optimal trans-
port problem exactly (Villani, 2003). The optimal map is the
unique monotone rearrangement of the density f into g. In or-
der to compute the quadratic Wasserstein metric, we need the
cumulative distribution functions F and G and their inverses
F−1 and G−1. The explicit formulation for the 1D Wasser-
stein metric is:

W p
p ( f ,g) =

� 1

0
|F−1(x)−G−1(x)|pdx. (8)

The interesting fact is that W2 computes the L2 misfit between
F−1 and G−1 (Figure 1c), while the objective function of NIM
measures the L2 misfit between F and G, i.e.

� T
0 |F(t)−G(t)|2dt

(Figure 1c). This is identical to the mathematical norm of
Sobolev space H−1, || f − g||2H−1 , given f and g are nonneg-
ative and sharing equal mass.

Since F and G are both monotone increasing, one can show
that there is an equivalency between NIM and W2 misfit with
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Figure 2: The misfit between f (x) and f (x− s) by six differ-
ent misfit functions. First row shows conventional L2 (left),
intergral wavefield method (middle) and NIM with p(x) = x2

(right). Second row shows the W2 misfit with different nor-
malization methods: p(x) = x2 (left), ax + b (middle) and
exp(c∗ x) (right).

the same data normalization. Another demonstration of the
similarity between NIM and optimal transport based metrics
comes when p = 1 in (4) and (8). These two misfits are the
same since

�
|F(t)−G(t)|dt =

� 1
0 |F−1(x)−G−1(x)|dx.

Mathematical connection between H−1 norm and W2 norm

Next we move into a general case that f and g are synthetic
and observed data in higher dimensions, satisfying nonneg-
ativity and conservation of mass. To compute the quadratic
Wasserstein metric, we solve the following Monge-Ampère
equation (Brenier, 1991)

det(D2u(x)) = f (x)/g(∇u(x)) (9)

If f and g are close enough and g = (1+ εh+O(ε2)) f , where
h has mean zero, we can linearize (9) and also derive an ap-
proximation of the quadratic Wasserstein metric between f and
g (Villani, 2003, p126-p127):

W 2
2 ( f ,g)≈

�

Rn
|∇φ(x)|2 f (x)dx = || f −g||2H−1(dµ), (10)

where dµ = f (x)dx. In one word, the quadratic Wasserstein
metric is a weighted H−1 norm.

Besides, the dynamical characterization of the Wasserstein met-
ric proposed by Benamou-Brenier (Benamou and Brenier, 2000)
gives insights to consider that H−1 and W2 belongs to the same
class of measures. One can refer to Dolbeault et al. (2009) and
Cardaliaguet et al. (2012) for more theoretical details, and Pa-
padakis et al. (2014) for computational schemes. Mathemati-
cally, the misfits computed by NIM and W2 are close also in
higher dimensions.

Convexity

In order to illustrate the convexity of different objective func-
tions, we borrow an example from Engquist and Froese (2014)
that compares the misfit between a Ricker wavelet f and its
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Figure 3: (a) Convexity plot of conventional L2 (b) Convexity
plot of trace-by-trace W2 with normalization p2(x) = ax+b

shift f (x − s). One can refer to the blue and red curves in
Figure 1a. Here we plot the data misfits as a function of s in
Figure 2. Conventional L2, Intergral L2 and NIM are compared
on the first row. The second row displays W2 misfits with three
different scaling functions.

The figure on the top left for the conventional L2 is the mo-
tivation of (Engquist and Froese, 2014) to bring the quadratic
Wasserstein metric into seismic inversion. Such many local
minima in the figure are not in favor of gradient-based opti-
mization. The graph on the top middle is result of integral
wavefields misfit functional. It creates lower frequency com-
ponent, which decrease the chance of cycle skipping. Although
having less local minima than conventional L2, this method is
still ill-posed in inversion. Integrating the wavefields or inte-
grating the source may help invert the low wavenumber com-
ponent of velocity, but still suffers from cycle skipping issues.

As demonstrated by Engquist et al. (2016), the squared Wasser-
stein metric has several properties that make it attractive as
a choice of misfit function. One highly desirable feature is
its convexity with respect to several parameterizations. How-
ever, the convexity highly depends on the data normalization
method to satisfy nonnegativity and mass balance. The curves
in the second row of Figure 2 are W 2

2 distance with differ-
ent scaling functions: p1(x) = x2, and p2(x) = ax + b and
p3(x) = exp(c · x). Theoretically p1 gives perfect convexity,
but having difficulty in inversion with adjoint-state method.
From Taylor expansion p3 is very close to p2 when c is small,
but easy to blow up with large c. Our current choice is to nor-
malize data with p2, but it is worth thinking a new normaliza-
tion function that is able to preserve the convexity better.

It is interesting to compare the graph for NIM (upper right)
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Figure 4: (a) True model velocity (b) Initial velocity (c) Inver-
sion result using L2 (d) Inversion result using W2

with the one of W2 (lower left) both of which are using the
same normalization function (p1) and globally convex with re-
spect to the shift s. When f (x) and f (x− s) are close (i.e. |s|
is small), W2 is a weighted H−1 as (10) states. Both curves
have good convexity as O(s2) around zero. As |s| gets larger,
W 2

2 ( f , fs) is still O(s2), while the misfit measured by NIM is
O(s). The convexity of NIM becomes a bit weaker.

Finally we present a convexity result in model domain. We
borrow the example from Métivier et al. (2016). The veloc-
ity model is assumed to vary linearly in depth as v(x,z) =
vp,0 +αz, where v0 is the starting velocity on the surface, α
is vertical gradient and z is depth. The reference for (vp,0,α)
is (2km/s, 0.7s−1), and we plot the misfit curves with α ∈
[0.4,1] and v0 ∈ [1.75, 2.25] on 41×45 grid in Figure 3. We
observe many local minima and maxima in Figure 3a. Al-

though W2 is not convex in data domain with normalization
method p2(x) = ax+b (Figure 2), the curve for W2 (Figure 3b)
is globally convex in model parameters vp,0 and α . It demon-
strates the capacity of W2 in mitigating cycle skipping issues.

NUMERICAL EXAMPLE

In this section, we use a part of the BP 2004 benchmark ve-
locity model (Billette and Brandsberg-Dahl, 2005) (Figure 4a)
and an initial model without the upper salt part (Figure 4b)
to do inversion with W2 and L2 norm respectively. A fixed-
spread surface acquisition is used, involving 11 shots located
every 1.6km on top. A Ricker wavelet centered on 5Hz is used
to generate the synthetic data with a bandpass filter only keep-
ing 3 to 9Hz components. We stopped the inversion after 300
L-BFGS iterations.

Here we precondition the data with function p2(x) = ax+ b
to satisfy the nonnegativity and mass balance in optimal trans-
port. Inversion with trace-by-trace W2 norm successfully con-
struct the shape of the salt bodies (Figure 4d), while FWI with
the conventional L2 failed to recover boundaries of the salt
bodies as shown by Figure 4c.

CONCLUSION

In this paper, we summarize and compare four misfit func-
tions: the conventional least-squares inversion (L2), the in-
tegral wavefields misfit function, the Normalized Integration
Method (NIM), and the quadratic Wasserstein metric (W2) from
optimal transport. The L2 norm is popular in general inverse
problems, but suffers from cycle skipping in seismic inversion.
The other three methods all incorporate the idea of integra-
tion the waveforms. Integration helps in enhancing the lower
frequency component, but cannot avoid local minima coming
from the oscillatory periodicity of the data. It is ideal to have
a preconditioning operator which can “break” the periodicity
and “record” the previous data information in time.

One solution is to combine the nonnegativity and integration in
time together. Both NIM and the quadratic Wasserstein met-
ric include these ideas as essential steps. A detailed discussion
illustrates that the quadratic Wasserstein metric and the H−1

norm which NIM computes belong to the same family of math-
ematical measures. Moreover, H−1 and W2 become equivalent
when the two data sets are close. The analysis among these
misfit functions of FWI brings additional insights into the im-
portance of seismic data preconditioning, which also can be
seen in examples of large scale FWI.
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Full waveform inversion with an exponentially-encoded optimal transport norm 
Lingyun Qiu *, Jaime Ramos-Martínez and Alejandro Valenciano, PGS; Yunan Yang and Björn Engquist, 
University of Texas at Austin 
 
Summary 
 
Full waveform inversion (FWI) with 𝐿𝐿2 norm objective 
function often suffers from cycle skipping that causes the 
solution to be trapped in a local minimum, usually far from 
the true model. We introduce a new norm based on the 
optimal transport theory for measuring the data mismatch 
to overcome this problem. The new solution uses an 
exponential encoding scheme and enhances the phase 
information when compared with the conventional 𝐿𝐿2norm. 
The adjoint source is calculated trace-wise based on the 1D 
Wasserstein distance. It uses an explicit solution of the 
optimal transport over the real line. It results in an efficient 
implementation with a computational complexity of the 
adjoint source proportional to the number of shots, 
receivers and the length of recording time. We demonstrate 
the effectiveness of our solution by using the Marmousi 
model. A second example, using the BP 2004 velocity 
benchmark model, illustrates the benefit of the combination 
of the new norm and Total Variation (TV) regularization.  
 
Introduction 
 
FWI is formulated as a nonlinear inverse problem matching 
modeled data to the recorded field data (Tarantola, 1984). 
Usually, a least-square objective function is used for 
measuring the data misfit. This misfit is minimized with 
respect to model parameter and the model update is 
computed using the adjoint state method. FWI can produce 
high-resolution models of the subsurface when compared to 
ray-based methods. Due to the large scale of the problem, 
local rather than global optimization methods are 
mandatory. However, FWI is often an ill posed problem 
due to the band-limited nature of the seismic data and the 
limitations of the acquisition geometries. Furthermore, the 
non-convexity resulting from the least-square objective 
function causes the local minima, i.e., cycle-skipping 
problem, especially with data lacking low frequency 
information.  
 
It is well known that the least-square formulation of FWI 
tends to produce many local minima. This is because only 
the pointwise amplitude difference is measured 
with  𝐿𝐿2norm while the phase or travel-time information 
embedded in the data is more critical for the inversion. 
There are different approaches proposed to capture the 
travel-time difference, such as dynamic time warping and 
convolution based methods. This information is used in 
order to convexify the objective function or enlarge the true 
solution valley. In this direction, we mention the works in 

(Luo and Sava, 2011), (Ma and Hale, 2013) and (Warner 
and Guasch, 2014). 
 
Recently, the Wasserstein distance has been proposed to 
replace the 𝐿𝐿2 distance for the objective function in FWI 
(Engquist and Froese, 2014). The Wasserstein distance is a 
well-defined metric from the theory of optimal transport in 
mathematics. It was first brought up by Gaspard Monge in 
1781 (Monge, 1781) and more recently by Kantorovich 
(Kantorovich, 1942) seeking the optimal cost of 
rearranging one density into the other, where the 
transportation cost per unit mass is the Euclidean distance 
or Manhattan distance.  
 
Wasserstein distance has the ability to consider both phase 
shifts and amplitude differences It has been demonstrated 
in (Engquist, Froese and Yang, 2016) that 𝑊𝑊2 bears some 
advantageous mathematical properties, such as convexity 
with respect to shift and dilation and insensitivity to noise. 
In (Yang Engquist, Sun and Froese 2016),  𝑊𝑊2 on 2D data 
is applied to FWI on synthetic benchmark models. The 
calculation of the corresponding adjoint source requires 
solving a Monge–Ampère equation that can be 
computationally demanding. Another popular optimal 
transport metric used for FWI is the 1-Wasserstein distance 
( ), approximated by the Kantorovich Rubinstein (KR) 
norm (Métivier, et al, 2016). For this metric the transport 
map is not unique. The KR norm doesn't require data to be 
positive and mass preserved. Therefore it can be directly 
applied to the seismic data without transferring them into 
probability density function (pdf). Both analysis and 
numerical results shows the potential of FWI with optimal 
transport to mitigate cycle-skipping problem. 
 
The Wasserstein metric is designed to measure the distance 
between two pdfs. Thus, non-negativeness and unit mass 
are desired for the input. But, oscillation and sign-change 
are typical features of the seismic data. Therefore, we need 
a misfit function that takes the global features of data into 
consideration and is robust to periodicity and sign-change. 
Since seismic data are not naturally positive, a proper 
normalization method is the key to Wasserstein distance 
based inversion. Some previous methods may lead to non-
differentiable misfit function and are not compatible with 
adjoint-state method, or lose information of original data 
during the normalization.  
 
Here, we address the issue of how to transform seismic data 
into pdfs. The new solution uses an exponential encoding 
scheme and enhances the phase information when 
compared with the conventional 𝐿𝐿2  norm. The algorithm 
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 Full waveform inversion with an exponentially-encoded optimal transport norm 

uses of the 1D Wasserstein metric. As a result, the 
implementation of the adjoint source has the same order of 
computational complexity as of the conventional 𝐿𝐿2 norm. 
We illustrate our method by using the Marmousi and the 
BP 2004 velocity benchmark models. 
 
Exponentially-encoded Wassesrtein distance for seismic 
data 
 
In this section, we define a procedure to transfer the 
seismic data into pdf-like data before we calculate the 
Wasserstein distance between them. Meanwhile, we also 
pursue to extract the phase information from the seismic 
data for computing Wasserstein distance. Seismic data are 
not naturally positive, which is a challenge to apply 𝑊𝑊2 
directly. Some previous methods such as comparing the 
positive and negative parts separately (Engquist and Froese, 
2014) seem not be compatible with adjoint-state method. 
The linear transformation (Yang Engquist, Sun and Froese, 
2016) may lose the global convexity that 𝑊𝑊2  has for 
positive signals. Therefore a proper data normalization 
method is the key for inversion. 
 
Suppose we have seismic data 𝑑𝑑, which has both positive 
and negative values. We let 

                                                                                     
                                                                             

where α is a prescribed positive constant to control the 
upper bound of the power for the numerical accuracy. Since 
the exponential function has the feature that it has much 
milder derivative on the negative half real axis, the above 
procedure treat the negative and positive part of the seismic 
data differently. At the same time, the processed data is 
non-negative. We apply this procedure to both the recorded 
data and simulation with the same constant. With an 
additional scaling, we turn the recorded data d and 
simulated data u into pdf-like functions 𝒅𝒅� and 𝒖𝒖�. Therefore, 
we can apply the Wasserstein distance to measure their 
difference.  
 
Intuitively, the above algorithm is nothing but an uneven 
encoding process. All the information in the positive part of 
the data is amplified and stored in (𝟏𝟏, +∞)  and the 
information from the negative part is compressed in  (𝟎𝟎,𝟏𝟏). 
In this way, the phase information is extracted mainly from 
the positive side of the seismic data for the FWI. This 
encoding process is invertible and Fréchet differentiable. 
Therefore, according to the chain rule, the only additional 
work is to multiply the adjoint source by 

. 
FWI with this encoding process will be biased to match 
travel-time provided by the positive signal. The negative 
side is also needed, especially for FWI with reflection data. 

To make use of the phase information from the negative 
part of the data, we balance this uneven encoding by also 
taking into account the data reformed by the map 

  . 
In practice, we perform the inversion in an alternative 
fashion. That is, we switch the data encoding process 
between               and                  every few iterations.  
 
The corresponding objective function is constructed as 
 

 . 
 

Since we only change the objective function, the 
corresponding modification for the conventional FWI is to 
use a new adjoint source. It can be computed as 

 

 
 

Note that  and   are 1D functions. We can take advantage 
of the explicit expression of the Wasserstein distance for 
distributions over the real line. In this way, the 
computational complexity for obtaining the adjoint source 
is                     , where  ,  and   stand for the number 
of receivers, shots and time steps, respectively.  In practice, 
we find that the additional computational time is very small 
compared with the conventional method to calculate the 
adjoint source, which is a subtraction with the same order 
of complexity                      . 
 
The quadratic Wasserstein distance between two 1D pdfs 

 and  is defined as  

 
Here,  and  are the associated cumulative distribution 
functions (cdf) and ⋅−𝟏𝟏  stands for the pseudo-inverse 
defined as  

. 
The Fréchet derivative with respect to  is given by 
 

 
 
The above equality can be simplified using the inverse 
function theorem and we have that 
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 Full waveform inversion with an exponentially-encoded optimal transport norm 

 
Note that both  and  are monotonic increasing functions. 
Hence,                    and                     are computed in            
operations and both are monotonic functions. Therefore, we 
can obtain the adjoint source for a single trace with              
operations. Once the adjoint source is obtained, the rest of 
the inversion is the same as the conventional FWI.  
 
Numerical experiments 
 
We first investigated the use of our method on the 
Marmousi model (Figure 1a). The model contains many 
reflectors, steep dips, and strong velocity variations in both 
the lateral and the vertical direction. The velocity model is 
9.2 km × 3.2 km. The synthetic data was created with a 
minimum frequency of 5 Hz (zero power) and 7 Hz full 
power. The sources and receivers are both uniformly 
distributed every 20 m at 40 m depth. The maximum 
recording time is 8 s. We randomly select 31 sources per 
iteration. The initial model (Figure 1b) is created by 
smoothing the true model using a Gaussian filter with 2 km 
correlation length. With this initial model, inversion with 
𝑳𝑳𝟐𝟐 objective function fails to provide a good reconstruction 
(Figure 1c) but the 𝑾𝑾𝟐𝟐  gives a result closer to the true 
model (Figure 1d). 
 
Next, we perform numerical test on the BP 2004 
benchmark velocity model (Figure 2a) (Billette and 
Brandsberg-Dahl, 2005). The model is 28.5 km × 7.5 km 
and contains a salt body in the middle of the domain of 
interest. The synthetic data was created with a minimum 
frequency of 1 Hz (zero power) and 3 Hz full power. For 
the acquisition geometry, the sources are uniformly 
distributed every 40 m and the receivers are deployed every 
40 m with a maximum offset of 20 km. Both source and 
receiver are located at 40m depth. With this long-offset 
setting, the maximum recording time of the data is set to 12 
s. For efficiency purpose, a random selected 36 shots are 
used per iteration.  
 
A heavily smoothed model (1.1 km correlation length) 
from the true model with the water layer fixed is used as 
the starting velocity model for FWI (Figure 2b). From this 
initial model, the conventional FWI with 𝐿𝐿2 distance fails 
to recover the salt boundary (Figure 2c). As shown in 
Figure 2d, inversion with proposed algorithm produces 
better reconstruction. The salt body shallower than 7 km 
depth is well restored. Slices of initial model, true model, 
 𝐿𝐿2  reconstructed model and 𝑊𝑊2  reconstructed model at 
x=12 km are shown in Figure 3. 
 
 

 

 

 

 
Figure 1: (a): True model, (b) Initial model, (c) FWI with 
𝑳𝑳𝟐𝟐 (d) FWI with 𝑾𝑾𝟐𝟐. 
 
In this work, we focus on measuring the difference in data 
space. Thus, no conditioning or stabilization procedure, 
such as smoothing on the gradient and regularization on the 
model, is applied to the inversion results shown in Figure 2 
and 3.   
 
The oscillatory noise in FWI can be efficiently removed 
using total variation type regularization (Qiu, et al., 2016). 
The regularization is necessary to stabilize the inversion 
and inject a priori information into the optimization. The 
extension of the proposed algorithm to incorporate TV 
regularization is straightforward. The inversion results are 
shown in Figure 4 and 5. The TV regularization helps to 
produce a blocky inverted model. But, from the slices view 
(Figure 5), it is clear that the FWI with  𝑳𝑳𝟐𝟐 distance (blue 
curve) and TV regularization do not restore the salt 
boundary correctly. In contrast, the  𝑾𝑾𝟐𝟐 model is close to 
the true model showing almost perfect sediment velocity 
and salt boundary reconstruction. 
 
 

© 2017 SEG 
SEG International Exposition and 87th Annual Meeting

Page 1288

D
ow

nl
oa

de
d 

08
/2

5/
17

 to
 1

52
.7

7.
15

6.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/
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Figure 2: (a): True model, (b) Initial model, (c) FWI with 
𝑳𝑳𝟐𝟐 (d) FWI with 𝑾𝑾𝟐𝟐. 
 
 

 
Figure 3: Slices of the velocity models in Figure 2. 
 
 

 

 
Figure 4: (a):  𝑳𝑳𝟐𝟐 with TV regularization, (b):  𝑾𝑾𝟐𝟐 with TV 
regularization 
 

 
Figure 5: Slices of the velocity models with TV 
regularization in Figure 4. 
 
Conclusions 
 
The formulation of FWI with Wasserstein distance shows 
the potential to mitigate the cycle-skipping problem present 
in the 𝑳𝑳𝟐𝟐  solution. We propose an exponential-encoding 
process to transfer the seismic data into pdf with emphasis 
on phase information. The adjoint source is calculated 
using the explicit solution of the optimal transport over the 
real line. All the efforts lead to an efficient and robust 
seismic inversion scheme. The numerical results 
demonstrate the advantages of the proposed algorithm. In 
the Marmousi example the new method allows the FWI to 
start from a heavily smoothed model with high frequency 
data and obtain a good result. The BP 2004 benchmark 
example shows how by combining the new norm with TV 
regularization the salt body velocity and boundaries can be 
reconstructed starting from a smooth model. 
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