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OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM

INVERSION

BJÖRN ENGQUIST, BRITTANY D. FROESE, AND YUNAN YANG

Abstract. Full waveform inversion is a successful procedure for determining

properties of the earth from surface measurements in seismology. This in-

verse problem is solved by a PDE constrained optimization where unknown
coefficients in a computed wavefield are adjusted to minimize the mismatch

with the measured data. We propose using the Wasserstein metric, which is

related to optimal transport, for measuring this mismatch. Several advanta-
geous properties are proved with regards to convexity of the objective function

and robustness with respect to noise. The Wasserstein metric is computed by

solving a Monge-Ampère equation. We describe an algorithm for computing
its Frechet gradient for use in the optimization. Numerical examples are given.

1. Introduction

A central step in seismic exploration is the estimation of basic geophysical prop-
erties. This can, for example, be wave velocity, which is what we will consider here.
This step is typically the basis of an imaging process to determine geophysical
structures.

The computational technique full waveform inversion (FWI) was introduced to
seismology in [11, 20]. This inverse method follows the common strategy of PDE
constrained optimization. The unknown wave velocity v is determined by minimiz-
ing the mismatch d(f, g) between the simulated wave field f(v) and the measured
data g.

v∗ = argmin
v

F (v), F (v) = d(f(v), g) + λR(v).

Since many forms of the inverse problem are ill-posed [15, 17, 21], some reg-
ularization R(v) is widely used to ensure the uniqueness of model recovery. We
will here focus on properties of misfit measure d and not on the overall question
of uniqueness and stability of the inverse problem. For example, see [9, 18, 19] for
theories of uniqueness and stability.

The L2 norm is often used to measure the misfit, which typically generates many
local minima. This problem is exacerbated by the fact that measured signals usually
suffer from noise in the measurements [12].

In [6], we proposed using the Wasserstein metric for the misfit function, i.e.
d(f, g) = W 2

2 (f, g). The Wasserstein metric measures the distance between two
distributions as the optimal cost of rearranging one distribution into the other [22].
The mathematical definition of the distance between the distributions f : X → R+,
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g : Y → R+ can be formulated as

(1) W 2
2 (f, g) = inf

T∈M

∫
X

|x− T (x)|2 f(x) dx

where M is the set of all maps that rearrange the distribution f into g. The
optimal transport formulation requires nonnegative distributions. To define a dis-
tance between more general f and g we can, for example, replace W 2

2 (f, g) by
W 2

2 (f+, g+) +W 2
2 (f−, g−) where f+ = max{f, 0}, f− = max{−f, 0}.

It is our goal to prove several desirable properties relating to convexity and insen-
sitivity to noise, which were briefly discussed in [6]. Another important contribution
in this paper is a derivation of the gradient of d(f(v), g) with respect to v, which
is essential for gradient based minimization algorithms. It is outside the scope of
this work to study serious applications, but we give some numerical examples to
show the quantitative behavior and to compare with the simple search algorithm
used in [6]. In this earlier paper, simple geometrical optics was used in the forward
problem. Here we consider the full wave equation.

We briefly recall one example from [6] that illustrates the advantage of the
Wasserstein metric. Consider the misfit between the simple wavelet f in Figure 1(a)
and another wavelet shifted by a distance s. Figures 1(b)-1(c) illustrate that the
L2 norm is constant when s is large and has many local minima. On the other
hand, the Wasserstein metric is uniformly convex with respect to shifts, which are
natural in travel time mismatches.

Earlier algorithms for the numerical computation of the Wasserstein metric re-
quired a large number of operations [1, 3, 4]. The optimal transportation problem
can be rigorously related to the following Monge-Ampère equation [5, 10], which
enables the construction of more efficient methods for computing the Wasserstein
metric.

(2)

{
det(D2u(x)) = f(x)/g(∇u(x)) + 〈u〉, x ∈ X
u is convex.

The Wasserstein metric is then given by

(3) W 2
2 (f, g) =

∫
X

|x−∇u(x)|2 f(x) dx.

There are now fast and robust numerical algorithms for the solution of (2),
and thus for the computation of W 2

2 , and these form the basis for our numerical
techniques [2].

In section 2, we will study the convexity of the quadratic Wasserstein metric with
respect to shift, dilation, and partial amplitude change. Error between simulated
data and observed data in the form of shifts and dilations can occur naturally
from an incorrect velocity model parameter, while inaccurate measurements on the
surface can result in larger or smaller local amplitudes. We will give a rigorous proof
of these convexity statements using the fundamental theorem of optimal transport
and convexity of the Monge-Kantorovich minimization problem [22].

In section 3, we will discuss how the Wasserstein metric is affected by random
noise with a uniform distribution. For the optimal transport problem on the real
line, both a theorem and numerical illustrations will be given to show that the
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Figure 1. (a) A wavelet profile f(x). The distance between f(x)
and g(x) = f(x−s) measured by (b) L2

2(f, g), and (c)W 2
2 (f+, g+)+

W 2
2 (f−, g−)[6].

effect of noise is negligible. For higher dimensions, we estimate the effect of noise
by finding an upper bound.

We review an efficient numerical method for computing the Wasserstein metric
via the numerical solution of the nonlinear elliptic Monge-Ampère partial differ-
ential equation in section 4. After obtaining the discrete solution, we can easily
approximate the squared Wasserstein metric.

We are interested in recovering the parameters in the forward wave equation
by minimizing the Wasserstein metric between simulated and observed data. In
section 5, we discuss two different ways to obtain the gradient of the Wasserstein
metric. We can linearize the continuous problem first, then discretize the resulting
linear elliptic equation. Alternatively, we can first discretise the Wasserstein metric,
then linearise the result. This second approach is particularly straightforward for
the numerical method utilized in this paper.

Finally, numerical examples presented in section 6 show the quantitative and
qualitative behavior of the minimization procedure. Parameters in low dimensional
model problems are recovered by minimizing the Wasserstein metric without regu-
larization.
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2. Convexity of the quadratic Wasserstein metric

In most optimization problems, convexity of the objective function is a desirable
property. The example of convexity given in Figure 1(c) was our motivation for
considering the Wasserstein metric in the context of full waveform inversion. In this
section, we will mathematically study this convexity with respect to shift, dilation,
and local change in amplitude.

We analyze cases where f is derived from g by either a local change of amplitude
or a linear change of variables in the form of a shift or dilation. The change in
amplitude may originate from measurement errors and variations in strength of
reflecting surfaces. The shift and dilation are typical effects of variations in the
velocity v, as can be seen in a simple example.

The starting point is the formulation as the PDE constrained optimization given
in the introduction,

min
v
d(f(v), g) = min

v(x)
W 2

2 (f(x, t; v), g(x, t)) .

A simple one-dimensional, constant velocity model is
∂2u
∂t2 = v2 ∂2u

∂x2 , x > 0, t > 0,

u = 0, ∂u
∂t = 0, x > 0, t = 0,

u = u0(t), x = 0, t > 0.

One solution to the equation is u(x, t; v) = u0(t− x/v). For fixed x, variations in v
induce shifts in the signal. When t is fixed, variation of v generates dilation in u0

as a function of x.

2.1. Convexity with respect to shift. We assume the optimal map between
two density functions f and g is T . Given η ∈ X, we define a new distribution
fs : X → R, fs(x) = f(x− sη). The corresponding optimal map between fs and g
is Ts. The relation between T and Ts is as follows:

Theorem 1 (Convexity of shift). Suppose f and g are density functions of two
Borel probability measures with finite second moment. Let T be the optimal map
that rearranges f into g. If fs(x) = f(x − sη) for η ∈ X, then the optimal map
from fs(x) to g(y) is Ts = T (x − sη). Moreover, W 2

2 (fs, g) is convex with respect
to s.

The proof includes several fundamental concepts and theorems from optimal
transportation.

Definition 1 (Cyclical monotonicity). We say that Γ ⊂ Rn × Rn is cyclically
monotone if for any m ∈ N+, (xi, yi) ∈ Γ, 1 ≤ i ≤ m implies that

(4)

m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yi−1|2

or equivalently

(5)

m∑
i=1

〈yi, xi − xi−1〉 ≥ 0

where x0 ≡ xm and y0 ≡ ym.
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Given a Polish space (X, d) (i.e. a complete and separate metric space), we let
P(X) be the set of Borel probability measures on X. The transport plan is given
by a probability measure π on the product space X × Y . The set Π(µ, ν) consists
of all transport plans π ∈P(X × Y ) from µ to ν, i.e. the set of Borel probability
measures on X × Y such that

π(A× Y ) = µ(A) ∀A ∈ B(X), π(X ×B) = ν(B) ∀B ∈ B(Y ).

The next two lemmas from [14, 22] show the equivalence of optimality and cycli-
cal monotonicity under the condition that µ does not give mass to small sets.

Lemma 2 (Optimality criterion for quadratic cost). Let µ and ν be two probability
measures on RN , where µ does not give mass to small sets. Let π ∈ Π(µ, ν) with
cyclically monotone support. Then π is optimal in the Kantorovich problem of mass
transference between µ and ν with quadratic cost c(x, y) = |x− y|2.

Lemma 3 (Optimal plans have cyclically monotone support). Let µ, ν be two
probability measures on Rn and let π ∈ Π(µ, ν) be optimal in the Kantorovich
problem of mass transference between µ and ν with quadratic cost c(x, y) = |x−y|2.
Then the support of π is cyclically monotone.

Proof of Theorem 1. By our original assumption, the optimal map between two
measures with density functions f and g is T . We will show that the new joint
measure πs = (Id× Ts)#µs is cyclically monotone.

With yi = Ts(xi) and Ts(x) = T (x − sη), we need the following inequality to
hold:

m∑
i=1

〈yi, xi − xi−1〉 ≥ 0

⇐⇒
m∑
i=1

xi · T (xi − sη) ≥
N∑
i=1

xi · T (xi−1 − sη)

⇐⇒
N∑
i=1

(xi − sη) · T (xi − sη) ≥
m∑
i=1

(xi − sη) · T (xi−1 − sη)

The last inequality is just a statement of cyclical monotonicity of the joint mea-
sure π = (Id×T )#µ for f and g without the shift. This is automatically true since
by assumption T is the optimal in that setting.

By the uniqueness of monotone measure-preserving optimal maps between two
distributions [13], we assert that Ts(x) = T (x− sη) is the optimal map correspond-
ing to the shifted function f(x− sη).

Consequently, W 2
2 (fs, g) is given by

W 2
2 (fs, g) =

∫
|x− Ts(x)|2 fs(x)dx

=

∫
|x− T (x− sη)|2 f(x− sη)dx

= W 2
2 (f, g) + s2|η|2 + 2s

∫
< η, x− T (x) > f(x)dx.(6)

The convexity with respect to s is evident from the last equation. �
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2.2. Convexity with respect to dilation.

Theorem 4 (Optimal map for dilation). Assume g(y) is a density function of finite
second moment and f(x) = det(A)g(Ax), where A is a symmetric positive definite
matrix. Then the optimal transport map to rearrange f(x) into g(y) is T (x) = Ax.

Proof. Again, Lemmas 2 and 3 are the tools to verify this optimal map. We will
show that the joint measure π = (Id× T )#µf is cyclically monotone. It is easy to
show that T is measure-preserving:

(7) g(T (x)) det(∇T ) = g(Ax) det(A) = f(x)

Since A is symmetric positive definite, it has a unique Cholesky decomposition, i.e.
A = LTL for some upper triangular matrix L. For any m ∈ N:

m∑
i=1

|xi − T (xi)|2 −
m∑
i=1

|xi − T (xi−1)|2

= −2

m∑
i=1

(xTi Axi − xTi−1Axi)

= −2

m∑
i=1

(|Lxi|2 − xTi−1L
TLxi)

= −
m∑
i=1

(|Lxi|2 − 2xTi−1L
TLxi + |Lxi−1|2)

= −
m∑
i=1

|Lxi − Lxi−1|2 ≤ 0,

which justifies equation (4). �

Remark 1. The requirement that A be symmetric positive definite is necessary
for y = Ax to be the optimal map. For example, let A be the rotation matrix(

cos θ sin θ
− sin θ cos θ

)
with θ = π and let g(x, y) = g(−x,−y). The optimal map is

the identity function instead of T = A−1x.

Convexity is a separate question as it depends on the parameterisation. One
special case of dilation occurs when A is a diagonal matrix. The following theorem
is a natural consequence of the definition and Theorem 4.

Theorem 5 (Convexity with respect to dilation). Assume g(y) is a density func-
tion of finite second moment and fλ(x) = 1

λn g(xλ ). Then the optimal map between

f and g is T (x) = x
λ . The Wasserstein metric W 2

2 (fλ, g) is (1− λ)2
∫
y2g(y)dy, a

convex function of λ. More generally, if the dilation matrix A = diag( 1
λ1
, . . . , 1

λn
)

and f(x) = det(A)g(Ax), the Wasserstein metric W 2
2 (f, g) is convex with respect

to λ1, . . . , λn.

Remark 2. If both dilation and shift are present, the Wasserstein metric will be
convex with respect to each of the corresponding parameters.



OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM INVERSION 7

2.3. Convexity with respect to partial amplitude change. Now we consider
density functions fα and g on a domain Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅. Assume
function fα depends on g as follows:

fα(x) =

{
(1 + α)g(x), x ∈ Ω1,

(1− γα)g(x), x ∈ Ω2,

where

γα = α

∫
Ω1
g∫

Ω2
g
.

Here α is related to the size of the “perturbation”. Obviously, f0(x) = g(x) for
any x ∈ Ω. The rescaling parameter γ ensures both distributions have the same
mass ∫

Ω

fα(x)dx =

∫
Ω

g(x)dx,

which is necessary to evaluate the Wasserstein metric.

Theorem 6 (Convexity with respect to partial amplitude change). With the den-
sity functions fα and g defined as above, the Wasserstein metric W 2

2 (fα, g) is a
convex function of the parameter α.

Proof. Choose any α1, α2 such that fα1
and fα2

are nonnegative, s ∈ [0, 1], and
let h be an arbitrary density function. From convexity of the Monge-Kantorovich
minimization problem [22], we have

(8) W 2
2 (h, sfα1

+ (1− s)fα2
) ≤ sW 2

2 (h, fα1
) + (1− s)W 2

2 (h, fα2
).

We can calculate

sfα1 + (1− s)fα2 =

{
s(1 + α1)g + (1− s)(1 + α2)g, x ∈ Ω1,

s(1− γα1
)g + (1− s)(1− γα2

)g, x ∈ Ω2.

=

{
(1 + sα1 + α2 − sα2)g, x ∈ Ω1,

(1− γsα1+(1−s)α2
)g, x ∈ Ω2,

= fsα1+(1−s)α2
.

Thus we can rewrite Equation (8) as

(9) W 2
2 (h, fsα1+(1−s)α2

) ≤ sW 2
2 (h, fα1

) + (1− s)W 2
2 (h, fα2

)

and the Wasserstein metric W 2
2 (h, fα) is convex with respect to the amplitude

change parameter α. �

3. Insensitivity with respect to noise

In the practical application of full waveform inversion, it is natural to experience
noise in the measured signal, and therefore robustness with respect to noise is a
desirable property in a measure of mismatch. We will show that Wasserstein metric
is substantially less sensitive to noise than the L2 norm.

The Wasserstein metric depends on the square of the translate T . This implies
that if f is an oscillatory perturbation of g then the Wasserstein metric W 2

2 (f, g)
is small. One example given by Villani [22] shows that W 2

2 (µk,L) = O(ε2) for
dµk =

(
1 + sin 2πx

ε

)
dx and the Lebesgue measure on [0, 1]. A numerical example

without analysis was given in [6].
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3.1. One dimension. In one dimension, it is possible to exactly solve the optimal
transportation problem in terms of the cumulative distribution functions

F (x) =

∫ x

0

f(t) dt, G(x) =

∫ x

0

g(t) dt.

See Figure 2.

Lemma 7 (Optimal transportation for a quadratic cost on R [22]). Let µ, ν be two
probability measures on R, with respective cumulative distribution functions F and
G. Let π be the probability measure on R2 with joint two-dimensional cumulative
distribution function

(10) H(x, y) = min(F (x), G(y)).

Then, π ∈ Π(µ, ν) is optimal in the Kantorovich transportation problem between µ
and ν for the quadratic cost function c(x, y) = |x− y|2. Moreover, the value of the
optimal transportation cost is

(11) W 2
2 (µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|2dt.

Remark 3. If µ does not give mass to points, then T = G−1 ◦ F transports µ onto

ν, and
∫ x
−∞ dµ =

∫ T (x)

−∞ dν.

Theorem 8 (Insensitivity to noise in 1-D). Let ν be a probability measure on [0, 1]
with non-negative density g and choose 0 < c < min g. Let µN be the probability
measure with density

g(x) + rN (x)

1 + r̄N
,

which contains piecewise constant additive noise

rN (x) ≡ ri, x ∈
(
i− 1

N
,
i

N

]
, 1 ≤ i ≤ N

with each ri drawn from the uniform distribution U [−c, c]. Then EW 2
2 (µN , ν) is

O( 1
N ).

Without loss of generality, we take ν to be the Lebesgue measure on [0, 1]. Fig-
ure 3 shows the effect of noise. As N →∞, rN approximates the noise function r(x)
on [0, 1]. For any x0 ∈ [0, 1], r(x0) is a random variable with uniform distribution
on [−c, c].

Proof of Theorem 8. Let ν be the Lebesgue measure on [0, 1], with density function
g = 1. For each i, ri is a random variable of uniform distribution on [−c, c],
0 < c < 1. Thus, we have Eri = 0 and Er̄ = 0.

Let h = 1/N and xi = ih for i = 0, . . . , N . Then the noisy density function is
given by

fN (x) = 1 + ri, x ∈ (xi−1, xi].

We begin by calculating the Wasserstein metric between fN and gN = 1 + r̄N ,
which share the same mass.
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Figure 2. (a) Cumulative distribution functions F (x) (red), G(x)
(blue) and (b) inverse functions F−1(y), G−1(y).
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Figure 3. Densities of ν (blue) and µN (red, c = −0.5) for
(a) N = 10 and (b) N = 100.

According to Theorem 7, we need the cumulative distribution function and its
inverse for both fN and gN . It is easy to derive

(12)

FN (x) =

∫ x

0

fN (x)dx =


(1 + r1)x, x ∈ [0, h]

(1 + r1)h+ (1 + r2)(x− h), x ∈ (h, 2h]
...∑N−1
i=1 (1 + ri)h+ (1 + rN )(x− (N − 1)h), x ∈ (1− h, 1]

(13) GN (x) =

∫ x

0

gN (x)dx = (1 + r̄)x, 0 ≤ x ≤ 1
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(14) F−1
N (x) =



x
1+r1

, x ∈ [0, (1 + r1)h]
x+(r2−r1)h

1+r2
, x ∈ ((1 + r1)h, (2 + r1 + r2)h]

...
x+((N−1)rN−

∑N−1
i=1 ri)h

1+rN
, x ∈ (

∑N−1
i=1 (1 + ri)h, 1 + r̄]

(15) G−1
N (x) =

x

1 + r̄
, 0 ≤ x ≤ 1 + r̄.

Then we can estimate the squared Wasserstein metric by

W 2
2 (fN , gN ) =

∫ 1+r̄

0

|F−1
N (t)−G−1

N (t)|2dt

≤ max

{(
(1 + r1)h

1 + r̄
− h
)2

, 0

}
· (1 + r1)h+

max

{(
(1 + r1)h

1 + r̄
− h
)2

,

(
(2 + r1 + r2)h

1 + r̄
− 2h

)2}
· (1 + r2)h+ · · ·+

max

{
(0,

(
(1 + r1)h+ · · ·+ (1 + rN−1)h

1 + r̄
− (N − 1)h

)2}
· (1 + rN )h

≤ 2 · h3

(1− c)2

{
(r1 − r̄)2

+ (r1 + r2 − 2r̄)
2

+ · · ·+ (r1 + · · ·+ rN−1 − (N − 1)r̄)
2

}

≤ 2h3

(1− c)2

N∑
i=1

(
i∑
l=1

rl − ih
N∑
k=1

rk

)2

.

Since the noise {ri}Ni=1 is i.i.d., we obtain the following upper bound for the expec-
tation of the Wasserstein metric:

EW 2
2 (fN , gN ) ≤ C · h3 ·

N∑
i=1

i · Er2
1 ≤

C2

N
.

We can prove the lower bound EW 2
2 (fN , gN ) ≥ C1

N in a similar way. Thus

(16)
C1

N
≤ EW 2

2 (fN , gN ) ≤ C2

N

where C1 and C2 only depend on c.
The density functions fN and gN have total mass 1 + r̄N , and must be rescaled

in order to obtain the probability measures µN and ν. That is, the density of µN is
fN/(1 + r̄N ) and the density of ν is gN/(1 + r̄N ). However, by the subadditivity of
squared Wasserstein metric under rescaled convolution [22, 23], we can approximate
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W 2
2 (µN , ν) by W 2

2 (fN , gN ):

W 2
2 (µN , ν) ≤

(
1

1 + r̄N

)2

W 2
2 (fN , gN )

≤
(

1

1− c

)2

W 2
2 (fN , gN )

≤
(

1

1− c

)2

(1 + r̄N )2W 2
2 (µN , ν)

≤
(

1 + c

1− c

)2

W 2
2 (µN , ν)

and we conclude that EW 2
2 (µN , ν) is O( 1

N ). �

Remark 4. The L2 norm is significantly more sensitive to noise in this setting since

EL2
2(fN , gN ) = E||fN − gN ||22 = E

(
1
N

∑N
i=1 |ri|2

)
= O(1).

3.2. Higher dimensions. The analysis of the Wasserstein metric becomes much
more difficult in higher dimensions. However, we can still analyze the effects of
noise through the computation of an upper bound on the metric.

From the definition of the quadratic Wasserstein metric (1), it is clear that any
mass-preserving map T satisfies the inequality

W 2
2 (f, g) ≤

∫
|x− T (x)|2 f(x)dx.

Consider the following two-dimensional example on the domain Ω = [0, 1]× [0, 1]
with the constant density function g = 1. Consider the noise function r such
that for each (x, y) ∈ Ω, r(x, y) is a random variable with uniform distribution on
[−c, c], 0 < c < 1. We define the noisy density function f = g + r and assume that∫

Ω
f =

∫
Ω
g.

We use the Wasserstein metric to measure the difference between g and its noisy
version f . Since strong convergence in measure implies convergence of the Wasser-
stein metric, we can approximate the density function f by the piecewise constant
function fN for the convenience of calculation.

fN (x, y) = 1 + rij , xi =
i

N
< x ≤ i+ 1

N
= xi+1, yj =

j

N
< y ≤ j + 1

N
= yj+1.

One approach to rearranging all the mass from fN to g is to define T in two
steps as in Figure 4. First, with y fixed, one can find the optimal map Tx that
averages each row. This is equivalent to a 1D optimal transport problem. Each
row i is mapped into a uniform density after rearrangement by the optimal map
Ti. Secondly, with x fixed, one can average the the density values of all the rows.
Again, this is a 1D optimal transport problem and we have an explicit form for the
optimal map Ty. The resulting map TN that rearranges fN to g is Ty ◦ Tx. Here
Tx = Ti for xi−1 < x ≤ xi, i = 1, . . . , N .

The rearrangement determined by TN is not optimal, but does provide an upper
bound on the value of the Wasserstein metric. As in the 1D case, we can verify
that

E
(∫
|x− TN (x)|2 fN (x)dx

)
= O

(
1

N

)
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Figure 4. (a) The optimal map for each row: Tx = Ti for xi <
x ≤ xi+1 and (b) the optimal map in y direction: Ty

since TN = Ty ◦ Tx is a composition of two optimal 1D maps. This leads to the
upper bound

EW 2
2 (fN , g) ≤ E

(∫
R2

|x− TN (x)|2 fN (x)dx

)
= E

(∫
R

∫
R
|x− Tx(x)|2 fN (x)dxdy

)
+ E

(∫
R

∫
R
|y − Ty(y)|2 fN (x)dydx

)
∝ O

(
1

N

)
.

Finally, by the Lebesgue dominated convergence theorem,

(17) EW 2
2 (f, g) ≤ lim

N→∞
E
(∫

R2

|x− TN (x)|2 fN (x)dx

)
= 0.

For higher dimension n ≥ 3, we can similarly reduce the problem to several
1D optimal transport in terms of the dimensions. The ultimate goal is to find a
particular map that is not optimal, but that provides an upper bound that goes to
zero as the mesh is refined.

4. Numerical Computation of the Wasserstein metric

We are interested in computing the Wasserstein metric between two distributions
f , g, which are supported on a rectangle X. This can be accomplished via the
solution of the Monge-Ampère equation

(18)


det(D2u(x)) = f(x)/g(∇u(x)) + 〈u〉, x ∈ X
∇u(x) · ν = x · ν, x ∈ ∂X
u is convex.

Remark 5. The Neumann boundary condition is easily generalised to the situation
where f and g are supported on different rectangles [7].

The squared Wasserstein metric is then given by

(19) W 2
2 (f, g) =

∫
X

f(x) |x−∇u(x)|2 dx.
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We solve the Monge-Ampère equation numerically using an almost-monotone
finite difference method relying on the following reformulation of the Monge-Ampère
operator, which automatically enforces the convexity constraint [7].

(20) det+(D2u) =

min
{v1,v2}∈V

{max{uv1,v1 , 0}max{uv2,v2 , 0}+ min{uv1,v1 , 0}+ min{uv2,v2 , 0}}

where V is the set of all orthonormal bases for R2.
Equation (20) can be discretised by computing the minimum over finitely many

directions {ν1, ν2}, which may require the use of a wide stencil. For simplicity and
brevity, we describe a compact version of the scheme and refer to [7, 8] for complete
details.

We begin by introducing the finite difference operators

[Dx1x1u]ij =
1

dx2
(ui+1,j + ui−1,j − 2ui,j)

[Dx2x2
u]ij =

1

dx2
(ui,j+1 + ui,j−1 − 2ui,j)

[Dx1
u]ij =

1

2dx
(ui+1,j − ui−1,j)

[Dx2
u]ij =

1

2dx
(ui,j+1 − ui,j−1)

[Dvvu]ij =
1

2dx2
(ui+1,j+1 + ui−1,j−1 − 2ui,j)

[Dv⊥v⊥u]ij =
1

2dx2
(ui+1,j−1 + ui+1,j−1 − 2ui,j)

[Dvu]ij =
1

2
√

2dx
(ui+1,j+1 − ui−1,j−1)

[Dv⊥u]ij =
1

2
√

2dx
(ui+1,j−1 − ui−1,j+1) .

In the compact version of the scheme, the minimum in (20) is approximated
using only two possible values. The first uses directions aligning with the grid axes.

(21) MA1[u] = max {Dx1x1
u, δ}max {Dx2x2

u, δ}
+ min {Dx1x1

u, δ}+ min {Dx2x2
u, δ} − f/g (Dx1

u,Dx2
u)− u0.

Here dx is the resolution of the grid, δ > K∆x/2 is a small parameter that bounds
second derivatives away from zero, u0 is the solution value at a fixed point in the
domain, and K is the Lipschitz constant in the y-variable of f(x)/g(y).

For the second value, we rotate the axes to align with the corner points in the
stencil, which leads to

(22)

MA2[u] = max {Dvvu, δ}max {Dv⊥v⊥u, δ}+ min {Dvvu, δ}+ min {Dv⊥v⊥u, δ}

− f/g
(

1√
2

(Dvu+Dv⊥u),
1√
2

(Dvu−Dv⊥u)

)
− u0.

Then the compact monotone approximation of the Monge-Ampère equation is

(23) MM [u] ≡ −min{MA1[u],MA2[u]} = 0.
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We also define a second-order non-monotone approximation, obtained from a stan-
dard centred difference discretisation,

(24) MN [u] ≡ −
(
(Dx1x1

u)(Dx2x2
u)− (Dx1x2

u2)
)

+ f/g (Dx1
u,Dx2

u) + u0 = 0.

These are combined into an almost-monotone approximation of the form

(25) MF [u] ≡MM [u] + εS

(
MN [u]−MM [u]

ε

)
0

where ε is a small parameter and the filter S is given by

(26) S(x) =


x |x| ≤ 1

0 |x| ≥ 2

−x+ 2 1 ≤ x ≤ 2

−x− 2 −2 ≤ x ≤ −1.

The Neumann boundary condition is implemented using standard one-sided dif-
ferences.

Once the discrete solution uh is computed, the squared Wasserstein metric is
approximated via

(27) W 2
2 (f, g) ≈

m∑
j=1

(xj −Dxj
uh)Tdiag(f)(xj −Dxj

uh).

The computation of the discrete solution of (25) requires the solution of a large
system of nonlinear algebraic equations. This is accomplished using Newton’s
method, which requires the Jacobian of the discrete scheme. The Jacobian of the
filtered scheme can be expressed as
(28)

∇MF [u] =

(
1− S′

(
MN [u]−MM [u]

ε

))
∇MM [u]+S′

(
MN [u]−MM [u]

ε

)
∇MN [u].
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The (formal) Jacobians of the monotone and non-monotone components are given
by

∇uM1[u] =
(
max{Dx2x2

, δ}1Dx1x1>δ
+ 1Dx1x1≤δ

)
Dx1x1

+
(
max{Dx1x1

, δ}1Dx2x2>δ
+ 1Dx2x2≤δ

)
Dx2x2

− f

g (Dx1
u,Dx2

u)
2∇g (Dx1u,Dx2u) · (Dx1 ,Dx2)− 1x=x0 ,

∇uM2[u] = (max{Dv⊥v⊥ , δ}1Dvv>δ + 1Dvv≤δ)Dvv
+
(
max{Dvv, δ}1D

v⊥v⊥>δ
+ 1D

v⊥v⊥≤δ
)
Dv⊥v⊥

− f/g
(

1√
2

(Dvu+Dv⊥u),
1√
2

(Dvu−Dv⊥u)

)2

∇g
(

1√
2

(Dvu+Dv⊥u),
1√
2

(Dvu−Dv⊥u)

)
·
(

1√
2

(Dv +Dv⊥),
1√
2

(Dv −Dv⊥)

)
− 1x=x0

,

∇uMM [u] = −1MM [u]=−M1[u]∇uM1[u]− 1MM [u]=−M2[u]∇uM2u],

∇uMN [u] = −(Dx2x2
u)Dx1x1

− (Dx1x1
u)Dx2x2

+ 2(Dx1x2
u)Dx1x2

+
f

g (Dx1u,Dx2u)
2∇g (Dx1

u,Dx2
u) · (Dx1

,Dx2
) + 1x=x0

.

5. Computation of Frechet Gradient

Our goal is to minimise the Wasserstein metric between computed data f(v)
and observed data g, where f depends on a set of parameters v. In order to do
this efficiently, we will require the gradient of the squared Wasserstein metric with
respect to the unknown parameters.

Our main focus here is computation of the Fréchet gradient of the squared
Wasserstein metric with respect to the data f , which is new in the context of
full waveform inversion. The gradient needed for the minimization is then obtained
through the composition

∇fW 2
2∇vf.

As long as ∇fW 2
2 can be computed efficiently, techniques such as the adjoint state

method can be used to efficiently construct the required gradient [16].
In the present work, our focus is on the use of optimal transportation techniques,

rather than on the use of a particular forward model for producing the data f(v). In
the computations of section 6, we will present the minimisation for problems involv-
ing several different models. For simplicity, and to keep the focus on the properties
of the Wasserstein metric, we will simply use a forward difference approximation
to estimate ∇vf .

5.1. Linearisation of continuous problem. Let f : X → (0,∞), g : X → (0,∞)
be positive density functions defined on a rectangle X. We consider the squared
Wasserstein metric W2(f, g)2 as a function of f ,

(29) d(f) =

∫
X

f(x) |x−∇u|2 dx.



16 BJÖRN ENGQUIST, BRITTANY D. FROESE, AND YUNAN YANG

Here the function u satisfies the second boundary value problem for the Monge-
Ampère equation

(30)


det(D2u(x)) = f(x)/g(∇u(x)), x ∈ X
∇u · ν = x · ν, x ∈ ∂X
u is convex.

Now we perturb f by an amount δf and investigate the resulting change δd in
the function d. That is

d+ δd =

∫
X

(f + δf) |x−∇(u+ δu)|2 dx

where u+ δu satisfies the Monge-Ampère equation with f replaced by f + δf .
Viscosity solutions of the Monge-Ampère equation are stable so we expect δu =

O(δf).
The Monge-Ampère equation can be rewritten as

f + δf = g(∇(u+ δu)) det(D2(u+ δu)).

Linearising these terms, we have to first order

f + δf = [g(∇u) +∇g(∇u) · ∇δu]
[
det(D2u) + tr((D2u)adjD

2δu)
]

= g(∇u) det(D2u) + g(∇u)tr((D2u)adjD
2δu) + det(D2u)∇g(∇u) · ∇δu.

Here we use the notation Aadj = det(A)A−1 to denote the adjugate of the matrix
A.

Thus to first order, the variation in u satisfies the linear elliptic PDE

(31) L[δu] ≡ g(∇u)tr((D2u)adjD
2δu) + det(D2u)∇g(∇u) · ∇δu = δf.

Note that both u and u+δu satisfy the boundary condition in (2). If the domain
and target X are rectangles, this boundary condition can be rewritten as

∇u · ν = x · ν, ∇(u+ δu) · ν = x · ν, x ∈ ∂X
where ν is the unit outward normal to the domain. Thus the variation δu satisfies
the homogeneous Neumann boundary condition

(32) ∇(δu) · ν = 0, x ∈ ∂X.

Remark 6. There is an issue of existence and uniqueness for δu. It is also true
that we need to restrict to mean zero perturbations δf in order for the Wasserstein
metric to be defined. A term involving the average 〈u〉 can be added to the Monge-
Ampère equation to correct the issues of existence/uniqueness.

To first order, the perturbed (squared) Wasserstein metric satisfies

d+ δd =

∫
X

(f + δf) |x−∇(u+ δu)|2 dx

=

∫
X

[
f |x−∇u|2 + δf |x−∇u|2 − 2f(x−∇u) · ∇δu

]
dx.

Thus the first variation is given by

δd =

∫
X

[
|x−∇u|2 − 2f(x−∇u) · ∇L−1

]
δf

and the gradient of the squared Wasserstein metric is

∇d = |x−∇uf |2 − 2(L−1)∗(∇ · (f(x−∇uf ))).
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Computation of the gradient requires the solution of a single linear elliptic PDE.

5.2. Linearisation of discrete problem. As an alternative to the above, we
consider the linearisation of the discretised version of the Wasserstein metric. Using
the finite difference matrices introduced in section 4, we can express the discrete
Wasserstein metric as

(33) d(f) =

n∑
j=1

(xj −Dxj
uf )Tdiag(f)(xj −Dxj

uf )

where the potential uf satisfies the discrete Monge-Ampère equation

M[uf ] = 0.

The first variation of the squared Wasserstein metric as

δd = −2

n∑
j=1

(Dxj
δu)Tdiag(f)(xj−Dxj

uf )+

n∑
j=1

(xj−Dxj
uf )Tdiag(δf)(xj−Dxj

uf ).

Linearising the Monge-Ampère equation, we have to first order

∇MF [uf ]δu = δf.

Here ∇MF is the (formal) Jacobian of the discrete Monge-Ampère equation, which
is already being inverted in the process of solving the Monge-Ampère equation
via Newton’s method (28). Then the gradient of the discrete squared Wasserstein
metric can be expressed as

∇d =

n∑
j=1

[
−2∇M−1

F [uf ]TDT
xj

diag(f) + diag(xj −Dxj
uf )
]

(xj −Dxj
uf ).

Notice that once the Monge-Ampère equation itself has been solved, this gradient
is easy to compute as it only requires the inversion of a single matrix that is already
being inverted as a part of the solution of the Monge-Ampère equation.

6. Computational Results

In this section, we provide examples of the minimization of the Wasserstein
metric between given data g and a modeled signal f(v) that depends on the un-
known parameters v. Minimisation is performed using the Matlab function fmincon,
equipped with the gradient described in subsection 5.2.

6.1. Forward problem. The 2-D acoustic wave equation in the time domain can
be written as:

(34)


1

v(x,z)2
∂2u
∂t2 −

(
∂2u
∂x2 + ∂2u

∂z2

)
= 0,

u(x, z, t) = u0(x, z), t = 0,

ut(x, z, t) = 0, t = 0.

Here u(x, z, t) is the wave field, v(x, z) is the velocity, u0(x, z) is the initial wave
field generated by Ricker wavelet signal[24].
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We will use the velocity model to simulate a seismic survey. The wave equa-
tion (34) is solved by using finite difference scheme for a defined initial wave field.

(35)

ul+1
n,m = −ul−1

n,m+2uln,m+v2
n,m∆t2

(
uln+1,m − 2uln,m + uln−1,m

∆x2
+
uln,m+1 − 2uln,m + uln,m−1

∆z2

)
with the initial conditions

(36) u−1
n,m = f(n∆x,m∆z), u0

n,m = f(n∆x,m∆z).

Here uln,m is the wave field at the time l∆t and at the spatial position (n∆x,m∆z).
vn,m is the velocity at (n∆x,m∆z). The step size ∆t is chosen to satisfy the nu-
merical stability condition:

(37) min(∆x,∆z) >
√

2∆tmax(v).

The wave field u(x, 0, t) recovered at the surface forms the two-dimensional seis-
mic data.

We cannot directly compute the Wasserstein metric between two such wave fields
since these are not probability measures. Some additional processing is needed to
ensure that the data f(x, t) is strictly positive and has total mass one. Instead, we
work with something akin to a local amplitude by defining

f̃(x, t) =

√∫ t+ε

t−ε
u(x, 0, s)2 ds

where ε = 10∆t. Finally, this profile is normalised to produce a density function
f(x, t) that has unit mass.

6.2. Single layer model. We first consider a material composed of a single layer
of depth d and velocity v. We define the data fd,v(s, t) to be the resulting data,
which we obtain by solving the wave equation for ud,v and processing the results.

We consider the particular case of d = 2, v = 1. In order to define the target
profile g, which mimics the observed data, we add noise N(s, t) chosen uniformly
at random from [−M,M ],

g̃(s, t) = max{u2,1(s, t) +N(s, t), 0},

where M is approximately 2% the maximum value of f2,1. See Figure 6.2. Then
our goal is to determine d and v that minimise

W 2
2 (fd,v, g).

We initialise with the guess d = 2.5 and v = 1.75 and perform minimisation
over the parameters d and v−1. The convergence history is displayed in Figure 8.
Despite the noise in the target profile, we recover the parameters d = 2.2157 and
v = 1.0953 after fifteen iterations, with a squared Wasserstein metric of 3.36×10−4.
(The required stepsize in the minimization algorithm became too small to improve
appreciably beyond this). For reference, comparison of the noisy target with the
exact signal f2,1 (without noise) yielded a squared Wasserstein metric of 7.49×10−4,
so that the error in the recovered parameters can be explained by the noise.
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Figure 5. A signal produced from a single layer model with added noise.

Iterations
0 5 10 15

P
ar

am
et

er
 V

al
ue

s

1

1.5

2

2.5

3 d

v

(a)

Iterations
0 5 10 15

W
2 2

10-4

10-3

10-2

10-1

(b)

Figure 6. Convergence history for a single layer model.

6.3. Two layer model. Next, we consider the case where the material is composed
of two different layers. The top layer has depth d1 and velocity v1 while the bottom
layer has depth d2 and velocity v2; see Figure 7(a).

We look at the particular case where the given target density g is defined by the
parameter values

d1 = 0.75, v1 = 1, d2 = 1, v2 = 1.5.

As in the previous example, we add noise to this target. The resulting signal is
shown in Figure 7(b).

In this case, the distance W2 depends on the four parameters d1, v
−1
1 , d2, v

−1
2 .

We initialise with the guess d1 = 0.5, v1 = 1.5, d2 = 0.75, and v2 = 2. After 33
iterations, we recover the parameter values d1 = 0.772, d2 = 0.991, v1 = 1.0318,
and v2 = 1.519 with a squared misfit value of 2.06×10−5. The convergence history
is presented in Figure 8.

As noted in [6], when the model involves both depth and velocity, the resulting
distance can contain narrow valleys, and computing the minimum can require small
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Figure 7. (a) A two-layer material and (b) the resulting signal.
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Figure 8. Convergence history for a two-layer material.
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Figure 9. (a) A six parameter velocity model used to generate
(b) a target signal g. (c) Initial and (d) computed velocity.

stepsizes. We were still able to effectively compute the minimum in this setting,
but we expect that quasi-Newton methods would enable even faster convergence.

6.4. Six Parameter model. We next consider the case of a piecewise constant
material. See Figure 9 for the set-up.

We look at the particular case where the given target density g is defined by the
parameter values

v1 = 1, v2 = 1.5, v3 = 1, v4 = 2, v5 = 2.5, v6 = 1.75.

As in the previous example, we add noise to this target. The resulting signal is
shown in Figure 9(b).

In this case, the distance W2 depends on the six parameters 1/vi, i = 1, . . . , 6.
We initialise with the guess v1 = v2 = v3 = 1.25 and v4 = v5 = v6 = 2.5. In
this example, which depends only on velocity and not on depth, the convergence
proceeds without the need for very small stepsizes that we observed in the previous
example. After 72 iterations, we recover the parameter values v1 = 1.0034, v2 =
1.5058, v3 = 0.9996, v4 = 1.9932, v5 = 2.4889, and v6 = 1.7296 with a squared
misfit value of 3.94 × 10−6. The convergence history is presented in Figure 10.
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Figure 10. Convergence history for a six parameter model.

For reference, comparison of the noisy target with the exact signal (without noise)
yielded a squared Wasserstein metric of 4.82× 10−6.

6.5. Twelve Parameter model. We again consider a piecewise constant velocity
model, but this time increase the number of parameters to twelve. See Figure 11
for the set-up used to construct the (noisy) target density g, as well as the resulting
signal.

In this case, the distance W2 depends on the twelve parameters 1/vi, i =
1, . . . , 12. We initialise with the guess v = vg + 0.25. After 132 iterations, we
recover the twelve parameters with a maximum error of ‖v − vg‖∞ = 0.0091 and
a squared misfit value of 2.10 × 10−6. For reference, comparison of the noisy tar-
get with the exact signal (without noise) yielded a squared Wasserstein metric of
3.16× 10−6, which suggests that the error in the recovered parameter values is due
to noise in the data. The convergence history is presented in Figure 12. The simple
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Figure 11. (a) A twelve parameter velocity model used to gener-
ate (b) a target signal g. (c) Initial and (d) computed velocity.

models in subsection 6.2 and subsection 6.4 were included to indicate how the result
depend on model complexity.
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Figure 12. Convergence history for a twelve parameter model.
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7. Conclusions

In this paper, we demonstrate several advantages of the Wasserstein metric as a
measure of misfit between seismic signals in connection to full waveform inversion.
In particular, we proved that this distance is convex with respect to several common
transformations and is less sensitive to noise than the L2 distance. Additionally,
the Frechét gradient is easily computed, which makes the Wasserstein metric ex-
tremely promising for optimization and thus for seismic inversion problems. Simple
numerical examples demonstrate the efficiency of using this metric.

A natural direction for future research is increasing the efficiency of the com-
putation with quasi Newton techniques and parallelization, and thus being able to
apply the method on more realistic seismic applications.
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[15] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, 1984.

[16] R.-E. Plessix. A review of the adjoint-state method for computing the gradient of a functional
with geophysical applications. Geophysical Journal International, 167(2):495–503, 2006.

[17] J. A. Scales, P. Docherty, and A. Gersztenkorn. Regularisation of nonlinear inverse problems:
imaging the near-surface weathering layer. Inverse Problems, 6(1):115, 1990.

[18] P. Stefanov and G. Uhlmann. Recovery of a source term or a speed with one measurement
and applications. Transactions of the American Mathematical Society, 365(11):5737–5758,

2013.
[19] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundary value

problem. Annals of mathematics, pages 153–169, 1987.

[20] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
49(8):1259–1266, 1984.



OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM INVERSION 25

[21] A. Tarantola. Inverse problems theory. Methods for Data Fitting and Model Parameter Es-

timation. Elsevier, Southampton, 1987.

[22] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

[23] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,

2008.
[24] Wensheng Zhang and Jia Luo. Full-waveform velocity inversion based on the acoustic wave

equation. American Journal of Computational Mathematics, 3(03):13, 2013.

Department of Mathematics and ICES, The University of Texas at Austin, 1 Univer-
sity Station C1200, Austin, TX 78712 USA

E-mail address: engquist@math.utexas.edu

Department of Mathematical Sciences, New Jersey Institute of Technology, Uni-
versity Heights, Newark, NJ 07102 USA

E-mail address: bdfroese@njit.edu

Department of Mathematics and ICES, The University of Texas at Austin, 1 Univer-

sity Station C1200, Austin, TX 78712 USA

E-mail address: yunanyang@math.utexas.edu


	1. Introduction
	2. Convexity of the quadratic Wasserstein metric
	2.1. Convexity with respect to shift
	2.2. Convexity with respect to dilation
	2.3. Convexity with respect to partial amplitude change

	3. Insensitivity with respect to noise
	3.1. One dimension
	3.2. Higher dimensions

	4. Numerical Computation of the Wasserstein metric
	5. Computation of Frechet Gradient
	5.1. Linearisation of continuous problem
	5.2. Linearisation of discrete problem

	6. Computational Results
	6.1. Forward problem
	6.2. Single layer model
	6.3. Two layer model
	6.4. Six Parameter model
	6.5. Twelve Parameter model

	7. Conclusions
	References

